| <!DOCTYPE html> |
| <html> |
| <head> |
| <title> |
| Test Tail Time for IIRFilter |
| </title> |
| <script src="../../imported/w3c/web-platform-tests/resources/testharness.js"></script> |
| <script src="../../resources/testharnessreport.js"></script> |
| <script src="../resources/audit-util.js"></script> |
| <script src="../resources/audit.js"></script> |
| </head> |
| <body> |
| <script id="layout-test-code"> |
| let audit = Audit.createTaskRunner(); |
| let renderQuantumFrames = 128; |
| |
| // Must be a power of two to eliminate round-off differences between thsi |
| // JS code and the WebAudio implementation. Otherwise, the sample rate is |
| // arbitrary. |
| let sampleRate = 16384; |
| |
| // Fairly arbitrary, but should be long enough so that the node propagates |
| // silence before the end of the offline context. |
| let renderDuration = 1; |
| |
| |
| audit.define('1-pole tail', (task, should) => { |
| let pole = 0.99; |
| let IIROptions = {feedforward: [1], feedback: [1, -pole]}; |
| // For the given filter, we can actually compute where the tail |
| // begins. The impulse response for the 1-pole filter is h(n) = |
| // a^n, where a = 0.9. The tail here starts when a^n < eps = |
| // 1/32768. So n > log(eps)/log(a), or 98.7. Round that up to the |
| // nearest render quantum frames. |
| let tail = Math.ceil(Math.log(1 / 32768) / Math.log(pole)); |
| |
| runTest(should, IIROptions, tail, '1-pole').then(() => task.done()); |
| }); |
| |
| audit.define('2 real pole test', (task, should) => { |
| // Simple example of a 2-pole IIR filter where both poles are real. |
| // We arbitrarily select a pole at 9.99 and one at -0.5. The IIRFilter |
| // is then |
| // 1 / ((z-0.99) * (z + 0.5)) |
| // = 1/(z^2-0.49z-0.495) |
| // = z^-2/(1-0.49/z-0.495/z^2) |
| let IIROptions = {feedforward: [0, 0, 1], feedback: [1, -0.49, -0.495]}; |
| |
| // For this particular filter, we can analytically compute the impulse |
| // response using partical fractios: |
| // |
| // 1 / ((z-0.99) * (z + 0.5)) |
| // = 1/(-0.5-0.99)/(z + 0.5) - 1/(-0.5-0.99)/(z - 0.99) |
| // = 1/1.49*(1/(z-0.99) - 1/(z+0.5)) |
| // = 1/1.49*[1/z*sum(.99^n/z^n,n,0,inf) |
| // - 1/z*sum((-0.5)^n/z^n,n,0,inf)] |
| // = 1/1.49/z*sum((0.99^n-(-0.5)^n)/z^n) |
| // |
| // So the tail begins when 1/1.49*(0.99^n-(-0.5)^n) < 1/32768. This can |
| // be solved numerically to give n = 995. |
| let tail = 995; |
| tail = renderQuantumFrames * Math.ceil(tail / renderQuantumFrames); |
| |
| runTest(should, IIROptions, tail, '2 real poles') |
| .then(() => task.done()); |
| }); |
| |
| audit.define('2 complex poles', (task, should) => { |
| // Simple example of a 2-pole IIR filter where both poles are complex |
| // conjugates. In this case, the poles will be r*exp(+/-i*theta) where |
| // r = 0.99 and theta = 0.01. The filter is then |
| // |
| // 1/(z^2-2*r*cos(theta) + r^2) |
| // = z^(-2)/(1-2*r*cos(theta)/z + r^2/z^2) |
| let r = 0.99; |
| let theta = 0.01; |
| let IIROptions = { |
| feedforward: [0, 0, 1], |
| feedback: [1, -2 * r * Math.cos(theta), r * r] |
| }; |
| |
| // Again, we can use partial fractions as for 2 real pole case to get an |
| // analytically solution for the impulse response. For simplicity, let |
| // p1 = r*exp(i*theta), p2 = r*exp(-i*theta). Then: |
| // |
| // 1/(z^2-2*r*cos(theta) + r^2) |
| // = 1/(z-p1)/(z-p2) |
| // = 1/(p2-p1)*[1/(z-p2) - 1/(z-p1)] |
| // = 1/(p2-p1)*[1/z*sum(p2^n/z^n) - 1/z*sum(p1^n/z^n)] |
| // = 1/(p2-p1)/z*sum((p2^n-p1^n)/z^n) |
| // |
| // So the tail begins when |
| // 1/32768 > |1/(p2-p1)*(p2^n-p1^n)| |
| // = 1/(r*sin(theta))*|r^n*(exp(-i*theta*n)-exp(i*theta*n))| |
| // = 1/(2*r*sin(theta))*(2*r^n*|sin(theta*n)|); |
| // = r^(n-1)*|sin(theta*n)|/sin(theta) |
| // |
| // This can be solved numerically to for n; |
| let tail = 1474.256; |
| tail = renderQuantumFrames * Math.ceil(tail / renderQuantumFrames); |
| |
| runTest(should, IIROptions, tail, '2 complex poles') |
| .then(() => task.done()); |
| }); |
| |
| audit.define('repeated poles', (task, should) => { |
| // Two repeated roots. Let p be the repeated pole. Then the filter is |
| // |
| // 1/(z-p)^2 |
| // = z^(-2)/(1-p/z)^2 |
| // = z^(-2)/(1-2*p/z+p*p/z^2) |
| |
| let pole = 0.99; |
| let IIROptions = { |
| feedforward: [0, 0, 1], |
| feedback: [1, -2 * pole, pole * pole] |
| }; |
| |
| // We can analytically compute the impulse response of this filter to be |
| // |
| // 1/z^2*sum(p^n*(n+1)/z^n, n, 0, inf) |
| // = sum(p^n*(n+1)/z^(n+2), n, 0, inf) |
| // = 1/p^2*sum((p^k*(k-1))/z^k,k,2,inf)) |
| // |
| // Therefore the tail starts when p^(k-2)*(k-1) < 1/32768. We can solve |
| // this numerically to be 1781.213; |
| |
| let tail = 1781.213; |
| runTest(should, IIROptions, tail, '2 repeated poles') |
| .then(() => task.done()); |
| |
| }); |
| |
| audit.define('4-th order', (task, should) => { |
| // Test consistency of tail times between a 4-th order direct IIR filter |
| // and the equivalent cascade of second-order sections. The first |
| // channel of the output is the cascaded biquad, and the second channel |
| // is the 4-th order equivalent. |
| let context = |
| new OfflineAudioContext(2, renderDuration * sampleRate, sampleRate); |
| |
| let src = new AudioBufferSourceNode( |
| context, {buffer: createImpulseBuffer(context, 1)}); |
| |
| // This is a 4-th order lowpass elliptic filter designed using |
| // http://rtoy.github.io/webaudio-hacks/more/filter-design/filter-design.html. |
| // The sample rate is 16384 Hz with a passband at 3600 Hz with a 0.25 dB |
| // attenuation, and a stopband at 4800 Hz, with a stopband attenuation |
| // of 30 dB. (Nothing really special except that this gives a 4-th order |
| // filter). |
| |
| let f0 = context.createIIRFilter( |
| [0.6410686464424084, 0.2607836369670137, 0.6410686464424084], |
| [1, -0.2287413068432929, 0.7716622366951231]); |
| let f1 = context.createIIRFilter( |
| [0.21283904239866536, 0.3184888523034876, 0.21283904239866536], |
| [1, -0.4686913542990081, 0.21285829139982618]); |
| |
| // The poles for f0 are 0.1143706534216465 +/- 0.8709658950447078*i or |
| // 0.8784430753868592*%e^(+/-1.440228658066206*%i), |
| // |
| // The poles for f1 are 0.2343456771495041 +/- 0.3974171548903829*i or |
| // 0.4613656807780854*%e^(+/-1.038005727602151*%i. |
| // |
| // Thus, the tail time for f0 is approximately 80, but this is an |
| // approximation since we didn't include the affect of the numerator. |
| // Round this up to the next render to get an actual tail time of 128. |
| // |
| // Similarly, for f0, the tail time is 14.3. Thus, the actual tail time |
| // is alos 128 for this filter. |
| // |
| // Since these biquads are cascaded, the total tail time for both is the |
| // sum or 256 frames. However, the tail actually ends two render quanta |
| // after this for a total of 512 frames. |
| |
| let biquadTailEnd = 512; |
| |
| // The equivalent 4-th order filter created multiplying the f0 and f1 |
| // coefficients together appropriately. |
| let f = context.createIIRFilter( |
| [ |
| 0.136444436820611, 0.259678157018493, 0.355945554878375, |
| 0.259678157018493, 0.136444436820611 |
| ], |
| [ |
| 1.000000000000000, -0.697432661142301, 1.091729600983457, |
| -0.410360902525266, 0.164254705240692 |
| ]); |
| |
| let merger = context.createChannelMerger(2); |
| merger.connect(context.destination); |
| |
| src.connect(f0).connect(f1).connect(merger, 0, 0); |
| src.connect(f).connect(merger, 0, 1); |
| |
| src.start(); |
| |
| context.startRendering() |
| .then(renderedBuffer => { |
| // c0 = cascaded biquads |
| // c1 = 4-th order filter |
| let c0 = renderedBuffer.getChannelData(0); |
| let c1 = renderedBuffer.getChannelData(1); |
| |
| // Sanity check: The two filters should have the same output |
| // within some rounding error. |
| should( |
| c0.slice(0, biquadTailEnd), |
| 'Filter outputs[0:' + (biquadTailEnd - 1) + ']') |
| .beCloseToArray( |
| c1.slice(0, biquadTailEnd), |
| {absoluteThreshold: 1.4902e-8}); |
| should( |
| c0.slice(biquadTailEnd), |
| 'Filter outputs[' + biquadTailEnd + ':]') |
| .beEqualToArray(c1.slice(biquadTailEnd)); |
| |
| // Verify that after the tail time, the outputs are zero, and not |
| // before for both the biquads and 4-th order filters. |
| should( |
| c0.slice(0, biquadTailEnd), |
| 'cascaded biquad output[0:' + (biquadTailEnd - 1) + ']') |
| .notBeConstantValueOf(0); |
| should( |
| c0.slice(biquadTailEnd), |
| 'cascaded biquad output[' + biquadTailEnd + ':]') |
| .beConstantValueOf(0); |
| |
| should( |
| c1.slice(0, biquadTailEnd), |
| '4-th order output[0:' + (biquadTailEnd - 1) + ']') |
| .notBeConstantValueOf(0); |
| should( |
| c1.slice(biquadTailEnd), |
| '4-th order output[' + biquadTailEnd + ':]') |
| .beConstantValueOf(0); |
| }) |
| .then(() => task.done()); |
| }); |
| |
| function runTest(should, IIROptions, tailFrames, prefix) { |
| let context = |
| new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate); |
| |
| let src = new AudioBufferSourceNode( |
| context, {buffer: createImpulseBuffer(context, 1)}); |
| |
| let iir = new IIRFilterNode(context, IIROptions); |
| |
| src.connect(iir).connect(context.destination); |
| |
| src.start(); |
| |
| return context.startRendering().then(renderedBuffer => { |
| let audio = renderedBuffer.getChannelData(0); |
| |
| // Round up the tailFrames to the nearest render quantum. |
| let tailQuantum = |
| renderQuantumFrames * Math.ceil(tailFrames / renderQuantumFrames); |
| let tailEndFrame = tailQuantum + 2 * renderQuantumFrames; |
| |
| should(tailEndFrame, prefix + ': tail end frame') |
| .beLessThanOrEqualTo(context.length); |
| |
| // Clamp to the render duration so we don't go off the end. |
| tailEndFrame = Math.min(tailEndFrame, context.length); |
| |
| for (let k = 0; k < tailEndFrame; k += renderQuantumFrames) { |
| should( |
| audio.slice(k, k + renderQuantumFrames), |
| prefix + ': output[' + k + ':' + (k + renderQuantumFrames - 1) + |
| ']') |
| .notBeConstantValueOf(0); |
| } |
| |
| if (tailEndFrame < context.length) { |
| // All frames after should be zero because we're propagating |
| // silence. |
| should( |
| audio.slice(tailEndFrame), |
| 'output[' + tailEndFrame + ':' + (context.length - 1) + ']') |
| .beConstantValueOf(0); |
| } |
| }); |
| } |
| |
| audit.run(); |
| </script> |
| </body> |
| </html> |