| /* |
| * Copyright (C) 2017 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "DOMMatrix.h" |
| |
| #include "ScriptExecutionContext.h" |
| #include <cmath> |
| #include <limits> |
| |
| namespace WebCore { |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrixreadonly-dommatrixreadonly |
| ExceptionOr<Ref<DOMMatrix>> DOMMatrix::create(ScriptExecutionContext& scriptExecutionContext, std::optional<Variant<String, Vector<double>>>&& init) |
| { |
| if (!init) |
| return adoptRef(*new DOMMatrix); |
| |
| return WTF::switchOn(init.value(), |
| [&scriptExecutionContext](const String& init) -> ExceptionOr<Ref<DOMMatrix>> { |
| if (!scriptExecutionContext.isDocument()) |
| return Exception { TypeError }; |
| |
| auto parseResult = parseStringIntoAbstractMatrix(init); |
| if (parseResult.hasException()) |
| return parseResult.releaseException(); |
| |
| return adoptRef(*new DOMMatrix(parseResult.returnValue().matrix, parseResult.returnValue().is2D ? Is2D::Yes : Is2D::No)); |
| }, |
| [](const Vector<double>& init) -> ExceptionOr<Ref<DOMMatrix>> { |
| if (init.size() == 6) { |
| return adoptRef(*new DOMMatrix(TransformationMatrix { |
| init[0], init[1], init[2], init[3], init[4], init[5] |
| }, Is2D::Yes)); |
| } |
| if (init.size() == 16) { |
| return adoptRef(*new DOMMatrix(TransformationMatrix { |
| init[0], init[1], init[2], init[3], |
| init[4], init[5], init[6], init[7], |
| init[8], init[9], init[10], init[11], |
| init[12], init[13], init[14], init[15] |
| }, Is2D::No)); |
| } |
| return Exception { TypeError }; |
| } |
| ); |
| } |
| |
| DOMMatrix::DOMMatrix(const TransformationMatrix& matrix, Is2D is2D) |
| : DOMMatrixReadOnly(matrix, is2D) |
| { |
| } |
| |
| DOMMatrix::DOMMatrix(TransformationMatrix&& matrix, Is2D is2D) |
| : DOMMatrixReadOnly(WTFMove(matrix), is2D) |
| { |
| } |
| |
| // https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-dictionary |
| ExceptionOr<Ref<DOMMatrix>> DOMMatrix::fromMatrix(DOMMatrixInit&& init) |
| { |
| return fromMatrixHelper<DOMMatrix>(WTFMove(init)); |
| } |
| |
| ExceptionOr<Ref<DOMMatrix>> DOMMatrix::fromFloat32Array(Ref<Float32Array>&& array32) |
| { |
| if (array32->length() == 6) |
| return DOMMatrix::create(TransformationMatrix(array32->item(0), array32->item(1), array32->item(2), array32->item(3), array32->item(4), array32->item(5)), Is2D::Yes); |
| |
| if (array32->length() == 16) { |
| return DOMMatrix::create(TransformationMatrix( |
| array32->item(0), array32->item(1), array32->item(2), array32->item(3), |
| array32->item(4), array32->item(5), array32->item(6), array32->item(7), |
| array32->item(8), array32->item(9), array32->item(10), array32->item(11), |
| array32->item(12), array32->item(13), array32->item(14), array32->item(15) |
| ), Is2D::No); |
| } |
| |
| return Exception { TypeError }; |
| } |
| |
| ExceptionOr<Ref<DOMMatrix>> DOMMatrix::fromFloat64Array(Ref<Float64Array>&& array64) |
| { |
| if (array64->length() == 6) |
| return DOMMatrix::create(TransformationMatrix(array64->item(0), array64->item(1), array64->item(2), array64->item(3), array64->item(4), array64->item(5)), Is2D::Yes); |
| |
| if (array64->length() == 16) { |
| return DOMMatrix::create(TransformationMatrix( |
| array64->item(0), array64->item(1), array64->item(2), array64->item(3), |
| array64->item(4), array64->item(5), array64->item(6), array64->item(7), |
| array64->item(8), array64->item(9), array64->item(10), array64->item(11), |
| array64->item(12), array64->item(13), array64->item(14), array64->item(15) |
| ), Is2D::No); |
| } |
| |
| return Exception { TypeError }; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-multiplyself |
| ExceptionOr<Ref<DOMMatrix>> DOMMatrix::multiplySelf(DOMMatrixInit&& other) |
| { |
| auto fromMatrixResult = DOMMatrix::fromMatrix(WTFMove(other)); |
| if (fromMatrixResult.hasException()) |
| return fromMatrixResult.releaseException(); |
| auto otherObject = fromMatrixResult.releaseReturnValue(); |
| m_matrix.multiply(otherObject->m_matrix); |
| if (!otherObject->is2D()) |
| m_is2D = false; |
| return Ref<DOMMatrix> { *this }; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-premultiplyself |
| ExceptionOr<Ref<DOMMatrix>> DOMMatrix::preMultiplySelf(DOMMatrixInit&& other) |
| { |
| auto fromMatrixResult = DOMMatrix::fromMatrix(WTFMove(other)); |
| if (fromMatrixResult.hasException()) |
| return fromMatrixResult.releaseException(); |
| auto otherObject = fromMatrixResult.releaseReturnValue(); |
| m_matrix = otherObject->m_matrix * m_matrix; |
| if (!otherObject->is2D()) |
| m_is2D = false; |
| return Ref<DOMMatrix> { *this }; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-translateself |
| Ref<DOMMatrix> DOMMatrix::translateSelf(double tx, double ty, double tz) |
| { |
| m_matrix.translate3d(tx, ty, tz); |
| if (tz) |
| m_is2D = false; |
| return *this; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-scaleself |
| Ref<DOMMatrix> DOMMatrix::scaleSelf(double scaleX, std::optional<double> scaleY, double scaleZ, double originX, double originY, double originZ) |
| { |
| if (!scaleY) |
| scaleY = scaleX; |
| translateSelf(originX, originY, originZ); |
| // Post-multiply a non-uniform scale transformation on the current matrix. |
| // The 3D scale matrix is described in CSS Transforms with sx = scaleX, sy = scaleY and sz = scaleZ. |
| m_matrix.scale3d(scaleX, scaleY.value(), scaleZ); |
| translateSelf(-originX, -originY, -originZ); |
| if (scaleZ != 1 || originZ) |
| m_is2D = false; |
| return *this; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-scale3dself |
| Ref<DOMMatrix> DOMMatrix::scale3dSelf(double scale, double originX, double originY, double originZ) |
| { |
| translateSelf(originX, originY, originZ); |
| // Post-multiply a uniform 3D scale transformation (m11 = m22 = m33 = scale) on the current matrix. |
| // The 3D scale matrix is described in CSS Transforms with sx = sy = sz = scale. [CSS3-TRANSFORMS] |
| m_matrix.scale3d(scale, scale, scale); |
| translateSelf(-originX, -originY, -originZ); |
| if (scale != 1) |
| m_is2D = false; |
| return *this; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-rotateself |
| Ref<DOMMatrix> DOMMatrix::rotateSelf(double rotX, std::optional<double> rotY, std::optional<double> rotZ) |
| { |
| if (!rotY && !rotZ) { |
| rotZ = rotX; |
| rotX = 0; |
| rotY = 0; |
| } |
| m_matrix.rotate3d(rotX, rotY.value_or(0), rotZ.value_or(0)); |
| if (rotX || rotY.value_or(0)) |
| m_is2D = false; |
| return *this; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-rotatefromvectorself |
| Ref<DOMMatrix> DOMMatrix::rotateFromVectorSelf(double x, double y) |
| { |
| m_matrix.rotateFromVector(x, y); |
| return *this; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-rotateaxisangleself |
| Ref<DOMMatrix> DOMMatrix::rotateAxisAngleSelf(double x, double y, double z, double angle) |
| { |
| m_matrix.rotate3d(x, y, z, angle); |
| if (x || y) |
| m_is2D = false; |
| return *this; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-skewxself |
| Ref<DOMMatrix> DOMMatrix::skewXSelf(double sx) |
| { |
| m_matrix.skewX(sx); |
| return *this; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-skewyself |
| Ref<DOMMatrix> DOMMatrix::skewYSelf(double sy) |
| { |
| m_matrix.skewY(sy); |
| return *this; |
| } |
| |
| // https://drafts.fxtf.org/geometry/#dom-dommatrix-invertself |
| Ref<DOMMatrix> DOMMatrix::invertSelf() |
| { |
| auto inverse = m_matrix.inverse(); |
| if (!inverse) { |
| m_matrix.setMatrix( |
| std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), |
| std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), |
| std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), |
| std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN() |
| ); |
| m_is2D = false; |
| } |
| m_matrix = inverse.value(); |
| return Ref<DOMMatrix> { *this }; |
| } |
| |
| ExceptionOr<Ref<DOMMatrix>> DOMMatrix::setMatrixValueForBindings(const String& string) |
| { |
| auto result = setMatrixValue(string); |
| if (result.hasException()) |
| return result.releaseException(); |
| return Ref<DOMMatrix> { *this }; |
| } |
| |
| } // namespace WebCore |