| /* |
| * Copyright (C) 2006, 2008 Apple Inc. All rights reserved. |
| * Copyright (C) 2009 Google Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "Timer.h" |
| |
| #include "SharedTimer.h" |
| #include "ThreadGlobalData.h" |
| #include "ThreadTimers.h" |
| #include <limits.h> |
| #include <limits> |
| #include <math.h> |
| #include <wtf/MainThread.h> |
| #include <wtf/Vector.h> |
| |
| namespace WebCore { |
| |
| class TimerHeapReference; |
| |
| // Timers are stored in a heap data structure, used to implement a priority queue. |
| // This allows us to efficiently determine which timer needs to fire the soonest. |
| // Then we set a single shared system timer to fire at that time. |
| // |
| // When a timer's "next fire time" changes, we need to move it around in the priority queue. |
| static Vector<TimerBase*>& threadGlobalTimerHeap() |
| { |
| return threadGlobalData().threadTimers().timerHeap(); |
| } |
| // ---------------- |
| |
| class TimerHeapPointer { |
| public: |
| TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { } |
| TimerHeapReference operator*() const; |
| TimerBase* operator->() const { return *m_pointer; } |
| private: |
| TimerBase** m_pointer; |
| }; |
| |
| class TimerHeapReference { |
| public: |
| TimerHeapReference(TimerBase*& reference) : m_reference(reference) { } |
| operator TimerBase*() const { return m_reference; } |
| TimerHeapPointer operator&() const { return &m_reference; } |
| TimerHeapReference& operator=(TimerBase*); |
| TimerHeapReference& operator=(TimerHeapReference); |
| private: |
| TimerBase*& m_reference; |
| }; |
| |
| inline TimerHeapReference TimerHeapPointer::operator*() const |
| { |
| return *m_pointer; |
| } |
| |
| inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer) |
| { |
| m_reference = timer; |
| Vector<TimerBase*>& heap = timer->timerHeap(); |
| if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size()) |
| timer->m_heapIndex = &m_reference - heap.data(); |
| return *this; |
| } |
| |
| inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b) |
| { |
| TimerBase* timer = b; |
| return *this = timer; |
| } |
| |
| inline void swap(TimerHeapReference a, TimerHeapReference b) |
| { |
| TimerBase* timerA = a; |
| TimerBase* timerB = b; |
| |
| // Invoke the assignment operator, since that takes care of updating m_heapIndex. |
| a = timerB; |
| b = timerA; |
| } |
| |
| // ---------------- |
| |
| // Class to represent iterators in the heap when calling the standard library heap algorithms. |
| // Uses a custom pointer and reference type that update indices for pointers in the heap. |
| class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> { |
| public: |
| explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); } |
| |
| TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; } |
| TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); } |
| |
| TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; } |
| TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); } |
| |
| TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; } |
| TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; } |
| |
| TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); } |
| TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); } |
| TimerBase* operator->() const { return *m_pointer; } |
| |
| private: |
| void checkConsistency(ptrdiff_t offset = 0) const |
| { |
| ASSERT(m_pointer >= threadGlobalTimerHeap().data()); |
| ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); |
| ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data()); |
| ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); |
| } |
| |
| friend bool operator==(TimerHeapIterator, TimerHeapIterator); |
| friend bool operator!=(TimerHeapIterator, TimerHeapIterator); |
| friend bool operator<(TimerHeapIterator, TimerHeapIterator); |
| friend bool operator>(TimerHeapIterator, TimerHeapIterator); |
| friend bool operator<=(TimerHeapIterator, TimerHeapIterator); |
| friend bool operator>=(TimerHeapIterator, TimerHeapIterator); |
| |
| friend TimerHeapIterator operator+(TimerHeapIterator, size_t); |
| friend TimerHeapIterator operator+(size_t, TimerHeapIterator); |
| |
| friend TimerHeapIterator operator-(TimerHeapIterator, size_t); |
| friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator); |
| |
| TimerBase** m_pointer; |
| }; |
| |
| inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; } |
| inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; } |
| inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; } |
| inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; } |
| inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; } |
| inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; } |
| |
| inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); } |
| inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); } |
| |
| inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); } |
| inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; } |
| |
| // ---------------- |
| |
| class TimerHeapLessThanFunction { |
| public: |
| bool operator()(const TimerBase*, const TimerBase*) const; |
| }; |
| |
| inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const |
| { |
| // The comparisons below are "backwards" because the heap puts the largest |
| // element first and we want the lowest time to be the first one in the heap. |
| MonotonicTime aFireTime = a->m_nextFireTime; |
| MonotonicTime bFireTime = b->m_nextFireTime; |
| if (bFireTime != aFireTime) |
| return bFireTime < aFireTime; |
| |
| // We need to look at the difference of the insertion orders instead of comparing the two |
| // outright in case of overflow. |
| unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder; |
| return difference < std::numeric_limits<unsigned>::max() / 2; |
| } |
| |
| // ---------------- |
| |
| TimerBase::TimerBase() |
| { |
| } |
| |
| TimerBase::~TimerBase() |
| { |
| RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(canAccessThreadLocalDataForThread(m_thread.get())); |
| stop(); |
| ASSERT(!inHeap()); |
| m_wasDeleted = true; |
| } |
| |
| void TimerBase::start(Seconds nextFireInterval, Seconds repeatInterval) |
| { |
| ASSERT(canAccessThreadLocalDataForThread(m_thread.get())); |
| |
| m_repeatInterval = repeatInterval; |
| setNextFireTime(MonotonicTime::now() + nextFireInterval); |
| } |
| |
| void TimerBase::stop() |
| { |
| ASSERT(canAccessThreadLocalDataForThread(m_thread.get())); |
| |
| m_repeatInterval = 0_s; |
| setNextFireTime(MonotonicTime { }); |
| |
| ASSERT(!static_cast<bool>(m_nextFireTime)); |
| ASSERT(m_repeatInterval == 0_s); |
| ASSERT(!inHeap()); |
| } |
| |
| Seconds TimerBase::nextFireInterval() const |
| { |
| ASSERT(isActive()); |
| MonotonicTime current = MonotonicTime::now(); |
| if (m_nextFireTime < current) |
| return 0_s; |
| return m_nextFireTime - current; |
| } |
| |
| inline void TimerBase::checkHeapIndex() const |
| { |
| ASSERT(timerHeap() == threadGlobalTimerHeap()); |
| ASSERT(!timerHeap().isEmpty()); |
| ASSERT(m_heapIndex >= 0); |
| ASSERT(m_heapIndex < static_cast<int>(timerHeap().size())); |
| ASSERT(timerHeap()[m_heapIndex] == this); |
| } |
| |
| inline void TimerBase::checkConsistency() const |
| { |
| // Timers should be in the heap if and only if they have a non-zero next fire time. |
| ASSERT(inHeap() == static_cast<bool>(m_nextFireTime)); |
| if (inHeap()) |
| checkHeapIndex(); |
| } |
| |
| void TimerBase::heapDecreaseKey() |
| { |
| ASSERT(static_cast<bool>(m_nextFireTime)); |
| checkHeapIndex(); |
| TimerBase** heapData = timerHeap().data(); |
| push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction()); |
| checkHeapIndex(); |
| } |
| |
| inline void TimerBase::heapDelete() |
| { |
| ASSERT(!static_cast<bool>(m_nextFireTime)); |
| heapPop(); |
| timerHeap().removeLast(); |
| m_heapIndex = -1; |
| } |
| |
| void TimerBase::heapDeleteMin() |
| { |
| ASSERT(!static_cast<bool>(m_nextFireTime)); |
| heapPopMin(); |
| timerHeap().removeLast(); |
| m_heapIndex = -1; |
| } |
| |
| inline void TimerBase::heapIncreaseKey() |
| { |
| ASSERT(static_cast<bool>(m_nextFireTime)); |
| heapPop(); |
| heapDecreaseKey(); |
| } |
| |
| inline void TimerBase::heapInsert() |
| { |
| ASSERT(!inHeap()); |
| timerHeap().append(this); |
| m_heapIndex = timerHeap().size() - 1; |
| heapDecreaseKey(); |
| } |
| |
| inline void TimerBase::heapPop() |
| { |
| // Temporarily force this timer to have the minimum key so we can pop it. |
| MonotonicTime fireTime = m_nextFireTime; |
| m_nextFireTime = -MonotonicTime::infinity(); |
| heapDecreaseKey(); |
| heapPopMin(); |
| m_nextFireTime = fireTime; |
| } |
| |
| void TimerBase::heapPopMin() |
| { |
| ASSERT(this == timerHeap().first()); |
| checkHeapIndex(); |
| Vector<TimerBase*>& heap = timerHeap(); |
| TimerBase** heapData = heap.data(); |
| pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction()); |
| checkHeapIndex(); |
| ASSERT(this == timerHeap().last()); |
| } |
| |
| static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex) |
| { |
| if (!currentIndex) |
| return true; |
| unsigned parentIndex = (currentIndex - 1) / 2; |
| TimerHeapLessThanFunction compareHeapPosition; |
| return compareHeapPosition(current, heap[parentIndex]); |
| } |
| |
| static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex) |
| { |
| if (childIndex >= heap.size()) |
| return true; |
| TimerHeapLessThanFunction compareHeapPosition; |
| return compareHeapPosition(heap[childIndex], current); |
| } |
| |
| bool TimerBase::hasValidHeapPosition() const |
| { |
| ASSERT(m_nextFireTime); |
| if (!inHeap()) |
| return false; |
| // Check if the heap property still holds with the new fire time. If it does we don't need to do anything. |
| // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions |
| // in updateHeapIfNeeded() will get hit. |
| const Vector<TimerBase*>& heap = timerHeap(); |
| if (!parentHeapPropertyHolds(this, heap, m_heapIndex)) |
| return false; |
| unsigned childIndex1 = 2 * m_heapIndex + 1; |
| unsigned childIndex2 = childIndex1 + 1; |
| return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2); |
| } |
| |
| void TimerBase::updateHeapIfNeeded(MonotonicTime oldTime) |
| { |
| if (m_nextFireTime && hasValidHeapPosition()) |
| return; |
| #ifndef NDEBUG |
| int oldHeapIndex = m_heapIndex; |
| #endif |
| if (!oldTime) |
| heapInsert(); |
| else if (!m_nextFireTime) |
| heapDelete(); |
| else if (m_nextFireTime < oldTime) |
| heapDecreaseKey(); |
| else |
| heapIncreaseKey(); |
| ASSERT(m_heapIndex != oldHeapIndex); |
| ASSERT(!inHeap() || hasValidHeapPosition()); |
| } |
| |
| void TimerBase::setNextFireTime(MonotonicTime newTime) |
| { |
| ASSERT(canAccessThreadLocalDataForThread(m_thread.get())); |
| RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(!m_wasDeleted); |
| |
| if (m_unalignedNextFireTime != newTime) |
| m_unalignedNextFireTime = newTime; |
| |
| // Accessing thread global data is slow. Cache the heap pointer. |
| if (!m_cachedThreadGlobalTimerHeap) |
| m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap(); |
| |
| // Keep heap valid while changing the next-fire time. |
| MonotonicTime oldTime = m_nextFireTime; |
| // Don't realign zero-delay timers. |
| if (newTime) { |
| if (auto newAlignedTime = alignedFireTime(newTime)) |
| newTime = newAlignedTime.value(); |
| } |
| |
| if (oldTime != newTime) { |
| m_nextFireTime = newTime; |
| // FIXME: This should be part of ThreadTimers, or another per-thread structure. |
| static std::atomic<unsigned> currentHeapInsertionOrder; |
| m_heapInsertionOrder = currentHeapInsertionOrder++; |
| |
| bool wasFirstTimerInHeap = m_heapIndex == 0; |
| |
| updateHeapIfNeeded(oldTime); |
| |
| bool isFirstTimerInHeap = m_heapIndex == 0; |
| |
| if (wasFirstTimerInHeap || isFirstTimerInHeap) |
| threadGlobalData().threadTimers().updateSharedTimer(); |
| } |
| |
| checkConsistency(); |
| } |
| |
| void TimerBase::fireTimersInNestedEventLoop() |
| { |
| // Redirect to ThreadTimers. |
| threadGlobalData().threadTimers().fireTimersInNestedEventLoop(); |
| } |
| |
| void TimerBase::didChangeAlignmentInterval() |
| { |
| setNextFireTime(m_unalignedNextFireTime); |
| } |
| |
| Seconds TimerBase::nextUnalignedFireInterval() const |
| { |
| ASSERT(isActive()); |
| return std::max(m_unalignedNextFireTime - MonotonicTime::now(), 0_s); |
| } |
| |
| } // namespace WebCore |
| |