| /* |
| * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
| * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> |
| * Copyright (C) 2012 Igalia, S.L. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "BytecodeGenerator.h" |
| |
| #include "ArithProfile.h" |
| #include "BuiltinExecutables.h" |
| #include "BuiltinNames.h" |
| #include "BytecodeGeneratorBaseInlines.h" |
| #include "BytecodeGeneratorification.h" |
| #include "BytecodeLivenessAnalysis.h" |
| #include "BytecodeUseDef.h" |
| #include "CatchScope.h" |
| #include "DefinePropertyAttributes.h" |
| #include "Interpreter.h" |
| #include "JSAsyncGenerator.h" |
| #include "JSBigInt.h" |
| #include "JSCInlines.h" |
| #include "JSFunction.h" |
| #include "JSGeneratorFunction.h" |
| #include "JSImmutableButterfly.h" |
| #include "JSLexicalEnvironment.h" |
| #include "JSTemplateObjectDescriptor.h" |
| #include "LinkTimeConstant.h" |
| #include "LowLevelInterpreter.h" |
| #include "Options.h" |
| #include "PreciseJumpTargetsInlines.h" |
| #include "StackAlignment.h" |
| #include "StrongInlines.h" |
| #include "SuperSamplerBytecodeScope.h" |
| #include "UnlinkedCodeBlock.h" |
| #include "UnlinkedEvalCodeBlock.h" |
| #include "UnlinkedFunctionCodeBlock.h" |
| #include "UnlinkedMetadataTableInlines.h" |
| #include "UnlinkedModuleProgramCodeBlock.h" |
| #include "UnlinkedProgramCodeBlock.h" |
| #include <wtf/BitVector.h> |
| #include <wtf/CommaPrinter.h> |
| #include <wtf/Optional.h> |
| #include <wtf/SmallPtrSet.h> |
| #include <wtf/StdLibExtras.h> |
| #include <wtf/text/WTFString.h> |
| |
| namespace JSC { |
| |
| template<typename CallOp, typename = std::true_type> |
| struct VarArgsOp; |
| |
| template<typename CallOp> |
| struct VarArgsOp<CallOp, std::enable_if_t<std::is_same<CallOp, OpTailCall>::value, std::true_type>> { |
| using type = OpTailCallVarargs; |
| }; |
| |
| |
| template<typename CallOp> |
| struct VarArgsOp<CallOp, std::enable_if_t<!std::is_same<CallOp, OpTailCall>::value, std::true_type>> { |
| using type = OpCallVarargs; |
| }; |
| |
| template<> |
| void GenericLabel<JSGeneratorTraits>::setLocation(BytecodeGenerator& generator, unsigned location) |
| { |
| m_location = location; |
| |
| for (auto offset : m_unresolvedJumps) { |
| auto instruction = generator.m_writer.ref(offset); |
| int target = m_location - offset; |
| |
| #define CASE(__op) \ |
| case __op::opcodeID: \ |
| instruction->cast<__op>()->setTargetLabel(BoundLabel(target), [&]() { \ |
| generator.m_codeBlock->addOutOfLineJumpTarget(instruction.offset(), target); \ |
| return BoundLabel(); \ |
| }); \ |
| break; |
| |
| switch (instruction->opcodeID()) { |
| CASE(OpJmp) |
| CASE(OpJtrue) |
| CASE(OpJfalse) |
| CASE(OpJeqNull) |
| CASE(OpJneqNull) |
| CASE(OpJundefinedOrNull) |
| CASE(OpJnundefinedOrNull) |
| CASE(OpJeq) |
| CASE(OpJstricteq) |
| CASE(OpJneq) |
| CASE(OpJneqPtr) |
| CASE(OpJnstricteq) |
| CASE(OpJless) |
| CASE(OpJlesseq) |
| CASE(OpJgreater) |
| CASE(OpJgreatereq) |
| CASE(OpJnless) |
| CASE(OpJnlesseq) |
| CASE(OpJngreater) |
| CASE(OpJngreatereq) |
| CASE(OpJbelow) |
| CASE(OpJbeloweq) |
| default: |
| ASSERT_NOT_REACHED(); |
| } |
| #undef CASE |
| } |
| } |
| |
| void Variable::dump(PrintStream& out) const |
| { |
| out.print( |
| "{ident = ", m_ident, |
| ", offset = ", m_offset, |
| ", local = ", RawPointer(m_local), |
| ", attributes = ", m_attributes, |
| ", kind = ", m_kind, |
| ", symbolTableConstantIndex = ", m_symbolTableConstantIndex, |
| ", isLexicallyScoped = ", m_isLexicallyScoped, "}"); |
| } |
| |
| FinallyContext::FinallyContext(BytecodeGenerator& generator, Label& finallyLabel) |
| : m_outerContext(generator.m_currentFinallyContext) |
| , m_finallyLabel(&finallyLabel) |
| { |
| ASSERT(m_jumps.isEmpty()); |
| m_completionRecord.typeRegister = generator.newTemporary(); |
| m_completionRecord.valueRegister = generator.newTemporary(); |
| generator.emitLoad(completionTypeRegister(), CompletionType::Normal); |
| generator.moveEmptyValue(completionValueRegister()); |
| } |
| |
| ParserError BytecodeGenerator::generate() |
| { |
| m_codeBlock->setThisRegister(m_thisRegister.virtualRegister()); |
| |
| emitLogShadowChickenPrologueIfNecessary(); |
| |
| // If we have declared a variable named "arguments" and we are using arguments then we should |
| // perform that assignment now. |
| if (m_needToInitializeArguments) |
| initializeVariable(variable(propertyNames().arguments), m_argumentsRegister); |
| |
| if (m_restParameter) |
| m_restParameter->emit(*this); |
| |
| { |
| RefPtr<RegisterID> temp = newTemporary(); |
| RefPtr<RegisterID> tolLevelScope; |
| for (auto functionPair : m_functionsToInitialize) { |
| FunctionMetadataNode* metadata = functionPair.first; |
| FunctionVariableType functionType = functionPair.second; |
| emitNewFunction(temp.get(), metadata); |
| if (functionType == NormalFunctionVariable) |
| initializeVariable(variable(metadata->ident()), temp.get()); |
| else if (functionType == TopLevelFunctionVariable) { |
| if (!tolLevelScope) { |
| // We know this will resolve to the top level scope or global object because our parser/global initialization code |
| // doesn't allow let/const/class variables to have the same names as functions. |
| // This is a top level function, and it's an error to ever create a top level function |
| // name that would resolve to a lexical variable. E.g: |
| // ``` |
| // function f() { |
| // { |
| // let x; |
| // { |
| // //// error thrown here |
| // eval("function x(){}"); |
| // } |
| // } |
| // } |
| // ``` |
| // Therefore, we're guaranteed to have this resolve to a top level variable. |
| RefPtr<RegisterID> tolLevelObjectScope = emitResolveScope(nullptr, Variable(metadata->ident())); |
| tolLevelScope = newBlockScopeVariable(); |
| move(tolLevelScope.get(), tolLevelObjectScope.get()); |
| } |
| emitPutToScope(tolLevelScope.get(), Variable(metadata->ident()), temp.get(), ThrowIfNotFound, InitializationMode::NotInitialization); |
| } else |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| bool callingClassConstructor = false; |
| switch (constructorKind()) { |
| case ConstructorKind::None: |
| case ConstructorKind::Naked: |
| break; |
| case ConstructorKind::Base: |
| case ConstructorKind::Extends: |
| callingClassConstructor = !isConstructor(); |
| break; |
| } |
| if (!callingClassConstructor) |
| m_scopeNode->emitBytecode(*this); |
| else { |
| // At this point we would have emitted an unconditional throw followed by some nonsense that's |
| // just an artifact of how this generator is structured. That code never runs, but it confuses |
| // bytecode analyses because it constitutes an unterminated basic block. So, we terminate the |
| // basic block the strongest way possible. |
| emitUnreachable(); |
| } |
| |
| for (auto& handler : m_exceptionHandlersToEmit) { |
| Ref<Label> realCatchTarget = newLabel(); |
| TryData* tryData = handler.tryData; |
| |
| OpCatch::emit(this, handler.exceptionRegister, handler.thrownValueRegister); |
| realCatchTarget->setLocation(*this, m_lastInstruction.offset()); |
| if (handler.completionTypeRegister.isValid()) { |
| RegisterID completionTypeRegister { handler.completionTypeRegister }; |
| CompletionType completionType = |
| tryData->handlerType == HandlerType::Finally || tryData->handlerType == HandlerType::SynthesizedFinally |
| ? CompletionType::Throw |
| : CompletionType::Normal; |
| emitLoad(&completionTypeRegister, completionType); |
| } |
| m_codeBlock->addJumpTarget(m_lastInstruction.offset()); |
| |
| |
| emitJump(tryData->target.get()); |
| tryData->target = WTFMove(realCatchTarget); |
| } |
| |
| m_staticPropertyAnalyzer.kill(); |
| |
| for (auto& range : m_tryRanges) { |
| int start = range.start->bind(); |
| int end = range.end->bind(); |
| |
| // This will happen for empty try blocks and for some cases of finally blocks: |
| // |
| // try { |
| // try { |
| // } finally { |
| // return 42; |
| // // *HERE* |
| // } |
| // } finally { |
| // print("things"); |
| // } |
| // |
| // The return will pop scopes to execute the outer finally block. But this includes |
| // popping the try context for the inner try. The try context is live in the fall-through |
| // part of the finally block not because we will emit a handler that overlaps the finally, |
| // but because we haven't yet had a chance to plant the catch target. Then when we finish |
| // emitting code for the outer finally block, we repush the try contex, this time with a |
| // new start index. But that means that the start index for the try range corresponding |
| // to the inner-finally-following-the-return (marked as "*HERE*" above) will be greater |
| // than the end index of the try block. This is harmless since end < start handlers will |
| // never get matched in our logic, but we do the runtime a favor and choose to not emit |
| // such handlers at all. |
| if (end <= start) |
| continue; |
| |
| UnlinkedHandlerInfo info(static_cast<uint32_t>(start), static_cast<uint32_t>(end), |
| static_cast<uint32_t>(range.tryData->target->bind()), range.tryData->handlerType); |
| m_codeBlock->addExceptionHandler(info); |
| } |
| |
| |
| if (isGeneratorOrAsyncFunctionBodyParseMode(m_codeBlock->parseMode())) |
| performGeneratorification(*this, m_codeBlock.get(), m_writer, m_generatorFrameSymbolTable.get(), m_generatorFrameSymbolTableIndex); |
| |
| RELEASE_ASSERT(static_cast<unsigned>(m_codeBlock->numCalleeLocals()) < static_cast<unsigned>(FirstConstantRegisterIndex)); |
| m_codeBlock->setInstructions(m_writer.finalize()); |
| |
| m_codeBlock->shrinkToFit(); |
| |
| if (m_expressionTooDeep) |
| return ParserError(ParserError::OutOfMemory); |
| return ParserError(ParserError::ErrorNone); |
| } |
| |
| BytecodeGenerator::BytecodeGenerator(VM& vm, ProgramNode* programNode, UnlinkedProgramCodeBlock* codeBlock, OptionSet<CodeGenerationMode> codeGenerationMode, const VariableEnvironment* parentScopeTDZVariables) |
| : BytecodeGeneratorBase(Strong<UnlinkedCodeBlock>(vm, codeBlock), CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters()) |
| , m_codeGenerationMode(codeGenerationMode) |
| , m_scopeNode(programNode) |
| , m_thisRegister(CallFrame::thisArgumentOffset()) |
| , m_codeType(GlobalCode) |
| , m_vm(vm) |
| , m_needsToUpdateArrowFunctionContext(programNode->usesArrowFunction() || programNode->usesEval()) |
| { |
| ASSERT_UNUSED(parentScopeTDZVariables, !parentScopeTDZVariables->size()); |
| |
| m_codeBlock->setNumParameters(1); // Allocate space for "this" |
| |
| emitEnter(); |
| |
| allocateAndEmitScope(); |
| |
| emitCheckTraps(); |
| |
| const FunctionStack& functionStack = programNode->functionStack(); |
| |
| for (auto* function : functionStack) |
| m_functionsToInitialize.append(std::make_pair(function, TopLevelFunctionVariable)); |
| |
| if (Options::validateBytecode()) { |
| for (auto& entry : programNode->varDeclarations()) |
| RELEASE_ASSERT(entry.value.isVar()); |
| } |
| codeBlock->setVariableDeclarations(programNode->varDeclarations()); |
| codeBlock->setLexicalDeclarations(programNode->lexicalVariables()); |
| // Even though this program may have lexical variables that go under TDZ, when linking the get_from_scope/put_to_scope |
| // operations we emit we will have ResolveTypes that implictly do TDZ checks. Therefore, we don't need |
| // additional TDZ checks on top of those. This is why we can omit pushing programNode->lexicalVariables() |
| // to the TDZ stack. |
| |
| if (needsToUpdateArrowFunctionContext()) { |
| initializeArrowFunctionContextScopeIfNeeded(); |
| emitPutThisToArrowFunctionContextScope(); |
| } |
| } |
| |
| BytecodeGenerator::BytecodeGenerator(VM& vm, FunctionNode* functionNode, UnlinkedFunctionCodeBlock* codeBlock, OptionSet<CodeGenerationMode> codeGenerationMode, const VariableEnvironment* parentScopeTDZVariables) |
| : BytecodeGeneratorBase(Strong<UnlinkedCodeBlock>(vm, codeBlock), CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters()) |
| , m_codeGenerationMode(codeGenerationMode) |
| , m_scopeNode(functionNode) |
| , m_codeType(FunctionCode) |
| , m_vm(vm) |
| , m_isBuiltinFunction(codeBlock->isBuiltinFunction()) |
| , m_usesNonStrictEval(codeBlock->usesEval() && !codeBlock->isStrictMode()) |
| // FIXME: We should be able to have tail call elimination with the profiler |
| // enabled. This is currently not possible because the profiler expects |
| // op_will_call / op_did_call pairs before and after a call, which are not |
| // compatible with tail calls (we have no way of emitting op_did_call). |
| // https://bugs.webkit.org/show_bug.cgi?id=148819 |
| // |
| // Note that we intentionally enable tail call for naked constructors since it does not have special code for "return". |
| , m_inTailPosition(Options::useTailCalls() && !isConstructor() && constructorKind() == ConstructorKind::None && isStrictMode()) |
| , m_needsToUpdateArrowFunctionContext(functionNode->usesArrowFunction() || functionNode->usesEval()) |
| , m_derivedContextType(codeBlock->derivedContextType()) |
| { |
| SymbolTable* functionSymbolTable = SymbolTable::create(m_vm); |
| functionSymbolTable->setUsesNonStrictEval(m_usesNonStrictEval); |
| int symbolTableConstantIndex = 0; |
| |
| FunctionParameters& parameters = *functionNode->parameters(); |
| // http://www.ecma-international.org/ecma-262/6.0/index.html#sec-functiondeclarationinstantiation |
| // This implements IsSimpleParameterList in the Ecma 2015 spec. |
| // If IsSimpleParameterList is false, we will create a strict-mode like arguments object. |
| // IsSimpleParameterList is false if the argument list contains any default parameter values, |
| // a rest parameter, or any destructuring patterns. |
| // If we do have default parameters, destructuring parameters, or a rest parameter, our parameters will be allocated in a different scope. |
| bool isSimpleParameterList = parameters.isSimpleParameterList(); |
| |
| SourceParseMode parseMode = codeBlock->parseMode(); |
| |
| bool containsArrowOrEvalButNotInArrowBlock = ((functionNode->usesArrowFunction() && functionNode->doAnyInnerArrowFunctionsUseAnyFeature()) || functionNode->usesEval()) && !m_codeBlock->isArrowFunction(); |
| bool shouldCaptureSomeOfTheThings = shouldEmitDebugHooks() || functionNode->needsActivation() || containsArrowOrEvalButNotInArrowBlock; |
| |
| bool shouldCaptureAllOfTheThings = shouldEmitDebugHooks() || codeBlock->usesEval(); |
| bool needsArguments = ((functionNode->usesArguments() && !codeBlock->isArrowFunction()) || codeBlock->usesEval() || (functionNode->usesArrowFunction() && !codeBlock->isArrowFunction() && isArgumentsUsedInInnerArrowFunction())); |
| |
| if (isGeneratorOrAsyncFunctionBodyParseMode(parseMode)) { |
| // Generator and AsyncFunction never provides "arguments". "arguments" reference will be resolved in an upper generator function scope. |
| needsArguments = false; |
| } |
| |
| if (isGeneratorOrAsyncFunctionWrapperParseMode(parseMode) && needsArguments) { |
| // Generator does not provide "arguments". Instead, wrapping GeneratorFunction provides "arguments". |
| // This is because arguments of a generator should be evaluated before starting it. |
| // To workaround it, we evaluate these arguments as arguments of a wrapping generator function, and reference it from a generator. |
| // |
| // function *gen(a, b = hello()) |
| // { |
| // return { |
| // @generatorNext: function (@generator, @generatorState, @generatorValue, @generatorResumeMode, @generatorFrame) |
| // { |
| // arguments; // This `arguments` should reference to the gen's arguments. |
| // ... |
| // } |
| // } |
| // } |
| shouldCaptureSomeOfTheThings = true; |
| } |
| |
| if (shouldCaptureAllOfTheThings) |
| functionNode->varDeclarations().markAllVariablesAsCaptured(); |
| |
| auto captures = scopedLambda<bool (UniquedStringImpl*)>([&] (UniquedStringImpl* uid) -> bool { |
| if (!shouldCaptureSomeOfTheThings) |
| return false; |
| if (needsArguments && uid == propertyNames().arguments.impl()) { |
| // Actually, we only need to capture the arguments object when we "need full activation" |
| // because of name scopes. But historically we did it this way, so for now we just preserve |
| // the old behavior. |
| // FIXME: https://bugs.webkit.org/show_bug.cgi?id=143072 |
| return true; |
| } |
| return functionNode->captures(uid); |
| }); |
| auto varKind = [&] (UniquedStringImpl* uid) -> VarKind { |
| return captures(uid) ? VarKind::Scope : VarKind::Stack; |
| }; |
| |
| m_calleeRegister.setIndex(CallFrameSlot::callee); |
| |
| initializeParameters(parameters); |
| ASSERT(!(isSimpleParameterList && m_restParameter)); |
| |
| emitEnter(); |
| |
| if (isGeneratorOrAsyncFunctionBodyParseMode(parseMode)) |
| m_generatorRegister = &m_parameters[1]; |
| |
| allocateAndEmitScope(); |
| |
| emitCheckTraps(); |
| |
| if (functionNameIsInScope(functionNode->ident(), functionNode->functionMode())) { |
| ASSERT(parseMode != SourceParseMode::GeneratorBodyMode); |
| ASSERT(!isAsyncFunctionBodyParseMode(parseMode)); |
| bool isDynamicScope = functionNameScopeIsDynamic(codeBlock->usesEval(), codeBlock->isStrictMode()); |
| bool isFunctionNameCaptured = captures(functionNode->ident().impl()); |
| bool markAsCaptured = isDynamicScope || isFunctionNameCaptured; |
| emitPushFunctionNameScope(functionNode->ident(), &m_calleeRegister, markAsCaptured); |
| } |
| |
| if (shouldCaptureSomeOfTheThings) |
| m_lexicalEnvironmentRegister = addVar(); |
| |
| if (isGeneratorOrAsyncFunctionBodyParseMode(parseMode) || shouldCaptureSomeOfTheThings || shouldEmitTypeProfilerHooks()) |
| symbolTableConstantIndex = addConstantValue(functionSymbolTable)->index(); |
| |
| // We can allocate the "var" environment if we don't have default parameter expressions. If we have |
| // default parameter expressions, we have to hold off on allocating the "var" environment because |
| // the parent scope of the "var" environment is the parameter environment. |
| if (isSimpleParameterList) |
| initializeVarLexicalEnvironment(symbolTableConstantIndex, functionSymbolTable, shouldCaptureSomeOfTheThings); |
| |
| // Figure out some interesting facts about our arguments. |
| bool capturesAnyArgumentByName = false; |
| if (functionNode->hasCapturedVariables()) { |
| FunctionParameters& parameters = *functionNode->parameters(); |
| for (size_t i = 0; i < parameters.size(); ++i) { |
| auto pattern = parameters.at(i).first; |
| if (!pattern->isBindingNode()) |
| continue; |
| const Identifier& ident = static_cast<const BindingNode*>(pattern)->boundProperty(); |
| capturesAnyArgumentByName |= captures(ident.impl()); |
| } |
| } |
| |
| if (capturesAnyArgumentByName) |
| ASSERT(m_lexicalEnvironmentRegister); |
| |
| // Need to know what our functions are called. Parameters have some goofy behaviors when it |
| // comes to functions of the same name. |
| for (FunctionMetadataNode* function : functionNode->functionStack()) |
| m_functions.add(function->ident().impl()); |
| |
| if (needsArguments) { |
| // Create the arguments object now. We may put the arguments object into the activation if |
| // it is captured. Either way, we create two arguments object variables: one is our |
| // private variable that is immutable, and another that is the user-visible variable. The |
| // immutable one is only used here, or during formal parameter resolutions if we opt for |
| // DirectArguments. |
| |
| m_argumentsRegister = addVar(); |
| m_argumentsRegister->ref(); |
| } |
| |
| if (needsArguments && !codeBlock->isStrictMode() && isSimpleParameterList) { |
| // If we captured any formal parameter by name, then we use ScopedArguments. Otherwise we |
| // use DirectArguments. With ScopedArguments, we lift all of our arguments into the |
| // activation. |
| |
| if (capturesAnyArgumentByName) { |
| functionSymbolTable->setArgumentsLength(vm, parameters.size()); |
| |
| // For each parameter, we have two possibilities: |
| // Either it's a binding node with no function overlap, in which case it gets a name |
| // in the symbol table - or it just gets space reserved in the symbol table. Either |
| // way we lift the value into the scope. |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| ScopeOffset offset = functionSymbolTable->takeNextScopeOffset(NoLockingNecessary); |
| functionSymbolTable->setArgumentOffset(vm, i, offset); |
| if (UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first)) { |
| VarOffset varOffset(offset); |
| SymbolTableEntry entry(varOffset); |
| // Stores to these variables via the ScopedArguments object will not do |
| // notifyWrite(), since that would be cumbersome. Also, watching formal |
| // parameters when "arguments" is in play is unlikely to be super profitable. |
| // So, we just disable it. |
| entry.disableWatching(m_vm); |
| functionSymbolTable->set(NoLockingNecessary, name, entry); |
| } |
| OpPutToScope::emit(this, m_lexicalEnvironmentRegister, UINT_MAX, virtualRegisterForArgument(1 + i), GetPutInfo(ThrowIfNotFound, LocalClosureVar, InitializationMode::NotInitialization), SymbolTableOrScopeDepth::symbolTable(VirtualRegister { symbolTableConstantIndex }), offset.offset()); |
| } |
| |
| // This creates a scoped arguments object and copies the overflow arguments into the |
| // scope. It's the equivalent of calling ScopedArguments::createByCopying(). |
| OpCreateScopedArguments::emit(this, m_argumentsRegister, m_lexicalEnvironmentRegister); |
| } else { |
| // We're going to put all parameters into the DirectArguments object. First ensure |
| // that the symbol table knows that this is happening. |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| if (UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first)) |
| functionSymbolTable->set(NoLockingNecessary, name, SymbolTableEntry(VarOffset(DirectArgumentsOffset(i)))); |
| } |
| |
| OpCreateDirectArguments::emit(this, m_argumentsRegister); |
| } |
| } else if (isSimpleParameterList) { |
| // Create the formal parameters the normal way. Any of them could be captured, or not. If |
| // captured, lift them into the scope. We cannot do this if we have default parameter expressions |
| // because when default parameter expressions exist, they belong in their own lexical environment |
| // separate from the "var" lexical environment. |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first); |
| if (!name) |
| continue; |
| |
| if (!captures(name)) { |
| // This is the easy case - just tell the symbol table about the argument. It will |
| // be accessed directly. |
| functionSymbolTable->set(NoLockingNecessary, name, SymbolTableEntry(VarOffset(virtualRegisterForArgument(1 + i)))); |
| continue; |
| } |
| |
| ScopeOffset offset = functionSymbolTable->takeNextScopeOffset(NoLockingNecessary); |
| const Identifier& ident = |
| static_cast<const BindingNode*>(parameters.at(i).first)->boundProperty(); |
| functionSymbolTable->set(NoLockingNecessary, name, SymbolTableEntry(VarOffset(offset))); |
| |
| OpPutToScope::emit(this, m_lexicalEnvironmentRegister, addConstant(ident), virtualRegisterForArgument(1 + i), GetPutInfo(ThrowIfNotFound, LocalClosureVar, InitializationMode::NotInitialization), SymbolTableOrScopeDepth::symbolTable(VirtualRegister { symbolTableConstantIndex }), offset.offset()); |
| } |
| } |
| |
| if (needsArguments && (codeBlock->isStrictMode() || !isSimpleParameterList)) { |
| // Allocate a cloned arguments object. |
| OpCreateClonedArguments::emit(this, m_argumentsRegister); |
| } |
| |
| // There are some variables that need to be preinitialized to something other than Undefined: |
| // |
| // - "arguments": unless it's used as a function or parameter, this should refer to the |
| // arguments object. |
| // |
| // - functions: these always override everything else. |
| // |
| // The most logical way to do all of this is to initialize none of the variables until now, |
| // and then initialize them in BytecodeGenerator::generate() in such an order that the rules |
| // for how these things override each other end up holding. We would initialize "arguments" first, |
| // then all arguments, then the functions. |
| // |
| // But some arguments are already initialized by default, since if they aren't captured and we |
| // don't have "arguments" then we just point the symbol table at the stack slot of those |
| // arguments. We end up initializing the rest of the arguments that have an uncomplicated |
| // binding (i.e. don't involve destructuring) above when figuring out how to lay them out, |
| // because that's just the simplest thing. This means that when we initialize them, we have to |
| // watch out for the things that override arguments (namely, functions). |
| |
| // This is our final act of weirdness. "arguments" is overridden by everything except the |
| // callee. We add it to the symbol table if it's not already there and it's not an argument. |
| bool shouldCreateArgumentsVariableInParameterScope = false; |
| if (needsArguments) { |
| // If "arguments" is overridden by a function or destructuring parameter name, then it's |
| // OK for us to call createVariable() because it won't change anything. It's also OK for |
| // us to them tell BytecodeGenerator::generate() to write to it because it will do so |
| // before it initializes functions and destructuring parameters. But if "arguments" is |
| // overridden by a "simple" function parameter, then we have to bail: createVariable() |
| // would assert and BytecodeGenerator::generate() would write the "arguments" after the |
| // argument value had already been properly initialized. |
| |
| bool haveParameterNamedArguments = false; |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first); |
| if (name == propertyNames().arguments.impl()) { |
| haveParameterNamedArguments = true; |
| break; |
| } |
| } |
| |
| bool shouldCreateArgumensVariable = !haveParameterNamedArguments |
| && !SourceParseModeSet(SourceParseMode::ArrowFunctionMode, SourceParseMode::AsyncArrowFunctionMode).contains(m_codeBlock->parseMode()); |
| shouldCreateArgumentsVariableInParameterScope = shouldCreateArgumensVariable && !isSimpleParameterList; |
| // Do not create arguments variable in case of Arrow function. Value will be loaded from parent scope |
| if (shouldCreateArgumensVariable && !shouldCreateArgumentsVariableInParameterScope) { |
| createVariable( |
| propertyNames().arguments, varKind(propertyNames().arguments.impl()), functionSymbolTable); |
| |
| m_needToInitializeArguments = true; |
| } |
| } |
| |
| for (FunctionMetadataNode* function : functionNode->functionStack()) { |
| const Identifier& ident = function->ident(); |
| createVariable(ident, varKind(ident.impl()), functionSymbolTable); |
| m_functionsToInitialize.append(std::make_pair(function, NormalFunctionVariable)); |
| } |
| for (auto& entry : functionNode->varDeclarations()) { |
| ASSERT(!entry.value.isLet() && !entry.value.isConst()); |
| if (!entry.value.isVar()) // This is either a parameter or callee. |
| continue; |
| if (shouldCreateArgumentsVariableInParameterScope && entry.key.get() == propertyNames().arguments.impl()) |
| continue; |
| createVariable(Identifier::fromUid(m_vm, entry.key.get()), varKind(entry.key.get()), functionSymbolTable, IgnoreExisting); |
| } |
| |
| |
| if (functionNode->needsNewTargetRegisterForThisScope() || isNewTargetUsedInInnerArrowFunction() || codeBlock->usesEval()) |
| m_newTargetRegister = addVar(); |
| |
| switch (parseMode) { |
| case SourceParseMode::GeneratorWrapperFunctionMode: |
| case SourceParseMode::GeneratorWrapperMethodMode: { |
| m_generatorRegister = addVar(); |
| |
| // FIXME: Emit to_this only when Generator uses it. |
| // https://bugs.webkit.org/show_bug.cgi?id=151586 |
| emitToThis(); |
| |
| emitCreateGenerator(m_generatorRegister, &m_calleeRegister); |
| break; |
| } |
| |
| case SourceParseMode::AsyncGeneratorWrapperMethodMode: |
| case SourceParseMode::AsyncGeneratorWrapperFunctionMode: { |
| m_generatorRegister = addVar(); |
| |
| // FIXME: Emit to_this only when Generator uses it. |
| // https://bugs.webkit.org/show_bug.cgi?id=151586 |
| emitToThis(); |
| |
| emitCreateAsyncGenerator(m_generatorRegister, &m_calleeRegister); |
| break; |
| } |
| |
| case SourceParseMode::AsyncArrowFunctionMode: |
| case SourceParseMode::AsyncMethodMode: |
| case SourceParseMode::AsyncFunctionMode: { |
| ASSERT(!isConstructor()); |
| ASSERT(constructorKind() == ConstructorKind::None); |
| m_generatorRegister = addVar(); |
| m_promiseRegister = addVar(); |
| |
| if (parseMode != SourceParseMode::AsyncArrowFunctionMode) { |
| // FIXME: Emit to_this only when AsyncFunctionBody uses it. |
| // https://bugs.webkit.org/show_bug.cgi?id=151586 |
| emitToThis(); |
| } |
| |
| emitNewGenerator(m_generatorRegister); |
| emitNewPromise(promiseRegister(), m_isBuiltinFunction); |
| break; |
| } |
| |
| case SourceParseMode::AsyncGeneratorBodyMode: |
| case SourceParseMode::AsyncFunctionBodyMode: |
| case SourceParseMode::AsyncArrowFunctionBodyMode: |
| case SourceParseMode::GeneratorBodyMode: { |
| // |this| is already filled correctly before here. |
| if (m_newTargetRegister) |
| emitLoad(m_newTargetRegister, jsUndefined()); |
| break; |
| } |
| |
| default: { |
| if (SourceParseMode::ArrowFunctionMode != parseMode) { |
| if (isConstructor()) { |
| if (m_newTargetRegister) |
| move(m_newTargetRegister, &m_thisRegister); |
| switch (constructorKind()) { |
| case ConstructorKind::Naked: |
| // Naked constructor not create |this| automatically. |
| break; |
| case ConstructorKind::None: |
| case ConstructorKind::Base: |
| emitCreateThis(&m_thisRegister); |
| break; |
| case ConstructorKind::Extends: |
| moveEmptyValue(&m_thisRegister); |
| break; |
| } |
| } else { |
| switch (constructorKind()) { |
| case ConstructorKind::None: { |
| bool shouldEmitToThis = false; |
| if (functionNode->usesThis() || codeBlock->usesEval() || m_scopeNode->doAnyInnerArrowFunctionsUseThis() || m_scopeNode->doAnyInnerArrowFunctionsUseEval()) |
| shouldEmitToThis = true; |
| else if ((functionNode->usesSuperProperty() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperProperty()) && !codeBlock->isStrictMode()) { |
| // We must emit to_this when we're not in strict mode because we |
| // will convert |this| to an object, and that object may be passed |
| // to a strict function as |this|. This is observable because that |
| // strict function's to_this will just return the object. |
| // |
| // We don't need to emit this for strict-mode code because |
| // strict-mode code may call another strict function, which will |
| // to_this if it directly uses this; this is OK, because we defer |
| // to_this until |this| is used directly. Strict-mode code might |
| // also call a sloppy mode function, and that will to_this, which |
| // will defer the conversion, again, until necessary. |
| shouldEmitToThis = true; |
| } |
| |
| if (shouldEmitToThis) |
| emitToThis(); |
| break; |
| } |
| case ConstructorKind::Naked: |
| emitThrowTypeError("Cannot call a constructor without |new|"); |
| break; |
| case ConstructorKind::Base: |
| case ConstructorKind::Extends: |
| emitThrowTypeError("Cannot call a class constructor without |new|"); |
| break; |
| } |
| } |
| } |
| break; |
| } |
| } |
| |
| // We need load |super| & |this| for arrow function before initializeDefaultParameterValuesAndSetupFunctionScopeStack |
| // if we have default parameter expression. Because |super| & |this| values can be used there |
| if ((SourceParseModeSet(SourceParseMode::ArrowFunctionMode, SourceParseMode::AsyncArrowFunctionMode).contains(parseMode) && !isSimpleParameterList) || parseMode == SourceParseMode::AsyncArrowFunctionBodyMode) { |
| if (functionNode->usesThis() || functionNode->usesSuperProperty()) |
| emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| |
| if (m_scopeNode->needsNewTargetRegisterForThisScope()) |
| emitLoadNewTargetFromArrowFunctionLexicalEnvironment(); |
| } |
| |
| if (needsToUpdateArrowFunctionContext() && !codeBlock->isArrowFunction()) { |
| bool canReuseLexicalEnvironment = isSimpleParameterList; |
| initializeArrowFunctionContextScopeIfNeeded(functionSymbolTable, canReuseLexicalEnvironment); |
| emitPutThisToArrowFunctionContextScope(); |
| emitPutNewTargetToArrowFunctionContextScope(); |
| emitPutDerivedConstructorToArrowFunctionContextScope(); |
| } |
| |
| // All "addVar()"s needs to happen before "initializeDefaultParameterValuesAndSetupFunctionScopeStack()" is called |
| // because a function's default parameter ExpressionNodes will use temporary registers. |
| pushTDZVariables(*parentScopeTDZVariables, TDZCheckOptimization::DoNotOptimize, TDZRequirement::UnderTDZ); |
| |
| Ref<Label> catchLabel = newLabel(); |
| TryData* tryFormalParametersData = nullptr; |
| bool needTryCatch = isAsyncFunctionWrapperParseMode(parseMode) && !isSimpleParameterList; |
| if (needTryCatch) { |
| Ref<Label> tryFormalParametersStart = newEmittedLabel(); |
| tryFormalParametersData = pushTry(tryFormalParametersStart.get(), catchLabel.get(), HandlerType::SynthesizedCatch); |
| } |
| |
| initializeDefaultParameterValuesAndSetupFunctionScopeStack(parameters, isSimpleParameterList, functionNode, functionSymbolTable, symbolTableConstantIndex, captures, shouldCreateArgumentsVariableInParameterScope); |
| |
| if (needTryCatch) { |
| Ref<Label> didNotThrow = newLabel(); |
| emitJump(didNotThrow.get()); |
| emitLabel(catchLabel.get()); |
| popTry(tryFormalParametersData, catchLabel.get()); |
| |
| RefPtr<RegisterID> thrownValue = newTemporary(); |
| emitOutOfLineCatchHandler(thrownValue.get(), nullptr, tryFormalParametersData); |
| |
| // @rejectPromiseWithFirstResolvingFunctionCallCheck(@promise, thrownValue); |
| // return @promise; |
| RefPtr<RegisterID> rejectPromise = moveLinkTimeConstant(nullptr, LinkTimeConstant::rejectPromiseWithFirstResolvingFunctionCallCheck); |
| CallArguments args(*this, nullptr, 2); |
| emitLoad(args.thisRegister(), jsUndefined()); |
| move(args.argumentRegister(0), promiseRegister()); |
| move(args.argumentRegister(1), thrownValue.get()); |
| JSTextPosition divot(functionNode->firstLine(), functionNode->startOffset(), functionNode->lineStartOffset()); |
| emitCall(newTemporary(), rejectPromise.get(), NoExpectedFunction, args, divot, divot, divot, DebuggableCall::No); |
| |
| emitReturn(promiseRegister()); |
| emitLabel(didNotThrow.get()); |
| } |
| |
| // If we don't have default parameter expression, then loading |this| inside an arrow function must be done |
| // after initializeDefaultParameterValuesAndSetupFunctionScopeStack() because that function sets up the |
| // SymbolTable stack and emitLoadThisFromArrowFunctionLexicalEnvironment() consults the SymbolTable stack |
| if (SourceParseModeSet(SourceParseMode::ArrowFunctionMode, SourceParseMode::AsyncArrowFunctionMode).contains(parseMode) && isSimpleParameterList) { |
| if (functionNode->usesThis() || functionNode->usesSuperProperty()) |
| emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| |
| if (m_scopeNode->needsNewTargetRegisterForThisScope()) |
| emitLoadNewTargetFromArrowFunctionLexicalEnvironment(); |
| } |
| |
| // Set up the lexical environment scope as the generator frame. We store the saved and resumed generator registers into this scope with the symbol keys. |
| // Since they are symbol keyed, these variables cannot be reached from the usual code. |
| if (isGeneratorOrAsyncFunctionBodyParseMode(parseMode)) { |
| m_generatorFrameSymbolTable.set(m_vm, functionSymbolTable); |
| m_generatorFrameSymbolTableIndex = symbolTableConstantIndex; |
| if (m_lexicalEnvironmentRegister) |
| move(generatorFrameRegister(), m_lexicalEnvironmentRegister); |
| else { |
| // It would be possible that generator does not need to suspend and resume any registers. |
| // In this case, we would like to avoid creating a lexical environment as much as possible. |
| // op_create_generator_frame_environment is a marker, which is similar to op_yield. |
| // Generatorification inserts lexical environment creation if necessary. Otherwise, we convert it to op_mov frame, `undefined`. |
| OpCreateGeneratorFrameEnvironment::emit(this, generatorFrameRegister(), scopeRegister(), VirtualRegister { symbolTableConstantIndex }, addConstantValue(jsUndefined())); |
| } |
| static_assert(static_cast<unsigned>(JSGenerator::Field::Frame) == static_cast<unsigned>(JSAsyncGenerator::Field::Frame)); |
| emitPutInternalField(generatorRegister(), static_cast<unsigned>(JSGenerator::Field::Frame), generatorFrameRegister()); |
| } |
| |
| bool shouldInitializeBlockScopedFunctions = false; // We generate top-level function declarations in ::generate(). |
| pushLexicalScope(m_scopeNode, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, shouldInitializeBlockScopedFunctions); |
| } |
| |
| BytecodeGenerator::BytecodeGenerator(VM& vm, EvalNode* evalNode, UnlinkedEvalCodeBlock* codeBlock, OptionSet<CodeGenerationMode> codeGenerationMode, const VariableEnvironment* parentScopeTDZVariables) |
| : BytecodeGeneratorBase(Strong<UnlinkedCodeBlock>(vm, codeBlock), CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters()) |
| , m_codeGenerationMode(codeGenerationMode) |
| , m_scopeNode(evalNode) |
| , m_thisRegister(CallFrame::thisArgumentOffset()) |
| , m_codeType(EvalCode) |
| , m_vm(vm) |
| , m_usesNonStrictEval(codeBlock->usesEval() && !codeBlock->isStrictMode()) |
| , m_needsToUpdateArrowFunctionContext(evalNode->usesArrowFunction() || evalNode->usesEval()) |
| , m_derivedContextType(codeBlock->derivedContextType()) |
| { |
| m_codeBlock->setNumParameters(1); |
| |
| pushTDZVariables(*parentScopeTDZVariables, TDZCheckOptimization::DoNotOptimize, TDZRequirement::UnderTDZ); |
| |
| emitEnter(); |
| |
| allocateAndEmitScope(); |
| |
| emitCheckTraps(); |
| |
| for (FunctionMetadataNode* function : evalNode->functionStack()) { |
| m_codeBlock->addFunctionDecl(makeFunction(function)); |
| m_functionsToInitialize.append(std::make_pair(function, TopLevelFunctionVariable)); |
| } |
| |
| const VariableEnvironment& varDeclarations = evalNode->varDeclarations(); |
| Vector<Identifier, 0, UnsafeVectorOverflow> variables; |
| Vector<Identifier, 0, UnsafeVectorOverflow> hoistedFunctions; |
| for (auto& entry : varDeclarations) { |
| ASSERT(entry.value.isVar()); |
| ASSERT(entry.key->isAtom() || entry.key->isSymbol()); |
| if (entry.value.isSloppyModeHoistingCandidate()) |
| hoistedFunctions.append(Identifier::fromUid(m_vm, entry.key.get())); |
| else |
| variables.append(Identifier::fromUid(m_vm, entry.key.get())); |
| } |
| codeBlock->adoptVariables(variables); |
| codeBlock->adoptFunctionHoistingCandidates(WTFMove(hoistedFunctions)); |
| |
| if (evalNode->needsNewTargetRegisterForThisScope()) |
| m_newTargetRegister = addVar(); |
| |
| if (codeBlock->isArrowFunctionContext() && (evalNode->usesThis() || evalNode->usesSuperProperty())) |
| emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| |
| if (evalNode->needsNewTargetRegisterForThisScope()) |
| emitLoadNewTargetFromArrowFunctionLexicalEnvironment(); |
| |
| if (needsToUpdateArrowFunctionContext() && !codeBlock->isArrowFunctionContext() && !isDerivedConstructorContext()) { |
| initializeArrowFunctionContextScopeIfNeeded(); |
| emitPutThisToArrowFunctionContextScope(); |
| } |
| |
| bool shouldInitializeBlockScopedFunctions = false; // We generate top-level function declarations in ::generate(). |
| pushLexicalScope(m_scopeNode, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, shouldInitializeBlockScopedFunctions); |
| } |
| |
| BytecodeGenerator::BytecodeGenerator(VM& vm, ModuleProgramNode* moduleProgramNode, UnlinkedModuleProgramCodeBlock* codeBlock, OptionSet<CodeGenerationMode> codeGenerationMode, const VariableEnvironment* parentScopeTDZVariables) |
| : BytecodeGeneratorBase(Strong<UnlinkedCodeBlock>(vm, codeBlock), CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters()) |
| , m_codeGenerationMode(codeGenerationMode) |
| , m_scopeNode(moduleProgramNode) |
| , m_thisRegister(CallFrame::thisArgumentOffset()) |
| , m_codeType(ModuleCode) |
| , m_vm(vm) |
| , m_usesNonStrictEval(false) |
| , m_needsToUpdateArrowFunctionContext(moduleProgramNode->usesArrowFunction() || moduleProgramNode->usesEval()) |
| { |
| ASSERT_UNUSED(parentScopeTDZVariables, !parentScopeTDZVariables->size()); |
| |
| SymbolTable* moduleEnvironmentSymbolTable = SymbolTable::create(m_vm); |
| moduleEnvironmentSymbolTable->setUsesNonStrictEval(m_usesNonStrictEval); |
| moduleEnvironmentSymbolTable->setScopeType(SymbolTable::ScopeType::LexicalScope); |
| |
| bool shouldCaptureAllOfTheThings = shouldEmitDebugHooks() || codeBlock->usesEval(); |
| if (shouldCaptureAllOfTheThings) |
| moduleProgramNode->varDeclarations().markAllVariablesAsCaptured(); |
| |
| auto captures = [&] (UniquedStringImpl* uid) -> bool { |
| return moduleProgramNode->captures(uid); |
| }; |
| auto lookUpVarKind = [&] (UniquedStringImpl* uid, const VariableEnvironmentEntry& entry) -> VarKind { |
| // Allocate the exported variables in the module environment. |
| if (entry.isExported()) |
| return VarKind::Scope; |
| |
| // Allocate the namespace variables in the module environment to instantiate |
| // it from the outside of the module code. |
| if (entry.isImportedNamespace()) |
| return VarKind::Scope; |
| |
| if (entry.isCaptured()) |
| return VarKind::Scope; |
| return captures(uid) ? VarKind::Scope : VarKind::Stack; |
| }; |
| |
| emitEnter(); |
| |
| allocateAndEmitScope(); |
| |
| emitCheckTraps(); |
| |
| m_calleeRegister.setIndex(CallFrameSlot::callee); |
| |
| m_codeBlock->setNumParameters(1); // Allocate space for "this" |
| |
| // Now declare all variables. |
| |
| createVariable(m_vm.propertyNames->builtinNames().metaPrivateName(), VarKind::Scope, moduleEnvironmentSymbolTable, VerifyExisting); |
| |
| for (auto& entry : moduleProgramNode->varDeclarations()) { |
| ASSERT(!entry.value.isLet() && !entry.value.isConst()); |
| if (!entry.value.isVar()) // This is either a parameter or callee. |
| continue; |
| // Imported bindings are not allocated in the module environment as usual variables' way. |
| // These references remain the "Dynamic" in the unlinked code block. Later, when linking |
| // the code block, we resolve the reference to the "ModuleVar". |
| if (entry.value.isImported() && !entry.value.isImportedNamespace()) |
| continue; |
| createVariable(Identifier::fromUid(m_vm, entry.key.get()), lookUpVarKind(entry.key.get(), entry.value), moduleEnvironmentSymbolTable, IgnoreExisting); |
| } |
| |
| VariableEnvironment& lexicalVariables = moduleProgramNode->lexicalVariables(); |
| instantiateLexicalVariables(lexicalVariables, moduleEnvironmentSymbolTable, ScopeRegisterType::Block, lookUpVarKind); |
| |
| // We keep the symbol table in the constant pool. |
| RegisterID* constantSymbolTable = nullptr; |
| if (shouldEmitTypeProfilerHooks()) |
| constantSymbolTable = addConstantValue(moduleEnvironmentSymbolTable); |
| else |
| constantSymbolTable = addConstantValue(moduleEnvironmentSymbolTable->cloneScopePart(m_vm)); |
| |
| pushTDZVariables(lexicalVariables, TDZCheckOptimization::Optimize, TDZRequirement::UnderTDZ); |
| bool isWithScope = false; |
| m_lexicalScopeStack.append({ moduleEnvironmentSymbolTable, m_topMostScope, isWithScope, constantSymbolTable->index() }); |
| emitPrefillStackTDZVariables(lexicalVariables, moduleEnvironmentSymbolTable); |
| |
| // makeFunction assumes that there's correct TDZ stack entries. |
| // So it should be called after putting our lexical environment to the TDZ stack correctly. |
| |
| for (FunctionMetadataNode* function : moduleProgramNode->functionStack()) { |
| const auto& iterator = moduleProgramNode->varDeclarations().find(function->ident().impl()); |
| RELEASE_ASSERT(iterator != moduleProgramNode->varDeclarations().end()); |
| RELEASE_ASSERT(!iterator->value.isImported()); |
| |
| VarKind varKind = lookUpVarKind(iterator->key.get(), iterator->value); |
| if (varKind == VarKind::Scope) { |
| // http://www.ecma-international.org/ecma-262/6.0/#sec-moduledeclarationinstantiation |
| // Section 15.2.1.16.4, step 16-a-iv-1. |
| // All heap allocated function declarations should be instantiated when the module environment |
| // is created. They include the exported function declarations and not-exported-but-heap-allocated |
| // function declarations. This is required because exported function should be instantiated before |
| // executing the any module in the dependency graph. This enables the modules to link the imported |
| // bindings before executing the any module code. |
| // |
| // And since function declarations are instantiated before executing the module body code, the spec |
| // allows the functions inside the module to be executed before its module body is executed under |
| // the circular dependencies. The following is the example. |
| // |
| // Module A (executed first): |
| // import { b } from "B"; |
| // // Here, the module "B" is not executed yet, but the function declaration is already instantiated. |
| // // So we can call the function exported from "B". |
| // b(); |
| // |
| // export function a() { |
| // } |
| // |
| // Module B (executed second): |
| // import { a } from "A"; |
| // |
| // export function b() { |
| // c(); |
| // } |
| // |
| // // c is not exported, but since it is referenced from the b, we should instantiate it before |
| // // executing the "B" module code. |
| // function c() { |
| // a(); |
| // } |
| // |
| // Module EntryPoint (executed last): |
| // import "B"; |
| // import "A"; |
| // |
| m_codeBlock->addFunctionDecl(makeFunction(function)); |
| } else { |
| // Stack allocated functions can be allocated when executing the module's body. |
| m_functionsToInitialize.append(std::make_pair(function, NormalFunctionVariable)); |
| } |
| } |
| |
| // Remember the constant register offset to the top-most symbol table. This symbol table will be |
| // cloned in the code block linking. After that, to create the module environment, we retrieve |
| // the cloned symbol table from the linked code block by using this offset. |
| codeBlock->setModuleEnvironmentSymbolTableConstantRegisterOffset(constantSymbolTable->index()); |
| } |
| |
| BytecodeGenerator::~BytecodeGenerator() |
| { |
| } |
| |
| void BytecodeGenerator::initializeDefaultParameterValuesAndSetupFunctionScopeStack( |
| FunctionParameters& parameters, bool isSimpleParameterList, FunctionNode* functionNode, SymbolTable* functionSymbolTable, |
| int symbolTableConstantIndex, const ScopedLambda<bool (UniquedStringImpl*)>& captures, bool shouldCreateArgumentsVariableInParameterScope) |
| { |
| Vector<std::pair<Identifier, RefPtr<RegisterID>>> valuesToMoveIntoVars; |
| ASSERT(!(isSimpleParameterList && shouldCreateArgumentsVariableInParameterScope)); |
| if (!isSimpleParameterList) { |
| // Refer to the ES6 spec section 9.2.12: http://www.ecma-international.org/ecma-262/6.0/index.html#sec-functiondeclarationinstantiation |
| // This implements step 21. |
| VariableEnvironment environment; |
| Vector<Identifier> allParameterNames; |
| for (unsigned i = 0; i < parameters.size(); i++) |
| parameters.at(i).first->collectBoundIdentifiers(allParameterNames); |
| if (shouldCreateArgumentsVariableInParameterScope) |
| allParameterNames.append(propertyNames().arguments); |
| IdentifierSet parameterSet; |
| for (auto& ident : allParameterNames) { |
| parameterSet.add(ident.impl()); |
| auto addResult = environment.add(ident); |
| addResult.iterator->value.setIsLet(); // When we have default parameter expressions, parameters act like "let" variables. |
| if (captures(ident.impl())) |
| addResult.iterator->value.setIsCaptured(); |
| } |
| // This implements step 25 of section 9.2.12. |
| pushLexicalScopeInternal(environment, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block); |
| |
| if (shouldCreateArgumentsVariableInParameterScope) { |
| Variable argumentsVariable = variable(propertyNames().arguments); |
| initializeVariable(argumentsVariable, m_argumentsRegister); |
| liftTDZCheckIfPossible(argumentsVariable); |
| } |
| |
| RefPtr<RegisterID> temp = newTemporary(); |
| for (unsigned i = 0; i < parameters.size(); i++) { |
| std::pair<DestructuringPatternNode*, ExpressionNode*> parameter = parameters.at(i); |
| if (parameter.first->isRestParameter()) |
| continue; |
| if ((i + 1) < m_parameters.size()) |
| move(temp.get(), &m_parameters[i + 1]); |
| else |
| emitGetArgument(temp.get(), i); |
| if (parameter.second) { |
| RefPtr<RegisterID> condition = emitIsUndefined(newTemporary(), temp.get()); |
| Ref<Label> skipDefaultParameterBecauseNotUndefined = newLabel(); |
| emitJumpIfFalse(condition.get(), skipDefaultParameterBecauseNotUndefined.get()); |
| emitNode(temp.get(), parameter.second); |
| emitLabel(skipDefaultParameterBecauseNotUndefined.get()); |
| } |
| |
| parameter.first->bindValue(*this, temp.get()); |
| } |
| |
| // Final act of weirdness for default parameters. If a "var" also |
| // has the same name as a parameter, it should start out as the |
| // value of that parameter. Note, though, that they will be distinct |
| // bindings. |
| // This is step 28 of section 9.2.12. |
| for (auto& entry : functionNode->varDeclarations()) { |
| if (!entry.value.isVar()) // This is either a parameter or callee. |
| continue; |
| |
| if (parameterSet.contains(entry.key)) { |
| Identifier ident = Identifier::fromUid(m_vm, entry.key.get()); |
| Variable var = variable(ident); |
| RegisterID* scope = emitResolveScope(nullptr, var); |
| RefPtr<RegisterID> value = emitGetFromScope(newTemporary(), scope, var, DoNotThrowIfNotFound); |
| valuesToMoveIntoVars.append(std::make_pair(ident, value)); |
| } |
| } |
| |
| // Functions with default parameter expressions must have a separate environment |
| // record for parameters and "var"s. The "var" environment record must have the |
| // parameter environment record as its parent. |
| // See step 28 of section 9.2.12. |
| bool hasCapturedVariables = !!m_lexicalEnvironmentRegister; |
| initializeVarLexicalEnvironment(symbolTableConstantIndex, functionSymbolTable, hasCapturedVariables); |
| } |
| |
| // This completes step 28 of section 9.2.12. |
| for (unsigned i = 0; i < valuesToMoveIntoVars.size(); i++) { |
| ASSERT(!isSimpleParameterList); |
| Variable var = variable(valuesToMoveIntoVars[i].first); |
| RegisterID* scope = emitResolveScope(nullptr, var); |
| emitPutToScope(scope, var, valuesToMoveIntoVars[i].second.get(), DoNotThrowIfNotFound, InitializationMode::NotInitialization); |
| } |
| } |
| |
| bool BytecodeGenerator::needsDerivedConstructorInArrowFunctionLexicalEnvironment() |
| { |
| ASSERT(m_codeBlock->isClassContext() || !(isConstructor() && constructorKind() == ConstructorKind::Extends)); |
| return m_codeBlock->isClassContext() && isSuperUsedInInnerArrowFunction(); |
| } |
| |
| void BytecodeGenerator::initializeArrowFunctionContextScopeIfNeeded(SymbolTable* functionSymbolTable, bool canReuseLexicalEnvironment) |
| { |
| ASSERT(!m_arrowFunctionContextLexicalEnvironmentRegister); |
| |
| if (canReuseLexicalEnvironment && m_lexicalEnvironmentRegister) { |
| RELEASE_ASSERT(!m_codeBlock->isArrowFunction()); |
| RELEASE_ASSERT(functionSymbolTable); |
| |
| m_arrowFunctionContextLexicalEnvironmentRegister = m_lexicalEnvironmentRegister; |
| |
| ScopeOffset offset; |
| |
| if (isThisUsedInInnerArrowFunction()) { |
| offset = functionSymbolTable->takeNextScopeOffset(NoLockingNecessary); |
| functionSymbolTable->set(NoLockingNecessary, propertyNames().thisIdentifier.impl(), SymbolTableEntry(VarOffset(offset))); |
| } |
| |
| if (m_codeType == FunctionCode && isNewTargetUsedInInnerArrowFunction()) { |
| offset = functionSymbolTable->takeNextScopeOffset(); |
| functionSymbolTable->set(NoLockingNecessary, propertyNames().builtinNames().newTargetLocalPrivateName().impl(), SymbolTableEntry(VarOffset(offset))); |
| } |
| |
| if (needsDerivedConstructorInArrowFunctionLexicalEnvironment()) { |
| offset = functionSymbolTable->takeNextScopeOffset(NoLockingNecessary); |
| functionSymbolTable->set(NoLockingNecessary, propertyNames().builtinNames().derivedConstructorPrivateName().impl(), SymbolTableEntry(VarOffset(offset))); |
| } |
| |
| return; |
| } |
| |
| VariableEnvironment environment; |
| |
| if (isThisUsedInInnerArrowFunction()) { |
| auto addResult = environment.add(propertyNames().thisIdentifier); |
| addResult.iterator->value.setIsCaptured(); |
| addResult.iterator->value.setIsLet(); |
| } |
| |
| if (m_codeType == FunctionCode && isNewTargetUsedInInnerArrowFunction()) { |
| auto addTarget = environment.add(propertyNames().builtinNames().newTargetLocalPrivateName()); |
| addTarget.iterator->value.setIsCaptured(); |
| addTarget.iterator->value.setIsLet(); |
| } |
| |
| if (needsDerivedConstructorInArrowFunctionLexicalEnvironment()) { |
| auto derivedConstructor = environment.add(propertyNames().builtinNames().derivedConstructorPrivateName()); |
| derivedConstructor.iterator->value.setIsCaptured(); |
| derivedConstructor.iterator->value.setIsLet(); |
| } |
| |
| if (environment.size() > 0) { |
| size_t size = m_lexicalScopeStack.size(); |
| pushLexicalScopeInternal(environment, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block); |
| |
| ASSERT_UNUSED(size, m_lexicalScopeStack.size() == size + 1); |
| |
| m_arrowFunctionContextLexicalEnvironmentRegister = m_lexicalScopeStack.last().m_scope; |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::initializeNextParameter() |
| { |
| VirtualRegister reg = virtualRegisterForArgument(m_codeBlock->numParameters()); |
| m_parameters.grow(m_parameters.size() + 1); |
| auto& parameter = registerFor(reg); |
| parameter.setIndex(reg.offset()); |
| m_codeBlock->addParameter(); |
| return ¶meter; |
| } |
| |
| void BytecodeGenerator::initializeParameters(FunctionParameters& parameters) |
| { |
| // Make sure the code block knows about all of our parameters, and make sure that parameters |
| // needing destructuring are noted. |
| m_thisRegister.setIndex(initializeNextParameter()->index()); // this |
| |
| bool nonSimpleArguments = false; |
| for (unsigned i = 0; i < parameters.size(); ++i) { |
| auto parameter = parameters.at(i); |
| auto pattern = parameter.first; |
| if (pattern->isRestParameter()) { |
| RELEASE_ASSERT(!m_restParameter); |
| m_restParameter = static_cast<RestParameterNode*>(pattern); |
| nonSimpleArguments = true; |
| continue; |
| } |
| if (parameter.second) { |
| nonSimpleArguments = true; |
| continue; |
| } |
| if (!nonSimpleArguments) |
| initializeNextParameter(); |
| } |
| } |
| |
| void BytecodeGenerator::initializeVarLexicalEnvironment(int symbolTableConstantIndex, SymbolTable* functionSymbolTable, bool hasCapturedVariables) |
| { |
| if (hasCapturedVariables) { |
| RELEASE_ASSERT(m_lexicalEnvironmentRegister); |
| OpCreateLexicalEnvironment::emit(this, m_lexicalEnvironmentRegister, scopeRegister(), VirtualRegister { symbolTableConstantIndex }, addConstantValue(jsUndefined())); |
| |
| OpMov::emit(this, scopeRegister(), m_lexicalEnvironmentRegister); |
| |
| pushLocalControlFlowScope(); |
| } |
| bool isWithScope = false; |
| m_lexicalScopeStack.append({ functionSymbolTable, m_lexicalEnvironmentRegister, isWithScope, symbolTableConstantIndex }); |
| m_varScopeLexicalScopeStackIndex = m_lexicalScopeStack.size() - 1; |
| } |
| |
| UniquedStringImpl* BytecodeGenerator::visibleNameForParameter(DestructuringPatternNode* pattern) |
| { |
| if (pattern->isBindingNode()) { |
| const Identifier& ident = static_cast<const BindingNode*>(pattern)->boundProperty(); |
| if (!m_functions.contains(ident.impl())) |
| return ident.impl(); |
| } |
| return nullptr; |
| } |
| |
| RegisterID* BytecodeGenerator::newBlockScopeVariable() |
| { |
| reclaimFreeRegisters(); |
| |
| return newRegister(); |
| } |
| |
| Ref<LabelScope> BytecodeGenerator::newLabelScope(LabelScope::Type type, const Identifier* name) |
| { |
| shrinkToFit(m_labelScopes); |
| |
| // Allocate new label scope. |
| m_labelScopes.append(type, name, labelScopeDepth(), newLabel(), type == LabelScope::Loop ? RefPtr<Label>(newLabel()) : RefPtr<Label>()); // Only loops have continue targets. |
| return m_labelScopes.last(); |
| } |
| |
| void BytecodeGenerator::emitEnter() |
| { |
| OpEnter::emit(this); |
| |
| if (LIKELY(Options::optimizeRecursiveTailCalls())) { |
| // We must add the end of op_enter as a potential jump target, because the bytecode parser may decide to split its basic block |
| // to have somewhere to jump to if there is a recursive tail-call that points to this function. |
| m_codeBlock->addJumpTarget(instructions().size()); |
| // This disables peephole optimizations when an instruction is a jump target |
| m_lastOpcodeID = op_end; |
| } |
| } |
| |
| void BytecodeGenerator::emitLoopHint() |
| { |
| OpLoopHint::emit(this); |
| emitCheckTraps(); |
| } |
| |
| void BytecodeGenerator::emitJump(Label& target) |
| { |
| OpJmp::emit(this, target.bind(this)); |
| } |
| |
| void BytecodeGenerator::emitCheckTraps() |
| { |
| OpCheckTraps::emit(this); |
| } |
| |
| void ALWAYS_INLINE BytecodeGenerator::rewind() |
| { |
| ASSERT(m_lastInstruction.isValid()); |
| m_lastOpcodeID = op_end; |
| m_writer.rewind(m_lastInstruction); |
| } |
| |
| template<typename BinOp, typename JmpOp> |
| bool BytecodeGenerator::fuseCompareAndJump(RegisterID* cond, Label& target, bool swapOperands) |
| { |
| ASSERT(canDoPeepholeOptimization()); |
| auto binop = m_lastInstruction->as<BinOp>(); |
| if (cond->index() == binop.m_dst.offset() && cond->isTemporary() && !cond->refCount()) { |
| rewind(); |
| |
| if (swapOperands) |
| std::swap(binop.m_lhs, binop.m_rhs); |
| |
| JmpOp::emit(this, binop.m_lhs, binop.m_rhs, target.bind(this)); |
| return true; |
| } |
| return false; |
| } |
| |
| template<typename UnaryOp, typename JmpOp> |
| bool BytecodeGenerator::fuseTestAndJmp(RegisterID* cond, Label& target) |
| { |
| ASSERT(canDoPeepholeOptimization()); |
| auto unop = m_lastInstruction->as<UnaryOp>(); |
| if (cond->index() == unop.m_dst.offset() && cond->isTemporary() && !cond->refCount()) { |
| rewind(); |
| |
| JmpOp::emit(this, unop.m_operand, target.bind(this)); |
| return true; |
| } |
| return false; |
| } |
| |
| void BytecodeGenerator::emitJumpIfTrue(RegisterID* cond, Label& target) |
| { |
| if (canDoPeepholeOptimization()) { |
| if (m_lastOpcodeID == op_less) { |
| if (fuseCompareAndJump<OpLess, OpJless>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_lesseq) { |
| if (fuseCompareAndJump<OpLesseq, OpJlesseq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_greater) { |
| if (fuseCompareAndJump<OpGreater, OpJgreater>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_greatereq) { |
| if (fuseCompareAndJump<OpGreatereq, OpJgreatereq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_eq) { |
| if (fuseCompareAndJump<OpEq, OpJeq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_stricteq) { |
| if (fuseCompareAndJump<OpStricteq, OpJstricteq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_neq) { |
| if (fuseCompareAndJump<OpNeq, OpJneq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_nstricteq) { |
| if (fuseCompareAndJump<OpNstricteq, OpJnstricteq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_below) { |
| if (fuseCompareAndJump<OpBelow, OpJbelow>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_beloweq) { |
| if (fuseCompareAndJump<OpBeloweq, OpJbeloweq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_eq_null && target.isForward()) { |
| if (fuseTestAndJmp<OpEqNull, OpJeqNull>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_neq_null && target.isForward()) { |
| if (fuseTestAndJmp<OpNeqNull, OpJneqNull>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_is_undefined_or_null && target.isForward()) { |
| if (fuseTestAndJmp<OpIsUndefinedOrNull, OpJundefinedOrNull>(cond, target)) |
| return; |
| } |
| } |
| |
| OpJtrue::emit(this, cond, target.bind(this)); |
| } |
| |
| void BytecodeGenerator::emitJumpIfFalse(RegisterID* cond, Label& target) |
| { |
| if (canDoPeepholeOptimization()) { |
| if (m_lastOpcodeID == op_less && target.isForward()) { |
| if (fuseCompareAndJump<OpLess, OpJnless>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_lesseq && target.isForward()) { |
| if (fuseCompareAndJump<OpLesseq, OpJnlesseq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_greater && target.isForward()) { |
| if (fuseCompareAndJump<OpGreater, OpJngreater>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_greatereq && target.isForward()) { |
| if (fuseCompareAndJump<OpGreatereq, OpJngreatereq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_eq && target.isForward()) { |
| if (fuseCompareAndJump<OpEq, OpJneq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_stricteq && target.isForward()) { |
| if (fuseCompareAndJump<OpStricteq, OpJnstricteq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_neq && target.isForward()) { |
| if (fuseCompareAndJump<OpNeq, OpJeq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_nstricteq && target.isForward()) { |
| if (fuseCompareAndJump<OpNstricteq, OpJstricteq>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_below && target.isForward()) { |
| if (fuseCompareAndJump<OpBelow, OpJbeloweq>(cond, target, true)) |
| return; |
| } else if (m_lastOpcodeID == op_beloweq && target.isForward()) { |
| if (fuseCompareAndJump<OpBeloweq, OpJbelow>(cond, target, true)) |
| return; |
| } else if (m_lastOpcodeID == op_not) { |
| if (fuseTestAndJmp<OpNot, OpJtrue>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_eq_null && target.isForward()) { |
| if (fuseTestAndJmp<OpEqNull, OpJneqNull>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_neq_null && target.isForward()) { |
| if (fuseTestAndJmp<OpNeqNull, OpJeqNull>(cond, target)) |
| return; |
| } else if (m_lastOpcodeID == op_is_undefined_or_null && target.isForward()) { |
| if (fuseTestAndJmp<OpIsUndefinedOrNull, OpJnundefinedOrNull>(cond, target)) |
| return; |
| } |
| } |
| |
| OpJfalse::emit(this, cond, target.bind(this)); |
| } |
| |
| void BytecodeGenerator::emitJumpIfNotFunctionCall(RegisterID* cond, Label& target) |
| { |
| OpJneqPtr::emit(this, cond, moveLinkTimeConstant(nullptr, LinkTimeConstant::callFunction), target.bind(this)); |
| } |
| |
| void BytecodeGenerator::emitJumpIfNotFunctionApply(RegisterID* cond, Label& target) |
| { |
| OpJneqPtr::emit(this, cond, moveLinkTimeConstant(nullptr, LinkTimeConstant::applyFunction), target.bind(this)); |
| } |
| |
| bool BytecodeGenerator::hasConstant(const Identifier& ident) const |
| { |
| UniquedStringImpl* rep = ident.impl(); |
| return m_identifierMap.contains(rep); |
| } |
| |
| unsigned BytecodeGenerator::addConstant(const Identifier& ident) |
| { |
| UniquedStringImpl* rep = ident.impl(); |
| IdentifierMap::AddResult result = m_identifierMap.add(rep, m_codeBlock->numberOfIdentifiers()); |
| if (result.isNewEntry) |
| m_codeBlock->addIdentifier(ident); |
| |
| return result.iterator->value; |
| } |
| |
| // We can't hash JSValue(), so we use a dedicated data member to cache it. |
| RegisterID* BytecodeGenerator::addConstantEmptyValue() |
| { |
| if (!m_emptyValueRegister) { |
| int index = addConstantIndex(); |
| m_codeBlock->addConstant(JSValue()); |
| m_emptyValueRegister = &m_constantPoolRegisters[index]; |
| } |
| |
| return m_emptyValueRegister; |
| } |
| |
| RegisterID* BytecodeGenerator::addConstantValue(JSValue v, SourceCodeRepresentation sourceCodeRepresentation) |
| { |
| if (!v) |
| return addConstantEmptyValue(); |
| |
| int index = m_nextConstantOffset; |
| |
| if (sourceCodeRepresentation == SourceCodeRepresentation::Double && v.isInt32()) |
| v = jsDoubleNumber(v.asNumber()); |
| EncodedJSValueWithRepresentation valueMapKey { JSValue::encode(v), sourceCodeRepresentation }; |
| JSValueMap::AddResult result = m_jsValueMap.add(valueMapKey, m_nextConstantOffset); |
| if (result.isNewEntry) { |
| addConstantIndex(); |
| m_codeBlock->addConstant(v, sourceCodeRepresentation); |
| } else |
| index = result.iterator->value; |
| return &m_constantPoolRegisters[index]; |
| } |
| |
| RegisterID* BytecodeGenerator::moveLinkTimeConstant(RegisterID* dst, LinkTimeConstant type) |
| { |
| RegisterID* constant = m_linkTimeConstantRegisters.ensure(type, [&] { |
| int index = addConstantIndex(); |
| m_codeBlock->addConstant(type); |
| return &m_constantPoolRegisters[index]; |
| }).iterator->value; |
| if (!dst) |
| return constant; |
| |
| OpMov::emit(this, dst, constant); |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::moveEmptyValue(RegisterID* dst) |
| { |
| RefPtr<RegisterID> emptyValue = addConstantEmptyValue(); |
| |
| OpMov::emit(this, dst, emptyValue.get()); |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitMove(RegisterID* dst, RegisterID* src) |
| { |
| ASSERT(src != m_emptyValueRegister); |
| |
| m_staticPropertyAnalyzer.mov(dst, src); |
| OpMov::emit(this, dst, src); |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitUnaryOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src, ResultType type) |
| { |
| switch (opcodeID) { |
| case op_not: |
| emitUnaryOp<OpNot>(dst, src); |
| break; |
| case op_negate: |
| OpNegate::emit(this, dst, src, type); |
| break; |
| case op_bitnot: |
| emitUnaryOp<OpBitnot>(dst, src); |
| break; |
| case op_to_number: |
| emitUnaryOp<OpToNumber>(dst, src); |
| break; |
| case op_to_numeric: |
| emitUnaryOp<OpToNumeric>(dst, src); |
| break; |
| default: |
| ASSERT_NOT_REACHED(); |
| } |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitBinaryOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes types) |
| { |
| switch (opcodeID) { |
| case op_eq: |
| return emitBinaryOp<OpEq>(dst, src1, src2, types); |
| case op_neq: |
| return emitBinaryOp<OpNeq>(dst, src1, src2, types); |
| case op_stricteq: |
| return emitBinaryOp<OpStricteq>(dst, src1, src2, types); |
| case op_nstricteq: |
| return emitBinaryOp<OpNstricteq>(dst, src1, src2, types); |
| case op_less: |
| return emitBinaryOp<OpLess>(dst, src1, src2, types); |
| case op_lesseq: |
| return emitBinaryOp<OpLesseq>(dst, src1, src2, types); |
| case op_greater: |
| return emitBinaryOp<OpGreater>(dst, src1, src2, types); |
| case op_greatereq: |
| return emitBinaryOp<OpGreatereq>(dst, src1, src2, types); |
| case op_below: |
| return emitBinaryOp<OpBelow>(dst, src1, src2, types); |
| case op_beloweq: |
| return emitBinaryOp<OpBeloweq>(dst, src1, src2, types); |
| case op_mod: |
| return emitBinaryOp<OpMod>(dst, src1, src2, types); |
| case op_pow: |
| return emitBinaryOp<OpPow>(dst, src1, src2, types); |
| case op_lshift: |
| return emitBinaryOp<OpLshift>(dst, src1, src2, types); |
| case op_rshift: |
| return emitBinaryOp<OpRshift>(dst, src1, src2, types); |
| case op_urshift: |
| return emitBinaryOp<OpUrshift>(dst, src1, src2, types); |
| case op_add: |
| return emitBinaryOp<OpAdd>(dst, src1, src2, types); |
| case op_mul: |
| return emitBinaryOp<OpMul>(dst, src1, src2, types); |
| case op_div: |
| return emitBinaryOp<OpDiv>(dst, src1, src2, types); |
| case op_sub: |
| return emitBinaryOp<OpSub>(dst, src1, src2, types); |
| case op_bitand: |
| return emitBinaryOp<OpBitand>(dst, src1, src2, types); |
| case op_bitxor: |
| return emitBinaryOp<OpBitxor>(dst, src1, src2, types); |
| case op_bitor: |
| return emitBinaryOp<OpBitor>(dst, src1, src2, types); |
| default: |
| ASSERT_NOT_REACHED(); |
| return nullptr; |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitToObject(RegisterID* dst, RegisterID* src, const Identifier& message) |
| { |
| OpToObject::emit(this, dst, src, addConstant(message)); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitToNumber(RegisterID* dst, RegisterID* src) |
| { |
| return emitUnaryOp<OpToNumber>(dst, src); |
| } |
| |
| RegisterID* BytecodeGenerator::emitToNumeric(RegisterID* dst, RegisterID* src) |
| { |
| return emitUnaryOp<OpToNumeric>(dst, src); |
| } |
| |
| RegisterID* BytecodeGenerator::emitToString(RegisterID* dst, RegisterID* src) |
| { |
| return emitUnaryOp<OpToString>(dst, src); |
| } |
| |
| RegisterID* BytecodeGenerator::emitTypeOf(RegisterID* dst, RegisterID* src) |
| { |
| return emitUnaryOp<OpTypeof>(dst, src); |
| } |
| |
| RegisterID* BytecodeGenerator::emitInc(RegisterID* srcDst) |
| { |
| OpInc::emit(this, srcDst); |
| return srcDst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitDec(RegisterID* srcDst) |
| { |
| OpDec::emit(this, srcDst); |
| return srcDst; |
| } |
| |
| bool BytecodeGenerator::emitEqualityOpImpl(RegisterID* dst, RegisterID* src1, RegisterID* src2) |
| { |
| if (!canDoPeepholeOptimization()) |
| return false; |
| |
| if (m_lastInstruction->is<OpTypeof>()) { |
| auto op = m_lastInstruction->as<OpTypeof>(); |
| if (src1->index() == op.m_dst.offset() |
| && src1->isTemporary() |
| && m_codeBlock->isConstantRegisterIndex(src2->index()) |
| && m_codeBlock->constantRegister(src2->index()).get().isString()) { |
| const String& value = asString(m_codeBlock->constantRegister(src2->index()).get())->tryGetValue(); |
| if (value == "undefined") { |
| rewind(); |
| OpIsUndefined::emit(this, dst, op.m_value); |
| return true; |
| } |
| if (value == "boolean") { |
| rewind(); |
| OpIsBoolean::emit(this, dst, op.m_value); |
| return true; |
| } |
| if (value == "number") { |
| rewind(); |
| OpIsNumber::emit(this, dst, op.m_value); |
| return true; |
| } |
| if (value == "string") { |
| rewind(); |
| OpIsCellWithType::emit(this, dst, op.m_value, StringType); |
| return true; |
| } |
| if (value == "symbol") { |
| rewind(); |
| OpIsCellWithType::emit(this, dst, op.m_value, SymbolType); |
| return true; |
| } |
| if (Options::useBigInt() && value == "bigint") { |
| rewind(); |
| OpIsCellWithType::emit(this, dst, op.m_value, BigIntType); |
| return true; |
| } |
| if (value == "object") { |
| rewind(); |
| OpIsObjectOrNull::emit(this, dst, op.m_value); |
| return true; |
| } |
| if (value == "function") { |
| rewind(); |
| OpIsFunction::emit(this, dst, op.m_value); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| void BytecodeGenerator::emitTypeProfilerExpressionInfo(const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| { |
| ASSERT(shouldEmitTypeProfilerHooks()); |
| |
| unsigned start = startDivot.offset; // Ranges are inclusive of their endpoints, AND 0 indexed. |
| unsigned end = endDivot.offset - 1; // End Ranges already go one past the inclusive range, so subtract 1. |
| unsigned instructionOffset = instructions().size() - 1; |
| m_codeBlock->addTypeProfilerExpressionInfo(instructionOffset, start, end); |
| } |
| |
| void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag flag) |
| { |
| if (!shouldEmitTypeProfilerHooks()) |
| return; |
| |
| if (!registerToProfile) |
| return; |
| |
| OpProfileType::emit(this, registerToProfile, { }, flag, { }, resolveType()); |
| |
| // Don't emit expression info for this version of profile type. This generally means |
| // we're profiling information for something that isn't in the actual text of a JavaScript |
| // program. For example, implicit return undefined from a function call. |
| } |
| |
| void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| { |
| emitProfileType(registerToProfile, ProfileTypeBytecodeDoesNotHaveGlobalID, startDivot, endDivot); |
| } |
| |
| void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag flag, const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| { |
| if (!shouldEmitTypeProfilerHooks()) |
| return; |
| |
| if (!registerToProfile) |
| return; |
| |
| OpProfileType::emit(this, registerToProfile, { }, flag, { }, resolveType()); |
| emitTypeProfilerExpressionInfo(startDivot, endDivot); |
| } |
| |
| void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, const Variable& var, const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| { |
| if (!shouldEmitTypeProfilerHooks()) |
| return; |
| |
| if (!registerToProfile) |
| return; |
| |
| ProfileTypeBytecodeFlag flag; |
| SymbolTableOrScopeDepth symbolTableOrScopeDepth; |
| if (var.local() || var.offset().isScope()) { |
| flag = ProfileTypeBytecodeLocallyResolved; |
| ASSERT(var.symbolTableConstantIndex()); |
| symbolTableOrScopeDepth = SymbolTableOrScopeDepth::symbolTable(VirtualRegister { var.symbolTableConstantIndex() }); |
| } else { |
| flag = ProfileTypeBytecodeClosureVar; |
| symbolTableOrScopeDepth = SymbolTableOrScopeDepth::scopeDepth(localScopeDepth()); |
| } |
| |
| OpProfileType::emit(this, registerToProfile, symbolTableOrScopeDepth, flag, addConstant(var.ident()), resolveType()); |
| emitTypeProfilerExpressionInfo(startDivot, endDivot); |
| } |
| |
| void BytecodeGenerator::emitProfileControlFlow(int textOffset) |
| { |
| if (shouldEmitControlFlowProfilerHooks()) { |
| RELEASE_ASSERT(textOffset >= 0); |
| |
| OpProfileControlFlow::emit(this, textOffset); |
| m_codeBlock->addOpProfileControlFlowBytecodeOffset(m_lastInstruction.offset()); |
| } |
| } |
| |
| unsigned BytecodeGenerator::addConstantIndex() |
| { |
| unsigned index = m_nextConstantOffset; |
| m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset); |
| ++m_nextConstantOffset; |
| return index; |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, bool b) |
| { |
| return emitLoad(dst, jsBoolean(b)); |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, const Identifier& identifier) |
| { |
| ASSERT(!identifier.isSymbol()); |
| JSString*& stringInMap = m_stringMap.add(identifier.impl(), nullptr).iterator->value; |
| if (!stringInMap) |
| stringInMap = jsOwnedString(vm(), identifier.string()); |
| |
| return emitLoad(dst, JSValue(stringInMap)); |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, JSValue v, SourceCodeRepresentation sourceCodeRepresentation) |
| { |
| RegisterID* constantID = addConstantValue(v, sourceCodeRepresentation); |
| if (dst) |
| return move(dst, constantID); |
| return constantID; |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, IdentifierSet& set) |
| { |
| if (m_codeBlock->numberOfConstantIdentifierSets()) { |
| for (const auto& entry : m_codeBlock->constantIdentifierSets()) { |
| if (entry.first != set) |
| continue; |
| |
| return &m_constantPoolRegisters[entry.second]; |
| } |
| } |
| |
| unsigned index = addConstantIndex(); |
| m_codeBlock->addSetConstant(set); |
| RegisterID* m_setRegister = &m_constantPoolRegisters[index]; |
| |
| if (dst) |
| return move(dst, m_setRegister); |
| |
| return m_setRegister; |
| } |
| |
| template<typename LookUpVarKindFunctor> |
| bool BytecodeGenerator::instantiateLexicalVariables(const VariableEnvironment& lexicalVariables, SymbolTable* symbolTable, ScopeRegisterType scopeRegisterType, LookUpVarKindFunctor lookUpVarKind) |
| { |
| bool hasCapturedVariables = false; |
| { |
| for (auto& entry : lexicalVariables) { |
| ASSERT(entry.value.isLet() || entry.value.isConst() || entry.value.isFunction()); |
| ASSERT(!entry.value.isVar()); |
| SymbolTableEntry symbolTableEntry = symbolTable->get(NoLockingNecessary, entry.key.get()); |
| ASSERT(symbolTableEntry.isNull()); |
| |
| // Imported bindings which are not the namespace bindings are not allocated |
| // in the module environment as usual variables' way. |
| // And since these types of the variables only seen in the module environment, |
| // other lexical environment need not to take care this. |
| if (entry.value.isImported() && !entry.value.isImportedNamespace()) |
| continue; |
| |
| VarKind varKind = lookUpVarKind(entry.key.get(), entry.value); |
| VarOffset varOffset; |
| if (varKind == VarKind::Scope) { |
| varOffset = VarOffset(symbolTable->takeNextScopeOffset(NoLockingNecessary)); |
| hasCapturedVariables = true; |
| } else { |
| ASSERT(varKind == VarKind::Stack); |
| RegisterID* local; |
| if (scopeRegisterType == ScopeRegisterType::Block) { |
| local = newBlockScopeVariable(); |
| local->ref(); |
| } else |
| local = addVar(); |
| varOffset = VarOffset(local->virtualRegister()); |
| } |
| |
| SymbolTableEntry newEntry(varOffset, static_cast<unsigned>(entry.value.isConst() ? PropertyAttribute::ReadOnly : PropertyAttribute::None)); |
| symbolTable->add(NoLockingNecessary, entry.key.get(), newEntry); |
| } |
| } |
| return hasCapturedVariables; |
| } |
| |
| void BytecodeGenerator::emitPrefillStackTDZVariables(const VariableEnvironment& lexicalVariables, SymbolTable* symbolTable) |
| { |
| // Prefill stack variables with the TDZ empty value. |
| // Scope variables will be initialized to the TDZ empty value when JSLexicalEnvironment is allocated. |
| for (auto& entry : lexicalVariables) { |
| // Imported bindings which are not the namespace bindings are not allocated |
| // in the module environment as usual variables' way. |
| // And since these types of the variables only seen in the module environment, |
| // other lexical environment need not to take care this. |
| if (entry.value.isImported() && !entry.value.isImportedNamespace()) |
| continue; |
| |
| if (entry.value.isFunction()) |
| continue; |
| |
| SymbolTableEntry symbolTableEntry = symbolTable->get(NoLockingNecessary, entry.key.get()); |
| ASSERT(!symbolTableEntry.isNull()); |
| VarOffset offset = symbolTableEntry.varOffset(); |
| if (offset.isScope()) |
| continue; |
| |
| ASSERT(offset.isStack()); |
| moveEmptyValue(®isterFor(offset.stackOffset())); |
| } |
| } |
| |
| void BytecodeGenerator::pushLexicalScope(VariableEnvironmentNode* node, TDZCheckOptimization tdzCheckOptimization, NestedScopeType nestedScopeType, RegisterID** constantSymbolTableResult, bool shouldInitializeBlockScopedFunctions) |
| { |
| VariableEnvironment& environment = node->lexicalVariables(); |
| RegisterID* constantSymbolTableResultTemp = nullptr; |
| pushLexicalScopeInternal(environment, tdzCheckOptimization, nestedScopeType, &constantSymbolTableResultTemp, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block); |
| |
| if (shouldInitializeBlockScopedFunctions) |
| initializeBlockScopedFunctions(environment, node->functionStack(), constantSymbolTableResultTemp); |
| |
| if (constantSymbolTableResult && constantSymbolTableResultTemp) |
| *constantSymbolTableResult = constantSymbolTableResultTemp; |
| } |
| |
| void BytecodeGenerator::pushLexicalScopeInternal(VariableEnvironment& environment, TDZCheckOptimization tdzCheckOptimization, NestedScopeType nestedScopeType, |
| RegisterID** constantSymbolTableResult, TDZRequirement tdzRequirement, ScopeType scopeType, ScopeRegisterType scopeRegisterType) |
| { |
| if (!environment.size()) |
| return; |
| |
| if (shouldEmitDebugHooks()) |
| environment.markAllVariablesAsCaptured(); |
| |
| SymbolTable* symbolTable = SymbolTable::create(m_vm); |
| switch (scopeType) { |
| case ScopeType::CatchScope: |
| symbolTable->setScopeType(SymbolTable::ScopeType::CatchScope); |
| break; |
| case ScopeType::LetConstScope: |
| symbolTable->setScopeType(SymbolTable::ScopeType::LexicalScope); |
| break; |
| case ScopeType::FunctionNameScope: |
| symbolTable->setScopeType(SymbolTable::ScopeType::FunctionNameScope); |
| break; |
| } |
| |
| if (nestedScopeType == NestedScopeType::IsNested) |
| symbolTable->markIsNestedLexicalScope(); |
| |
| auto lookUpVarKind = [] (UniquedStringImpl*, const VariableEnvironmentEntry& entry) -> VarKind { |
| return entry.isCaptured() ? VarKind::Scope : VarKind::Stack; |
| }; |
| |
| bool hasCapturedVariables = instantiateLexicalVariables(environment, symbolTable, scopeRegisterType, lookUpVarKind); |
| |
| RegisterID* newScope = nullptr; |
| RegisterID* constantSymbolTable = nullptr; |
| int symbolTableConstantIndex = 0; |
| if (shouldEmitTypeProfilerHooks()) { |
| constantSymbolTable = addConstantValue(symbolTable); |
| symbolTableConstantIndex = constantSymbolTable->index(); |
| } |
| if (hasCapturedVariables) { |
| if (scopeRegisterType == ScopeRegisterType::Block) { |
| newScope = newBlockScopeVariable(); |
| newScope->ref(); |
| } else |
| newScope = addVar(); |
| if (!constantSymbolTable) { |
| ASSERT(!shouldEmitTypeProfilerHooks()); |
| constantSymbolTable = addConstantValue(symbolTable->cloneScopePart(m_vm)); |
| symbolTableConstantIndex = constantSymbolTable->index(); |
| } |
| if (constantSymbolTableResult) |
| *constantSymbolTableResult = constantSymbolTable; |
| |
| OpCreateLexicalEnvironment::emit(this, newScope, scopeRegister(), VirtualRegister { symbolTableConstantIndex }, addConstantValue(tdzRequirement == TDZRequirement::UnderTDZ ? jsTDZValue() : jsUndefined())); |
| |
| move(scopeRegister(), newScope); |
| |
| pushLocalControlFlowScope(); |
| } |
| |
| bool isWithScope = false; |
| m_lexicalScopeStack.append({ symbolTable, newScope, isWithScope, symbolTableConstantIndex }); |
| pushTDZVariables(environment, tdzCheckOptimization, tdzRequirement); |
| |
| if (tdzRequirement == TDZRequirement::UnderTDZ) |
| emitPrefillStackTDZVariables(environment, symbolTable); |
| } |
| |
| void BytecodeGenerator::initializeBlockScopedFunctions(VariableEnvironment& environment, FunctionStack& functionStack, RegisterID* constantSymbolTable) |
| { |
| /* |
| * We must transform block scoped function declarations in strict mode like so: |
| * |
| * function foo() { |
| * if (c) { |
| * function foo() { ... } |
| * if (bar) { ... } |
| * else { ... } |
| * function baz() { ... } |
| * } |
| * } |
| * |
| * to: |
| * |
| * function foo() { |
| * if (c) { |
| * let foo = function foo() { ... } |
| * let baz = function baz() { ... } |
| * if (bar) { ... } |
| * else { ... } |
| * } |
| * } |
| * |
| * But without the TDZ checks. |
| */ |
| |
| if (!environment.size()) { |
| RELEASE_ASSERT(!functionStack.size()); |
| return; |
| } |
| |
| if (!functionStack.size()) |
| return; |
| |
| SymbolTable* symbolTable = m_lexicalScopeStack.last().m_symbolTable; |
| RegisterID* scope = m_lexicalScopeStack.last().m_scope; |
| RefPtr<RegisterID> temp = newTemporary(); |
| int symbolTableIndex = constantSymbolTable ? constantSymbolTable->index() : 0; |
| for (FunctionMetadataNode* function : functionStack) { |
| const Identifier& name = function->ident(); |
| auto iter = environment.find(name.impl()); |
| RELEASE_ASSERT(iter != environment.end()); |
| RELEASE_ASSERT(iter->value.isFunction()); |
| // We purposefully don't hold the symbol table lock around this loop because emitNewFunctionExpressionCommon may GC. |
| SymbolTableEntry entry = symbolTable->get(NoLockingNecessary, name.impl()); |
| RELEASE_ASSERT(!entry.isNull()); |
| emitNewFunctionExpressionCommon(temp.get(), function); |
| bool isLexicallyScoped = true; |
| emitPutToScope(scope, variableForLocalEntry(name, entry, symbolTableIndex, isLexicallyScoped), temp.get(), DoNotThrowIfNotFound, InitializationMode::Initialization); |
| } |
| } |
| |
| void BytecodeGenerator::hoistSloppyModeFunctionIfNecessary(const Identifier& functionName) |
| { |
| if (m_scopeNode->hasSloppyModeHoistedFunction(functionName.impl())) { |
| if (codeType() != EvalCode) { |
| Variable currentFunctionVariable = variable(functionName); |
| RefPtr<RegisterID> currentValue; |
| if (RegisterID* local = currentFunctionVariable.local()) |
| currentValue = local; |
| else { |
| RefPtr<RegisterID> scope = emitResolveScope(nullptr, currentFunctionVariable); |
| currentValue = emitGetFromScope(newTemporary(), scope.get(), currentFunctionVariable, DoNotThrowIfNotFound); |
| } |
| |
| ASSERT(m_varScopeLexicalScopeStackIndex); |
| ASSERT(*m_varScopeLexicalScopeStackIndex < m_lexicalScopeStack.size()); |
| LexicalScopeStackEntry varScope = m_lexicalScopeStack[*m_varScopeLexicalScopeStackIndex]; |
| SymbolTable* varSymbolTable = varScope.m_symbolTable; |
| ASSERT(varSymbolTable->scopeType() == SymbolTable::ScopeType::VarScope); |
| SymbolTableEntry entry = varSymbolTable->get(NoLockingNecessary, functionName.impl()); |
| if (functionName == propertyNames().arguments && entry.isNull()) { |
| // "arguments" might be put in the parameter scope when we have a non-simple |
| // parameter list since "arguments" is visible to expressions inside the |
| // parameter evaluation list. |
| // e.g: |
| // function foo(x = arguments) { { function arguments() { } } } |
| RELEASE_ASSERT(*m_varScopeLexicalScopeStackIndex > 0); |
| varScope = m_lexicalScopeStack[*m_varScopeLexicalScopeStackIndex - 1]; |
| SymbolTable* parameterSymbolTable = varScope.m_symbolTable; |
| entry = parameterSymbolTable->get(NoLockingNecessary, functionName.impl()); |
| } |
| RELEASE_ASSERT(!entry.isNull()); |
| bool isLexicallyScoped = false; |
| emitPutToScope(varScope.m_scope, variableForLocalEntry(functionName, entry, varScope.m_symbolTableConstantIndex, isLexicallyScoped), currentValue.get(), DoNotThrowIfNotFound, InitializationMode::NotInitialization); |
| } else { |
| Variable currentFunctionVariable = variable(functionName); |
| RefPtr<RegisterID> currentValue; |
| if (RegisterID* local = currentFunctionVariable.local()) |
| currentValue = local; |
| else { |
| RefPtr<RegisterID> scope = emitResolveScope(nullptr, currentFunctionVariable); |
| currentValue = emitGetFromScope(newTemporary(), scope.get(), currentFunctionVariable, DoNotThrowIfNotFound); |
| } |
| |
| RefPtr<RegisterID> scopeId = emitResolveScopeForHoistingFuncDeclInEval(nullptr, functionName); |
| RefPtr<RegisterID> checkResult = emitIsUndefined(newTemporary(), scopeId.get()); |
| |
| Ref<Label> isNotVarScopeLabel = newLabel(); |
| emitJumpIfTrue(checkResult.get(), isNotVarScopeLabel.get()); |
| |
| // Put to outer scope |
| emitPutToScope(scopeId.get(), functionName, currentValue.get(), DoNotThrowIfNotFound, InitializationMode::NotInitialization); |
| emitLabel(isNotVarScopeLabel.get()); |
| |
| } |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitResolveScopeForHoistingFuncDeclInEval(RegisterID* dst, const Identifier& property) |
| { |
| ASSERT(m_codeType == EvalCode); |
| |
| dst = finalDestination(dst); |
| OpResolveScopeForHoistingFuncDeclInEval::emit(this, kill(dst), m_topMostScope, addConstant(property)); |
| return dst; |
| } |
| |
| void BytecodeGenerator::popLexicalScope(VariableEnvironmentNode* node) |
| { |
| VariableEnvironment& environment = node->lexicalVariables(); |
| popLexicalScopeInternal(environment); |
| } |
| |
| void BytecodeGenerator::popLexicalScopeInternal(VariableEnvironment& environment) |
| { |
| // NOTE: This function only makes sense for scopes that aren't ScopeRegisterType::Var (only function name scope right now is ScopeRegisterType::Var). |
| // This doesn't make sense for ScopeRegisterType::Var because we deref RegisterIDs here. |
| if (!environment.size()) |
| return; |
| |
| if (shouldEmitDebugHooks()) |
| environment.markAllVariablesAsCaptured(); |
| |
| auto stackEntry = m_lexicalScopeStack.takeLast(); |
| SymbolTable* symbolTable = stackEntry.m_symbolTable; |
| bool hasCapturedVariables = false; |
| for (auto& entry : environment) { |
| if (entry.value.isCaptured()) { |
| hasCapturedVariables = true; |
| continue; |
| } |
| SymbolTableEntry symbolTableEntry = symbolTable->get(NoLockingNecessary, entry.key.get()); |
| ASSERT(!symbolTableEntry.isNull()); |
| VarOffset offset = symbolTableEntry.varOffset(); |
| ASSERT(offset.isStack()); |
| RegisterID* local = ®isterFor(offset.stackOffset()); |
| local->deref(); |
| } |
| |
| if (hasCapturedVariables) { |
| RELEASE_ASSERT(stackEntry.m_scope); |
| emitGetParentScope(scopeRegister(), stackEntry.m_scope); |
| popLocalControlFlowScope(); |
| stackEntry.m_scope->deref(); |
| } |
| |
| m_TDZStack.removeLast(); |
| m_cachedVariablesUnderTDZ = { }; |
| } |
| |
| void BytecodeGenerator::prepareLexicalScopeForNextForLoopIteration(VariableEnvironmentNode* node, RegisterID* loopSymbolTable) |
| { |
| VariableEnvironment& environment = node->lexicalVariables(); |
| if (!environment.size()) |
| return; |
| if (shouldEmitDebugHooks()) |
| environment.markAllVariablesAsCaptured(); |
| if (!environment.hasCapturedVariables()) |
| return; |
| |
| RELEASE_ASSERT(loopSymbolTable); |
| |
| // This function needs to do setup for a for loop's activation if any of |
| // the for loop's lexically declared variables are captured (that is, variables |
| // declared in the loop header, not the loop body). This function needs to |
| // make a copy of the current activation and copy the values from the previous |
| // activation into the new activation because each iteration of a for loop |
| // gets a new activation. |
| |
| auto stackEntry = m_lexicalScopeStack.last(); |
| SymbolTable* symbolTable = stackEntry.m_symbolTable; |
| RegisterID* loopScope = stackEntry.m_scope; |
| ASSERT(symbolTable->scopeSize()); |
| ASSERT(loopScope); |
| Vector<std::pair<RegisterID*, Identifier>> activationValuesToCopyOver; |
| |
| { |
| activationValuesToCopyOver.reserveInitialCapacity(symbolTable->scopeSize()); |
| |
| for (auto end = symbolTable->end(NoLockingNecessary), ptr = symbolTable->begin(NoLockingNecessary); ptr != end; ++ptr) { |
| if (!ptr->value.varOffset().isScope()) |
| continue; |
| |
| RefPtr<UniquedStringImpl> ident = ptr->key; |
| Identifier identifier = Identifier::fromUid(m_vm, ident.get()); |
| |
| RegisterID* transitionValue = newBlockScopeVariable(); |
| transitionValue->ref(); |
| emitGetFromScope(transitionValue, loopScope, variableForLocalEntry(identifier, ptr->value, loopSymbolTable->index(), true), DoNotThrowIfNotFound); |
| activationValuesToCopyOver.uncheckedAppend(std::make_pair(transitionValue, identifier)); |
| } |
| } |
| |
| // We need this dynamic behavior of the executing code to ensure |
| // each loop iteration has a new activation object. (It's pretty ugly). |
| // Also, this new activation needs to be assigned to the same register |
| // as the previous scope because the loop body is compiled under |
| // the assumption that the scope's register index is constant even |
| // though the value in that register will change on each loop iteration. |
| emitGetParentScope(scopeRegister(), loopScope); |
| |
| OpCreateLexicalEnvironment::emit(this, loopScope, scopeRegister(), loopSymbolTable, addConstantValue(jsTDZValue())); |
| |
| move(scopeRegister(), loopScope); |
| |
| { |
| for (const auto& pair : activationValuesToCopyOver) { |
| const Identifier& identifier = pair.second; |
| SymbolTableEntry entry = symbolTable->get(NoLockingNecessary, identifier.impl()); |
| RELEASE_ASSERT(!entry.isNull()); |
| RegisterID* transitionValue = pair.first; |
| emitPutToScope(loopScope, variableForLocalEntry(identifier, entry, loopSymbolTable->index(), true), transitionValue, DoNotThrowIfNotFound, InitializationMode::NotInitialization); |
| transitionValue->deref(); |
| } |
| } |
| } |
| |
| Variable BytecodeGenerator::variable(const Identifier& property, ThisResolutionType thisResolutionType) |
| { |
| if (property == propertyNames().thisIdentifier && thisResolutionType == ThisResolutionType::Local) |
| return Variable(property, VarOffset(thisRegister()->virtualRegister()), thisRegister(), static_cast<unsigned>(PropertyAttribute::ReadOnly), Variable::SpecialVariable, 0, false); |
| |
| // We can optimize lookups if the lexical variable is found before a "with" or "catch" |
| // scope because we're guaranteed static resolution. If we have to pass through |
| // a "with" or "catch" scope we loose this guarantee. |
| // We can't optimize cases like this: |
| // { |
| // let x = ...; |
| // with (o) { |
| // doSomethingWith(x); |
| // } |
| // } |
| // Because we can't gaurantee static resolution on x. |
| // But, in this case, we are guaranteed static resolution: |
| // { |
| // let x = ...; |
| // with (o) { |
| // let x = ...; |
| // doSomethingWith(x); |
| // } |
| // } |
| for (unsigned i = m_lexicalScopeStack.size(); i--; ) { |
| auto& stackEntry = m_lexicalScopeStack[i]; |
| if (stackEntry.m_isWithScope) |
| return Variable(property); |
| SymbolTable* symbolTable = stackEntry.m_symbolTable; |
| SymbolTableEntry symbolTableEntry = symbolTable->get(NoLockingNecessary, property.impl()); |
| if (symbolTableEntry.isNull()) |
| continue; |
| bool resultIsCallee = false; |
| if (symbolTable->scopeType() == SymbolTable::ScopeType::FunctionNameScope) { |
| if (m_usesNonStrictEval) { |
| // We don't know if an eval has introduced a "var" named the same thing as the function name scope variable name. |
| // We resort to dynamic lookup to answer this question. |
| Variable result = Variable(property); |
| return result; |
| } |
| resultIsCallee = true; |
| } |
| Variable result = variableForLocalEntry(property, symbolTableEntry, stackEntry.m_symbolTableConstantIndex, symbolTable->scopeType() == SymbolTable::ScopeType::LexicalScope); |
| if (resultIsCallee) |
| result.setIsReadOnly(); |
| return result; |
| } |
| |
| return Variable(property); |
| } |
| |
| Variable BytecodeGenerator::variableForLocalEntry( |
| const Identifier& property, const SymbolTableEntry& entry, int symbolTableConstantIndex, bool isLexicallyScoped) |
| { |
| VarOffset offset = entry.varOffset(); |
| |
| RegisterID* local; |
| if (offset.isStack()) |
| local = ®isterFor(offset.stackOffset()); |
| else |
| local = nullptr; |
| |
| return Variable(property, offset, local, entry.getAttributes(), Variable::NormalVariable, symbolTableConstantIndex, isLexicallyScoped); |
| } |
| |
| void BytecodeGenerator::createVariable( |
| const Identifier& property, VarKind varKind, SymbolTable* symbolTable, ExistingVariableMode existingVariableMode) |
| { |
| ASSERT(property != propertyNames().thisIdentifier); |
| SymbolTableEntry entry = symbolTable->get(NoLockingNecessary, property.impl()); |
| |
| if (!entry.isNull()) { |
| if (existingVariableMode == IgnoreExisting) |
| return; |
| |
| // Do some checks to ensure that the variable we're being asked to create is sufficiently |
| // compatible with the one we have already created. |
| |
| VarOffset offset = entry.varOffset(); |
| |
| // We can't change our minds about whether it's captured. |
| if (offset.kind() != varKind) { |
| dataLog( |
| "Trying to add variable called ", property, " as ", varKind, |
| " but it was already added as ", offset, ".\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| return; |
| } |
| |
| VarOffset varOffset; |
| if (varKind == VarKind::Scope) |
| varOffset = VarOffset(symbolTable->takeNextScopeOffset(NoLockingNecessary)); |
| else { |
| ASSERT(varKind == VarKind::Stack); |
| varOffset = VarOffset(virtualRegisterForLocal(m_calleeLocals.size())); |
| } |
| SymbolTableEntry newEntry(varOffset, 0); |
| symbolTable->add(NoLockingNecessary, property.impl(), newEntry); |
| |
| if (varKind == VarKind::Stack) { |
| RegisterID* local = addVar(); |
| RELEASE_ASSERT(local->index() == varOffset.stackOffset().offset()); |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitOverridesHasInstance(RegisterID* dst, RegisterID* constructor, RegisterID* hasInstanceValue) |
| { |
| OpOverridesHasInstance::emit(this, dst, constructor, hasInstanceValue); |
| return dst; |
| } |
| |
| // Indicates the least upper bound of resolve type based on local scope. The bytecode linker |
| // will start with this ResolveType and compute the least upper bound including intercepting scopes. |
| ResolveType BytecodeGenerator::resolveType() |
| { |
| for (unsigned i = m_lexicalScopeStack.size(); i--; ) { |
| if (m_lexicalScopeStack[i].m_isWithScope) |
| return Dynamic; |
| if (m_usesNonStrictEval && m_lexicalScopeStack[i].m_symbolTable->scopeType() == SymbolTable::ScopeType::FunctionNameScope) { |
| // We never want to assign to a FunctionNameScope. Returning Dynamic here achieves this goal. |
| // If we aren't in non-strict eval mode, then NodesCodeGen needs to take care not to emit |
| // a put_to_scope with the destination being the function name scope variable. |
| return Dynamic; |
| } |
| } |
| |
| if (m_usesNonStrictEval) |
| return GlobalPropertyWithVarInjectionChecks; |
| return GlobalProperty; |
| } |
| |
| RegisterID* BytecodeGenerator::emitResolveScope(RegisterID* dst, const Variable& variable) |
| { |
| switch (variable.offset().kind()) { |
| case VarKind::Stack: |
| return nullptr; |
| |
| case VarKind::DirectArgument: |
| return argumentsRegister(); |
| |
| case VarKind::Scope: { |
| // This always refers to the activation that *we* allocated, and not the current scope that code |
| // lives in. Note that this will change once we have proper support for block scoping. Once that |
| // changes, it will be correct for this code to return scopeRegister(). The only reason why we |
| // don't do that already is that m_lexicalEnvironment is required by ConstDeclNode. ConstDeclNode |
| // requires weird things because it is a shameful pile of nonsense, but block scoping would make |
| // that code sensible and obviate the need for us to do bad things. |
| for (unsigned i = m_lexicalScopeStack.size(); i--; ) { |
| auto& stackEntry = m_lexicalScopeStack[i]; |
| // We should not resolve a variable to VarKind::Scope if a "with" scope lies in between the current |
| // scope and the resolved scope. |
| RELEASE_ASSERT(!stackEntry.m_isWithScope); |
| |
| if (stackEntry.m_symbolTable->get(NoLockingNecessary, variable.ident().impl()).isNull()) |
| continue; |
| |
| RegisterID* scope = stackEntry.m_scope; |
| RELEASE_ASSERT(scope); |
| return scope; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| |
| } |
| case VarKind::Invalid: |
| // Indicates non-local resolution. |
| |
| dst = tempDestination(dst); |
| OpResolveScope::emit(this, kill(dst), scopeRegister(), addConstant(variable.ident()), resolveType(), localScopeDepth()); |
| return dst; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetFromScope(RegisterID* dst, RegisterID* scope, const Variable& variable, ResolveMode resolveMode) |
| { |
| switch (variable.offset().kind()) { |
| case VarKind::Stack: |
| return move(dst, variable.local()); |
| |
| case VarKind::DirectArgument: { |
| OpGetFromArguments::emit(this, kill(dst), scope, variable.offset().capturedArgumentsOffset().offset()); |
| return dst; |
| } |
| |
| case VarKind::Scope: |
| case VarKind::Invalid: { |
| OpGetFromScope::emit( |
| this, |
| kill(dst), |
| scope, |
| addConstant(variable.ident()), |
| GetPutInfo(resolveMode, variable.offset().isScope() ? LocalClosureVar : resolveType(), InitializationMode::NotInitialization), |
| localScopeDepth(), |
| variable.offset().isScope() ? variable.offset().scopeOffset().offset() : 0); |
| return dst; |
| } } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutToScope(RegisterID* scope, const Variable& variable, RegisterID* value, ResolveMode resolveMode, InitializationMode initializationMode) |
| { |
| switch (variable.offset().kind()) { |
| case VarKind::Stack: |
| move(variable.local(), value); |
| return value; |
| |
| case VarKind::DirectArgument: |
| OpPutToArguments::emit(this, scope, variable.offset().capturedArgumentsOffset().offset(), value); |
| return value; |
| |
| case VarKind::Scope: |
| case VarKind::Invalid: { |
| GetPutInfo getPutInfo(0); |
| SymbolTableOrScopeDepth symbolTableOrScopeDepth; |
| ScopeOffset offset; |
| if (variable.offset().isScope()) { |
| offset = variable.offset().scopeOffset(); |
| getPutInfo = GetPutInfo(resolveMode, LocalClosureVar, initializationMode); |
| symbolTableOrScopeDepth = SymbolTableOrScopeDepth::symbolTable(VirtualRegister { variable.symbolTableConstantIndex() }); |
| } else { |
| ASSERT(resolveType() != LocalClosureVar); |
| getPutInfo = GetPutInfo(resolveMode, resolveType(), initializationMode); |
| symbolTableOrScopeDepth = SymbolTableOrScopeDepth::scopeDepth(localScopeDepth()); |
| } |
| OpPutToScope::emit(this, scope, addConstant(variable.ident()), value, getPutInfo, symbolTableOrScopeDepth, !!offset ? offset.offset() : 0); |
| return value; |
| } } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| RegisterID* BytecodeGenerator::initializeVariable(const Variable& variable, RegisterID* value) |
| { |
| RELEASE_ASSERT(variable.offset().kind() != VarKind::Invalid); |
| RegisterID* scope = emitResolveScope(nullptr, variable); |
| return emitPutToScope(scope, variable, value, ThrowIfNotFound, InitializationMode::NotInitialization); |
| } |
| |
| RegisterID* BytecodeGenerator::emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* basePrototype) |
| { |
| OpInstanceof::emit(this, dst, value, basePrototype); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitInstanceOfCustom(RegisterID* dst, RegisterID* value, RegisterID* constructor, RegisterID* hasInstanceValue) |
| { |
| OpInstanceofCustom::emit(this, dst, value, constructor, hasInstanceValue); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitInByVal(RegisterID* dst, RegisterID* property, RegisterID* base) |
| { |
| OpInByVal::emit(this, dst, base, property); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitInById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| { |
| OpInById::emit(this, dst, base, addConstant(property)); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitTryGetById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| { |
| ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties are not supported with tryGetById."); |
| |
| OpTryGetById::emit(this, kill(dst), base, addConstant(property)); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| { |
| ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with get_by_val."); |
| |
| OpGetById::emit(this, kill(dst), base, addConstant(property)); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetById(RegisterID* dst, RegisterID* base, RegisterID* thisVal, const Identifier& property) |
| { |
| ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with get_by_val."); |
| |
| OpGetByIdWithThis::emit(this, kill(dst), base, thisVal, addConstant(property)); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitDirectGetById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| { |
| ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with get_by_val_direct."); |
| |
| OpGetByIdDirect::emit(this, kill(dst), base, addConstant(property)); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutById(RegisterID* base, const Identifier& property, RegisterID* value) |
| { |
| ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with put_by_val."); |
| |
| unsigned propertyIndex = addConstant(property); |
| |
| m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| |
| OpPutById::emit(this, base, propertyIndex, value, PutByIdNone); // is not direct |
| return value; |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutById(RegisterID* base, RegisterID* thisValue, const Identifier& property, RegisterID* value) |
| { |
| ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with put_by_val."); |
| |
| unsigned propertyIndex = addConstant(property); |
| |
| OpPutByIdWithThis::emit(this, base, thisValue, propertyIndex, value); |
| |
| return value; |
| } |
| |
| RegisterID* BytecodeGenerator::emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value, PropertyNode::PutType putType) |
| { |
| ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with put_by_val(direct)."); |
| |
| unsigned propertyIndex = addConstant(property); |
| |
| m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| |
| PutByIdFlags type = (putType == PropertyNode::KnownDirect || property != m_vm.propertyNames->underscoreProto) ? PutByIdIsDirect : PutByIdNone; |
| OpPutById::emit(this, base, propertyIndex, value, type); |
| return value; |
| } |
| |
| void BytecodeGenerator::emitPutGetterById(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter) |
| { |
| unsigned propertyIndex = addConstant(property); |
| m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| |
| OpPutGetterById::emit(this, base, propertyIndex, attributes, getter); |
| } |
| |
| void BytecodeGenerator::emitPutSetterById(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* setter) |
| { |
| unsigned propertyIndex = addConstant(property); |
| m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| |
| OpPutSetterById::emit(this, base, propertyIndex, attributes, setter); |
| } |
| |
| void BytecodeGenerator::emitPutGetterSetter(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter, RegisterID* setter) |
| { |
| unsigned propertyIndex = addConstant(property); |
| |
| m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| |
| OpPutGetterSetterById::emit(this, base, propertyIndex, attributes, getter, setter); |
| } |
| |
| void BytecodeGenerator::emitPutGetterByVal(RegisterID* base, RegisterID* property, unsigned attributes, RegisterID* getter) |
| { |
| OpPutGetterByVal::emit(this, base, property, attributes, getter); |
| } |
| |
| void BytecodeGenerator::emitPutSetterByVal(RegisterID* base, RegisterID* property, unsigned attributes, RegisterID* setter) |
| { |
| OpPutSetterByVal::emit(this, base, property, attributes, setter); |
| } |
| |
| void BytecodeGenerator::emitPutGeneratorFields(RegisterID* nextFunction) |
| { |
| emitPutInternalField(m_generatorRegister, static_cast<unsigned>(JSGenerator::Field::Next), nextFunction); |
| |
| // We do not store 'this' in arrow function within constructor, |
| // because it might be not initialized, if super is called later. |
| if (!(isDerivedConstructorContext() && m_codeBlock->parseMode() == SourceParseMode::AsyncArrowFunctionMode)) |
| emitPutInternalField(m_generatorRegister, static_cast<unsigned>(JSGenerator::Field::This), &m_thisRegister); |
| } |
| |
| void BytecodeGenerator::emitPutAsyncGeneratorFields(RegisterID* nextFunction) |
| { |
| ASSERT(isAsyncGeneratorWrapperParseMode(parseMode())); |
| |
| emitPutInternalField(m_generatorRegister, static_cast<unsigned>(JSAsyncGenerator::Field::Next), nextFunction); |
| emitPutInternalField(m_generatorRegister, static_cast<unsigned>(JSAsyncGenerator::Field::This), &m_thisRegister); |
| } |
| |
| RegisterID* BytecodeGenerator::emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| { |
| OpDelById::emit(this, dst, base, addConstant(property)); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property) |
| { |
| for (size_t i = m_forInContextStack.size(); i--; ) { |
| ForInContext& context = m_forInContextStack[i].get(); |
| if (context.local() != property) |
| continue; |
| |
| if (context.isIndexedForInContext()) { |
| auto& indexedContext = context.asIndexedForInContext(); |
| kill(dst); |
| if (OpGetByVal::checkWithoutMetadataID<OpcodeSize::Narrow>(this, dst, base, property)) |
| OpGetByVal::emitWithSmallestSizeRequirement<OpcodeSize::Narrow>(this, dst, base, indexedContext.index()); |
| else if (OpGetByVal::checkWithoutMetadataID<OpcodeSize::Wide16>(this, dst, base, property)) |
| OpGetByVal::emitWithSmallestSizeRequirement<OpcodeSize::Wide16>(this, dst, base, indexedContext.index()); |
| else |
| OpGetByVal::emit<OpcodeSize::Wide32>(this, dst, base, indexedContext.index()); |
| indexedContext.addGetInst(m_lastInstruction.offset(), property->index()); |
| return dst; |
| } |
| |
| // We cannot do the above optimization here since OpGetDirectPname => OpGetByVal conversion involves different metadata ID allocation. |
| StructureForInContext& structureContext = context.asStructureForInContext(); |
| OpGetDirectPname::emit<OpcodeSize::Wide32>(this, kill(dst), base, property, structureContext.index(), structureContext.enumerator()); |
| |
| structureContext.addGetInst(m_lastInstruction.offset(), property->index()); |
| return dst; |
| } |
| |
| OpGetByVal::emit(this, kill(dst), base, property); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* thisValue, RegisterID* property) |
| { |
| OpGetByValWithThis::emit(this, kill(dst), base, thisValue, property); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value) |
| { |
| OpPutByVal::emit(this, base, property, value); |
| return value; |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutByVal(RegisterID* base, RegisterID* thisValue, RegisterID* property, RegisterID* value) |
| { |
| OpPutByValWithThis::emit(this, base, thisValue, property, value); |
| return value; |
| } |
| |
| RegisterID* BytecodeGenerator::emitDirectPutByVal(RegisterID* base, RegisterID* property, RegisterID* value) |
| { |
| OpPutByValDirect::emit(this, base, property, value); |
| return value; |
| } |
| |
| RegisterID* BytecodeGenerator::emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property) |
| { |
| OpDelByVal::emit(this, dst, base, property); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetInternalField(RegisterID* dst, RegisterID* base, unsigned index) |
| { |
| OpGetInternalField::emit(this, dst, base, index); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitPutInternalField(RegisterID* base, unsigned index, RegisterID* value) |
| { |
| OpPutInternalField::emit(this, base, index, value); |
| return value; |
| } |
| |
| void BytecodeGenerator::emitSuperSamplerBegin() |
| { |
| OpSuperSamplerBegin::emit(this); |
| } |
| |
| void BytecodeGenerator::emitSuperSamplerEnd() |
| { |
| OpSuperSamplerEnd::emit(this); |
| } |
| |
| RegisterID* BytecodeGenerator::emitIdWithProfile(RegisterID* src, SpeculatedType profile) |
| { |
| OpIdentityWithProfile::emit(this, src, static_cast<uint32_t>(profile >> 32), static_cast<uint32_t>(profile)); |
| return src; |
| } |
| |
| void BytecodeGenerator::emitUnreachable() |
| { |
| OpUnreachable::emit(this); |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetArgument(RegisterID* dst, int32_t index) |
| { |
| OpGetArgument::emit(this, dst, index + 1 /* Including |this| */); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCreateThis(RegisterID* dst) |
| { |
| OpCreateThis::emit(this, dst, dst, 0); |
| m_staticPropertyAnalyzer.createThis(dst, m_lastInstruction); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCreatePromise(RegisterID* dst, RegisterID* newTarget, bool isInternalPromise) |
| { |
| OpCreatePromise::emit(this, dst, newTarget, isInternalPromise); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewPromise(RegisterID* dst, bool isInternalPromise) |
| { |
| OpNewPromise::emit(this, dst, isInternalPromise); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCreateGenerator(RegisterID* dst, RegisterID* newTarget) |
| { |
| OpCreateGenerator::emit(this, dst, newTarget); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewGenerator(RegisterID* dst) |
| { |
| OpNewGenerator::emit(this, dst); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCreateAsyncGenerator(RegisterID* dst, RegisterID* newTarget) |
| { |
| OpCreateAsyncGenerator::emit(this, dst, newTarget); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCreateArgumentsButterfly(RegisterID* dst) |
| { |
| OpCreateArgumentsButterfly::emit(this, dst); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitTDZCheck(RegisterID* target) |
| { |
| OpCheckTdz::emit(this, target); |
| } |
| |
| bool BytecodeGenerator::needsTDZCheck(const Variable& variable) |
| { |
| for (unsigned i = m_TDZStack.size(); i--;) { |
| auto iter = m_TDZStack[i].find(variable.ident().impl()); |
| if (iter == m_TDZStack[i].end()) |
| continue; |
| return iter->value != TDZNecessityLevel::NotNeeded; |
| } |
| |
| return false; |
| } |
| |
| void BytecodeGenerator::emitTDZCheckIfNecessary(const Variable& variable, RegisterID* target, RegisterID* scope) |
| { |
| if (needsTDZCheck(variable)) { |
| if (target) |
| emitTDZCheck(target); |
| else { |
| RELEASE_ASSERT(!variable.isLocal() && scope); |
| RefPtr<RegisterID> result = emitGetFromScope(newTemporary(), scope, variable, DoNotThrowIfNotFound); |
| emitTDZCheck(result.get()); |
| } |
| } |
| } |
| |
| void BytecodeGenerator::liftTDZCheckIfPossible(const Variable& variable) |
| { |
| RefPtr<UniquedStringImpl> identifier(variable.ident().impl()); |
| for (unsigned i = m_TDZStack.size(); i--;) { |
| auto iter = m_TDZStack[i].find(identifier); |
| if (iter != m_TDZStack[i].end()) { |
| if (iter->value == TDZNecessityLevel::Optimize) { |
| m_cachedVariablesUnderTDZ = { }; |
| iter->value = TDZNecessityLevel::NotNeeded; |
| } |
| break; |
| } |
| } |
| } |
| |
| void BytecodeGenerator::pushTDZVariables(const VariableEnvironment& environment, TDZCheckOptimization optimization, TDZRequirement requirement) |
| { |
| if (!environment.size()) |
| return; |
| |
| TDZNecessityLevel level; |
| if (requirement == TDZRequirement::UnderTDZ) { |
| if (optimization == TDZCheckOptimization::Optimize) |
| level = TDZNecessityLevel::Optimize; |
| else |
| level = TDZNecessityLevel::DoNotOptimize; |
| } else |
| level = TDZNecessityLevel::NotNeeded; |
| |
| TDZMap map; |
| for (const auto& entry : environment) |
| map.add(entry.key, entry.value.isFunction() ? TDZNecessityLevel::NotNeeded : level); |
| |
| m_TDZStack.append(WTFMove(map)); |
| m_cachedVariablesUnderTDZ = { }; |
| } |
| |
| Optional<CompactVariableMap::Handle> BytecodeGenerator::getVariablesUnderTDZ() |
| { |
| if (m_cachedVariablesUnderTDZ) { |
| if (!m_hasCachedVariablesUnderTDZ) { |
| ASSERT(m_cachedVariablesUnderTDZ.environment().toVariableEnvironment().isEmpty()); |
| return WTF::nullopt; |
| } |
| return m_cachedVariablesUnderTDZ; |
| } |
| |
| // We keep track of variablesThatDontNeedTDZ in this algorithm to prevent |
| // reporting that "x" is under TDZ if this function is called at "...". |
| // |
| // { |
| // { |
| // let x; |
| // ... |
| // } |
| // let x; |
| // } |
| SmallPtrSet<UniquedStringImpl*, 16> variablesThatDontNeedTDZ; |
| VariableEnvironment environment; |
| for (unsigned i = m_TDZStack.size(); i--; ) { |
| auto& map = m_TDZStack[i]; |
| for (auto& entry : map) { |
| if (entry.value != TDZNecessityLevel::NotNeeded) { |
| if (!variablesThatDontNeedTDZ.contains(entry.key.get())) |
| environment.add(entry.key.get()); |
| } else |
| variablesThatDontNeedTDZ.add(entry.key.get()); |
| } |
| } |
| |
| m_cachedVariablesUnderTDZ = m_vm.m_compactVariableMap->get(environment); |
| m_hasCachedVariablesUnderTDZ = !environment.isEmpty(); |
| if (!m_hasCachedVariablesUnderTDZ) |
| return WTF::nullopt; |
| |
| return m_cachedVariablesUnderTDZ; |
| } |
| |
| void BytecodeGenerator::preserveTDZStack(BytecodeGenerator::PreservedTDZStack& preservedStack) |
| { |
| preservedStack.m_preservedTDZStack = m_TDZStack; |
| } |
| |
| void BytecodeGenerator::restoreTDZStack(const BytecodeGenerator::PreservedTDZStack& preservedStack) |
| { |
| m_TDZStack = preservedStack.m_preservedTDZStack; |
| m_cachedVariablesUnderTDZ = { }; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewObject(RegisterID* dst) |
| { |
| OpNewObject::emit(this, dst, 0); |
| m_staticPropertyAnalyzer.newObject(dst, m_lastInstruction); |
| |
| return dst; |
| } |
| |
| JSValue BytecodeGenerator::addBigIntConstant(const Identifier& identifier, uint8_t radix, bool sign) |
| { |
| return m_bigIntMap.ensure(BigIntMapEntry(identifier.impl(), radix, sign), [&] { |
| auto scope = DECLARE_CATCH_SCOPE(vm()); |
| auto parseIntSign = sign ? JSBigInt::ParseIntSign::Signed : JSBigInt::ParseIntSign::Unsigned; |
| JSBigInt* bigIntInMap = JSBigInt::parseInt(nullptr, vm(), identifier.string(), radix, JSBigInt::ErrorParseMode::ThrowExceptions, parseIntSign); |
| // FIXME: [ESNext] Enables a way to throw an error on ByteCodeGenerator step |
| // https://bugs.webkit.org/show_bug.cgi?id=180139 |
| scope.assertNoException(); |
| RELEASE_ASSERT(bigIntInMap); |
| addConstantValue(bigIntInMap); |
| |
| return bigIntInMap; |
| }).iterator->value; |
| } |
| |
| JSString* BytecodeGenerator::addStringConstant(const Identifier& identifier) |
| { |
| JSString*& stringInMap = m_stringMap.add(identifier.impl(), nullptr).iterator->value; |
| if (!stringInMap) { |
| stringInMap = jsString(vm(), identifier.string()); |
| addConstantValue(stringInMap); |
| } |
| return stringInMap; |
| } |
| |
| RegisterID* BytecodeGenerator::addTemplateObjectConstant(Ref<TemplateObjectDescriptor>&& descriptor, int endOffset) |
| { |
| auto result = m_templateObjectDescriptorSet.add(WTFMove(descriptor)); |
| JSTemplateObjectDescriptor* descriptorValue = m_templateDescriptorMap.ensure(endOffset, [&] { |
| return JSTemplateObjectDescriptor::create(vm(), result.iterator->copyRef(), endOffset); |
| }).iterator->value; |
| int index = addConstantIndex(); |
| m_codeBlock->addConstant(descriptorValue); |
| return &m_constantPoolRegisters[index]; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewArrayBuffer(RegisterID* dst, JSImmutableButterfly* array, IndexingType recommendedIndexingType) |
| { |
| OpNewArrayBuffer::emit(this, dst, addConstantValue(array), recommendedIndexingType); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewArray(RegisterID* dst, ElementNode* elements, unsigned length, IndexingType recommendedIndexingType) |
| { |
| Vector<RefPtr<RegisterID>, 16, UnsafeVectorOverflow> argv; |
| for (ElementNode* n = elements; n; n = n->next()) { |
| if (!length) |
| break; |
| length--; |
| ASSERT(!n->value()->isSpreadExpression()); |
| argv.append(newTemporary()); |
| // op_new_array requires the initial values to be a sequential range of registers |
| ASSERT(argv.size() == 1 || argv[argv.size() - 1]->index() == argv[argv.size() - 2]->index() - 1); |
| emitNode(argv.last().get(), n->value()); |
| } |
| ASSERT(!length); |
| OpNewArray::emit(this, dst, argv.size() ? argv[0].get() : VirtualRegister { 0 }, argv.size(), recommendedIndexingType); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewArrayWithSpread(RegisterID* dst, ElementNode* elements) |
| { |
| BitVector bitVector; |
| Vector<RefPtr<RegisterID>, 16> argv; |
| for (ElementNode* node = elements; node; node = node->next()) { |
| bitVector.set(argv.size(), node->value()->isSpreadExpression()); |
| |
| argv.append(newTemporary()); |
| // op_new_array_with_spread requires the initial values to be a sequential range of registers. |
| RELEASE_ASSERT(argv.size() == 1 || argv[argv.size() - 1]->index() == argv[argv.size() - 2]->index() - 1); |
| } |
| |
| RELEASE_ASSERT(argv.size()); |
| |
| { |
| unsigned i = 0; |
| for (ElementNode* node = elements; node; node = node->next()) { |
| if (node->value()->isSpreadExpression()) { |
| ExpressionNode* expression = static_cast<SpreadExpressionNode*>(node->value())->expression(); |
| RefPtr<RegisterID> tmp = newTemporary(); |
| emitNode(tmp.get(), expression); |
| |
| OpSpread::emit(this, argv[i].get(), tmp.get()); |
| } else { |
| ExpressionNode* expression = node->value(); |
| emitNode(argv[i].get(), expression); |
| } |
| i++; |
| } |
| } |
| |
| unsigned bitVectorIndex = m_codeBlock->addBitVector(WTFMove(bitVector)); |
| OpNewArrayWithSpread::emit(this, dst, argv[0].get(), argv.size(), bitVectorIndex); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewArrayWithSize(RegisterID* dst, RegisterID* length) |
| { |
| OpNewArrayWithSize::emit(this, dst, length); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewRegExp(RegisterID* dst, RegExp* regExp) |
| { |
| OpNewRegexp::emit(this, dst, addConstantValue(regExp)); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitNewFunctionExpressionCommon(RegisterID* dst, FunctionMetadataNode* function) |
| { |
| unsigned index = m_codeBlock->addFunctionExpr(makeFunction(function)); |
| |
| switch (function->parseMode()) { |
| case SourceParseMode::GeneratorWrapperFunctionMode: |
| case SourceParseMode::GeneratorWrapperMethodMode: |
| OpNewGeneratorFuncExp::emit(this, dst, scopeRegister(), index); |
| break; |
| case SourceParseMode::AsyncFunctionMode: |
| case SourceParseMode::AsyncMethodMode: |
| case SourceParseMode::AsyncArrowFunctionMode: |
| OpNewAsyncFuncExp::emit(this, dst, scopeRegister(), index); |
| break; |
| case SourceParseMode::AsyncGeneratorWrapperFunctionMode: |
| case SourceParseMode::AsyncGeneratorWrapperMethodMode: |
| OpNewAsyncGeneratorFuncExp::emit(this, dst, scopeRegister(), index); |
| break; |
| default: |
| OpNewFuncExp::emit(this, dst, scopeRegister(), index); |
| break; |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func) |
| { |
| emitNewFunctionExpressionCommon(dst, func->metadata()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewArrowFunctionExpression(RegisterID* dst, ArrowFuncExprNode* func) |
| { |
| ASSERT(SourceParseModeSet(SourceParseMode::ArrowFunctionMode, SourceParseMode::AsyncArrowFunctionMode).contains(func->metadata()->parseMode())); |
| emitNewFunctionExpressionCommon(dst, func->metadata()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewMethodDefinition(RegisterID* dst, MethodDefinitionNode* func) |
| { |
| ASSERT(isMethodParseMode(func->metadata()->parseMode())); |
| emitNewFunctionExpressionCommon(dst, func->metadata()); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewDefaultConstructor(RegisterID* dst, ConstructorKind constructorKind, const Identifier& name, |
| const Identifier& ecmaName, const SourceCode& classSource) |
| { |
| UnlinkedFunctionExecutable* executable = m_vm.builtinExecutables()->createDefaultConstructor(constructorKind, name); |
| executable->setInvalidTypeProfilingOffsets(); |
| executable->setEcmaName(ecmaName); |
| executable->setClassSource(classSource); |
| |
| unsigned index = m_codeBlock->addFunctionExpr(executable); |
| |
| OpNewFuncExp::emit(this, dst, scopeRegister(), index); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitNewFunction(RegisterID* dst, FunctionMetadataNode* function) |
| { |
| unsigned index = m_codeBlock->addFunctionDecl(makeFunction(function)); |
| if (isGeneratorWrapperParseMode(function->parseMode())) |
| OpNewGeneratorFunc::emit(this, dst, scopeRegister(), index); |
| else if (function->parseMode() == SourceParseMode::AsyncFunctionMode) |
| OpNewAsyncFunc::emit(this, dst, scopeRegister(), index); |
| else if (isAsyncGeneratorWrapperParseMode(function->parseMode())) |
| OpNewAsyncGeneratorFunc::emit(this, dst, scopeRegister(), index); |
| else |
| OpNewFunc::emit(this, dst, scopeRegister(), index); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitSetFunctionNameIfNeeded(ExpressionNode* valueNode, RegisterID* value, RegisterID* name) |
| { |
| if (valueNode->isBaseFuncExprNode()) { |
| FunctionMetadataNode* metadata = static_cast<BaseFuncExprNode*>(valueNode)->metadata(); |
| if (!metadata->ecmaName().isNull()) |
| return; |
| } else if (valueNode->isClassExprNode()) { |
| ClassExprNode* classExprNode = static_cast<ClassExprNode*>(valueNode); |
| if (!classExprNode->ecmaName().isNull()) |
| return; |
| if (classExprNode->hasStaticProperty(m_vm.propertyNames->name)) |
| return; |
| } else |
| return; |
| |
| // FIXME: We should use an op_call to an internal function here instead. |
| // https://bugs.webkit.org/show_bug.cgi?id=155547 |
| OpSetFunctionName::emit(this, value, name); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| { |
| return emitCall<OpCall>(dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd, debuggableCall); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallInTailPosition(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| { |
| if (m_inTailPosition) { |
| m_codeBlock->setHasTailCalls(); |
| return emitCall<OpTailCall>(dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd, debuggableCall); |
| } |
| return emitCall<OpCall>(dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd, debuggableCall); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallEval(RegisterID* dst, RegisterID* func, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| { |
| return emitCall<OpCallEval>(dst, func, NoExpectedFunction, callArguments, divot, divotStart, divotEnd, debuggableCall); |
| } |
| |
| ExpectedFunction BytecodeGenerator::expectedFunctionForIdentifier(const Identifier& identifier) |
| { |
| if (identifier == propertyNames().Object || identifier == propertyNames().builtinNames().ObjectPrivateName()) |
| return ExpectObjectConstructor; |
| if (identifier == propertyNames().Array || identifier == propertyNames().builtinNames().ArrayPrivateName()) |
| return ExpectArrayConstructor; |
| return NoExpectedFunction; |
| } |
| |
| ExpectedFunction BytecodeGenerator::emitExpectedFunctionSnippet(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, Label& done) |
| { |
| Ref<Label> realCall = newLabel(); |
| switch (expectedFunction) { |
| case ExpectObjectConstructor: { |
| // If the number of arguments is non-zero, then we can't do anything interesting. |
| if (callArguments.argumentCountIncludingThis() >= 2) |
| return NoExpectedFunction; |
| |
| OpJneqPtr::emit(this, func, moveLinkTimeConstant(nullptr, LinkTimeConstant::Object), realCall->bind(this)); |
| |
| if (dst != ignoredResult()) |
| emitNewObject(dst); |
| break; |
| } |
| |
| case ExpectArrayConstructor: { |
| // If you're doing anything other than "new Array()" or "new Array(foo)" then we |
| // don't do inline it, for now. The only reason is that call arguments are in |
| // the opposite order of what op_new_array expects, so we'd either need to change |
| // how op_new_array works or we'd need an op_new_array_reverse. Neither of these |
| // things sounds like it's worth it. |
| if (callArguments.argumentCountIncludingThis() > 2) |
| return NoExpectedFunction; |
| |
| OpJneqPtr::emit(this, func, moveLinkTimeConstant(nullptr, LinkTimeConstant::Array), realCall->bind(this)); |
| |
| if (dst != ignoredResult()) { |
| if (callArguments.argumentCountIncludingThis() == 2) |
| emitNewArrayWithSize(dst, callArguments.argumentRegister(0)); |
| else { |
| ASSERT(callArguments.argumentCountIncludingThis() == 1); |
| OpNewArray::emit(this, dst, VirtualRegister { 0 }, 0, ArrayWithUndecided); |
| } |
| } |
| break; |
| } |
| |
| default: |
| ASSERT(expectedFunction == NoExpectedFunction); |
| return NoExpectedFunction; |
| } |
| |
| OpJmp::emit(this, done.bind(this)); |
| emitLabel(realCall.get()); |
| |
| return expectedFunction; |
| } |
| |
| template<typename CallOp> |
| RegisterID* BytecodeGenerator::emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| { |
| constexpr auto opcodeID = CallOp::opcodeID; |
| ASSERT(opcodeID == op_call || opcodeID == op_call_eval || opcodeID == op_tail_call); |
| ASSERT(func->refCount()); |
| |
| // Generate code for arguments. |
| unsigned argument = 0; |
| if (callArguments.argumentsNode()) { |
| ArgumentListNode* n = callArguments.argumentsNode()->m_listNode; |
| if (n && n->m_expr->isSpreadExpression()) { |
| RELEASE_ASSERT(!n->m_next); |
| auto expression = static_cast<SpreadExpressionNode*>(n->m_expr)->expression(); |
| if (expression->isArrayLiteral()) { |
| auto* elements = static_cast<ArrayNode*>(expression)->elements(); |
| if (elements && !elements->next() && elements->value()->isSpreadExpression()) { |
| ExpressionNode* expression = static_cast<SpreadExpressionNode*>(elements->value())->expression(); |
| RefPtr<RegisterID> argumentRegister = emitNode(callArguments.argumentRegister(0), expression); |
| OpSpread::emit(this, argumentRegister.get(), argumentRegister.get()); |
| |
| return emitCallVarargs<typename VarArgsOp<CallOp>::type>(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, divot, divotStart, divotEnd, debuggableCall); |
| } |
| } |
| RefPtr<RegisterID> argumentRegister; |
| argumentRegister = expression->emitBytecode(*this, callArguments.argumentRegister(0)); |
| RefPtr<RegisterID> thisRegister = move(newTemporary(), callArguments.thisRegister()); |
| return emitCallVarargs<typename VarArgsOp<CallOp>::type>(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, divot, divotStart, divotEnd, debuggableCall); |
| } |
| for (; n; n = n->m_next) |
| emitNode(callArguments.argumentRegister(argument++), n); |
| } |
| |
| // Reserve space for call frame. |
| Vector<RefPtr<RegisterID>, CallFrame::headerSizeInRegisters, UnsafeVectorOverflow> callFrame; |
| for (int i = 0; i < CallFrame::headerSizeInRegisters; ++i) |
| callFrame.append(newTemporary()); |
| |
| if (shouldEmitDebugHooks() && debuggableCall == DebuggableCall::Yes) |
| emitDebugHook(WillExecuteExpression, divotStart); |
| |
| emitExpressionInfo(divot, divotStart, divotEnd); |
| |
| Ref<Label> done = newLabel(); |
| expectedFunction = emitExpectedFunctionSnippet(dst, func, expectedFunction, callArguments, done.get()); |
| |
| if (opcodeID == op_tail_call) |
| emitLogShadowChickenTailIfNecessary(); |
| |
| // Emit call. |
| ASSERT(dst); |
| ASSERT(dst != ignoredResult()); |
| CallOp::emit(this, dst, func, callArguments.argumentCountIncludingThis(), callArguments.stackOffset()); |
| |
| if (expectedFunction != NoExpectedFunction) |
| emitLabel(done.get()); |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| { |
| return emitCallVarargs<OpCallVarargs>(dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallVarargsInTailPosition(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| { |
| if (m_inTailPosition) |
| return emitCallVarargs<OpTailCallVarargs>(dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| return emitCallVarargs<OpCallVarargs>(dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| } |
| |
| RegisterID* BytecodeGenerator::emitConstructVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| { |
| return emitCallVarargs<OpConstructVarargs>(dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallForwardArgumentsInTailPosition(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| { |
| // We must emit a tail call here because we did not allocate an arguments object thus we would otherwise have no way to correctly make this call. |
| ASSERT(m_inTailPosition || !Options::useTailCalls()); |
| return emitCallVarargs<OpTailCallForwardArguments>(dst, func, thisRegister, nullptr, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| } |
| |
| template<typename VarargsOp> |
| RegisterID* BytecodeGenerator::emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| { |
| if (shouldEmitDebugHooks() && debuggableCall == DebuggableCall::Yes) |
| emitDebugHook(WillExecuteExpression, divotStart); |
| |
| emitExpressionInfo(divot, divotStart, divotEnd); |
| |
| if (VarargsOp::opcodeID == op_tail_call_varargs) |
| emitLogShadowChickenTailIfNecessary(); |
| |
| // Emit call. |
| ASSERT(dst != ignoredResult()); |
| VarargsOp::emit(this, dst, func, thisRegister, arguments ? arguments : VirtualRegister(0), firstFreeRegister, firstVarArgOffset); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitLogShadowChickenPrologueIfNecessary() |
| { |
| if (!shouldEmitDebugHooks() && !Options::alwaysUseShadowChicken()) |
| return; |
| OpLogShadowChickenPrologue::emit(this, scopeRegister()); |
| } |
| |
| void BytecodeGenerator::emitLogShadowChickenTailIfNecessary() |
| { |
| if (!shouldEmitDebugHooks() && !Options::alwaysUseShadowChicken()) |
| return; |
| OpLogShadowChickenTail::emit(this, thisRegister(), scopeRegister()); |
| } |
| |
| void BytecodeGenerator::emitCallDefineProperty(RegisterID* newObj, RegisterID* propertyNameRegister, |
| RegisterID* valueRegister, RegisterID* getterRegister, RegisterID* setterRegister, unsigned options, const JSTextPosition& position) |
| { |
| DefinePropertyAttributes attributes; |
| if (options & PropertyConfigurable) |
| attributes.setConfigurable(true); |
| |
| if (options & PropertyWritable) |
| attributes.setWritable(true); |
| else if (valueRegister) |
| attributes.setWritable(false); |
| |
| if (options & PropertyEnumerable) |
| attributes.setEnumerable(true); |
| |
| if (valueRegister) |
| attributes.setValue(); |
| if (getterRegister) |
| attributes.setGet(); |
| if (setterRegister) |
| attributes.setSet(); |
| |
| ASSERT(!valueRegister || (!getterRegister && !setterRegister)); |
| |
| emitExpressionInfo(position, position, position); |
| |
| if (attributes.hasGet() || attributes.hasSet()) { |
| RefPtr<RegisterID> throwTypeErrorFunction; |
| if (!attributes.hasGet() || !attributes.hasSet()) |
| throwTypeErrorFunction = moveLinkTimeConstant(nullptr, LinkTimeConstant::throwTypeErrorFunction); |
| |
| RefPtr<RegisterID> getter; |
| if (attributes.hasGet()) |
| getter = getterRegister; |
| else |
| getter = throwTypeErrorFunction; |
| |
| RefPtr<RegisterID> setter; |
| if (attributes.hasSet()) |
| setter = setterRegister; |
| else |
| setter = throwTypeErrorFunction; |
| |
| OpDefineAccessorProperty::emit(this, newObj, propertyNameRegister, getter.get(), setter.get(), emitLoad(nullptr, jsNumber(attributes.rawRepresentation()))); |
| } else { |
| OpDefineDataProperty::emit(this, newObj, propertyNameRegister, valueRegister, emitLoad(nullptr, jsNumber(attributes.rawRepresentation()))); |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitReturn(RegisterID* src, ReturnFrom from) |
| { |
| // Normal functions and naked constructors do not handle `return` specially. |
| if (isConstructor() && constructorKind() != ConstructorKind::Naked) { |
| bool isDerived = constructorKind() == ConstructorKind::Extends; |
| bool srcIsThis = src->index() == m_thisRegister.index(); |
| |
| if (isDerived && (srcIsThis || from == ReturnFrom::Finally)) |
| emitTDZCheck(src); |
| |
| if (!srcIsThis || from == ReturnFrom::Finally) { |
| Ref<Label> isObjectLabel = newLabel(); |
| emitJumpIfTrue(emitIsObject(newTemporary(), src), isObjectLabel.get()); |
| |
| if (isDerived) { |
| Ref<Label> isUndefinedLabel = newLabel(); |
| emitJumpIfTrue(emitIsUndefined(newTemporary(), src), isUndefinedLabel.get()); |
| emitThrowTypeError("Cannot return a non-object type in the constructor of a derived class."); |
| emitLabel(isUndefinedLabel.get()); |
| emitTDZCheck(&m_thisRegister); |
| } |
| OpRet::emit(this, &m_thisRegister); |
| emitLabel(isObjectLabel.get()); |
| } |
| } |
| |
| OpRet::emit(this, src); |
| return src; |
| } |
| |
| RegisterID* BytecodeGenerator::emitEnd(RegisterID* src) |
| { |
| OpEnd::emit(this, src); |
| return src; |
| } |
| |
| |
| RegisterID* BytecodeGenerator::emitConstruct(RegisterID* dst, RegisterID* func, RegisterID* lazyThis, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| { |
| ASSERT(func->refCount()); |
| |
| // Generate code for arguments. |
| unsigned argument = 0; |
| if (ArgumentsNode* argumentsNode = callArguments.argumentsNode()) { |
| |
| ArgumentListNode* n = callArguments.argumentsNode()->m_listNode; |
| if (n && n->m_expr->isSpreadExpression()) { |
| RELEASE_ASSERT(!n->m_next); |
| auto expression = static_cast<SpreadExpressionNode*>(n->m_expr)->expression(); |
| if (expression->isArrayLiteral()) { |
| auto* elements = static_cast<ArrayNode*>(expression)->elements(); |
| if (elements && !elements->next() && elements->value()->isSpreadExpression()) { |
| ExpressionNode* expression = static_cast<SpreadExpressionNode*>(elements->value())->expression(); |
| RefPtr<RegisterID> argumentRegister = emitNode(callArguments.argumentRegister(0), expression); |
| OpSpread::emit(this, argumentRegister.get(), argumentRegister.get()); |
| |
| move(callArguments.thisRegister(), lazyThis); |
| RefPtr<RegisterID> thisRegister = move(newTemporary(), callArguments.thisRegister()); |
| return emitConstructVarargs(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, divot, divotStart, divotEnd, DebuggableCall::No); |
| } |
| } |
| RefPtr<RegisterID> argumentRegister; |
| argumentRegister = expression->emitBytecode(*this, callArguments.argumentRegister(0)); |
| move(callArguments.thisRegister(), lazyThis); |
| return emitConstructVarargs(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, divot, divotStart, divotEnd, DebuggableCall::No); |
| } |
| |
| for (ArgumentListNode* n = argumentsNode->m_listNode; n; n = n->m_next) |
| emitNode(callArguments.argumentRegister(argument++), n); |
| } |
| |
| move(callArguments.thisRegister(), lazyThis); |
| |
| // Reserve space for call frame. |
| Vector<RefPtr<RegisterID>, CallFrame::headerSizeInRegisters, UnsafeVectorOverflow> callFrame; |
| for (int i = 0; i < CallFrame::headerSizeInRegisters; ++i) |
| callFrame.append(newTemporary()); |
| |
| emitExpressionInfo(divot, divotStart, divotEnd); |
| |
| Ref<Label> done = newLabel(); |
| expectedFunction = emitExpectedFunctionSnippet(dst, func, expectedFunction, callArguments, done.get()); |
| |
| OpConstruct::emit(this, dst, func, callArguments.argumentCountIncludingThis(), callArguments.stackOffset()); |
| |
| if (expectedFunction != NoExpectedFunction) |
| emitLabel(done.get()); |
| |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitStrcat(RegisterID* dst, RegisterID* src, int count) |
| { |
| OpStrcat::emit(this, dst, src, count); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitToPrimitive(RegisterID* dst, RegisterID* src) |
| { |
| OpToPrimitive::emit(this, dst, src); |
| } |
| |
| void BytecodeGenerator::emitGetScope() |
| { |
| OpGetScope::emit(this, scopeRegister()); |
| } |
| |
| RegisterID* BytecodeGenerator::emitPushWithScope(RegisterID* objectScope) |
| { |
| pushLocalControlFlowScope(); |
| RegisterID* newScope = newBlockScopeVariable(); |
| newScope->ref(); |
| |
| OpPushWithScope::emit(this, newScope, scopeRegister(), objectScope); |
| |
| move(scopeRegister(), newScope); |
| m_lexicalScopeStack.append({ nullptr, newScope, true, 0 }); |
| |
| return newScope; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetParentScope(RegisterID* dst, RegisterID* scope) |
| { |
| OpGetParentScope::emit(this, dst, scope); |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitPopWithScope() |
| { |
| emitGetParentScope(scopeRegister(), scopeRegister()); |
| popLocalControlFlowScope(); |
| auto stackEntry = m_lexicalScopeStack.takeLast(); |
| stackEntry.m_scope->deref(); |
| RELEASE_ASSERT(stackEntry.m_isWithScope); |
| } |
| |
| void BytecodeGenerator::emitDebugHook(DebugHookType debugHookType, const JSTextPosition& divot) |
| { |
| if (!shouldEmitDebugHooks()) |
| return; |
| |
| emitExpressionInfo(divot, divot, divot); |
| OpDebug::emit(this, debugHookType, false); |
| } |
| |
| void BytecodeGenerator::emitDebugHook(DebugHookType debugHookType, unsigned line, unsigned charOffset, unsigned lineStart) |
| { |
| emitDebugHook(debugHookType, JSTextPosition(line, charOffset, lineStart)); |
| } |
| |
| void BytecodeGenerator::emitDebugHook(StatementNode* statement) |
| { |
| // DebuggerStatementNode will output its own special debug hook. |
| if (statement->isDebuggerStatement()) |
| return; |
| |
| emitDebugHook(WillExecuteStatement, statement->position()); |
| } |
| |
| void BytecodeGenerator::emitDebugHook(ExpressionNode* expr) |
| { |
| emitDebugHook(WillExecuteStatement, expr->position()); |
| } |
| |
| void BytecodeGenerator::emitWillLeaveCallFrameDebugHook() |
| { |
| RELEASE_ASSERT(m_scopeNode->isFunctionNode()); |
| emitDebugHook(WillLeaveCallFrame, m_scopeNode->lastLine(), m_scopeNode->startOffset(), m_scopeNode->lineStartOffset()); |
| } |
| |
| void BytecodeGenerator::pushFinallyControlFlowScope(FinallyContext& finallyContext) |
| { |
| ControlFlowScope scope(ControlFlowScope::Finally, currentLexicalScopeIndex(), &finallyContext); |
| m_controlFlowScopeStack.append(WTFMove(scope)); |
| |
| m_finallyDepth++; |
| m_currentFinallyContext = &finallyContext; |
| } |
| |
| void BytecodeGenerator::popFinallyControlFlowScope() |
| { |
| ASSERT(m_controlFlowScopeStack.size()); |
| ASSERT(m_controlFlowScopeStack.last().isFinallyScope()); |
| ASSERT(m_finallyDepth > 0); |
| ASSERT(m_currentFinallyContext); |
| m_currentFinallyContext = m_currentFinallyContext->outerContext(); |
| m_finallyDepth--; |
| m_controlFlowScopeStack.removeLast(); |
| } |
| |
| LabelScope* BytecodeGenerator::breakTarget(const Identifier& name) |
| { |
| shrinkToFit(m_labelScopes); |
| |
| if (!m_labelScopes.size()) |
| return nullptr; |
| |
| // We special-case the following, which is a syntax error in Firefox: |
| // label: |
| // break; |
| if (name.isEmpty()) { |
| for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| LabelScope& scope = m_labelScopes[i]; |
| if (scope.type() != LabelScope::NamedLabel) |
| return &scope; |
| } |
| return nullptr; |
| } |
| |
| for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| LabelScope& scope = m_labelScopes[i]; |
| if (scope.name() && *scope.name() == name) |
| return &scope; |
| } |
| return nullptr; |
| } |
| |
| LabelScope* BytecodeGenerator::continueTarget(const Identifier& name) |
| { |
| shrinkToFit(m_labelScopes); |
| |
| if (!m_labelScopes.size()) |
| return nullptr; |
| |
| if (name.isEmpty()) { |
| for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| LabelScope& scope = m_labelScopes[i]; |
| if (scope.type() == LabelScope::Loop) { |
| ASSERT(scope.continueTarget()); |
| return &scope; |
| } |
| } |
| return nullptr; |
| } |
| |
| // Continue to the loop nested nearest to the label scope that matches |
| // 'name'. |
| LabelScope* result = nullptr; |
| for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| LabelScope& scope = m_labelScopes[i]; |
| if (scope.type() == LabelScope::Loop) { |
| ASSERT(scope.continueTarget()); |
| result = &scope; |
| } |
| if (scope.name() && *scope.name() == name) |
| return result; // may be null. |
| } |
| return nullptr; |
| } |
| |
| void BytecodeGenerator::allocateAndEmitScope() |
| { |
| m_scopeRegister = addVar(); |
| m_scopeRegister->ref(); |
| m_codeBlock->setScopeRegister(scopeRegister()->virtualRegister()); |
| emitGetScope(); |
| m_topMostScope = addVar(); |
| move(m_topMostScope, scopeRegister()); |
| } |
| |
| TryData* BytecodeGenerator::pushTry(Label& start, Label& handlerLabel, HandlerType handlerType) |
| { |
| m_tryData.append(TryData { handlerLabel, handlerType }); |
| TryData* result = &m_tryData.last(); |
| |
| m_tryContextStack.append(TryContext { |
| start, |
| result |
| }); |
| |
| return result; |
| } |
| |
| void BytecodeGenerator::popTry(TryData* tryData, Label& end) |
| { |
| m_usesExceptions = true; |
| |
| ASSERT_UNUSED(tryData, m_tryContextStack.last().tryData == tryData); |
| |
| m_tryRanges.append(TryRange { |
| m_tryContextStack.last().start.copyRef(), |
| end, |
| m_tryContextStack.last().tryData |
| }); |
| m_tryContextStack.removeLast(); |
| } |
| |
| void BytecodeGenerator::emitOutOfLineCatchHandler(RegisterID* thrownValueRegister, RegisterID* completionTypeRegister, TryData* data) |
| { |
| RegisterID* unused = newTemporary(); |
| emitOutOfLineExceptionHandler(unused, thrownValueRegister, completionTypeRegister, data); |
| } |
| |
| void BytecodeGenerator::emitOutOfLineFinallyHandler(RegisterID* exceptionRegister, RegisterID* completionTypeRegister, TryData* data) |
| { |
| RegisterID* unused = newTemporary(); |
| ASSERT(completionTypeRegister); |
| emitOutOfLineExceptionHandler(exceptionRegister, unused, completionTypeRegister, data); |
| } |
| |
| void BytecodeGenerator::emitOutOfLineExceptionHandler(RegisterID* exceptionRegister, RegisterID* thrownValueRegister, RegisterID* completionTypeRegister, TryData* data) |
| { |
| VirtualRegister completionTypeVirtualRegister = completionTypeRegister ? completionTypeRegister : VirtualRegister(); |
| m_exceptionHandlersToEmit.append({ data, exceptionRegister, thrownValueRegister, completionTypeVirtualRegister }); |
| } |
| |
| void BytecodeGenerator::restoreScopeRegister(int lexicalScopeIndex) |
| { |
| if (lexicalScopeIndex == CurrentLexicalScopeIndex) |
| return; // No change needed. |
| |
| if (lexicalScopeIndex != OutermostLexicalScopeIndex) { |
| ASSERT(lexicalScopeIndex < static_cast<int>(m_lexicalScopeStack.size())); |
| int endIndex = lexicalScopeIndex + 1; |
| for (size_t i = endIndex; i--; ) { |
| if (m_lexicalScopeStack[i].m_scope) { |
| move(scopeRegister(), m_lexicalScopeStack[i].m_scope); |
| return; |
| } |
| } |
| } |
| // Note that if we don't find a local scope in the current function/program, |
| // we must grab the outer-most scope of this bytecode generation. |
| move(scopeRegister(), m_topMostScope); |
| } |
| |
| void BytecodeGenerator::restoreScopeRegister() |
| { |
| restoreScopeRegister(currentLexicalScopeIndex()); |
| } |
| |
| int BytecodeGenerator::labelScopeDepthToLexicalScopeIndex(int targetLabelScopeDepth) |
| { |
| ASSERT(labelScopeDepth() - targetLabelScopeDepth >= 0); |
| size_t scopeDelta = labelScopeDepth() - targetLabelScopeDepth; |
| ASSERT(scopeDelta <= m_controlFlowScopeStack.size()); |
| if (!scopeDelta) |
| return CurrentLexicalScopeIndex; |
| |
| ControlFlowScope& targetScope = m_controlFlowScopeStack[targetLabelScopeDepth]; |
| return targetScope.lexicalScopeIndex; |
| } |
| |
| void BytecodeGenerator::emitThrow(RegisterID* exc) |
| { |
| m_usesExceptions = true; |
| OpThrow::emit(this, exc); |
| } |
| |
| RegisterID* BytecodeGenerator::emitArgumentCount(RegisterID* dst) |
| { |
| OpArgumentCount::emit(this, dst); |
| return dst; |
| } |
| |
| unsigned BytecodeGenerator::localScopeDepth() const |
| { |
| return m_localScopeDepth; |
| } |
| |
| int BytecodeGenerator::labelScopeDepth() const |
| { |
| unsigned depth = localScopeDepth() + m_finallyDepth; |
| ASSERT(depth == m_controlFlowScopeStack.size()); |
| return depth; |
| } |
| |
| void BytecodeGenerator::emitThrowStaticError(ErrorType errorType, RegisterID* raw) |
| { |
| RefPtr<RegisterID> message = newTemporary(); |
| emitToString(message.get(), raw); |
| OpThrowStaticError::emit(this, message.get(), errorType); |
| } |
| |
| void BytecodeGenerator::emitThrowStaticError(ErrorType errorType, const Identifier& message) |
| { |
| OpThrowStaticError::emit(this, addConstantValue(addStringConstant(message)), errorType); |
| } |
| |
| void BytecodeGenerator::emitThrowReferenceError(const String& message) |
| { |
| emitThrowStaticError(ErrorType::ReferenceError, Identifier::fromString(m_vm, message)); |
| } |
| |
| void BytecodeGenerator::emitThrowTypeError(const String& message) |
| { |
| emitThrowStaticError(ErrorType::TypeError, Identifier::fromString(m_vm, message)); |
| } |
| |
| void BytecodeGenerator::emitThrowTypeError(const Identifier& message) |
| { |
| emitThrowStaticError(ErrorType::TypeError, message); |
| } |
| |
| void BytecodeGenerator::emitThrowRangeError(const Identifier& message) |
| { |
| emitThrowStaticError(ErrorType::RangeError, message); |
| } |
| |
| void BytecodeGenerator::emitThrowOutOfMemoryError() |
| { |
| emitThrowStaticError(ErrorType::Error, Identifier::fromString(m_vm, "Out of memory")); |
| } |
| |
| void BytecodeGenerator::emitPushFunctionNameScope(const Identifier& property, RegisterID* callee, bool isCaptured) |
| { |
| // There is some nuance here: |
| // If we're in strict mode code, the function name scope variable acts exactly like a "const" variable. |
| // If we're not in strict mode code, we want to allow bogus assignments to the name scoped variable. |
| // This means any assignment to the variable won't throw, but it won't actually assign a new value to it. |
| // To accomplish this, we don't report that this scope is a lexical scope. This will prevent |
| // any throws when trying to assign to the variable (while still ensuring it keeps its original |
| // value). There is some ugliness and exploitation of a leaky abstraction here, but it's better than |
| // having a completely new op code and a class to handle name scopes which are so close in functionality |
| // to lexical environments. |
| VariableEnvironment nameScopeEnvironment; |
| auto addResult = nameScopeEnvironment.add(property); |
| if (isCaptured) |
| addResult.iterator->value.setIsCaptured(); |
| addResult.iterator->value.setIsConst(); // The function name scope name acts like a const variable. |
| unsigned numVars = m_codeBlock->m_numVars; |
| pushLexicalScopeInternal(nameScopeEnvironment, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, TDZRequirement::NotUnderTDZ, ScopeType::FunctionNameScope, ScopeRegisterType::Var); |
| ASSERT_UNUSED(numVars, m_codeBlock->m_numVars == static_cast<int>(numVars + 1)); // Should have only created one new "var" for the function name scope. |
| bool shouldTreatAsLexicalVariable = isStrictMode(); |
| Variable functionVar = variableForLocalEntry(property, m_lexicalScopeStack.last().m_symbolTable->get(NoLockingNecessary, property.impl()), m_lexicalScopeStack.last().m_symbolTableConstantIndex, shouldTreatAsLexicalVariable); |
| emitPutToScope(m_lexicalScopeStack.last().m_scope, functionVar, callee, ThrowIfNotFound, InitializationMode::NotInitialization); |
| } |
| |
| void BytecodeGenerator::pushLocalControlFlowScope() |
| { |
| ControlFlowScope scope(ControlFlowScope::Label, currentLexicalScopeIndex()); |
| m_controlFlowScopeStack.append(WTFMove(scope)); |
| m_localScopeDepth++; |
| } |
| |
| void BytecodeGenerator::popLocalControlFlowScope() |
| { |
| ASSERT(m_controlFlowScopeStack.size()); |
| ASSERT(!m_controlFlowScopeStack.last().isFinallyScope()); |
| m_controlFlowScopeStack.removeLast(); |
| m_localScopeDepth--; |
| } |
| |
| void BytecodeGenerator::emitPushCatchScope(VariableEnvironment& environment) |
| { |
| pushLexicalScopeInternal(environment, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, TDZRequirement::UnderTDZ, ScopeType::CatchScope, ScopeRegisterType::Block); |
| } |
| |
| void BytecodeGenerator::emitPopCatchScope(VariableEnvironment& environment) |
| { |
| popLexicalScopeInternal(environment); |
| } |
| |
| void BytecodeGenerator::beginSwitch(RegisterID* scrutineeRegister, SwitchInfo::SwitchType type) |
| { |
| switch (type) { |
| case SwitchInfo::SwitchImmediate: { |
| size_t tableIndex = m_codeBlock->numberOfSwitchJumpTables(); |
| m_codeBlock->addSwitchJumpTable(); |
| OpSwitchImm::emit(this, tableIndex, BoundLabel(), scrutineeRegister); |
| break; |
| } |
| case SwitchInfo::SwitchCharacter: { |
| size_t tableIndex = m_codeBlock->numberOfSwitchJumpTables(); |
| m_codeBlock->addSwitchJumpTable(); |
| OpSwitchChar::emit(this, tableIndex, BoundLabel(), scrutineeRegister); |
| break; |
| } |
| case SwitchInfo::SwitchString: { |
| size_t tableIndex = m_codeBlock->numberOfStringSwitchJumpTables(); |
| m_codeBlock->addStringSwitchJumpTable(); |
| OpSwitchString::emit(this, tableIndex, BoundLabel(), scrutineeRegister); |
| break; |
| } |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| SwitchInfo info = { m_lastInstruction.offset(), type }; |
| m_switchContextStack.append(info); |
| } |
| |
| static int32_t keyForImmediateSwitch(ExpressionNode* node, int32_t min, int32_t max) |
| { |
| UNUSED_PARAM(max); |
| ASSERT(node->isNumber()); |
| double value = static_cast<NumberNode*>(node)->value(); |
| int32_t key = static_cast<int32_t>(value); |
| ASSERT(key == value); |
| ASSERT(key >= min); |
| ASSERT(key <= max); |
| return key - min; |
| } |
| |
| static int32_t keyForCharacterSwitch(ExpressionNode* node, int32_t min, int32_t max) |
| { |
| UNUSED_PARAM(max); |
| ASSERT(node->isString()); |
| StringImpl* clause = static_cast<StringNode*>(node)->value().impl(); |
| ASSERT(clause->length() == 1); |
| |
| int32_t key = (*clause)[0]; |
| ASSERT(key >= min); |
| ASSERT(key <= max); |
| return key - min; |
| } |
| |
| static void prepareJumpTableForSwitch( |
| UnlinkedSimpleJumpTable& jumpTable, int32_t switchAddress, uint32_t clauseCount, |
| const Vector<Ref<Label>, 8>& labels, ExpressionNode** nodes, int32_t min, int32_t max, |
| int32_t (*keyGetter)(ExpressionNode*, int32_t min, int32_t max)) |
| { |
| jumpTable.min = min; |
| jumpTable.branchOffsets.resize(max - min + 1); |
| jumpTable.branchOffsets.fill(0); |
| for (uint32_t i = 0; i < clauseCount; ++i) { |
| // We're emitting this after the clause labels should have been fixed, so |
| // the labels should not be "forward" references |
| ASSERT(!labels[i]->isForward()); |
| jumpTable.add(keyGetter(nodes[i], min, max), labels[i]->bind(switchAddress)); |
| } |
| } |
| |
| static void prepareJumpTableForStringSwitch(UnlinkedStringJumpTable& jumpTable, int32_t switchAddress, uint32_t clauseCount, const Vector<Ref<Label>, 8>& labels, ExpressionNode** nodes) |
| { |
| for (uint32_t i = 0; i < clauseCount; ++i) { |
| // We're emitting this after the clause labels should have been fixed, so |
| // the labels should not be "forward" references |
| ASSERT(!labels[i]->isForward()); |
| |
| ASSERT(nodes[i]->isString()); |
| StringImpl* clause = static_cast<StringNode*>(nodes[i])->value().impl(); |
| jumpTable.offsetTable.add(clause, UnlinkedStringJumpTable::OffsetLocation { labels[i]->bind(switchAddress) }); |
| } |
| } |
| |
| void BytecodeGenerator::endSwitch(uint32_t clauseCount, const Vector<Ref<Label>, 8>& labels, ExpressionNode** nodes, Label& defaultLabel, int32_t min, int32_t max) |
| { |
| SwitchInfo switchInfo = m_switchContextStack.last(); |
| m_switchContextStack.removeLast(); |
| |
| BoundLabel defaultTarget = defaultLabel.bind(switchInfo.bytecodeOffset); |
| auto handleSwitch = [&](auto* op, auto bytecode) { |
| op->setDefaultOffset(defaultTarget, [&]() { |
| m_codeBlock->addOutOfLineJumpTarget(switchInfo.bytecodeOffset, defaultTarget); |
| return BoundLabel(); |
| }); |
| |
| UnlinkedSimpleJumpTable& jumpTable = m_codeBlock->switchJumpTable(bytecode.m_tableIndex); |
| prepareJumpTableForSwitch( |
| jumpTable, switchInfo.bytecodeOffset, clauseCount, labels, nodes, min, max, |
| switchInfo.switchType == SwitchInfo::SwitchImmediate |
| ? keyForImmediateSwitch |
| : keyForCharacterSwitch); |
| }; |
| |
| auto ref = m_writer.ref(switchInfo.bytecodeOffset); |
| switch (switchInfo.switchType) { |
| case SwitchInfo::SwitchImmediate: { |
| handleSwitch(ref->cast<OpSwitchImm>(), ref->as<OpSwitchImm>()); |
| break; |
| } |
| case SwitchInfo::SwitchCharacter: { |
| handleSwitch(ref->cast<OpSwitchChar>(), ref->as<OpSwitchChar>()); |
| break; |
| } |
| |
| case SwitchInfo::SwitchString: { |
| ref->cast<OpSwitchString>()->setDefaultOffset(defaultTarget, [&]() { |
| m_codeBlock->addOutOfLineJumpTarget(switchInfo.bytecodeOffset, defaultTarget); |
| return BoundLabel(); |
| }); |
| |
| UnlinkedStringJumpTable& jumpTable = m_codeBlock->stringSwitchJumpTable(ref->as<OpSwitchString>().m_tableIndex); |
| prepareJumpTableForStringSwitch(jumpTable, switchInfo.bytecodeOffset, clauseCount, labels, nodes); |
| break; |
| } |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| |
| RegisterID* BytecodeGenerator::emitThrowExpressionTooDeepException() |
| { |
| // It would be nice to do an even better job of identifying exactly where the expression is. |
| // And we could make the caller pass the node pointer in, if there was some way of getting |
| // that from an arbitrary node. However, calling emitExpressionInfo without any useful data |
| // is still good enough to get us an accurate line number. |
| m_expressionTooDeep = true; |
| return newTemporary(); |
| } |
| |
| bool BytecodeGenerator::isArgumentNumber(const Identifier& ident, int argumentNumber) |
| { |
| RegisterID* registerID = variable(ident).local(); |
| if (!registerID) |
| return false; |
| return registerID->index() == CallFrame::argumentOffset(argumentNumber); |
| } |
| |
| bool BytecodeGenerator::emitReadOnlyExceptionIfNeeded(const Variable& variable) |
| { |
| // If we're in strict mode, we always throw. |
| // If we're not in strict mode, we throw for "const" variables but not the function callee. |
| if (isStrictMode() || variable.isConst()) { |
| emitThrowTypeError(Identifier::fromString(m_vm, ReadonlyPropertyWriteError)); |
| return true; |
| } |
| return false; |
| } |
| |
| void BytecodeGenerator::emitEnumeration(ThrowableExpressionData* node, ExpressionNode* subjectNode, const ScopedLambda<void(BytecodeGenerator&, RegisterID*)>& callBack, ForOfNode* forLoopNode, RegisterID* forLoopSymbolTable) |
| { |
| bool isForAwait = forLoopNode ? forLoopNode->isForAwait() : false; |
| ASSERT(!isForAwait || (isForAwait && isAsyncFunctionParseMode(parseMode()))); |
| |
| RefPtr<RegisterID> subject = newTemporary(); |
| emitNode(subject.get(), subjectNode); |
| RefPtr<RegisterID> iterator = isForAwait ? emitGetAsyncIterator(subject.get(), node) : emitGetIterator(subject.get(), node); |
| RefPtr<RegisterID> nextMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().next); |
| |
| Ref<Label> loopDone = newLabel(); |
| Ref<Label> tryStartLabel = newLabel(); |
| Ref<Label> finallyViaThrowLabel = newLabel(); |
| Ref<Label> finallyLabel = newLabel(); |
| Ref<Label> catchLabel = newLabel(); |
| Ref<Label> endCatchLabel = newLabel(); |
| |
| // RefPtr<Register> iterator's lifetime must be longer than IteratorCloseContext. |
| FinallyContext finallyContext(*this, finallyLabel.get()); |
| pushFinallyControlFlowScope(finallyContext); |
| |
| { |
| Ref<LabelScope> scope = newLabelScope(LabelScope::Loop); |
| RefPtr<RegisterID> value = newTemporary(); |
| emitLoad(value.get(), jsUndefined()); |
| |
| emitJump(*scope->continueTarget()); |
| |
| Ref<Label> loopStart = newLabel(); |
| emitLabel(loopStart.get()); |
| emitLoopHint(); |
| |
| emitLabel(tryStartLabel.get()); |
| TryData* tryData = pushTry(tryStartLabel.get(), finallyViaThrowLabel.get(), HandlerType::SynthesizedFinally); |
| callBack(*this, value.get()); |
| emitJump(*scope->continueTarget()); |
| |
| // IteratorClose sequence for abrupt completions. |
| { |
| // Finally block for the enumeration. |
| emitLabel(finallyViaThrowLabel.get()); |
| popTry(tryData, finallyViaThrowLabel.get()); |
| |
| Ref<Label> finallyBodyLabel = newLabel(); |
| RefPtr<RegisterID> finallyExceptionRegister = newTemporary(); |
| |
| emitOutOfLineFinallyHandler(finallyContext.completionValueRegister(), finallyContext.completionTypeRegister(), tryData); |
| move(finallyExceptionRegister.get(), finallyContext.completionValueRegister()); |
| emitJump(finallyBodyLabel.get()); |
| |
| emitLabel(finallyLabel.get()); |
| moveEmptyValue(finallyExceptionRegister.get()); |
| |
| // Finally fall through case. |
| emitLabel(finallyBodyLabel.get()); |
| restoreScopeRegister(); |
| |
| Ref<Label> finallyDone = newLabel(); |
| |
| RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().returnKeyword); |
| emitJumpIfTrue(emitIsUndefined(newTemporary(), returnMethod.get()), finallyDone.get()); |
| |
| Ref<Label> returnCallTryStart = newLabel(); |
| emitLabel(returnCallTryStart.get()); |
| TryData* returnCallTryData = pushTry(returnCallTryStart.get(), catchLabel.get(), HandlerType::SynthesizedCatch); |
| |
| CallArguments returnArguments(*this, nullptr); |
| move(returnArguments.thisRegister(), iterator.get()); |
| emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| |
| if (isForAwait) |
| emitAwait(value.get()); |
| |
| emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), finallyDone.get()); |
| emitThrowTypeError("Iterator result interface is not an object."_s); |
| |
| emitLabel(finallyDone.get()); |
| emitFinallyCompletion(finallyContext, endCatchLabel.get()); |
| |
| popTry(returnCallTryData, finallyDone.get()); |
| |
| // Catch block for exceptions that may be thrown while calling the return |
| // handler in the enumeration finally block. The only reason we need this |
| // catch block is because if entered the above finally block due to a thrown |
| // exception, then we want to re-throw the original exception on exiting |
| // the finally block. Otherwise, we'll let any new exception pass through. |
| { |
| emitLabel(catchLabel.get()); |
| |
| RefPtr<RegisterID> exceptionRegister = newTemporary(); |
| emitOutOfLineFinallyHandler(exceptionRegister.get(), finallyContext.completionTypeRegister(), returnCallTryData); |
| // Since this is a synthesized catch block and we're guaranteed to never need |
| // to resolve any symbols from the scope, we can skip restoring the scope |
| // register here. |
| |
| Ref<Label> throwLabel = newLabel(); |
| emitJumpIfTrue(emitIsEmpty(newTemporary(), finallyExceptionRegister.get()), throwLabel.get()); |
| move(exceptionRegister.get(), finallyExceptionRegister.get()); |
| |
| emitLabel(throwLabel.get()); |
| emitThrow(exceptionRegister.get()); |
| |
| emitLabel(endCatchLabel.get()); |
| } |
| } |
| |
| emitLabel(*scope->continueTarget()); |
| if (forLoopNode) { |
| RELEASE_ASSERT(forLoopNode->isForOfNode()); |
| prepareLexicalScopeForNextForLoopIteration(forLoopNode, forLoopSymbolTable); |
| emitDebugHook(forLoopNode->lexpr()); |
| } |
| |
| { |
| emitIteratorNext(value.get(), nextMethod.get(), iterator.get(), node, isForAwait ? EmitAwait::Yes : EmitAwait::No); |
| |
| emitJumpIfTrue(emitGetById(newTemporary(), value.get(), propertyNames().done), loopDone.get()); |
| emitGetById(value.get(), value.get(), propertyNames().value); |
| emitJump(loopStart.get()); |
| } |
| |
| bool breakLabelIsBound = scope->breakTargetMayBeBound(); |
| if (breakLabelIsBound) |
| emitLabel(scope->breakTarget()); |
| popFinallyControlFlowScope(); |
| if (breakLabelIsBound) { |
| // IteratorClose sequence for break-ed control flow. |
| emitIteratorClose(iterator.get(), node, isForAwait ? EmitAwait::Yes : EmitAwait::No); |
| } |
| } |
| emitLabel(loopDone.get()); |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetTemplateObject(RegisterID* dst, TaggedTemplateNode* taggedTemplate) |
| { |
| TemplateObjectDescriptor::StringVector rawStrings; |
| TemplateObjectDescriptor::OptionalStringVector cookedStrings; |
| |
| TemplateStringListNode* templateString = taggedTemplate->templateLiteral()->templateStrings(); |
| for (; templateString; templateString = templateString->next()) { |
| auto* string = templateString->value(); |
| ASSERT(string->raw()); |
| rawStrings.append(string->raw()->impl()); |
| if (!string->cooked()) |
| cookedStrings.append(WTF::nullopt); |
| else |
| cookedStrings.append(string->cooked()->impl()); |
| } |
| RefPtr<RegisterID> constant = addTemplateObjectConstant(TemplateObjectDescriptor::create(WTFMove(rawStrings), WTFMove(cookedStrings)), taggedTemplate->endOffset()); |
| if (!dst) |
| return constant.get(); |
| return move(dst, constant.get()); |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetGlobalPrivate(RegisterID* dst, const Identifier& property) |
| { |
| dst = tempDestination(dst); |
| Variable var = variable(property); |
| if (RegisterID* local = var.local()) |
| return move(dst, local); |
| |
| RefPtr<RegisterID> scope = newTemporary(); |
| move(scope.get(), emitResolveScope(scope.get(), var)); |
| return emitGetFromScope(dst, scope.get(), var, ThrowIfNotFound); |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetEnumerableLength(RegisterID* dst, RegisterID* base) |
| { |
| OpGetEnumerableLength::emit(this, dst, base); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitHasGenericProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName) |
| { |
| OpHasGenericProperty::emit(this, dst, base, propertyName); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitHasIndexedProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName) |
| { |
| OpHasIndexedProperty::emit(this, dst, base, propertyName); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitHasStructureProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName, RegisterID* enumerator) |
| { |
| OpHasStructureProperty::emit(this, dst, base, propertyName, enumerator); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetPropertyEnumerator(RegisterID* dst, RegisterID* base) |
| { |
| OpGetPropertyEnumerator::emit(this, dst, base); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitEnumeratorStructurePropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index) |
| { |
| OpEnumeratorStructurePname::emit(this, dst, enumerator, index); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitEnumeratorGenericPropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index) |
| { |
| OpEnumeratorGenericPname::emit(this, dst, enumerator, index); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitToIndexString(RegisterID* dst, RegisterID* index) |
| { |
| OpToIndexString::emit(this, dst, index); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIsCellWithType(RegisterID* dst, RegisterID* src, JSType type) |
| { |
| OpIsCellWithType::emit(this, dst, src, type); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIsObject(RegisterID* dst, RegisterID* src) |
| { |
| OpIsObject::emit(this, dst, src); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIsNumber(RegisterID* dst, RegisterID* src) |
| { |
| OpIsNumber::emit(this, dst, src); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIsUndefined(RegisterID* dst, RegisterID* src) |
| { |
| OpIsUndefined::emit(this, dst, src); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIsUndefinedOrNull(RegisterID* dst, RegisterID* src) |
| { |
| OpIsUndefinedOrNull::emit(this, dst, src); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIsEmpty(RegisterID* dst, RegisterID* src) |
| { |
| OpIsEmpty::emit(this, dst, src); |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIteratorNext(RegisterID* dst, RegisterID* nextMethod, RegisterID* iterator, const ThrowableExpressionData* node, EmitAwait doEmitAwait) |
| { |
| { |
| CallArguments nextArguments(*this, nullptr); |
| move(nextArguments.thisRegister(), iterator); |
| emitCall(dst, nextMethod, NoExpectedFunction, nextArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| |
| if (doEmitAwait == EmitAwait::Yes) |
| emitAwait(dst); |
| } |
| { |
| Ref<Label> typeIsObject = newLabel(); |
| emitJumpIfTrue(emitIsObject(newTemporary(), dst), typeIsObject.get()); |
| emitThrowTypeError("Iterator result interface is not an object."_s); |
| emitLabel(typeIsObject.get()); |
| } |
| return dst; |
| } |
| |
| RegisterID* BytecodeGenerator::emitIteratorNextWithValue(RegisterID* dst, RegisterID* nextMethod, RegisterID* iterator, RegisterID* value, const ThrowableExpressionData* node) |
| { |
| { |
| CallArguments nextArguments(*this, nullptr, 1); |
| move(nextArguments.thisRegister(), iterator); |
| move(nextArguments.argumentRegister(0), value); |
| emitCall(dst, nextMethod, NoExpectedFunction, nextArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| } |
| |
| return dst; |
| } |
| |
| void BytecodeGenerator::emitIteratorClose(RegisterID* iterator, const ThrowableExpressionData* node, EmitAwait doEmitAwait) |
| { |
| Ref<Label> done = newLabel(); |
| RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator, propertyNames().returnKeyword); |
| emitJumpIfTrue(emitIsUndefined(newTemporary(), returnMethod.get()), done.get()); |
| |
| RefPtr<RegisterID> value = newTemporary(); |
| CallArguments returnArguments(*this, nullptr); |
| move(returnArguments.thisRegister(), iterator); |
| emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| |
| if (doEmitAwait == EmitAwait::Yes) |
| emitAwait(value.get()); |
| |
| emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), done.get()); |
| emitThrowTypeError("Iterator result interface is not an object."_s); |
| emitLabel(done.get()); |
| } |
| |
| void BytecodeGenerator::pushIndexedForInScope(RegisterID* localRegister, RegisterID* indexRegister) |
| { |
| if (!localRegister) |
| return; |
| unsigned bodyBytecodeStartOffset = instructions().size(); |
| m_forInContextStack.append(adoptRef(*new IndexedForInContext(localRegister, indexRegister, bodyBytecodeStartOffset))); |
| } |
| |
| void BytecodeGenerator::popIndexedForInScope(RegisterID* localRegister) |
| { |
| if (!localRegister) |
| return; |
| unsigned bodyBytecodeEndOffset = instructions().size(); |
| m_forInContextStack.last()->asIndexedForInContext().finalize(*this, m_codeBlock.get(), bodyBytecodeEndOffset); |
| m_forInContextStack.removeLast(); |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoadArrowFunctionLexicalEnvironment(const Identifier& identifier) |
| { |
| ASSERT(m_codeBlock->isArrowFunction() || m_codeBlock->isArrowFunctionContext() || constructorKind() == ConstructorKind::Extends || m_codeType == EvalCode); |
| |
| return emitResolveScope(nullptr, variable(identifier, ThisResolutionType::Scoped)); |
| } |
| |
| void BytecodeGenerator::emitLoadThisFromArrowFunctionLexicalEnvironment() |
| { |
| emitGetFromScope(thisRegister(), emitLoadArrowFunctionLexicalEnvironment(propertyNames().thisIdentifier), variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped), DoNotThrowIfNotFound); |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoadNewTargetFromArrowFunctionLexicalEnvironment() |
| { |
| Variable newTargetVar = variable(propertyNames().builtinNames().newTargetLocalPrivateName()); |
| |
| return emitGetFromScope(m_newTargetRegister, emitLoadArrowFunctionLexicalEnvironment(propertyNames().builtinNames().newTargetLocalPrivateName()), newTargetVar, ThrowIfNotFound); |
| |
| } |
| |
| RegisterID* BytecodeGenerator::emitLoadDerivedConstructorFromArrowFunctionLexicalEnvironment() |
| { |
| Variable protoScopeVar = variable(propertyNames().builtinNames().derivedConstructorPrivateName()); |
| return emitGetFromScope(newTemporary(), emitLoadArrowFunctionLexicalEnvironment(propertyNames().builtinNames().derivedConstructorPrivateName()), protoScopeVar, ThrowIfNotFound); |
| } |
| |
| RegisterID* BytecodeGenerator::ensureThis() |
| { |
| if (constructorKind() == ConstructorKind::Extends || isDerivedConstructorContext()) { |
| if ((needsToUpdateArrowFunctionContext() && isSuperCallUsedInInnerArrowFunction()) || m_codeBlock->parseMode() == SourceParseMode::AsyncArrowFunctionBodyMode) |
| emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| |
| emitTDZCheck(thisRegister()); |
| } |
| |
| return thisRegister(); |
| } |
| |
| bool BytecodeGenerator::isThisUsedInInnerArrowFunction() |
| { |
| return m_scopeNode->doAnyInnerArrowFunctionsUseThis() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperProperty() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperCall() || m_scopeNode->doAnyInnerArrowFunctionsUseEval() || m_codeBlock->usesEval(); |
| } |
| |
| bool BytecodeGenerator::isArgumentsUsedInInnerArrowFunction() |
| { |
| return m_scopeNode->doAnyInnerArrowFunctionsUseArguments() || m_scopeNode->doAnyInnerArrowFunctionsUseEval(); |
| } |
| |
| bool BytecodeGenerator::isNewTargetUsedInInnerArrowFunction() |
| { |
| return m_scopeNode->doAnyInnerArrowFunctionsUseNewTarget() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperCall() || m_scopeNode->doAnyInnerArrowFunctionsUseEval() || m_codeBlock->usesEval(); |
| } |
| |
| bool BytecodeGenerator::isSuperUsedInInnerArrowFunction() |
| { |
| return m_scopeNode->doAnyInnerArrowFunctionsUseSuperCall() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperProperty() || m_scopeNode->doAnyInnerArrowFunctionsUseEval() || m_codeBlock->usesEval(); |
| } |
| |
| bool BytecodeGenerator::isSuperCallUsedInInnerArrowFunction() |
| { |
| return m_scopeNode->doAnyInnerArrowFunctionsUseSuperCall() || m_scopeNode->doAnyInnerArrowFunctionsUseEval() || m_codeBlock->usesEval(); |
| } |
| |
| void BytecodeGenerator::emitPutNewTargetToArrowFunctionContextScope() |
| { |
| if (isNewTargetUsedInInnerArrowFunction()) { |
| ASSERT(m_arrowFunctionContextLexicalEnvironmentRegister); |
| |
| Variable newTargetVar = variable(propertyNames().builtinNames().newTargetLocalPrivateName()); |
| emitPutToScope(m_arrowFunctionContextLexicalEnvironmentRegister, newTargetVar, newTarget(), DoNotThrowIfNotFound, InitializationMode::Initialization); |
| } |
| } |
| |
| void BytecodeGenerator::emitPutDerivedConstructorToArrowFunctionContextScope() |
| { |
| if (needsDerivedConstructorInArrowFunctionLexicalEnvironment()) { |
| ASSERT(m_arrowFunctionContextLexicalEnvironmentRegister); |
| |
| Variable protoScope = variable(propertyNames().builtinNames().derivedConstructorPrivateName()); |
| emitPutToScope(m_arrowFunctionContextLexicalEnvironmentRegister, protoScope, &m_calleeRegister, DoNotThrowIfNotFound, InitializationMode::Initialization); |
| } |
| } |
| |
| void BytecodeGenerator::emitPutThisToArrowFunctionContextScope() |
| { |
| if (isThisUsedInInnerArrowFunction() || (m_scopeNode->usesSuperCall() && m_codeType == EvalCode)) { |
| ASSERT(isDerivedConstructorContext() || m_arrowFunctionContextLexicalEnvironmentRegister != nullptr); |
| |
| Variable thisVar = variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped); |
| RegisterID* scope = isDerivedConstructorContext() ? emitLoadArrowFunctionLexicalEnvironment(propertyNames().thisIdentifier) : m_arrowFunctionContextLexicalEnvironmentRegister; |
| |
| emitPutToScope(scope, thisVar, thisRegister(), ThrowIfNotFound, InitializationMode::NotInitialization); |
| } |
| } |
| |
| void BytecodeGenerator::pushStructureForInScope(RegisterID* localRegister, RegisterID* indexRegister, RegisterID* propertyRegister, RegisterID* enumeratorRegister) |
| { |
| if (!localRegister) |
| return; |
| unsigned bodyBytecodeStartOffset = instructions().size(); |
| m_forInContextStack.append(adoptRef(*new StructureForInContext(localRegister, indexRegister, propertyRegister, enumeratorRegister, bodyBytecodeStartOffset))); |
| } |
| |
| void BytecodeGenerator::popStructureForInScope(RegisterID* localRegister) |
| { |
| if (!localRegister) |
| return; |
| unsigned bodyBytecodeEndOffset = instructions().size(); |
| m_forInContextStack.last()->asStructureForInContext().finalize(*this, m_codeBlock.get(), bodyBytecodeEndOffset); |
| m_forInContextStack.removeLast(); |
| } |
| |
| RegisterID* BytecodeGenerator::emitRestParameter(RegisterID* result, unsigned numParametersToSkip) |
| { |
| RefPtr<RegisterID> restArrayLength = newTemporary(); |
| OpGetRestLength::emit(this, restArrayLength.get(), numParametersToSkip); |
| |
| OpCreateRest::emit(this, result, restArrayLength.get(), numParametersToSkip); |
| |
| return result; |
| } |
| |
| void BytecodeGenerator::emitRequireObjectCoercible(RegisterID* value, const String& error) |
| { |
| Ref<Label> target = newLabel(); |
| OpJnundefinedOrNull::emit(this, value, target->bind(this)); |
| emitThrowTypeError(error); |
| emitLabel(target.get()); |
| } |
| |
| void BytecodeGenerator::emitYieldPoint(RegisterID* argument, JSAsyncGenerator::AsyncGeneratorSuspendReason result) |
| { |
| Ref<Label> mergePoint = newLabel(); |
| unsigned yieldPointIndex = m_yieldPoints++; |
| emitGeneratorStateChange(yieldPointIndex + 1); |
| |
| if (parseMode() == SourceParseMode::AsyncGeneratorBodyMode) { |
| int suspendReason = static_cast<int32_t>(result); |
| emitPutInternalField(generatorRegister(), static_cast<unsigned>(JSAsyncGenerator::Field::SuspendReason), emitLoad(nullptr, jsNumber(suspendReason))); |
| } |
| |
| // Split the try range here. |
| Ref<Label> savePoint = newEmittedLabel(); |
| for (unsigned i = m_tryContextStack.size(); i--;) { |
| TryContext& context = m_tryContextStack[i]; |
| m_tryRanges.append(TryRange { |
| context.start.copyRef(), |
| savePoint.copyRef(), |
| context.tryData |
| }); |
| // Try range will be restared at the merge point. |
| context.start = mergePoint.get(); |
| } |
| Vector<TryContext> savedTryContextStack; |
| m_tryContextStack.swap(savedTryContextStack); |
| |
| |
| #if CPU(NEEDS_ALIGNED_ACCESS) |
| // conservatively align for the bytecode rewriter: it will delete this yield and |
| // append a fragment, so we make sure that the start of the fragments is aligned |
| while (m_writer.position() % OpcodeSize::Wide32) |
| OpNop::emit<OpcodeSize::Narrow>(this); |
| #endif |
| OpYield::emit(this, generatorFrameRegister(), yieldPointIndex, argument); |
| |
| // Restore the try contexts, which start offset is updated to the merge point. |
| m_tryContextStack.swap(savedTryContextStack); |
| emitLabel(mergePoint.get()); |
| } |
| |
| RegisterID* BytecodeGenerator::emitYield(RegisterID* argument, JSAsyncGenerator::AsyncGeneratorSuspendReason result) |
| { |
| emitYieldPoint(argument, result); |
| |
| Ref<Label> normalLabel = newLabel(); |
| RefPtr<RegisterID> condition = newTemporary(); |
| emitEqualityOp<OpStricteq>(condition.get(), generatorResumeModeRegister(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSGenerator::GeneratorResumeMode::NormalMode)))); |
| emitJumpIfTrue(condition.get(), normalLabel.get()); |
| |
| Ref<Label> throwLabel = newLabel(); |
| emitEqualityOp<OpStricteq>(condition.get(), generatorResumeModeRegister(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSGenerator::GeneratorResumeMode::ThrowMode)))); |
| emitJumpIfTrue(condition.get(), throwLabel.get()); |
| // Return. |
| { |
| RefPtr<RegisterID> returnRegister = generatorValueRegister(); |
| bool hasFinally = emitReturnViaFinallyIfNeeded(returnRegister.get()); |
| if (!hasFinally) |
| emitReturn(returnRegister.get()); |
| } |
| |
| // Throw. |
| emitLabel(throwLabel.get()); |
| emitThrow(generatorValueRegister()); |
| |
| // Normal. |
| emitLabel(normalLabel.get()); |
| return generatorValueRegister(); |
| } |
| |
| RegisterID* BytecodeGenerator::emitCallIterator(RegisterID* iterator, RegisterID* argument, ThrowableExpressionData* node) |
| { |
| CallArguments args(*this, nullptr); |
| move(args.thisRegister(), argument); |
| emitCall(iterator, iterator, NoExpectedFunction, args, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| |
| return iterator; |
| } |
| |
| void BytecodeGenerator::emitAwait(RegisterID* value) |
| { |
| emitYield(value, JSAsyncGenerator::AsyncGeneratorSuspendReason::Await); |
| move(value, generatorValueRegister()); |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetIterator(RegisterID* argument, ThrowableExpressionData* node) |
| { |
| RefPtr<RegisterID> iterator = emitGetById(newTemporary(), argument, propertyNames().iteratorSymbol); |
| emitCallIterator(iterator.get(), argument, node); |
| |
| return iterator.get(); |
| } |
| |
| RegisterID* BytecodeGenerator::emitGetAsyncIterator(RegisterID* argument, ThrowableExpressionData* node) |
| { |
| RefPtr<RegisterID> iterator = emitGetById(newTemporary(), argument, propertyNames().asyncIteratorSymbol); |
| Ref<Label> asyncIteratorNotFound = newLabel(); |
| Ref<Label> asyncIteratorFound = newLabel(); |
| Ref<Label> iteratorReceived = newLabel(); |
| |
| emitJumpIfTrue(emitUnaryOp<OpEqNull>(newTemporary(), iterator.get()), asyncIteratorNotFound.get()); |
| |
| emitJump(asyncIteratorFound.get()); |
| emitLabel(asyncIteratorNotFound.get()); |
| |
| RefPtr<RegisterID> commonIterator = emitGetIterator(argument, node); |
| move(iterator.get(), commonIterator.get()); |
| |
| RefPtr<RegisterID> nextMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().next); |
| |
| RefPtr<RegisterID> createAsyncFromSyncIterator = moveLinkTimeConstant(nullptr, LinkTimeConstant::createAsyncFromSyncIterator); |
| |
| CallArguments args(*this, nullptr, 2); |
| emitLoad(args.thisRegister(), jsUndefined()); |
| |
| move(args.argumentRegister(0), iterator.get()); |
| move(args.argumentRegister(1), nextMethod.get()); |
| |
| JSTextPosition divot(m_scopeNode->firstLine(), m_scopeNode->startOffset(), m_scopeNode->lineStartOffset()); |
| emitCall(iterator.get(), createAsyncFromSyncIterator.get(), NoExpectedFunction, args, divot, divot, divot, DebuggableCall::No); |
| |
| emitJump(iteratorReceived.get()); |
| |
| emitLabel(asyncIteratorFound.get()); |
| emitCallIterator(iterator.get(), argument, node); |
| emitLabel(iteratorReceived.get()); |
| |
| return iterator.get(); |
| } |
| |
| RegisterID* BytecodeGenerator::emitDelegateYield(RegisterID* argument, ThrowableExpressionData* node) |
| { |
| RefPtr<RegisterID> value = newTemporary(); |
| { |
| RefPtr<RegisterID> iterator = parseMode() == SourceParseMode::AsyncGeneratorBodyMode ? emitGetAsyncIterator(argument, node) : emitGetIterator(argument, node); |
| RefPtr<RegisterID> nextMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().next); |
| |
| Ref<Label> loopDone = newLabel(); |
| { |
| Ref<Label> nextElement = newLabel(); |
| emitLoad(value.get(), jsUndefined()); |
| |
| emitJump(nextElement.get()); |
| |
| Ref<Label> loopStart = newLabel(); |
| emitLabel(loopStart.get()); |
| emitLoopHint(); |
| |
| Ref<Label> branchOnResult = newLabel(); |
| { |
| emitYieldPoint(value.get(), JSAsyncGenerator::AsyncGeneratorSuspendReason::Yield); |
| |
| Ref<Label> normalLabel = newLabel(); |
| Ref<Label> returnLabel = newLabel(); |
| { |
| RefPtr<RegisterID> condition = newTemporary(); |
| emitEqualityOp<OpStricteq>(condition.get(), generatorResumeModeRegister(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSGenerator::GeneratorResumeMode::NormalMode)))); |
| emitJumpIfTrue(condition.get(), normalLabel.get()); |
| |
| emitEqualityOp<OpStricteq>(condition.get(), generatorResumeModeRegister(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSGenerator::GeneratorResumeMode::ReturnMode)))); |
| emitJumpIfTrue(condition.get(), returnLabel.get()); |
| |
| // Fallthrough to ThrowMode. |
| } |
| |
| // Throw. |
| { |
| Ref<Label> throwMethodFound = newLabel(); |
| RefPtr<RegisterID> throwMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().throwKeyword); |
| emitJumpIfFalse(emitIsUndefined(newTemporary(), throwMethod.get()), throwMethodFound.get()); |
| |
| EmitAwait emitAwaitInIteratorClose = parseMode() == SourceParseMode::AsyncGeneratorBodyMode ? EmitAwait::Yes : EmitAwait::No; |
| emitIteratorClose(iterator.get(), node, emitAwaitInIteratorClose); |
| |
| emitThrowTypeError("Delegated generator does not have a 'throw' method."_s); |
| |
| emitLabel(throwMethodFound.get()); |
| CallArguments throwArguments(*this, nullptr, 1); |
| move(throwArguments.thisRegister(), iterator.get()); |
| move(throwArguments.argumentRegister(0), generatorValueRegister()); |
| emitCall(value.get(), throwMethod.get(), NoExpectedFunction, throwArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| |
| emitJump(branchOnResult.get()); |
| } |
| |
| // Return. |
| emitLabel(returnLabel.get()); |
| { |
| Ref<Label> returnMethodFound = newLabel(); |
| RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().returnKeyword); |
| emitJumpIfFalse(emitIsUndefined(newTemporary(), returnMethod.get()), returnMethodFound.get()); |
| |
| move(value.get(), generatorValueRegister()); |
| |
| Ref<Label> returnSequence = newLabel(); |
| emitJump(returnSequence.get()); |
| |
| emitLabel(returnMethodFound.get()); |
| CallArguments returnArguments(*this, nullptr, 1); |
| move(returnArguments.thisRegister(), iterator.get()); |
| move(returnArguments.argumentRegister(0), generatorValueRegister()); |
| emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| |
| if (parseMode() == SourceParseMode::AsyncGeneratorBodyMode) |
| emitAwait(value.get()); |
| |
| Ref<Label> returnIteratorResultIsObject = newLabel(); |
| emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), returnIteratorResultIsObject.get()); |
| emitThrowTypeError("Iterator result interface is not an object."_s); |
| |
| emitLabel(returnIteratorResultIsObject.get()); |
| |
| Ref<Label> returnFromGenerator = newLabel(); |
| emitJumpIfTrue(emitGetById(newTemporary(), value.get(), propertyNames().done), returnFromGenerator.get()); |
| |
| emitGetById(value.get(), value.get(), propertyNames().value); |
| emitJump(loopStart.get()); |
| |
| emitLabel(returnFromGenerator.get()); |
| emitGetById(value.get(), value.get(), propertyNames().value); |
| |
| emitLabel(returnSequence.get()); |
| bool hasFinally = emitReturnViaFinallyIfNeeded(value.get()); |
| if (!hasFinally) |
| emitReturn(value.get()); |
| } |
| |
| // Normal. |
| emitLabel(normalLabel.get()); |
| move(value.get(), generatorValueRegister()); |
| } |
| |
| emitLabel(nextElement.get()); |
| emitIteratorNextWithValue(value.get(), nextMethod.get(), iterator.get(), value.get(), node); |
| |
| emitLabel(branchOnResult.get()); |
| |
| if (parseMode() == SourceParseMode::AsyncGeneratorBodyMode) |
| emitAwait(value.get()); |
| |
| Ref<Label> iteratorValueIsObject = newLabel(); |
| emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), iteratorValueIsObject.get()); |
| emitThrowTypeError("Iterator result interface is not an object."_s); |
| emitLabel(iteratorValueIsObject.get()); |
| |
| emitJumpIfTrue(emitGetById(newTemporary(), value.get(), propertyNames().done), loopDone.get()); |
| emitGetById(value.get(), value.get(), propertyNames().value); |
| |
| emitJump(loopStart.get()); |
| } |
| emitLabel(loopDone.get()); |
| } |
| |
| emitGetById(value.get(), value.get(), propertyNames().value); |
| return value.get(); |
| } |
| |
| |
| void BytecodeGenerator::emitGeneratorStateChange(int32_t state) |
| { |
| RegisterID* completedState = emitLoad(nullptr, jsNumber(state)); |
| static_assert(static_cast<unsigned>(JSGenerator::Field::State) == static_cast<unsigned>(JSAsyncGenerator::Field::State)); |
| emitPutInternalField(generatorRegister(), static_cast<unsigned>(JSGenerator::Field::State), completedState); |
| } |
| |
| bool BytecodeGenerator::emitJumpViaFinallyIfNeeded(int targetLabelScopeDepth, Label& jumpTarget) |
| { |
| ASSERT(labelScopeDepth() - targetLabelScopeDepth >= 0); |
| size_t numberOfScopesToCheckForFinally = labelScopeDepth() - targetLabelScopeDepth; |
| ASSERT(numberOfScopesToCheckForFinally <= m_controlFlowScopeStack.size()); |
| if (!numberOfScopesToCheckForFinally) |
| return false; |
| |
| FinallyContext* innermostFinallyContext = nullptr; |
| FinallyContext* outermostFinallyContext = nullptr; |
| size_t scopeIndex = m_controlFlowScopeStack.size() - 1; |
| while (numberOfScopesToCheckForFinally--) { |
| ControlFlowScope* scope = &m_controlFlowScopeStack[scopeIndex--]; |
| if (scope->isFinallyScope()) { |
| FinallyContext* finallyContext = scope->finallyContext; |
| if (!innermostFinallyContext) |
| innermostFinallyContext = finallyContext; |
| outermostFinallyContext = finallyContext; |
| finallyContext->incNumberOfBreaksOrContinues(); |
| } |
| } |
| if (!outermostFinallyContext) |
| return false; // No finallys to thread through. |
| |
| auto jumpID = bytecodeOffsetToJumpID(instructions().size()); |
| int lexicalScopeIndex = labelScopeDepthToLexicalScopeIndex(targetLabelScopeDepth); |
| outermostFinallyContext->registerJump(jumpID, lexicalScopeIndex, jumpTarget); |
| |
| emitLoad(innermostFinallyContext->completionTypeRegister(), jumpID); |
| emitJump(*innermostFinallyContext->finallyLabel()); |
| return true; // We'll be jumping to a finally block. |
| } |
| |
| bool BytecodeGenerator::emitReturnViaFinallyIfNeeded(RegisterID* returnRegister) |
| { |
| size_t numberOfScopesToCheckForFinally = m_controlFlowScopeStack.size(); |
| if (!numberOfScopesToCheckForFinally) |
| return false; |
| |
| FinallyContext* innermostFinallyContext = nullptr; |
| while (numberOfScopesToCheckForFinally) { |
| size_t scopeIndex = --numberOfScopesToCheckForFinally; |
| ControlFlowScope* scope = &m_controlFlowScopeStack[scopeIndex]; |
| if (scope->isFinallyScope()) { |
| FinallyContext* finallyContext = scope->finallyContext; |
| if (!innermostFinallyContext) |
| innermostFinallyContext = finallyContext; |
| finallyContext->setHandlesReturns(); |
| } |
| } |
| if (!innermostFinallyContext) |
| return false; // No finallys to thread through. |
| |
| emitLoad(innermostFinallyContext->completionTypeRegister(), CompletionType::Return); |
| move(innermostFinallyContext->completionValueRegister(), returnRegister); |
| emitJump(*innermostFinallyContext->finallyLabel()); |
| return true; // We'll be jumping to a finally block. |
| } |
| |
| void BytecodeGenerator::emitFinallyCompletion(FinallyContext& context, Label& normalCompletionLabel) |
| { |
| if (context.numberOfBreaksOrContinues() || context.handlesReturns()) { |
| emitJumpIf<OpStricteq>(context.completionTypeRegister(), CompletionType::Normal, normalCompletionLabel); |
| |
| FinallyContext* outerContext = context.outerContext(); |
| |
| size_t numberOfJumps = context.numberOfJumps(); |
| ASSERT(outerContext || numberOfJumps == context.numberOfBreaksOrContinues()); |
| |
| // Handle Break or Continue completions that jumps into this FinallyContext. |
| for (size_t i = 0; i < numberOfJumps; i++) { |
| Ref<Label> nextLabel = newLabel(); |
| auto& jump = context.jumps(i); |
| emitJumpIf<OpNstricteq>(context.completionTypeRegister(), jump.jumpID, nextLabel.get()); |
| |
| // This case is for Break / Continue completions from an inner finally context |
| // with a jump target that is not beyond the next outer finally context: |
| // |
| // try { |
| // for (... stuff ...) { |
| // try { |
| // continue; // Sets completionType to jumpID of top of the for loop. |
| // } finally { |
| // } // Jump to top of the for loop on completion. |
| // } |
| // } finally { |
| // } |
| // |
| // Since the jumpID is targetting a label that is inside the outer finally context, |
| // we can jump to it directly on completion of this finally context: there is no intermediate |
| // finally blocks to run. After the Break / Continue, we will contnue execution as normal. |
| // So, we'll set the completionType to Normal (on behalf of the target) before we jump. |
| // We can also set the completion value to undefined, but it will never be used for normal |
| // completion anyway. So, we'll skip setting it. |
| |
| restoreScopeRegister(jump.targetLexicalScopeIndex); |
| emitLoad(context.completionTypeRegister(), CompletionType::Normal); |
| emitJump(jump.targetLabel.get()); |
| |
| emitLabel(nextLabel.get()); |
| } |
| |
| // Handle completions that take us out of this FinallyContext. |
| if (outerContext) { |
| if (context.handlesReturns()) { |
| Ref<Label> isNotReturnLabel = newLabel(); |
| emitJumpIf<OpNstricteq>(context.completionTypeRegister(), CompletionType::Return, isNotReturnLabel.get()); |
| |
| // This case is for Return completion from an inner finally context: |
| // |
| // try { |
| // try { |
| // return result; // Sets completionType to Return, and completionValue to result. |
| // } finally { |
| // } // Jump to outer finally on completion. |
| // } finally { |
| // } |
| // |
| // Since we know there's at least one outer finally context (beyond the current context), |
| // we cannot actually return from here. Instead, we pass the completionType and completionValue |
| // on to the next outer finally, and let it decide what to do next on its completion. The |
| // outer finally may or may not actual return depending on whether it encounters an abrupt |
| // completion in its body that overrrides this Return completion. |
| |
| move(outerContext->completionTypeRegister(), context.completionTypeRegister()); |
| move(outerContext->completionValueRegister(), context.completionValueRegister()); |
| emitJump(*outerContext->finallyLabel()); |
| |
| emitLabel(isNotReturnLabel.get()); |
| } |
| |
| bool hasBreaksOrContinuesThatEscapeCurrentFinally = context.numberOfBreaksOrContinues() > numberOfJumps; |
| if (hasBreaksOrContinuesThatEscapeCurrentFinally) { |
| Ref<Label> isThrowOrNormalLabel = newLabel(); |
| emitJumpIf<OpBeloweq>(context.completionTypeRegister(), CompletionType::Throw, isThrowOrNormalLabel.get()); |
| |
| // A completionType above Throw means we have a Break or Continue encoded as a jumpID. |
| // We already ruled out Return above. |
| static_assert(CompletionType::Throw < CompletionType::Return && CompletionType::Throw < CompletionType::Return, "jumpIDs are above CompletionType::Return"); |
| |
| // This case is for Break / Continue completions in an inner finally context: |
| // |
| // 10: label: |
| // 11: try { |
| // 12: try { |
| // 13: for (... stuff ...) |
| // 14: break label; // Sets completionType to jumpID of label. |
| // 15: } finally { |
| // 16: } // Jumps to outer finally on completion. |
| // 17: } finally { |
| // 18: } |
| // |
| // The break (line 14) says to continue execution at the label at line 10. Before we can |
| // goto line 10, the inner context's finally (line 15) needs to be run, followed by the |
| // outer context's finally (line 17). 'outerContext' being non-null above tells us that |
| // there is at least one outer finally context that we need to run after we complete the |
| // current finally. Note that unless the body of the outer finally abruptly completes in a |
| // different way, that outer finally also needs to complete with a Break / Continue to |
| // the same target label. Hence, we need to pass the jumpID in this finally's completionTypeRegister |
| // to the outer finally. The completion value for Break and Continue according to the spec |
| // is undefined, but it won't ever be used. So, we'll skip setting it. |
| // |
| // Note that all we're doing here is passing the Break / Continue completion to the next |
| // outer finally context. We don't worry about finally contexts beyond that. It is the |
| // responsibility of the next outer finally to determine what to do next at its completion, |
| // and pass on to the next outer context if present and needed. |
| |
| move(outerContext->completionTypeRegister(), context.completionTypeRegister()); |
| emitJump(*outerContext->finallyLabel()); |
| |
| emitLabel(isThrowOrNormalLabel.get()); |
| } |
| |
| } else { |
| // We are the outermost finally. |
| if (context.handlesReturns()) { |
| Ref<Label> notReturnLabel = newLabel(); |
| emitJumpIf<OpNstricteq>(context.completionTypeRegister(), CompletionType::Return, notReturnLabel.get()); |
| |
| // This case is for Return completion from the outermost finally context: |
| // |
| // try { |
| // return result; // Sets completionType to Return, and completionValue to result. |
| // } finally { |
| // } // Executes the return of the completionValue. |
| // |
| // Since we know there's no outer finally context (beyond the current context) to run, |
| // we can actually execute a return for this Return completion. The value to return |
| // is whatever is in the completionValueRegister. |
| |
| emitWillLeaveCallFrameDebugHook(); |
| emitReturn(context.completionValueRegister(), ReturnFrom::Finally); |
| |
| emitLabel(notReturnLabel.get()); |
| } |
| } |
| } |
| |
| // By now, we've rule out all Break / Continue / Return completions above. The only remaining |
| // possibilities are Normal or Throw. |
| |
| emitJumpIf<OpNstricteq>(context.completionTypeRegister(), CompletionType::Throw, normalCompletionLabel); |
| |
| // We get here because we entered this finally context with Throw completionType (i.e. we have |
| // an exception that we need to rethrow), and we didn't encounter a different abrupt completion |
| // that overrides that incoming completionType. All we have to do here is re-throw the exception |
| // captured in the completionValue. |
| // |
| // Note that unlike for Break / Continue / Return, we don't need to worry about outer finally |
| // contexts. This is because any outer finally context (if present) will have its own exception |
| // handler, which will take care of receiving the Throw completion, and re-capturing the exception |
| // in its completionValue. |
| |
| emitThrow(context.completionValueRegister()); |
| } |
| |
| template<typename CompareOp> |
| void BytecodeGenerator::emitJumpIf(RegisterID* completionTypeRegister, CompletionType type, Label& jumpTarget) |
| { |
| RefPtr<RegisterID> tempRegister = newTemporary(); |
| RegisterID* valueConstant = addConstantValue(jsNumber(static_cast<int>(type))); |
| OperandTypes operandTypes = OperandTypes(ResultType::numberTypeIsInt32(), ResultType::unknownType()); |
| |
| auto equivalenceResult = emitBinaryOp<CompareOp>(tempRegister.get(), completionTypeRegister, valueConstant, operandTypes); |
| emitJumpIfTrue(equivalenceResult, jumpTarget); |
| } |
| |
| void BytecodeGenerator::pushOptionalChainTarget() |
| { |
| m_optionalChainTargetStack.append(newLabel()); |
| } |
| |
| void BytecodeGenerator::popOptionalChainTarget() |
| { |
| ASSERT(m_optionalChainTargetStack.size()); |
| emitLabel(m_optionalChainTargetStack.takeLast().get()); |
| } |
| |
| void BytecodeGenerator::popOptionalChainTarget(RegisterID* dst, bool isDelete) |
| { |
| Ref<Label> endLabel = newLabel(); |
| emitJump(endLabel.get()); |
| |
| popOptionalChainTarget(); |
| emitLoad(dst, isDelete ? jsBoolean(true) : jsUndefined()); |
| |
| emitLabel(endLabel.get()); |
| } |
| |
| void BytecodeGenerator::emitOptionalCheck(RegisterID* src) |
| { |
| ASSERT(m_optionalChainTargetStack.size()); |
| emitJumpIfTrue(emitIsUndefinedOrNull(newTemporary(), src), m_optionalChainTargetStack.last().get()); |
| } |
| |
| void ForInContext::finalize(BytecodeGenerator& generator, UnlinkedCodeBlock* codeBlock, unsigned bodyBytecodeEndOffset) |
| { |
| // Lexically invalidating ForInContexts is kind of weak sauce, but it only occurs if |
| // either of the following conditions is true: |
| // |
| // (1) The loop iteration variable is re-assigned within the body of the loop. |
| // (2) The loop iteration variable is captured in the lexical scope of the function. |
| // |
| // These two situations occur sufficiently rarely that it's okay to use this style of |
| // "analysis" to make iteration faster. If we didn't want to do this, we would either have |
| // to perform some flow-sensitive analysis to see if/when the loop iteration variable was |
| // reassigned, or we'd have to resort to runtime checks to see if the variable had been |
| // reassigned from its original value. |
| |
| for (unsigned offset = bodyBytecodeStartOffset(); isValid() && offset < bodyBytecodeEndOffset;) { |
| auto instruction = generator.instructions().at(offset); |
| ASSERT(!instruction->is<OpEnter>()); |
| computeDefsForBytecodeIndex(codeBlock, instruction.ptr(), [&] (VirtualRegister operand) { |
| if (local()->virtualRegister() == operand) |
| invalidate(); |
| }); |
| offset += instruction->size(); |
| } |
| } |
| |
| void StructureForInContext::finalize(BytecodeGenerator& generator, UnlinkedCodeBlock* codeBlock, unsigned bodyBytecodeEndOffset) |
| { |
| Base::finalize(generator, codeBlock, bodyBytecodeEndOffset); |
| if (isValid()) |
| return; |
| |
| OpcodeID lastOpcodeID = generator.m_lastOpcodeID; |
| InstructionStream::MutableRef lastInstruction = generator.m_lastInstruction; |
| for (const auto& instTuple : m_getInsts) { |
| unsigned instIndex = std::get<0>(instTuple); |
| int propertyRegIndex = std::get<1>(instTuple); |
| auto instruction = generator.m_writer.ref(instIndex); |
| auto end = instIndex + instruction->size(); |
| ASSERT(instruction->isWide32()); |
| |
| generator.m_writer.seek(instIndex); |
| |
| auto bytecode = instruction->as<OpGetDirectPname>(); |
| |
| // disable peephole optimizations |
| generator.m_lastOpcodeID = op_end; |
| |
| // Change the opcode to get_by_val. |
| // 1. dst stays the same. |
| // 2. base stays the same. |
| // 3. property gets switched to the original property. |
| OpGetByVal::emit<OpcodeSize::Wide32>(&generator, bytecode.m_dst, bytecode.m_base, VirtualRegister(propertyRegIndex)); |
| |
| // 4. nop out the remaining bytes |
| while (generator.m_writer.position() < end) |
| OpNop::emit<OpcodeSize::Narrow>(&generator); |
| } |
| generator.m_writer.seek(generator.m_writer.size()); |
| if (generator.m_lastInstruction.offset() + generator.m_lastInstruction->size() != generator.m_writer.size()) { |
| generator.m_lastOpcodeID = lastOpcodeID; |
| generator.m_lastInstruction = lastInstruction; |
| } |
| } |
| |
| void IndexedForInContext::finalize(BytecodeGenerator& generator, UnlinkedCodeBlock* codeBlock, unsigned bodyBytecodeEndOffset) |
| { |
| Base::finalize(generator, codeBlock, bodyBytecodeEndOffset); |
| if (isValid()) |
| return; |
| |
| for (const auto& instPair : m_getInsts) { |
| unsigned instIndex = instPair.first; |
| int propertyRegIndex = instPair.second; |
| generator.m_writer.ref(instIndex)->cast<OpGetByVal>()->setProperty(VirtualRegister(propertyRegIndex), []() { |
| ASSERT_NOT_REACHED(); |
| return VirtualRegister(); |
| }); |
| } |
| } |
| |
| void StaticPropertyAnalysis::record() |
| { |
| auto* instruction = m_instructionRef.ptr(); |
| auto size = m_propertyIndexes.size(); |
| switch (instruction->opcodeID()) { |
| case OpNewObject::opcodeID: |
| instruction->cast<OpNewObject>()->setInlineCapacity(size, []() { |
| return 255; |
| }); |
| return; |
| case OpCreateThis::opcodeID: |
| instruction->cast<OpCreateThis>()->setInlineCapacity(size, []() { |
| return 255; |
| }); |
| return; |
| default: |
| ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| void BytecodeGenerator::emitToThis() |
| { |
| OpToThis::emit(this, kill(&m_thisRegister)); |
| } |
| |
| } // namespace JSC |
| |
| namespace WTF { |
| |
| void printInternal(PrintStream& out, JSC::Variable::VariableKind kind) |
| { |
| switch (kind) { |
| case JSC::Variable::NormalVariable: |
| out.print("Normal"); |
| return; |
| case JSC::Variable::SpecialVariable: |
| out.print("Special"); |
| return; |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| } // namespace WTF |
| |