blob: 4d9e36f6f9655bd38a23851f057acb71c74fe803 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGSpeculativeJIT.h"
#if ENABLE(DFG_JIT)
namespace JSC { namespace DFG {
template<bool strict>
GPRReg SpeculativeJIT::fillSpeculateIntInternal(NodeIndex nodeIndex, DataFormat& returnFormat)
{
Node& node = m_jit.graph()[nodeIndex];
VirtualRegister virtualRegister = node.virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
switch (info.registerFormat()) {
case DataFormatNone: {
GPRReg gpr = allocate();
if (node.isConstant()) {
m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
if (isInt32Constant(nodeIndex)) {
m_jit.move(MacroAssembler::Imm32(valueOfInt32Constant(nodeIndex)), gpr);
info.fillInteger(gpr);
returnFormat = DataFormatInteger;
return gpr;
}
m_jit.move(constantAsJSValueAsImmPtr(nodeIndex), gpr);
} else {
DataFormat spillFormat = info.spillFormat();
ASSERT(spillFormat & DataFormatJS);
m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
if (spillFormat == DataFormatJSInteger) {
// If we know this was spilled as an integer we can fill without checking.
if (strict) {
m_jit.load32(JITCompiler::addressFor(virtualRegister), gpr);
info.fillInteger(gpr);
returnFormat = DataFormatInteger;
return gpr;
}
m_jit.loadPtr(JITCompiler::addressFor(virtualRegister), gpr);
info.fillJSValue(gpr, DataFormatJSInteger);
returnFormat = DataFormatJSInteger;
return gpr;
}
m_jit.loadPtr(JITCompiler::addressFor(virtualRegister), gpr);
}
// Fill as JSValue, and fall through.
info.fillJSValue(gpr, DataFormatJSInteger);
m_gprs.unlock(gpr);
}
case DataFormatJS: {
// Check the value is an integer.
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
speculationCheck(m_jit.branchPtr(MacroAssembler::Below, gpr, GPRInfo::tagTypeNumberRegister));
info.fillJSValue(gpr, DataFormatJSInteger);
// If !strict we're done, return.
if (!strict) {
returnFormat = DataFormatJSInteger;
return gpr;
}
// else fall through & handle as DataFormatJSInteger.
m_gprs.unlock(gpr);
}
case DataFormatJSInteger: {
// In a strict fill we need to strip off the value tag.
if (strict) {
GPRReg gpr = info.gpr();
GPRReg result;
// If the register has already been locked we need to take a copy.
// If not, we'll zero extend in place, so mark on the info that this is now type DataFormatInteger, not DataFormatJSInteger.
if (m_gprs.isLocked(gpr))
result = allocate();
else {
m_gprs.lock(gpr);
info.fillInteger(gpr);
result = gpr;
}
m_jit.zeroExtend32ToPtr(gpr, result);
returnFormat = DataFormatInteger;
return result;
}
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
returnFormat = DataFormatJSInteger;
return gpr;
}
case DataFormatInteger: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
returnFormat = DataFormatInteger;
return gpr;
}
case DataFormatDouble:
case DataFormatCell:
case DataFormatJSDouble:
case DataFormatJSCell: {
terminateSpeculativeExecution();
returnFormat = DataFormatInteger;
return allocate();
}
}
ASSERT_NOT_REACHED();
return InvalidGPRReg;
}
SpeculationCheck::SpeculationCheck(MacroAssembler::Jump check, SpeculativeJIT* jit, unsigned recoveryIndex)
: m_check(check)
, m_nodeIndex(jit->m_compileIndex)
, m_recoveryIndex(recoveryIndex)
{
for (gpr_iterator iter = jit->m_gprs.begin(); iter != jit->m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
GenerationInfo& info = jit->m_generationInfo[iter.name()];
m_gprInfo[iter.index()].nodeIndex = info.nodeIndex();
m_gprInfo[iter.index()].format = info.registerFormat();
} else
m_gprInfo[iter.index()].nodeIndex = NoNode;
}
for (fpr_iterator iter = jit->m_fprs.begin(); iter != jit->m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
GenerationInfo& info = jit->m_generationInfo[iter.name()];
ASSERT(info.registerFormat() == DataFormatDouble);
m_fprInfo[iter.index()] = info.nodeIndex();
} else
m_fprInfo[iter.index()] = NoNode;
}
}
GPRReg SpeculativeJIT::fillSpeculateInt(NodeIndex nodeIndex, DataFormat& returnFormat)
{
return fillSpeculateIntInternal<false>(nodeIndex, returnFormat);
}
GPRReg SpeculativeJIT::fillSpeculateIntStrict(NodeIndex nodeIndex)
{
DataFormat mustBeDataFormatInteger;
GPRReg result = fillSpeculateIntInternal<true>(nodeIndex, mustBeDataFormatInteger);
ASSERT(mustBeDataFormatInteger == DataFormatInteger);
return result;
}
GPRReg SpeculativeJIT::fillSpeculateCell(NodeIndex nodeIndex)
{
Node& node = m_jit.graph()[nodeIndex];
VirtualRegister virtualRegister = node.virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
switch (info.registerFormat()) {
case DataFormatNone: {
GPRReg gpr = allocate();
if (node.isConstant()) {
JSValue jsValue = constantAsJSValue(nodeIndex);
if (jsValue.isCell()) {
m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
m_jit.move(MacroAssembler::TrustedImmPtr(jsValue.asCell()), gpr);
info.fillJSValue(gpr, DataFormatJSCell);
return gpr;
}
terminateSpeculativeExecution();
return gpr;
}
ASSERT(info.spillFormat() & DataFormatJS);
m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
m_jit.loadPtr(JITCompiler::addressFor(virtualRegister), gpr);
if (info.spillFormat() != DataFormatJSCell)
speculationCheck(m_jit.branchTestPtr(MacroAssembler::NonZero, gpr, GPRInfo::tagMaskRegister));
info.fillJSValue(gpr, DataFormatJSCell);
return gpr;
}
case DataFormatCell:
case DataFormatJSCell: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
return gpr;
}
case DataFormatJS: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
speculationCheck(m_jit.branchTestPtr(MacroAssembler::NonZero, gpr, GPRInfo::tagMaskRegister));
info.fillJSValue(gpr, DataFormatJSCell);
return gpr;
}
case DataFormatJSInteger:
case DataFormatInteger:
case DataFormatJSDouble:
case DataFormatDouble: {
terminateSpeculativeExecution();
return allocate();
}
}
ASSERT_NOT_REACHED();
return InvalidGPRReg;
}
void SpeculativeJIT::compilePeepHoleIntegerBranch(Node& node, NodeIndex branchNodeIndex, JITCompiler::RelationalCondition condition)
{
Node& branchNode = m_jit.graph()[branchNodeIndex];
BlockIndex taken = m_jit.graph().blockIndexForBytecodeOffset(branchNode.takenBytecodeOffset());
BlockIndex notTaken = m_jit.graph().blockIndexForBytecodeOffset(branchNode.notTakenBytecodeOffset());
// The branch instruction will branch to the taken block.
// If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
if (taken == (m_block + 1)) {
condition = JITCompiler::invert(condition);
BlockIndex tmp = taken;
taken = notTaken;
notTaken = tmp;
}
int32_t imm;
if (isJSConstantWithInt32Value(node.child1, imm)) {
SpeculateIntegerOperand op2(this, node.child2);
addBranch(m_jit.branch32(condition, JITCompiler::Imm32(imm), op2.gpr()), taken);
} else if (isJSConstantWithInt32Value(node.child2, imm)) {
SpeculateIntegerOperand op1(this, node.child1);
addBranch(m_jit.branch32(condition, op1.gpr(), JITCompiler::Imm32(imm)), taken);
} else {
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
addBranch(m_jit.branch32(condition, op1.gpr(), op2.gpr()), taken);
}
// Check for fall through, otherwise we need to jump.
if (notTaken != (m_block + 1))
addBranch(m_jit.jump(), notTaken);
}
void SpeculativeJIT::compilePeepHoleEq(Node& node, NodeIndex branchNodeIndex)
{
Node& branchNode = m_jit.graph()[branchNodeIndex];
BlockIndex taken = m_jit.graph().blockIndexForBytecodeOffset(branchNode.takenBytecodeOffset());
BlockIndex notTaken = m_jit.graph().blockIndexForBytecodeOffset(branchNode.notTakenBytecodeOffset());
// The branch instruction will branch to the taken block.
// If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
JITCompiler::ResultCondition condition = JITCompiler::NonZero;
if (taken == (m_block + 1)) {
condition = JITCompiler::Zero;
BlockIndex tmp = taken;
taken = notTaken;
notTaken = tmp;
}
JSValueOperand op1(this, node.child1);
JSValueOperand op2(this, node.child2);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
flushRegisters();
GPRResult result(this);
callOperation(operationCompareEq, result.gpr(), op1GPR, op2GPR);
addBranch(m_jit.branchTest8(condition, result.gpr()), taken);
// Check for fall through, otherwise we need to jump.
if (notTaken != (m_block + 1))
addBranch(m_jit.jump(), notTaken);
}
void SpeculativeJIT::compile(Node& node)
{
NodeType op = node.op;
switch (op) {
case Int32Constant:
case DoubleConstant:
case JSConstant:
initConstantInfo(m_compileIndex);
break;
case GetLocal: {
GPRTemporary result(this);
PredictedType prediction = m_jit.graph().getPrediction(node.local());
if (prediction == PredictInt32) {
m_jit.load32(JITCompiler::payloadFor(node.local()), result.gpr());
// Like integerResult, but don't useChildren - our children are phi nodes,
// and don't represent values within this dataflow with virtual registers.
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(result.gpr(), virtualRegister, SpillOrderInteger);
m_generationInfo[virtualRegister].initInteger(m_compileIndex, node.refCount(), result.gpr());
} else {
m_jit.loadPtr(JITCompiler::addressFor(node.local()), result.gpr());
// Like jsValueResult, but don't useChildren - our children are phi nodes,
// and don't represent values within this dataflow with virtual registers.
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(result.gpr(), virtualRegister, SpillOrderJS);
m_generationInfo[virtualRegister].initJSValue(m_compileIndex, node.refCount(), result.gpr(), (prediction == PredictArray) ? DataFormatJSCell : DataFormatJS);
}
break;
}
case SetLocal: {
switch (m_jit.graph().getPrediction(node.local())) {
case PredictInt32: {
SpeculateIntegerOperand value(this, node.child1);
m_jit.store32(value.gpr(), JITCompiler::payloadFor(node.local()));
noResult(m_compileIndex);
break;
}
case PredictArray: {
SpeculateCellOperand cell(this, node.child1);
m_jit.storePtr(cell.gpr(), JITCompiler::addressFor(node.local()));
noResult(m_compileIndex);
break;
}
default: {
JSValueOperand value(this, node.child1);
m_jit.storePtr(value.gpr(), JITCompiler::addressFor(node.local()));
noResult(m_compileIndex);
break;
}
}
break;
}
case BitAnd:
case BitOr:
case BitXor:
if (isInt32Constant(node.child1)) {
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op2);
bitOp(op, valueOfInt32Constant(node.child1), op2.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex);
} else if (isInt32Constant(node.child2)) {
SpeculateIntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
bitOp(op, valueOfInt32Constant(node.child2), op1.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex);
} else {
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1, op2);
GPRReg reg1 = op1.gpr();
GPRReg reg2 = op2.gpr();
bitOp(op, reg1, reg2, result.gpr());
integerResult(result.gpr(), m_compileIndex);
}
break;
case BitRShift:
case BitLShift:
case BitURShift:
if (isInt32Constant(node.child2)) {
SpeculateIntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
shiftOp(op, op1.gpr(), valueOfInt32Constant(node.child2) & 0x1f, result.gpr());
integerResult(result.gpr(), m_compileIndex);
} else {
// Do not allow shift amount to be used as the result, MacroAssembler does not permit this.
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1);
GPRReg reg1 = op1.gpr();
GPRReg reg2 = op2.gpr();
shiftOp(op, reg1, reg2, result.gpr());
integerResult(result.gpr(), m_compileIndex);
}
break;
case UInt32ToNumber: {
IntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
// Test the operand is positive.
speculationCheck(m_jit.branch32(MacroAssembler::LessThan, op1.gpr(), TrustedImm32(0)));
m_jit.move(op1.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex, op1.format());
break;
}
case NumberToInt32: {
SpeculateIntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
m_jit.move(op1.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex, op1.format());
break;
}
case Int32ToNumber: {
SpeculateIntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
m_jit.move(op1.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex, op1.format());
break;
}
case ValueToInt32: {
SpeculateIntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
m_jit.move(op1.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex, op1.format());
break;
}
case ValueToNumber: {
SpeculateIntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
m_jit.move(op1.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex, op1.format());
break;
}
case ValueAdd:
case ArithAdd: {
int32_t imm1;
if (isDoubleConstantWithInt32Value(node.child1, imm1)) {
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this);
speculationCheck(m_jit.branchAdd32(MacroAssembler::Overflow, op2.gpr(), Imm32(imm1), result.gpr()));
integerResult(result.gpr(), m_compileIndex);
break;
}
int32_t imm2;
if (isDoubleConstantWithInt32Value(node.child2, imm2)) {
SpeculateIntegerOperand op1(this, node.child1);
GPRTemporary result(this);
speculationCheck(m_jit.branchAdd32(MacroAssembler::Overflow, op1.gpr(), Imm32(imm2), result.gpr()));
integerResult(result.gpr(), m_compileIndex);
break;
}
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1, op2);
GPRReg gpr1 = op1.gpr();
GPRReg gpr2 = op2.gpr();
GPRReg gprResult = result.gpr();
MacroAssembler::Jump check = m_jit.branchAdd32(MacroAssembler::Overflow, gpr1, gpr2, gprResult);
if (gpr1 == gprResult)
speculationCheck(check, SpeculationRecovery(SpeculativeAdd, gprResult, gpr2));
else if (gpr2 == gprResult)
speculationCheck(check, SpeculationRecovery(SpeculativeAdd, gprResult, gpr1));
else
speculationCheck(check);
integerResult(gprResult, m_compileIndex);
break;
}
case ArithSub: {
int32_t imm2;
if (isDoubleConstantWithInt32Value(node.child2, imm2)) {
SpeculateIntegerOperand op1(this, node.child1);
GPRTemporary result(this);
speculationCheck(m_jit.branchSub32(MacroAssembler::Overflow, op1.gpr(), Imm32(imm2), result.gpr()));
integerResult(result.gpr(), m_compileIndex);
break;
}
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this);
speculationCheck(m_jit.branchSub32(MacroAssembler::Overflow, op1.gpr(), op2.gpr(), result.gpr()));
integerResult(result.gpr(), m_compileIndex);
break;
}
case ArithMul: {
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this);
GPRReg reg1 = op1.gpr();
GPRReg reg2 = op2.gpr();
speculationCheck(m_jit.branchMul32(MacroAssembler::Overflow, reg1, reg2, result.gpr()));
MacroAssembler::Jump resultNonZero = m_jit.branchTest32(MacroAssembler::NonZero, result.gpr());
speculationCheck(m_jit.branch32(MacroAssembler::LessThan, reg1, TrustedImm32(0)));
speculationCheck(m_jit.branch32(MacroAssembler::LessThan, reg2, TrustedImm32(0)));
resultNonZero.link(&m_jit);
integerResult(result.gpr(), m_compileIndex);
break;
}
case ArithDiv: {
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1, op2);
op1.gpr();
op2.gpr();
terminateSpeculativeExecution();
integerResult(result.gpr(), m_compileIndex);
break;
}
case ArithMod: {
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1, op2);
op1.gpr();
op2.gpr();
terminateSpeculativeExecution();
integerResult(result.gpr(), m_compileIndex);
break;
}
case LogicalNot: {
JSValueOperand value(this, node.child1);
GPRTemporary result(this); // FIXME: We could reuse, but on speculation fail would need recovery to restore tag (akin to add).
m_jit.move(value.gpr(), result.gpr());
m_jit.xorPtr(TrustedImm32(static_cast<int32_t>(ValueFalse)), result.gpr());
speculationCheck(m_jit.branchTestPtr(JITCompiler::NonZero, result.gpr(), TrustedImm32(static_cast<int32_t>(~1))));
m_jit.xorPtr(TrustedImm32(static_cast<int32_t>(ValueTrue)), result.gpr());
// If we add a DataFormatBool, we should use it here.
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case CompareLess: {
// Fused compare & branch.
NodeIndex branchNodeIndex = detectPeepHoleBranch();
if (branchNodeIndex != NoNode) {
// detectPeepHoleBranch currently only permits the branch to be the very next node,
// so can be no intervening nodes to also reference the compare.
ASSERT(node.adjustedRefCount() == 1);
compilePeepHoleIntegerBranch(node, branchNodeIndex, JITCompiler::LessThan);
use(node.child1);
use(node.child2);
m_compileIndex = branchNodeIndex;
return;
}
// Normal case, not fused to branch.
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1, op2);
m_jit.compare32(JITCompiler::LessThan, op1.gpr(), op2.gpr(), result.gpr());
// If we add a DataFormatBool, we should use it here.
m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case CompareLessEq: {
// Fused compare & branch.
NodeIndex branchNodeIndex = detectPeepHoleBranch();
if (branchNodeIndex != NoNode) {
// detectPeepHoleBranch currently only permits the branch to be the very next node,
// so can be no intervening nodes to also reference the compare.
ASSERT(node.adjustedRefCount() == 1);
compilePeepHoleIntegerBranch(node, branchNodeIndex, JITCompiler::LessThanOrEqual);
use(node.child1);
use(node.child2);
m_compileIndex = branchNodeIndex;
return;
}
// Normal case, not fused to branch.
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1, op2);
m_jit.compare32(JITCompiler::LessThanOrEqual, op1.gpr(), op2.gpr(), result.gpr());
// If we add a DataFormatBool, we should use it here.
m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case CompareEq: {
// Fused compare & branch.
NodeIndex branchNodeIndex = detectPeepHoleBranch();
if (branchNodeIndex != NoNode) {
// detectPeepHoleBranch currently only permits the branch to be the very next node,
// so can be no intervening nodes to also reference the compare.
ASSERT(node.adjustedRefCount() == 1);
if (isInteger(node.child1) || isInteger(node.child2))
compilePeepHoleIntegerBranch(node, branchNodeIndex, JITCompiler::Equal);
else
compilePeepHoleEq(node, branchNodeIndex);
use(node.child1);
use(node.child2);
m_compileIndex = branchNodeIndex;
return;
}
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1, op2);
m_jit.compare32(JITCompiler::Equal, op1.gpr(), op2.gpr(), result.gpr());
// If we add a DataFormatBool, we should use it here.
m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case CompareStrictEq: {
SpeculateIntegerOperand op1(this, node.child1);
SpeculateIntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1, op2);
m_jit.compare32(JITCompiler::Equal, op1.gpr(), op2.gpr(), result.gpr());
// If we add a DataFormatBool, we should use it here.
m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case GetByVal: {
NodeIndex alias = node.child3;
if (alias != NoNode) {
// FIXME: result should be able to reuse child1, child2. Should have an 'UnusedOperand' type.
JSValueOperand aliasedValue(this, node.child3);
GPRTemporary result(this, aliasedValue);
m_jit.move(aliasedValue.gpr(), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
SpeculateCellOperand base(this, node.child1);
SpeculateStrictInt32Operand property(this, node.child2);
GPRTemporary storage(this);
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
// Get the array storage. We haven't yet checked this is a JSArray, so this is only safe if
// an access with offset JSArray::storageOffset() is valid for all JSCells!
m_jit.loadPtr(MacroAssembler::Address(baseReg, JSArray::storageOffset()), storageReg);
// Check that base is an array, and that property is contained within m_vector (< m_vectorLength).
// If we have predicted the base to be type array, we can skip the check.
Node& baseNode = m_jit.graph()[node.child1];
if (baseNode.op != GetLocal || m_jit.graph().getPrediction(baseNode.local()) != PredictArray)
speculationCheck(m_jit.branchPtr(MacroAssembler::NotEqual, MacroAssembler::Address(baseReg), MacroAssembler::TrustedImmPtr(m_jit.globalData()->jsArrayVPtr)));
speculationCheck(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(baseReg, JSArray::vectorLengthOffset())));
// FIXME: In cases where there are subsequent by_val accesses to the same base it might help to cache
// the storage pointer - especially if there happens to be another register free right now. If we do so,
// then we'll need to allocate a new temporary for result.
GPRTemporary& result = storage;
m_jit.loadPtr(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0])), result.gpr());
speculationCheck(m_jit.branchTestPtr(MacroAssembler::Zero, result.gpr()));
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case PutByVal: {
SpeculateCellOperand base(this, node.child1);
SpeculateStrictInt32Operand property(this, node.child2);
JSValueOperand value(this, node.child3);
GPRTemporary storage(this);
// Map base, property & value into registers, allocate a register for storage.
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
GPRReg valueReg = value.gpr();
GPRReg storageReg = storage.gpr();
// Check that base is an array, and that property is contained within m_vector (< m_vectorLength).
// If we have predicted the base to be type array, we can skip the check.
Node& baseNode = m_jit.graph()[node.child1];
if (baseNode.op != GetLocal || m_jit.graph().getPrediction(baseNode.local()) != PredictArray)
speculationCheck(m_jit.branchPtr(MacroAssembler::NotEqual, MacroAssembler::Address(baseReg), MacroAssembler::TrustedImmPtr(m_jit.globalData()->jsArrayVPtr)));
MacroAssembler::Jump withinArrayBounds = m_jit.branch32(MacroAssembler::Below, propertyReg, MacroAssembler::Address(baseReg, JSArray::vectorLengthOffset()));
// Code to handle put beyond array bounds.
silentSpillAllRegisters(storageReg, baseReg, propertyReg, valueReg);
setupStubArguments(baseReg, propertyReg, valueReg);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
JITCompiler::Call functionCall = appendCallWithExceptionCheck(operationPutByValBeyondArrayBounds);
silentFillAllRegisters(storageReg);
JITCompiler::Jump wasBeyondArrayBounds = m_jit.jump();
withinArrayBounds.link(&m_jit);
// Get the array storage.
m_jit.loadPtr(MacroAssembler::Address(baseReg, JSArray::storageOffset()), storageReg);
// Check if we're writing to a hole; if so increment m_numValuesInVector.
MacroAssembler::Jump notHoleValue = m_jit.branchTestPtr(MacroAssembler::NonZero, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0])));
m_jit.add32(TrustedImm32(1), MacroAssembler::Address(storageReg, OBJECT_OFFSETOF(ArrayStorage, m_numValuesInVector)));
// If we're writing to a hole we might be growing the array;
MacroAssembler::Jump lengthDoesNotNeedUpdate = m_jit.branch32(MacroAssembler::Below, propertyReg, MacroAssembler::Address(storageReg, OBJECT_OFFSETOF(ArrayStorage, m_length)));
m_jit.add32(TrustedImm32(1), propertyReg);
m_jit.store32(propertyReg, MacroAssembler::Address(storageReg, OBJECT_OFFSETOF(ArrayStorage, m_length)));
m_jit.sub32(TrustedImm32(1), propertyReg);
lengthDoesNotNeedUpdate.link(&m_jit);
notHoleValue.link(&m_jit);
// Store the value to the array.
m_jit.storePtr(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0])));
wasBeyondArrayBounds.link(&m_jit);
noResult(m_compileIndex);
break;
}
case PutByValAlias: {
SpeculateCellOperand base(this, node.child1);
SpeculateStrictInt32Operand property(this, node.child2);
JSValueOperand value(this, node.child3);
GPRTemporary storage(this, base); // storage may overwrite base.
// Get the array storage.
GPRReg storageReg = storage.gpr();
m_jit.loadPtr(MacroAssembler::Address(base.gpr(), JSArray::storageOffset()), storageReg);
// Map property & value into registers.
GPRReg propertyReg = property.gpr();
GPRReg valueReg = value.gpr();
// Store the value to the array.
m_jit.storePtr(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0])));
noResult(m_compileIndex);
break;
}
case DFG::Jump: {
BlockIndex taken = m_jit.graph().blockIndexForBytecodeOffset(node.takenBytecodeOffset());
if (taken != (m_block + 1))
addBranch(m_jit.jump(), taken);
noResult(m_compileIndex);
break;
}
case Branch: {
JSValueOperand value(this, node.child1);
GPRReg valueReg = value.gpr();
BlockIndex taken = m_jit.graph().blockIndexForBytecodeOffset(node.takenBytecodeOffset());
BlockIndex notTaken = m_jit.graph().blockIndexForBytecodeOffset(node.notTakenBytecodeOffset());
// Integers
addBranch(m_jit.branchPtr(MacroAssembler::Equal, valueReg, MacroAssembler::ImmPtr(JSValue::encode(jsNumber(0)))), notTaken);
MacroAssembler::Jump isNonZeroInteger = m_jit.branchPtr(MacroAssembler::AboveOrEqual, valueReg, GPRInfo::tagTypeNumberRegister);
// Booleans
addBranch(m_jit.branchPtr(MacroAssembler::Equal, valueReg, MacroAssembler::ImmPtr(JSValue::encode(jsBoolean(false)))), notTaken);
speculationCheck(m_jit.branchPtr(MacroAssembler::NotEqual, valueReg, MacroAssembler::ImmPtr(JSValue::encode(jsBoolean(true)))));
if (taken == (m_block + 1))
isNonZeroInteger.link(&m_jit);
else {
addBranch(isNonZeroInteger, taken);
addBranch(m_jit.jump(), taken);
}
noResult(m_compileIndex);
break;
}
case Return: {
ASSERT(GPRInfo::callFrameRegister != GPRInfo::regT1);
ASSERT(GPRInfo::regT1 != GPRInfo::returnValueGPR);
ASSERT(GPRInfo::returnValueGPR != GPRInfo::callFrameRegister);
#if DFG_SUCCESS_STATS
static SamplingCounter counter("SpeculativeJIT");
m_jit.emitCount(counter);
#endif
// Return the result in returnValueGPR.
JSValueOperand op1(this, node.child1);
m_jit.move(op1.gpr(), GPRInfo::returnValueGPR);
// Grab the return address.
m_jit.emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, GPRInfo::regT1);
// Restore our caller's "r".
m_jit.emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, GPRInfo::callFrameRegister);
// Return.
m_jit.restoreReturnAddressBeforeReturn(GPRInfo::regT1);
m_jit.ret();
noResult(m_compileIndex);
break;
}
case ConvertThis: {
SpeculateCellOperand thisValue(this, node.child1);
GPRTemporary temp(this);
m_jit.loadPtr(JITCompiler::Address(thisValue.gpr(), JSCell::structureOffset()), temp.gpr());
speculationCheck(m_jit.branchTest8(JITCompiler::NonZero, JITCompiler::Address(temp.gpr(), Structure::typeInfoFlagsOffset()), JITCompiler::TrustedImm32(NeedsThisConversion)));
cellResult(thisValue.gpr(), m_compileIndex);
break;
}
case GetById: {
SpeculateCellOperand base(this, node.child1);
GPRTemporary result(this, base);
GPRReg baseGPR = base.gpr();
GPRReg resultGPR = result.gpr();
JITCompiler::DataLabelPtr structureToCompare;
JITCompiler::Jump structureCheck = m_jit.branchPtrWithPatch(JITCompiler::Equal, JITCompiler::Address(baseGPR, JSCell::structureOffset()), structureToCompare, JITCompiler::TrustedImmPtr(reinterpret_cast<void*>(-1)));
silentSpillAllRegisters(resultGPR, baseGPR);
m_jit.move(baseGPR, GPRInfo::argumentGPR1);
m_jit.move(JITCompiler::ImmPtr(identifier(node.identifierNumber())), GPRInfo::argumentGPR2);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
JITCompiler::Call functionCall = appendCallWithExceptionCheck(operationGetByIdOptimize);
m_jit.move(GPRInfo::returnValueGPR, resultGPR);
silentFillAllRegisters(resultGPR);
JITCompiler::Jump handledByC = m_jit.jump();
structureCheck.link(&m_jit);
m_jit.loadPtr(JITCompiler::Address(baseGPR, JSObject::offsetOfPropertyStorage()), resultGPR);
JITCompiler::DataLabelCompact loadWithPatch = m_jit.loadPtrWithCompactAddressOffsetPatch(JITCompiler::Address(resultGPR, 0), resultGPR);
intptr_t checkToCall = m_jit.differenceBetween(structureToCompare, functionCall);
intptr_t callToLoad = m_jit.differenceBetween(functionCall, loadWithPatch);
handledByC.link(&m_jit);
m_jit.addPropertyAccess(functionCall, checkToCall, callToLoad);
jsValueResult(resultGPR, m_compileIndex);
break;
}
case PutById: {
JSValueOperand base(this, node.child1);
JSValueOperand value(this, node.child2);
GPRReg valueGPR = value.gpr();
GPRReg baseGPR = base.gpr();
flushRegisters();
callOperation(m_jit.codeBlock()->isStrictMode() ? operationPutByIdStrict : operationPutByIdNonStrict, valueGPR, baseGPR, identifier(node.identifierNumber()));
noResult(m_compileIndex);
break;
}
case PutByIdDirect: {
JSValueOperand base(this, node.child1);
JSValueOperand value(this, node.child2);
GPRReg valueGPR = value.gpr();
GPRReg baseGPR = base.gpr();
flushRegisters();
callOperation(m_jit.codeBlock()->isStrictMode() ? operationPutByIdDirectStrict : operationPutByIdDirectNonStrict, valueGPR, baseGPR, identifier(node.identifierNumber()));
noResult(m_compileIndex);
break;
}
case GetGlobalVar: {
GPRTemporary result(this);
JSVariableObject* globalObject = m_jit.codeBlock()->globalObject();
m_jit.loadPtr(globalObject->addressOfRegisters(), result.gpr());
m_jit.loadPtr(JITCompiler::addressForGlobalVar(result.gpr(), node.varNumber()), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case PutGlobalVar: {
JSValueOperand value(this, node.child1);
GPRTemporary temp(this);
JSVariableObject* globalObject = m_jit.codeBlock()->globalObject();
m_jit.loadPtr(globalObject->addressOfRegisters(), temp.gpr());
m_jit.storePtr(value.gpr(), JITCompiler::addressForGlobalVar(temp.gpr(), node.varNumber()));
noResult(m_compileIndex);
break;
}
case Phi:
ASSERT_NOT_REACHED();
}
if (node.hasResult() && node.mustGenerate())
use(m_compileIndex);
}
void SpeculativeJIT::compile(BasicBlock& block)
{
ASSERT(m_compileIndex == block.begin);
m_blockHeads[m_block] = m_jit.label();
#if DFG_JIT_BREAK_ON_EVERY_BLOCK
m_jit.breakpoint();
#endif
for (; m_compileIndex < block.end; ++m_compileIndex) {
Node& node = m_jit.graph()[m_compileIndex];
if (!node.shouldGenerate())
continue;
#if DFG_DEBUG_VERBOSE
fprintf(stderr, "SpeculativeJIT generating Node @%d at JIT offset 0x%x\n", (int)m_compileIndex, m_jit.debugOffset());
#endif
#if DFG_JIT_BREAK_ON_EVERY_NODE
m_jit.breakpoint();
#endif
checkConsistency();
compile(node);
if (!m_compileOkay)
return;
checkConsistency();
}
}
// If we are making type predictions about our arguments then
// we need to check that they are correct on function entry.
void SpeculativeJIT::checkArgumentTypes()
{
ASSERT(!m_compileIndex);
for (int i = 0; i < m_jit.codeBlock()->m_numParameters; ++i) {
VirtualRegister virtualRegister = (VirtualRegister)(m_jit.codeBlock()->thisRegister() + i);
switch (m_jit.graph().getPrediction(virtualRegister)) {
case PredictInt32:
speculationCheck(m_jit.branchPtr(MacroAssembler::Below, JITCompiler::addressFor(virtualRegister), GPRInfo::tagTypeNumberRegister));
break;
case PredictArray: {
GPRTemporary temp(this);
m_jit.loadPtr(JITCompiler::addressFor(virtualRegister), temp.gpr());
speculationCheck(m_jit.branchTestPtr(MacroAssembler::NonZero, temp.gpr(), GPRInfo::tagMaskRegister));
speculationCheck(m_jit.branchPtr(MacroAssembler::NotEqual, MacroAssembler::Address(temp.gpr()), MacroAssembler::TrustedImmPtr(m_jit.globalData()->jsArrayVPtr)));
break;
}
default:
break;
}
}
}
// For any vars that we will be treating as numeric, write 0 to
// the var on entry. Throughout the block we will only read/write
// to the payload, by writing the tag now we prevent the GC from
// misinterpreting values as pointers.
void SpeculativeJIT::initializeVariableTypes()
{
ASSERT(!m_compileIndex);
for (int var = 0; var < m_jit.codeBlock()->m_numVars; ++var) {
if (m_jit.graph().getPrediction(var) == PredictInt32)
m_jit.storePtr(GPRInfo::tagTypeNumberRegister, JITCompiler::addressFor((VirtualRegister)var));
}
}
bool SpeculativeJIT::compile()
{
checkArgumentTypes();
initializeVariableTypes();
ASSERT(!m_compileIndex);
for (m_block = 0; m_block < m_jit.graph().m_blocks.size(); ++m_block) {
compile(*m_jit.graph().m_blocks[m_block]);
if (!m_compileOkay)
return false;
}
linkBranches();
return true;
}
} } // namespace JSC::DFG
#endif