blob: 7c50715ec43e9a82aa14451fad4af3c4ae7f3026 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGNonSpeculativeJIT.h"
#include "DFGSpeculativeJIT.h"
#if ENABLE(DFG_JIT)
namespace JSC { namespace DFG {
const double twoToThe32 = (double)0x100000000ull;
EntryLocation::EntryLocation(MacroAssembler::Label entry, NonSpeculativeJIT* jit)
: m_entry(entry)
, m_nodeIndex(jit->m_compileIndex)
{
for (gpr_iterator iter = jit->m_gprs.begin(); iter != jit->m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
GenerationInfo& info = jit->m_generationInfo[iter.name()];
m_gprInfo[iter.index()].nodeIndex = info.nodeIndex();
m_gprInfo[iter.index()].format = info.registerFormat();
} else
m_gprInfo[iter.index()].nodeIndex = NoNode;
}
for (fpr_iterator iter = jit->m_fprs.begin(); iter != jit->m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
GenerationInfo& info = jit->m_generationInfo[iter.name()];
ASSERT(info.registerFormat() == DataFormatDouble);
m_fprInfo[iter.index()] = info.nodeIndex();
} else
m_fprInfo[iter.index()] = NoNode;
}
}
void NonSpeculativeJIT::valueToNumber(JSValueOperand& operand, FPRReg fpr)
{
GPRReg jsValueGpr = operand.gpr();
GPRReg tempGpr = allocate(); // FIXME: can we skip this allocation on the last use of the virtual register?
JITCompiler::Jump isInteger = m_jit.branchPtr(MacroAssembler::AboveOrEqual, jsValueGpr, GPRInfo::tagTypeNumberRegister);
JITCompiler::Jump nonNumeric = m_jit.branchTestPtr(MacroAssembler::Zero, jsValueGpr, GPRInfo::tagTypeNumberRegister);
// First, if we get here we have a double encoded as a JSValue
m_jit.move(jsValueGpr, tempGpr);
m_jit.addPtr(GPRInfo::tagTypeNumberRegister, tempGpr);
m_jit.movePtrToDouble(tempGpr, fpr);
JITCompiler::Jump hasUnboxedDouble = m_jit.jump();
// Next handle cells (& other JS immediates)
nonNumeric.link(&m_jit);
silentSpillAllRegisters(fpr, jsValueGpr);
m_jit.move(jsValueGpr, GPRInfo::argumentGPR1);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
appendCallWithExceptionCheck(dfgConvertJSValueToNumber);
m_jit.moveDouble(FPRInfo::returnValueFPR, fpr);
silentFillAllRegisters(fpr);
JITCompiler::Jump hasCalledToNumber = m_jit.jump();
// Finally, handle integers.
isInteger.link(&m_jit);
m_jit.convertInt32ToDouble(jsValueGpr, fpr);
hasUnboxedDouble.link(&m_jit);
hasCalledToNumber.link(&m_jit);
m_gprs.unlock(tempGpr);
}
void NonSpeculativeJIT::valueToInt32(JSValueOperand& operand, GPRReg result)
{
GPRReg jsValueGpr = operand.gpr();
JITCompiler::Jump isInteger = m_jit.branchPtr(MacroAssembler::AboveOrEqual, jsValueGpr, GPRInfo::tagTypeNumberRegister);
// First handle non-integers
silentSpillAllRegisters(result, jsValueGpr);
m_jit.move(jsValueGpr, GPRInfo::argumentGPR1);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
appendCallWithExceptionCheck(dfgConvertJSValueToInt32);
m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
silentFillAllRegisters(result);
JITCompiler::Jump hasCalledToInt32 = m_jit.jump();
// Then handle integers.
isInteger.link(&m_jit);
m_jit.zeroExtend32ToPtr(jsValueGpr, result);
hasCalledToInt32.link(&m_jit);
}
void NonSpeculativeJIT::numberToInt32(FPRReg fpr, GPRReg gpr)
{
JITCompiler::Jump truncatedToInteger = m_jit.branchTruncateDoubleToInt32(fpr, gpr, JITCompiler::BranchIfTruncateSuccessful);
silentSpillAllRegisters(gpr);
m_jit.moveDouble(fpr, FPRInfo::argumentFPR0);
appendCallWithExceptionCheck(toInt32);
m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, gpr);
silentFillAllRegisters(gpr);
truncatedToInteger.link(&m_jit);
}
bool NonSpeculativeJIT::isKnownInteger(NodeIndex nodeIndex)
{
GenerationInfo& info = m_generationInfo[m_jit.graph()[nodeIndex].virtualRegister()];
DataFormat registerFormat = info.registerFormat();
if (registerFormat != DataFormatNone)
return (registerFormat | DataFormatJS) == DataFormatJSInteger;
DataFormat spillFormat = info.spillFormat();
if (spillFormat != DataFormatNone)
return (spillFormat | DataFormatJS) == DataFormatJSInteger;
ASSERT(isConstant(nodeIndex));
return isInt32Constant(nodeIndex);
}
bool NonSpeculativeJIT::isKnownNumeric(NodeIndex nodeIndex)
{
GenerationInfo& info = m_generationInfo[m_jit.graph()[nodeIndex].virtualRegister()];
DataFormat registerFormat = info.registerFormat();
if (registerFormat != DataFormatNone)
return (registerFormat | DataFormatJS) == DataFormatJSInteger
|| (registerFormat | DataFormatJS) == DataFormatJSDouble;
DataFormat spillFormat = info.spillFormat();
if (spillFormat != DataFormatNone)
return (spillFormat | DataFormatJS) == DataFormatJSInteger
|| (spillFormat | DataFormatJS) == DataFormatJSDouble;
ASSERT(isConstant(nodeIndex));
return isInt32Constant(nodeIndex) || isDoubleConstant(nodeIndex);
}
void NonSpeculativeJIT::compile(SpeculationCheckIndexIterator& checkIterator, Node& node)
{
// Check for speculation checks from the corresponding instruction in the
// speculative path. Do not check for NodeIndex 0, since this is checked
// in the outermost compile layer, at the head of the non-speculative path
// (for index 0 we may need to check regardless of whether or not the node
// will be generated, since argument type speculation checks will appear
// as speculation checks at this index).
if (m_compileIndex && checkIterator.hasCheckAtIndex(m_compileIndex))
trackEntry(m_jit.label());
NodeType op = node.op;
switch (op) {
case ConvertThis: {
JSValueOperand thisValue(this, node.child1);
GPRReg thisGPR = thisValue.gpr();
flushRegisters();
GPRResult result(this);
callOperation(operationConvertThis, result.gpr(), thisGPR);
cellResult(result.gpr(), m_compileIndex);
break;
}
case Int32Constant:
case DoubleConstant:
case JSConstant:
initConstantInfo(m_compileIndex);
break;
case GetLocal: {
GPRTemporary result(this);
m_jit.loadPtr(JITCompiler::addressFor(node.local()), result.gpr());
// Like jsValueResult, but don't useChildren - our children are phi nodes,
// and don't represent values within this dataflow with virtual registers.
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(result.gpr(), virtualRegister, SpillOrderJS);
m_generationInfo[virtualRegister].initJSValue(m_compileIndex, node.refCount(), result.gpr(), DataFormatJS);
break;
}
case SetLocal: {
JSValueOperand value(this, node.child1);
m_jit.storePtr(value.gpr(), JITCompiler::addressFor(node.local()));
noResult(m_compileIndex);
break;
}
case BitAnd:
case BitOr:
case BitXor:
if (isInt32Constant(node.child1)) {
IntegerOperand op2(this, node.child2);
GPRTemporary result(this, op2);
bitOp(op, valueOfInt32Constant(node.child1), op2.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex);
} else if (isInt32Constant(node.child2)) {
IntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
bitOp(op, valueOfInt32Constant(node.child2), op1.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex);
} else {
IntegerOperand op1(this, node.child1);
IntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1, op2);
GPRReg reg1 = op1.gpr();
GPRReg reg2 = op2.gpr();
bitOp(op, reg1, reg2, result.gpr());
integerResult(result.gpr(), m_compileIndex);
}
break;
case BitRShift:
case BitLShift:
case BitURShift:
if (isInt32Constant(node.child2)) {
IntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
int shiftAmount = valueOfInt32Constant(node.child2) & 0x1f;
// Shifts by zero should have been optimized out of the graph!
ASSERT(shiftAmount);
shiftOp(op, op1.gpr(), shiftAmount, result.gpr());
integerResult(result.gpr(), m_compileIndex);
} else {
// Do not allow shift amount to be used as the result, MacroAssembler does not permit this.
IntegerOperand op1(this, node.child1);
IntegerOperand op2(this, node.child2);
GPRTemporary result(this, op1);
GPRReg reg1 = op1.gpr();
GPRReg reg2 = op2.gpr();
shiftOp(op, reg1, reg2, result.gpr());
integerResult(result.gpr(), m_compileIndex);
}
break;
case UInt32ToNumber: {
IntegerOperand op1(this, node.child1);
FPRTemporary result(this);
m_jit.convertInt32ToDouble(op1.gpr(), result.fpr());
MacroAssembler::Jump positive = m_jit.branch32(MacroAssembler::GreaterThanOrEqual, op1.gpr(), TrustedImm32(0));
m_jit.addDouble(JITCompiler::AbsoluteAddress(&twoToThe32), result.fpr());
positive.link(&m_jit);
doubleResult(result.fpr(), m_compileIndex);
break;
}
case Int32ToNumber: {
IntegerOperand op1(this, node.child1);
FPRTemporary result(this);
m_jit.convertInt32ToDouble(op1.gpr(), result.fpr());
doubleResult(result.fpr(), m_compileIndex);
break;
}
case NumberToInt32:
case ValueToInt32: {
ASSERT(!isInt32Constant(node.child1));
if (isKnownInteger(node.child1)) {
IntegerOperand op1(this, node.child1);
GPRTemporary result(this, op1);
m_jit.move(op1.gpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex);
break;
}
if (isKnownNumeric(node.child1)) {
DoubleOperand op1(this, node.child1);
GPRTemporary result(this);
numberToInt32(op1.fpr(), result.gpr());
integerResult(result.gpr(), m_compileIndex);
break;
}
// We should have handled this via isKnownInteger, or isKnownNumeric!
ASSERT(op != NumberToInt32);
JSValueOperand op1(this, node.child1);
GPRTemporary result(this, op1);
valueToInt32(op1, result.gpr());
integerResult(result.gpr(), m_compileIndex);
break;
}
case ValueToNumber: {
ASSERT(!isInt32Constant(node.child1));
ASSERT(!isDoubleConstant(node.child1));
if (isKnownInteger(node.child1)) {
IntegerOperand op1(this, node.child1);
FPRTemporary result(this);
m_jit.convertInt32ToDouble(op1.gpr(), result.fpr());
doubleResult(result.fpr(), m_compileIndex);
break;
}
if (isKnownNumeric(node.child1)) {
DoubleOperand op1(this, node.child1);
FPRTemporary result(this, op1);
m_jit.moveDouble(op1.fpr(), result.fpr());
doubleResult(result.fpr(), m_compileIndex);
break;
}
JSValueOperand op1(this, node.child1);
FPRTemporary result(this);
valueToNumber(op1, result.fpr());
doubleResult(result.fpr(), m_compileIndex);
break;
}
case ValueAdd: {
JSValueOperand arg1(this, node.child1);
JSValueOperand arg2(this, node.child2);
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
flushRegisters();
GPRResult result(this);
callOperation(operationValueAdd, result.gpr(), arg1GPR, arg2GPR);
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case ArithAdd: {
DoubleOperand op1(this, node.child1);
DoubleOperand op2(this, node.child2);
FPRTemporary result(this, op1, op2);
FPRReg reg1 = op1.fpr();
FPRReg reg2 = op2.fpr();
m_jit.addDouble(reg1, reg2, result.fpr());
doubleResult(result.fpr(), m_compileIndex);
break;
}
case ArithSub: {
DoubleOperand op1(this, node.child1);
DoubleOperand op2(this, node.child2);
FPRTemporary result(this, op1);
FPRReg reg1 = op1.fpr();
FPRReg reg2 = op2.fpr();
m_jit.subDouble(reg1, reg2, result.fpr());
doubleResult(result.fpr(), m_compileIndex);
break;
}
case ArithMul: {
DoubleOperand op1(this, node.child1);
DoubleOperand op2(this, node.child2);
FPRTemporary result(this, op1, op2);
FPRReg reg1 = op1.fpr();
FPRReg reg2 = op2.fpr();
m_jit.mulDouble(reg1, reg2, result.fpr());
doubleResult(result.fpr(), m_compileIndex);
break;
}
case ArithDiv: {
DoubleOperand op1(this, node.child1);
DoubleOperand op2(this, node.child2);
FPRTemporary result(this, op1);
FPRReg reg1 = op1.fpr();
FPRReg reg2 = op2.fpr();
m_jit.divDouble(reg1, reg2, result.fpr());
doubleResult(result.fpr(), m_compileIndex);
break;
}
case ArithMod: {
DoubleOperand arg1(this, node.child1);
DoubleOperand arg2(this, node.child2);
FPRReg arg1FPR = arg1.fpr();
FPRReg arg2FPR = arg2.fpr();
flushRegisters();
FPRResult result(this);
callOperation(fmod, result.fpr(), arg1FPR, arg2FPR);
doubleResult(result.fpr(), m_compileIndex);
break;
}
case LogicalNot: {
JSValueOperand arg1(this, node.child1);
GPRReg arg1GPR = arg1.gpr();
flushRegisters();
GPRResult result(this);
callOperation(dfgConvertJSValueToBoolean, result.gpr(), arg1GPR);
// If we add a DataFormatBool, we should use it here.
m_jit.xor32(TrustedImm32(ValueTrue), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case CompareLess: {
JSValueOperand arg1(this, node.child1);
JSValueOperand arg2(this, node.child2);
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
flushRegisters();
GPRResult result(this);
callOperation(operationCompareLess, result.gpr(), arg1GPR, arg2GPR);
m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case CompareLessEq: {
JSValueOperand arg1(this, node.child1);
JSValueOperand arg2(this, node.child2);
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
flushRegisters();
GPRResult result(this);
callOperation(operationCompareLessEq, result.gpr(), arg1GPR, arg2GPR);
m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case CompareEq: {
JSValueOperand arg1(this, node.child1);
JSValueOperand arg2(this, node.child2);
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
flushRegisters();
GPRResult result(this);
callOperation(operationCompareEq, result.gpr(), arg1GPR, arg2GPR);
m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case CompareStrictEq: {
JSValueOperand arg1(this, node.child1);
JSValueOperand arg2(this, node.child2);
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
flushRegisters();
GPRResult result(this);
callOperation(operationCompareStrictEq, result.gpr(), arg1GPR, arg2GPR);
m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case GetByVal: {
JSValueOperand arg1(this, node.child1);
JSValueOperand arg2(this, node.child2);
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
flushRegisters();
GPRResult result(this);
callOperation(operationGetByVal, result.gpr(), arg1GPR, arg2GPR);
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case PutByVal:
case PutByValAlias: {
JSValueOperand arg1(this, node.child1);
JSValueOperand arg2(this, node.child2);
JSValueOperand arg3(this, node.child3);
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
GPRReg arg3GPR = arg3.gpr();
flushRegisters();
GPRResult result(this);
callOperation(m_jit.codeBlock()->isStrictMode() ? operationPutByValStrict : operationPutByValNonStrict, arg1GPR, arg2GPR, arg3GPR);
noResult(m_compileIndex);
break;
}
case GetById: {
JSValueOperand base(this, node.child1);
GPRReg baseGPR = base.gpr();
flushRegisters();
GPRResult result(this);
callOperation(operationGetById, result.gpr(), baseGPR, identifier(node.identifierNumber()));
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case PutById: {
JSValueOperand base(this, node.child1);
JSValueOperand value(this, node.child2);
GPRReg valueGPR = value.gpr();
GPRReg baseGPR = base.gpr();
flushRegisters();
callOperation(m_jit.codeBlock()->isStrictMode() ? operationPutByIdStrict : operationPutByIdNonStrict, valueGPR, baseGPR, identifier(node.identifierNumber()));
noResult(m_compileIndex);
break;
}
case PutByIdDirect: {
JSValueOperand base(this, node.child1);
JSValueOperand value(this, node.child2);
GPRReg valueGPR = value.gpr();
GPRReg baseGPR = base.gpr();
flushRegisters();
callOperation(m_jit.codeBlock()->isStrictMode() ? operationPutByIdDirectStrict : operationPutByIdDirectNonStrict, valueGPR, baseGPR, identifier(node.identifierNumber()));
noResult(m_compileIndex);
break;
}
case GetGlobalVar: {
GPRTemporary result(this);
JSVariableObject* globalObject = m_jit.codeBlock()->globalObject();
m_jit.loadPtr(globalObject->addressOfRegisters(), result.gpr());
m_jit.loadPtr(JITCompiler::addressForGlobalVar(result.gpr(), node.varNumber()), result.gpr());
jsValueResult(result.gpr(), m_compileIndex);
break;
}
case PutGlobalVar: {
JSValueOperand value(this, node.child1);
GPRTemporary temp(this);
JSVariableObject* globalObject = m_jit.codeBlock()->globalObject();
m_jit.loadPtr(globalObject->addressOfRegisters(), temp.gpr());
m_jit.storePtr(value.gpr(), JITCompiler::addressForGlobalVar(temp.gpr(), node.varNumber()));
noResult(m_compileIndex);
break;
}
case DFG::Jump: {
BlockIndex taken = m_jit.graph().blockIndexForBytecodeOffset(node.takenBytecodeOffset());
if (taken != (m_block + 1))
addBranch(m_jit.jump(), taken);
noResult(m_compileIndex);
break;
}
case Branch: {
JSValueOperand value(this, node.child1);
GPRReg valueGPR = value.gpr();
flushRegisters();
GPRResult result(this);
callOperation(dfgConvertJSValueToBoolean, result.gpr(), valueGPR);
BlockIndex taken = m_jit.graph().blockIndexForBytecodeOffset(node.takenBytecodeOffset());
BlockIndex notTaken = m_jit.graph().blockIndexForBytecodeOffset(node.notTakenBytecodeOffset());
addBranch(m_jit.branchTest8(MacroAssembler::NonZero, result.gpr()), taken);
if (notTaken != (m_block + 1))
addBranch(m_jit.jump(), notTaken);
noResult(m_compileIndex);
break;
}
case Return: {
ASSERT(GPRInfo::callFrameRegister != GPRInfo::regT1);
ASSERT(GPRInfo::regT1 != GPRInfo::returnValueGPR);
ASSERT(GPRInfo::returnValueGPR != GPRInfo::callFrameRegister);
#if DFG_SUCCESS_STATS
static SamplingCounter counter("NonSpeculativeJIT");
m_jit.emitCount(counter);
#endif
// Return the result in returnValueGPR.
JSValueOperand op1(this, node.child1);
m_jit.move(op1.gpr(), GPRInfo::returnValueGPR);
// Grab the return address.
m_jit.emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, GPRInfo::regT1);
// Restore our caller's "r".
m_jit.emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, GPRInfo::callFrameRegister);
// Return.
m_jit.restoreReturnAddressBeforeReturn(GPRInfo::regT1);
m_jit.ret();
noResult(m_compileIndex);
break;
}
case Phi:
ASSERT_NOT_REACHED();
}
if (node.hasResult() && node.mustGenerate())
use(m_compileIndex);
}
void NonSpeculativeJIT::compile(SpeculationCheckIndexIterator& checkIterator, BasicBlock& block)
{
ASSERT(m_compileIndex == block.begin);
m_blockHeads[m_block] = m_jit.label();
#if DFG_JIT_BREAK_ON_EVERY_BLOCK
m_jit.breakpoint();
#endif
for (; m_compileIndex < block.end; ++m_compileIndex) {
Node& node = m_jit.graph()[m_compileIndex];
if (!node.shouldGenerate())
continue;
#if DFG_DEBUG_VERBOSE
fprintf(stderr, "NonSpeculativeJIT generating Node @%d at code offset 0x%x\n", (int)m_compileIndex, m_jit.debugOffset());
#endif
#if DFG_JIT_BREAK_ON_EVERY_NODE
m_jit.breakpoint();
#endif
checkConsistency();
compile(checkIterator, node);
checkConsistency();
}
}
void NonSpeculativeJIT::compile(SpeculationCheckIndexIterator& checkIterator)
{
// Check for speculation checks added at function entry (checking argument types).
if (checkIterator.hasCheckAtIndex(m_compileIndex))
trackEntry(m_jit.label());
ASSERT(!m_compileIndex);
for (m_block = 0; m_block < m_jit.graph().m_blocks.size(); ++m_block)
compile(checkIterator, *m_jit.graph().m_blocks[m_block]);
linkBranches();
}
} } // namespace JSC::DFG
#endif