blob: 974b0cfb6441cb919e9e87e75f754a4f71f96430 [file] [log] [blame]
/*
* Copyright (C) 2013-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(DFG_JIT)
#include "DFGAbstractValue.h"
#include "DFGGraph.h"
#include "DFGNode.h"
#include "DFGNodeFlowProjection.h"
#include "DFGPhiChildren.h"
namespace JSC { namespace DFG {
template<typename AbstractStateType>
class AbstractInterpreter {
public:
AbstractInterpreter(Graph&, AbstractStateType&);
~AbstractInterpreter();
ALWAYS_INLINE AbstractValue& forNode(NodeFlowProjection node)
{
return m_state.forNode(node);
}
ALWAYS_INLINE AbstractValue& forNode(Edge edge)
{
return forNode(edge.node());
}
ALWAYS_INLINE void clearForNode(NodeFlowProjection node)
{
m_state.clearForNode(node);
}
ALWAYS_INLINE void clearForNode(Edge edge)
{
clearForNode(edge.node());
}
template<typename... Arguments>
ALWAYS_INLINE void setForNode(NodeFlowProjection node, Arguments&&... arguments)
{
m_state.setForNode(node, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setForNode(Edge edge, Arguments&&... arguments)
{
setForNode(edge.node(), std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setTypeForNode(NodeFlowProjection node, Arguments&&... arguments)
{
m_state.setTypeForNode(node, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setTypeForNode(Edge edge, Arguments&&... arguments)
{
setTypeForNode(edge.node(), std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setNonCellTypeForNode(NodeFlowProjection node, Arguments&&... arguments)
{
m_state.setNonCellTypeForNode(node, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setNonCellTypeForNode(Edge edge, Arguments&&... arguments)
{
setNonCellTypeForNode(edge.node(), std::forward<Arguments>(arguments)...);
}
ALWAYS_INLINE void makeBytecodeTopForNode(NodeFlowProjection node)
{
m_state.makeBytecodeTopForNode(node);
}
ALWAYS_INLINE void makeBytecodeTopForNode(Edge edge)
{
makeBytecodeTopForNode(edge.node());
}
ALWAYS_INLINE void makeHeapTopForNode(NodeFlowProjection node)
{
m_state.makeHeapTopForNode(node);
}
ALWAYS_INLINE void makeHeapTopForNode(Edge edge)
{
makeHeapTopForNode(edge.node());
}
bool needsTypeCheck(Node* node, SpeculatedType typesPassedThrough)
{
return !forNode(node).isType(typesPassedThrough);
}
bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough)
{
return needsTypeCheck(edge.node(), typesPassedThrough);
}
bool needsTypeCheck(Edge edge)
{
return needsTypeCheck(edge, typeFilterFor(edge.useKind()));
}
// Abstractly executes the given node. The new abstract state is stored into an
// abstract stack stored in *this. Loads of local variables (that span
// basic blocks) interrogate the basic block's notion of the state at the head.
// Stores to local variables are handled in endBasicBlock(). This returns true
// if execution should continue past this node. Notably, it will return true
// for block terminals, so long as those terminals are not Return or Unreachable.
//
// This is guaranteed to be equivalent to doing:
//
// state.startExecuting()
// state.executeEdges(node);
// result = state.executeEffects(index);
bool execute(unsigned indexInBlock);
bool execute(Node*);
// Indicate the start of execution of a node. It resets any state in the node
// that is progressively built up by executeEdges() and executeEffects().
void startExecuting();
// Abstractly execute the edges of the given node. This runs filterEdgeByUse()
// on all edges of the node. You can skip this step, if you have already used
// filterEdgeByUse() (or some equivalent) on each edge.
void executeEdges(Node*);
void executeKnownEdgeTypes(Node*);
ALWAYS_INLINE void filterEdgeByUse(Edge& edge)
{
UseKind useKind = edge.useKind();
if (useKind == UntypedUse)
return;
filterByType(edge, typeFilterFor(useKind));
}
// Abstractly execute the effects of the given node. This changes the abstract
// state assuming that edges have already been filtered.
bool executeEffects(unsigned indexInBlock);
bool executeEffects(unsigned clobberLimit, Node*);
void dump(PrintStream& out) const;
void dump(PrintStream& out);
template<typename T>
FiltrationResult filter(T node, const RegisteredStructureSet& set, SpeculatedType admittedTypes = SpecNone)
{
return filter(forNode(node), set, admittedTypes);
}
template<typename T>
FiltrationResult filterArrayModes(T node, ArrayModes arrayModes)
{
return filterArrayModes(forNode(node), arrayModes);
}
template<typename T>
FiltrationResult filter(T node, SpeculatedType type)
{
return filter(forNode(node), type);
}
template<typename T>
FiltrationResult filterByValue(T node, FrozenValue value)
{
return filterByValue(forNode(node), value);
}
template<typename T>
FiltrationResult filterClassInfo(T node, const ClassInfo* classInfo)
{
return filterClassInfo(forNode(node), classInfo);
}
FiltrationResult filter(AbstractValue&, const RegisteredStructureSet&, SpeculatedType admittedTypes = SpecNone);
FiltrationResult filterArrayModes(AbstractValue&, ArrayModes);
FiltrationResult filter(AbstractValue&, SpeculatedType);
FiltrationResult filterByValue(AbstractValue&, FrozenValue);
FiltrationResult filterClassInfo(AbstractValue&, const ClassInfo*);
PhiChildren* phiChildren() { return m_phiChildren.get(); }
void filterICStatus(Node*);
private:
void clobberWorld();
void didFoldClobberWorld();
bool handleConstantBinaryBitwiseOp(Node*);
template<typename Functor>
void forAllValues(unsigned indexInBlock, Functor&);
void clobberStructures();
void didFoldClobberStructures();
void observeTransition(unsigned indexInBlock, RegisteredStructure from, RegisteredStructure to);
void observeTransitions(unsigned indexInBlock, const TransitionVector&);
enum BooleanResult {
UnknownBooleanResult,
DefinitelyFalse,
DefinitelyTrue
};
BooleanResult booleanResult(Node*, AbstractValue&);
void setBuiltInConstant(Node* node, FrozenValue value)
{
AbstractValue& abstractValue = forNode(node);
abstractValue.set(m_graph, value, m_state.structureClobberState());
abstractValue.fixTypeForRepresentation(m_graph, node);
}
void setConstant(Node* node, FrozenValue value)
{
setBuiltInConstant(node, value);
m_state.setFoundConstants(true);
}
ALWAYS_INLINE void filterByType(Edge& edge, SpeculatedType type);
void verifyEdge(Node*, Edge);
void verifyEdges(Node*);
void executeDoubleUnaryOpEffects(Node*, double(*equivalentFunction)(double));
bool handleConstantDivOp(Node*);
CodeBlock* m_codeBlock;
Graph& m_graph;
VM& m_vm;
AbstractStateType& m_state;
std::unique_ptr<PhiChildren> m_phiChildren;
};
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)