| // |
| // Copyright 2016 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| // FramebufferVk.cpp: |
| // Implements the class methods for FramebufferVk. |
| // |
| |
| #include "libANGLE/renderer/vulkan/FramebufferVk.h" |
| |
| #include <vulkan/vulkan.h> |
| #include <array> |
| |
| #include "common/debug.h" |
| #include "libANGLE/Context.h" |
| #include "libANGLE/Display.h" |
| #include "libANGLE/formatutils.h" |
| #include "libANGLE/renderer/renderer_utils.h" |
| #include "libANGLE/renderer/vulkan/CommandGraph.h" |
| #include "libANGLE/renderer/vulkan/ContextVk.h" |
| #include "libANGLE/renderer/vulkan/DisplayVk.h" |
| #include "libANGLE/renderer/vulkan/RenderTargetVk.h" |
| #include "libANGLE/renderer/vulkan/RendererVk.h" |
| #include "libANGLE/renderer/vulkan/SurfaceVk.h" |
| #include "libANGLE/renderer/vulkan/vk_format_utils.h" |
| #include "libANGLE/trace.h" |
| |
| namespace rx |
| { |
| |
| namespace |
| { |
| // The value to assign an alpha channel that's emulated. The type is unsigned int, though it will |
| // automatically convert to the actual data type. |
| constexpr unsigned int kEmulatedAlphaValue = 1; |
| |
| constexpr size_t kMinReadPixelsBufferSize = 128000; |
| |
| // Alignment value to accommodate the largest known, for now, uncompressed Vulkan format |
| // VK_FORMAT_R64G64B64A64_SFLOAT, while supporting 3-component types such as |
| // VK_FORMAT_R16G16B16_SFLOAT. |
| constexpr size_t kReadPixelsBufferAlignment = 32 * 3; |
| |
| // Clear values are only used when loadOp=Clear is set in clearWithRenderPassOp. When starting a |
| // new render pass, the clear value is set to an unlikely value (bright pink) to stand out better |
| // in case of a bug. |
| constexpr VkClearValue kUninitializedClearValue = {{{0.95, 0.05, 0.95, 0.95}}}; |
| |
| const gl::InternalFormat &GetReadAttachmentInfo(const gl::Context *context, |
| RenderTargetVk *renderTarget) |
| { |
| GLenum implFormat = |
| renderTarget->getImageFormat().imageFormat().fboImplementationInternalFormat; |
| return gl::GetSizedInternalFormatInfo(implFormat); |
| } |
| |
| bool HasSrcBlitFeature(RendererVk *renderer, RenderTargetVk *srcRenderTarget) |
| { |
| const VkFormat srcFormat = srcRenderTarget->getImageFormat().vkImageFormat; |
| return renderer->hasImageFormatFeatureBits(srcFormat, VK_FORMAT_FEATURE_BLIT_SRC_BIT); |
| } |
| |
| bool HasDstBlitFeature(RendererVk *renderer, RenderTargetVk *dstRenderTarget) |
| { |
| const VkFormat dstFormat = dstRenderTarget->getImageFormat().vkImageFormat; |
| return renderer->hasImageFormatFeatureBits(dstFormat, VK_FORMAT_FEATURE_BLIT_DST_BIT); |
| } |
| |
| // Returns false if destination has any channel the source doesn't. This means that channel was |
| // emulated and using the Vulkan blit command would overwrite that emulated channel. |
| bool areSrcAndDstColorChannelsBlitCompatible(RenderTargetVk *srcRenderTarget, |
| RenderTargetVk *dstRenderTarget) |
| { |
| const angle::Format &srcFormat = srcRenderTarget->getImageFormat().angleFormat(); |
| const angle::Format &dstFormat = dstRenderTarget->getImageFormat().angleFormat(); |
| |
| // Luminance/alpha formats are not renderable, so they can't have ended up in a framebuffer to |
| // participate in a blit. |
| ASSERT(!dstFormat.isLUMA() && !srcFormat.isLUMA()); |
| |
| // All color formats have the red channel. |
| ASSERT(dstFormat.redBits > 0 && srcFormat.redBits > 0); |
| |
| return (dstFormat.greenBits > 0 || srcFormat.greenBits == 0) && |
| (dstFormat.blueBits > 0 || srcFormat.blueBits == 0) && |
| (dstFormat.alphaBits > 0 || srcFormat.alphaBits == 0); |
| } |
| |
| bool areSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk *srcRenderTarget, |
| RenderTargetVk *dstRenderTarget) |
| { |
| const angle::Format &srcFormat = srcRenderTarget->getImageFormat().angleFormat(); |
| const angle::Format &dstFormat = dstRenderTarget->getImageFormat().angleFormat(); |
| |
| return (dstFormat.depthBits > 0 || srcFormat.depthBits == 0) && |
| (dstFormat.stencilBits > 0 || srcFormat.stencilBits == 0); |
| } |
| |
| // Special rules apply to VkBufferImageCopy with depth/stencil. The components are tightly packed |
| // into a depth or stencil section of the destination buffer. See the spec: |
| // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkBufferImageCopy.html |
| const angle::Format &GetDepthStencilImageToBufferFormat(const angle::Format &imageFormat, |
| VkImageAspectFlagBits copyAspect) |
| { |
| if (copyAspect == VK_IMAGE_ASPECT_STENCIL_BIT) |
| { |
| ASSERT(imageFormat.id == angle::FormatID::D24_UNORM_S8_UINT || |
| imageFormat.id == angle::FormatID::D32_FLOAT_S8X24_UINT || |
| imageFormat.id == angle::FormatID::S8_UINT); |
| return angle::Format::Get(angle::FormatID::S8_UINT); |
| } |
| |
| ASSERT(copyAspect == VK_IMAGE_ASPECT_DEPTH_BIT); |
| |
| switch (imageFormat.id) |
| { |
| case angle::FormatID::D16_UNORM: |
| return imageFormat; |
| case angle::FormatID::D24_UNORM_X8_UINT: |
| return imageFormat; |
| case angle::FormatID::D24_UNORM_S8_UINT: |
| return angle::Format::Get(angle::FormatID::D24_UNORM_X8_UINT); |
| case angle::FormatID::D32_FLOAT: |
| return imageFormat; |
| case angle::FormatID::D32_FLOAT_S8X24_UINT: |
| return angle::Format::Get(angle::FormatID::D32_FLOAT); |
| default: |
| UNREACHABLE(); |
| return imageFormat; |
| } |
| } |
| |
| void SetEmulatedAlphaValue(const vk::Format &format, VkClearColorValue *value) |
| { |
| if (format.vkFormatIsInt) |
| { |
| if (format.vkFormatIsUnsigned) |
| { |
| value->uint32[3] = kEmulatedAlphaValue; |
| } |
| else |
| { |
| value->int32[3] = kEmulatedAlphaValue; |
| } |
| } |
| else |
| { |
| value->float32[3] = kEmulatedAlphaValue; |
| } |
| } |
| } // anonymous namespace |
| |
| // static |
| FramebufferVk *FramebufferVk::CreateUserFBO(RendererVk *renderer, const gl::FramebufferState &state) |
| { |
| return new FramebufferVk(renderer, state, nullptr); |
| } |
| |
| // static |
| FramebufferVk *FramebufferVk::CreateDefaultFBO(RendererVk *renderer, |
| const gl::FramebufferState &state, |
| WindowSurfaceVk *backbuffer) |
| { |
| return new FramebufferVk(renderer, state, backbuffer); |
| } |
| |
| FramebufferVk::FramebufferVk(RendererVk *renderer, |
| const gl::FramebufferState &state, |
| WindowSurfaceVk *backbuffer) |
| : FramebufferImpl(state), mBackbuffer(backbuffer), mActiveColorComponents(0) |
| { |
| mReadPixelBuffer.init(renderer, VK_BUFFER_USAGE_TRANSFER_DST_BIT, kReadPixelsBufferAlignment, |
| kMinReadPixelsBufferSize, true); |
| } |
| |
| FramebufferVk::~FramebufferVk() = default; |
| |
| void FramebufferVk::destroy(const gl::Context *context) |
| { |
| ContextVk *contextVk = vk::GetImpl(context); |
| mFramebuffer.release(contextVk); |
| |
| mReadPixelBuffer.release(contextVk); |
| } |
| |
| angle::Result FramebufferVk::discard(const gl::Context *context, |
| size_t count, |
| const GLenum *attachments) |
| { |
| return invalidate(context, count, attachments); |
| } |
| |
| angle::Result FramebufferVk::invalidate(const gl::Context *context, |
| size_t count, |
| const GLenum *attachments) |
| { |
| mFramebuffer.updateQueueSerial(vk::GetImpl(context)->getCurrentQueueSerial()); |
| |
| if (mFramebuffer.valid() && mFramebuffer.hasStartedRenderPass()) |
| { |
| invalidateImpl(vk::GetImpl(context), count, attachments); |
| } |
| |
| return angle::Result::Continue; |
| } |
| |
| angle::Result FramebufferVk::invalidateSub(const gl::Context *context, |
| size_t count, |
| const GLenum *attachments, |
| const gl::Rectangle &area) |
| { |
| mFramebuffer.updateQueueSerial(vk::GetImpl(context)->getCurrentQueueSerial()); |
| |
| // RenderPass' storeOp cannot be made conditional to a specific region, so we only apply this |
| // hint if the requested area encompasses the render area. |
| if (mFramebuffer.valid() && mFramebuffer.hasStartedRenderPass() && |
| area.encloses(mFramebuffer.getRenderPassRenderArea())) |
| { |
| invalidateImpl(vk::GetImpl(context), count, attachments); |
| } |
| |
| return angle::Result::Continue; |
| } |
| |
| angle::Result FramebufferVk::clear(const gl::Context *context, GLbitfield mask) |
| { |
| ContextVk *contextVk = vk::GetImpl(context); |
| |
| bool clearColor = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_COLOR_BUFFER_BIT)); |
| bool clearDepth = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_DEPTH_BUFFER_BIT)); |
| bool clearStencil = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_STENCIL_BUFFER_BIT)); |
| gl::DrawBufferMask clearColorBuffers; |
| if (clearColor) |
| { |
| clearColorBuffers = mState.getEnabledDrawBuffers(); |
| } |
| |
| const VkClearColorValue &clearColorValue = contextVk->getClearColorValue().color; |
| const VkClearDepthStencilValue &clearDepthStencilValue = |
| contextVk->getClearDepthStencilValue().depthStencil; |
| |
| return clearImpl(context, clearColorBuffers, clearDepth, clearStencil, clearColorValue, |
| clearDepthStencilValue); |
| } |
| |
| angle::Result FramebufferVk::clearImpl(const gl::Context *context, |
| gl::DrawBufferMask clearColorBuffers, |
| bool clearDepth, |
| bool clearStencil, |
| const VkClearColorValue &clearColorValue, |
| const VkClearDepthStencilValue &clearDepthStencilValue) |
| { |
| ContextVk *contextVk = vk::GetImpl(context); |
| |
| const gl::Rectangle scissoredRenderArea = getScissoredRenderArea(contextVk); |
| |
| // Discard clear altogether if scissor has 0 width or height. |
| if (scissoredRenderArea.width == 0 || scissoredRenderArea.height == 0) |
| { |
| return angle::Result::Continue; |
| } |
| |
| mFramebuffer.updateQueueSerial(contextVk->getCurrentQueueSerial()); |
| |
| // This function assumes that only enabled attachments are asked to be cleared. |
| ASSERT((clearColorBuffers & mState.getEnabledDrawBuffers()) == clearColorBuffers); |
| |
| // Adjust clear behavior based on whether the respective attachments are present; if asked to |
| // clear a non-existent attachment, don't attempt to clear it. |
| |
| VkColorComponentFlags colorMaskFlags = contextVk->getClearColorMask(); |
| bool clearColor = clearColorBuffers.any(); |
| |
| const gl::FramebufferAttachment *depthAttachment = mState.getDepthAttachment(); |
| clearDepth = clearDepth && depthAttachment; |
| ASSERT(!clearDepth || depthAttachment->isAttached()); |
| |
| const gl::FramebufferAttachment *stencilAttachment = mState.getStencilAttachment(); |
| clearStencil = clearStencil && stencilAttachment; |
| ASSERT(!clearStencil || stencilAttachment->isAttached()); |
| |
| uint8_t stencilMask = |
| static_cast<uint8_t>(contextVk->getState().getDepthStencilState().stencilWritemask); |
| |
| // The front-end should ensure we don't attempt to clear color if all channels are masked. |
| ASSERT(!clearColor || colorMaskFlags != 0); |
| // The front-end should ensure we don't attempt to clear depth if depth write is disabled. |
| ASSERT(!clearDepth || contextVk->getState().getDepthStencilState().depthMask); |
| // The front-end should ensure we don't attempt to clear stencil if all bits are masked. |
| ASSERT(!clearStencil || stencilMask != 0); |
| |
| // If there is nothing to clear, return right away (for example, if asked to clear depth, but |
| // there is no depth attachment). |
| if (!clearColor && !clearDepth && !clearStencil) |
| { |
| return angle::Result::Continue; |
| } |
| |
| VkClearDepthStencilValue modifiedDepthStencilValue = clearDepthStencilValue; |
| |
| // We can use render pass load ops if clearing depth, unmasked color or unmasked stencil. If |
| // there's a depth mask, depth clearing is already disabled. |
| bool maskedClearColor = |
| clearColor && (mActiveColorComponents & colorMaskFlags) != mActiveColorComponents; |
| bool maskedClearStencil = stencilMask != 0xFF; |
| |
| bool clearColorWithRenderPassLoadOp = clearColor && !maskedClearColor; |
| bool clearStencilWithRenderPassLoadOp = clearStencil && !maskedClearStencil; |
| |
| // At least one of color, depth or stencil should be clearable with render pass loadOp for us |
| // to use this clear path. |
| bool clearAnyWithRenderPassLoadOp = |
| clearColorWithRenderPassLoadOp || clearDepth || clearStencilWithRenderPassLoadOp; |
| |
| if (clearAnyWithRenderPassLoadOp) |
| { |
| // Clearing color is indicated by the set bits in this mask. If not clearing colors with |
| // render pass loadOp, the default value of all-zeros means the clear is not done in |
| // clearWithRenderPassOp below. In that case, only clear depth/stencil with render pass |
| // loadOp. |
| gl::DrawBufferMask clearBuffersWithRenderPassLoadOp; |
| if (clearColorWithRenderPassLoadOp) |
| { |
| clearBuffersWithRenderPassLoadOp = clearColorBuffers; |
| } |
| ANGLE_TRY(clearWithRenderPassOp( |
| contextVk, scissoredRenderArea, clearBuffersWithRenderPassLoadOp, clearDepth, |
| clearStencilWithRenderPassLoadOp, clearColorValue, modifiedDepthStencilValue)); |
| |
| // On some hardware, having inline commands at this point results in corrupted output. In |
| // that case, end the render pass immediately. http://anglebug.com/2361 |
| if (contextVk->getRenderer()->getFeatures().restartRenderPassAfterLoadOpClear.enabled) |
| { |
| mFramebuffer.finishCurrentCommands(contextVk); |
| } |
| |
| // Fallback to other methods for whatever isn't cleared here. |
| clearDepth = false; |
| if (clearColorWithRenderPassLoadOp) |
| { |
| clearColorBuffers.reset(); |
| clearColor = false; |
| } |
| if (clearStencilWithRenderPassLoadOp) |
| { |
| clearStencil = false; |
| } |
| |
| // If nothing left to clear, early out. |
| if (!clearColor && !clearStencil) |
| { |
| return angle::Result::Continue; |
| } |
| } |
| |
| // Note: depth clear is always done through render pass loadOp. |
| ASSERT(clearDepth == false); |
| |
| // The most costly clear mode is when we need to mask out specific color channels or stencil |
| // bits. This can only be done with a draw call. |
| return clearWithDraw(contextVk, scissoredRenderArea, clearColorBuffers, clearStencil, |
| colorMaskFlags, stencilMask, clearColorValue, |
| static_cast<uint8_t>(modifiedDepthStencilValue.stencil)); |
| } |
| |
| angle::Result FramebufferVk::clearBufferfv(const gl::Context *context, |
| GLenum buffer, |
| GLint drawbuffer, |
| const GLfloat *values) |
| { |
| VkClearValue clearValue = {}; |
| |
| bool clearDepth = false; |
| gl::DrawBufferMask clearColorBuffers; |
| |
| if (buffer == GL_DEPTH) |
| { |
| clearDepth = true; |
| clearValue.depthStencil.depth = values[0]; |
| } |
| else |
| { |
| clearColorBuffers.set(drawbuffer); |
| clearValue.color.float32[0] = values[0]; |
| clearValue.color.float32[1] = values[1]; |
| clearValue.color.float32[2] = values[2]; |
| clearValue.color.float32[3] = values[3]; |
| } |
| |
| return clearImpl(context, clearColorBuffers, clearDepth, false, clearValue.color, |
| clearValue.depthStencil); |
| } |
| |
| angle::Result FramebufferVk::clearBufferuiv(const gl::Context *context, |
| GLenum buffer, |
| GLint drawbuffer, |
| const GLuint *values) |
| { |
| VkClearValue clearValue = {}; |
| |
| gl::DrawBufferMask clearColorBuffers; |
| clearColorBuffers.set(drawbuffer); |
| |
| clearValue.color.uint32[0] = values[0]; |
| clearValue.color.uint32[1] = values[1]; |
| clearValue.color.uint32[2] = values[2]; |
| clearValue.color.uint32[3] = values[3]; |
| |
| return clearImpl(context, clearColorBuffers, false, false, clearValue.color, |
| clearValue.depthStencil); |
| } |
| |
| angle::Result FramebufferVk::clearBufferiv(const gl::Context *context, |
| GLenum buffer, |
| GLint drawbuffer, |
| const GLint *values) |
| { |
| VkClearValue clearValue = {}; |
| |
| bool clearStencil = false; |
| gl::DrawBufferMask clearColorBuffers; |
| |
| if (buffer == GL_STENCIL) |
| { |
| clearStencil = true; |
| clearValue.depthStencil.stencil = |
| gl::clamp(values[0], 0, std::numeric_limits<uint8_t>::max()); |
| } |
| else |
| { |
| clearColorBuffers.set(drawbuffer); |
| clearValue.color.int32[0] = values[0]; |
| clearValue.color.int32[1] = values[1]; |
| clearValue.color.int32[2] = values[2]; |
| clearValue.color.int32[3] = values[3]; |
| } |
| |
| return clearImpl(context, clearColorBuffers, false, clearStencil, clearValue.color, |
| clearValue.depthStencil); |
| } |
| |
| angle::Result FramebufferVk::clearBufferfi(const gl::Context *context, |
| GLenum buffer, |
| GLint drawbuffer, |
| GLfloat depth, |
| GLint stencil) |
| { |
| VkClearValue clearValue = {}; |
| |
| clearValue.depthStencil.depth = depth; |
| clearValue.depthStencil.stencil = gl::clamp(stencil, 0, std::numeric_limits<uint8_t>::max()); |
| |
| return clearImpl(context, gl::DrawBufferMask(), true, true, clearValue.color, |
| clearValue.depthStencil); |
| } |
| |
| GLenum FramebufferVk::getImplementationColorReadFormat(const gl::Context *context) const |
| { |
| return GetReadAttachmentInfo(context, mRenderTargetCache.getColorRead(mState)).format; |
| } |
| |
| GLenum FramebufferVk::getImplementationColorReadType(const gl::Context *context) const |
| { |
| return GetReadAttachmentInfo(context, mRenderTargetCache.getColorRead(mState)).type; |
| } |
| |
| angle::Result FramebufferVk::readPixels(const gl::Context *context, |
| const gl::Rectangle &area, |
| GLenum format, |
| GLenum type, |
| void *pixels) |
| { |
| // Clip read area to framebuffer. |
| const gl::Extents &fbSize = getState().getReadAttachment()->getSize(); |
| const gl::Rectangle fbRect(0, 0, fbSize.width, fbSize.height); |
| ContextVk *contextVk = vk::GetImpl(context); |
| |
| gl::Rectangle clippedArea; |
| if (!ClipRectangle(area, fbRect, &clippedArea)) |
| { |
| // nothing to read |
| return angle::Result::Continue; |
| } |
| gl::Rectangle flippedArea = clippedArea; |
| if (contextVk->isViewportFlipEnabledForReadFBO()) |
| { |
| flippedArea.y = fbRect.height - flippedArea.y - flippedArea.height; |
| } |
| |
| const gl::State &glState = context->getState(); |
| const gl::PixelPackState &packState = glState.getPackState(); |
| |
| const gl::InternalFormat &sizedFormatInfo = gl::GetInternalFormatInfo(format, type); |
| |
| GLuint outputPitch = 0; |
| ANGLE_VK_CHECK_MATH(contextVk, |
| sizedFormatInfo.computeRowPitch(type, area.width, packState.alignment, |
| packState.rowLength, &outputPitch)); |
| GLuint outputSkipBytes = 0; |
| ANGLE_VK_CHECK_MATH(contextVk, sizedFormatInfo.computeSkipBytes(type, outputPitch, 0, packState, |
| false, &outputSkipBytes)); |
| |
| outputSkipBytes += (clippedArea.x - area.x) * sizedFormatInfo.pixelBytes + |
| (clippedArea.y - area.y) * outputPitch; |
| |
| const angle::Format &angleFormat = GetFormatFromFormatType(format, type); |
| |
| PackPixelsParams params(flippedArea, angleFormat, outputPitch, packState.reverseRowOrder, |
| glState.getTargetBuffer(gl::BufferBinding::PixelPack), 0); |
| if (contextVk->isViewportFlipEnabledForReadFBO()) |
| { |
| params.reverseRowOrder = !params.reverseRowOrder; |
| } |
| |
| ANGLE_TRY(readPixelsImpl(contextVk, flippedArea, params, VK_IMAGE_ASPECT_COLOR_BIT, |
| getColorReadRenderTarget(), |
| static_cast<uint8_t *>(pixels) + outputSkipBytes)); |
| mReadPixelBuffer.releaseInFlightBuffers(contextVk); |
| return angle::Result::Continue; |
| } |
| |
| RenderTargetVk *FramebufferVk::getDepthStencilRenderTarget() const |
| { |
| return mRenderTargetCache.getDepthStencil(); |
| } |
| |
| RenderTargetVk *FramebufferVk::getColorDrawRenderTarget(size_t colorIndex) const |
| { |
| RenderTargetVk *renderTarget = mRenderTargetCache.getColorDraw(mState, colorIndex); |
| ASSERT(renderTarget && renderTarget->getImage().valid()); |
| return renderTarget; |
| } |
| |
| RenderTargetVk *FramebufferVk::getColorReadRenderTarget() const |
| { |
| RenderTargetVk *renderTarget = mRenderTargetCache.getColorRead(mState); |
| ASSERT(renderTarget && renderTarget->getImage().valid()); |
| return renderTarget; |
| } |
| |
| angle::Result FramebufferVk::blitWithCommand(ContextVk *contextVk, |
| const gl::Rectangle &sourceArea, |
| const gl::Rectangle &destArea, |
| RenderTargetVk *readRenderTarget, |
| RenderTargetVk *drawRenderTarget, |
| GLenum filter, |
| bool colorBlit, |
| bool depthBlit, |
| bool stencilBlit, |
| bool flipX, |
| bool flipY) |
| { |
| // Since blitRenderbufferRect is called for each render buffer that needs to be blitted, |
| // it should never be the case that both color and depth/stencil need to be blitted at |
| // at the same time. |
| ASSERT(colorBlit != (depthBlit || stencilBlit)); |
| |
| vk::ImageHelper *srcImage = &readRenderTarget->getImage(); |
| vk::ImageHelper *dstImage = drawRenderTarget->getImageForWrite(&mFramebuffer); |
| |
| VkImageAspectFlags imageAspectMask = srcImage->getAspectFlags(); |
| VkImageAspectFlags blitAspectMask = imageAspectMask; |
| |
| // Remove depth or stencil aspects if they are not requested to be blitted. |
| if (!depthBlit) |
| { |
| blitAspectMask &= ~VK_IMAGE_ASPECT_DEPTH_BIT; |
| } |
| if (!stencilBlit) |
| { |
| blitAspectMask &= ~VK_IMAGE_ASPECT_STENCIL_BIT; |
| } |
| |
| if (srcImage->isLayoutChangeNecessary(vk::ImageLayout::TransferSrc)) |
| { |
| vk::CommandBuffer *srcLayoutChange; |
| ANGLE_TRY(srcImage->recordCommands(contextVk, &srcLayoutChange)); |
| srcImage->changeLayout(imageAspectMask, vk::ImageLayout::TransferSrc, srcLayoutChange); |
| } |
| |
| vk::CommandBuffer *commandBuffer = nullptr; |
| ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer)); |
| |
| srcImage->addReadDependency(&mFramebuffer); |
| |
| VkImageBlit blit = {}; |
| blit.srcSubresource.aspectMask = blitAspectMask; |
| blit.srcSubresource.mipLevel = readRenderTarget->getLevelIndex(); |
| blit.srcSubresource.baseArrayLayer = readRenderTarget->getLayerIndex(); |
| blit.srcSubresource.layerCount = 1; |
| blit.srcOffsets[0] = {sourceArea.x0(), sourceArea.y0(), 0}; |
| blit.srcOffsets[1] = {sourceArea.x1(), sourceArea.y1(), 1}; |
| blit.dstSubresource.aspectMask = blitAspectMask; |
| blit.dstSubresource.mipLevel = drawRenderTarget->getLevelIndex(); |
| blit.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex(); |
| blit.dstSubresource.layerCount = 1; |
| blit.dstOffsets[0] = {destArea.x0(), destArea.y0(), 0}; |
| blit.dstOffsets[1] = {destArea.x1(), destArea.y1(), 1}; |
| |
| // Requirement of the copyImageToBuffer, the dst image must be in |
| // VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL layout. |
| dstImage->changeLayout(imageAspectMask, vk::ImageLayout::TransferDst, commandBuffer); |
| |
| commandBuffer->blitImage(srcImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| dstImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit, |
| gl_vk::GetFilter(filter)); |
| |
| return angle::Result::Continue; |
| } |
| |
| angle::Result FramebufferVk::blit(const gl::Context *context, |
| const gl::Rectangle &sourceAreaIn, |
| const gl::Rectangle &destAreaIn, |
| GLbitfield mask, |
| GLenum filter) |
| { |
| ContextVk *contextVk = vk::GetImpl(context); |
| RendererVk *renderer = contextVk->getRenderer(); |
| UtilsVk &utilsVk = contextVk->getUtils(); |
| |
| const gl::State &glState = contextVk->getState(); |
| const gl::Framebuffer *srcFramebuffer = glState.getReadFramebuffer(); |
| |
| const bool blitColorBuffer = (mask & GL_COLOR_BUFFER_BIT) != 0; |
| const bool blitDepthBuffer = (mask & GL_DEPTH_BUFFER_BIT) != 0; |
| const bool blitStencilBuffer = (mask & GL_STENCIL_BUFFER_BIT) != 0; |
| |
| const bool isResolve = srcFramebuffer->getCachedSamples(context) > 1; |
| |
| FramebufferVk *srcFramebufferVk = vk::GetImpl(srcFramebuffer); |
| const bool srcFramebufferFlippedY = contextVk->isViewportFlipEnabledForReadFBO(); |
| const bool destFramebufferFlippedY = contextVk->isViewportFlipEnabledForDrawFBO(); |
| |
| gl::Rectangle sourceArea = sourceAreaIn; |
| gl::Rectangle destArea = destAreaIn; |
| |
| // Note: GLES (all 3.x versions) require source and dest area to be identical when |
| // resolving. |
| ASSERT(!isResolve || |
| (sourceArea.x == destArea.x && sourceArea.y == destArea.y && |
| sourceArea.width == destArea.width && sourceArea.height == destArea.height)); |
| |
| const gl::Rectangle srcFramebufferDimensions = |
| srcFramebufferVk->mState.getDimensions().toRect(); |
| |
| // If the destination is flipped in either direction, we will flip the source instead so that |
| // the destination area is always unflipped. |
| sourceArea = sourceArea.flip(destArea.isReversedX(), destArea.isReversedY()); |
| destArea = destArea.removeReversal(); |
| |
| // Calculate the stretch factor prior to any clipping, as it needs to remain constant. |
| const float stretch[2] = { |
| std::abs(sourceArea.width / static_cast<float>(destArea.width)), |
| std::abs(sourceArea.height / static_cast<float>(destArea.height)), |
| }; |
| |
| // First, clip the source area to framebuffer. That requires transforming the dest area to |
| // match the clipped source. |
| gl::Rectangle absSourceArea = sourceArea.removeReversal(); |
| gl::Rectangle clippedSourceArea; |
| if (!gl::ClipRectangle(srcFramebufferDimensions, absSourceArea, &clippedSourceArea)) |
| { |
| return angle::Result::Continue; |
| } |
| |
| // Resize the destination area based on the new size of source. Note again that stretch is |
| // calculated as SrcDimension/DestDimension. |
| gl::Rectangle srcClippedDestArea; |
| if (isResolve) |
| { |
| // Source and dest areas are identical in resolve. |
| srcClippedDestArea = clippedSourceArea; |
| } |
| else if (clippedSourceArea == absSourceArea) |
| { |
| // If there was no clipping, keep dest area as is. |
| srcClippedDestArea = destArea; |
| } |
| else |
| { |
| // Shift dest area's x0,y0,x1,y1 by as much as the source area's got shifted (taking |
| // stretching into account) |
| float x0Shift = std::round((clippedSourceArea.x - absSourceArea.x) / stretch[0]); |
| float y0Shift = std::round((clippedSourceArea.y - absSourceArea.y) / stretch[1]); |
| float x1Shift = std::round((absSourceArea.x1() - clippedSourceArea.x1()) / stretch[0]); |
| float y1Shift = std::round((absSourceArea.y1() - clippedSourceArea.y1()) / stretch[1]); |
| |
| // If the source area was reversed in any direction, the shift should be applied in the |
| // opposite direction as well. |
| if (sourceArea.isReversedX()) |
| { |
| std::swap(x0Shift, x1Shift); |
| } |
| |
| if (sourceArea.isReversedY()) |
| { |
| std::swap(y0Shift, y1Shift); |
| } |
| |
| srcClippedDestArea.x = destArea.x0() + static_cast<int>(x0Shift); |
| srcClippedDestArea.y = destArea.y0() + static_cast<int>(y0Shift); |
| int x1 = destArea.x1() - static_cast<int>(x1Shift); |
| int y1 = destArea.y1() - static_cast<int>(y1Shift); |
| |
| srcClippedDestArea.width = x1 - srcClippedDestArea.x; |
| srcClippedDestArea.height = y1 - srcClippedDestArea.y; |
| } |
| |
| // If framebuffers are flipped in Y, flip the source and dest area (which define the |
| // transformation regardless of clipping), as well as the blit area (which is the clipped |
| // dest area). |
| if (srcFramebufferFlippedY) |
| { |
| sourceArea.y = srcFramebufferDimensions.height - sourceArea.y; |
| sourceArea.height = -sourceArea.height; |
| } |
| if (destFramebufferFlippedY) |
| { |
| destArea.y = mState.getDimensions().height - destArea.y; |
| destArea.height = -destArea.height; |
| |
| srcClippedDestArea.y = |
| mState.getDimensions().height - srcClippedDestArea.y - srcClippedDestArea.height; |
| } |
| |
| const bool flipX = sourceArea.isReversedX() != destArea.isReversedX(); |
| const bool flipY = sourceArea.isReversedY() != destArea.isReversedY(); |
| |
| // GLES doesn't allow flipping the parameters of glBlitFramebuffer if performing a resolve. |
| ASSERT(!isResolve || |
| (flipX == false && flipY == (srcFramebufferFlippedY != destFramebufferFlippedY))); |
| |
| // Again, transfer the destination flip to source, so dest is unflipped. Note that destArea |
| // was not reversed until the final possible Y-flip. |
| ASSERT(!destArea.isReversedX()); |
| sourceArea = sourceArea.flip(false, destArea.isReversedY()); |
| destArea = destArea.removeReversal(); |
| |
| // Clip the destination area to the framebuffer size and scissor. Note that we don't care |
| // about the source area anymore. The offset translation is done based on the original source |
| // and destination rectangles. The stretch factor is already calculated as well. |
| gl::Rectangle blitArea; |
| if (!gl::ClipRectangle(getScissoredRenderArea(contextVk), srcClippedDestArea, &blitArea)) |
| { |
| return angle::Result::Continue; |
| } |
| |
| bool noClip = blitArea == destArea && stretch[0] == 1.0f && stretch[1] == 1.0f; |
| bool noFlip = !flipX && !flipY; |
| bool disableFlippingBlitWithCommand = |
| contextVk->getRenderer()->getFeatures().disableFlippingBlitWithCommand.enabled; |
| |
| UtilsVk::BlitResolveParameters params; |
| params.srcOffset[0] = sourceArea.x; |
| params.srcOffset[1] = sourceArea.y; |
| params.destOffset[0] = destArea.x; |
| params.destOffset[1] = destArea.y; |
| params.stretch[0] = stretch[0]; |
| params.stretch[1] = stretch[1]; |
| params.srcExtents[0] = srcFramebufferDimensions.width; |
| params.srcExtents[1] = srcFramebufferDimensions.height; |
| params.blitArea = blitArea; |
| params.linear = filter == GL_LINEAR; |
| params.flipX = flipX; |
| params.flipY = flipY; |
| |
| if (blitColorBuffer) |
| { |
| RenderTargetVk *readRenderTarget = srcFramebufferVk->getColorReadRenderTarget(); |
| params.srcLayer = readRenderTarget->getLayerIndex(); |
| |
| // Multisampled images are not allowed to have mips. |
| ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0); |
| |
| // If there was no clipping and the format capabilities allow us, use Vulkan's builtin blit. |
| // The reason clipping is prohibited in this path is that due to rounding errors, it would |
| // be hard to guarantee the image stretching remains perfect. That also allows us not to |
| // have to transform back the dest clipping to source. |
| // |
| // For simplicity, we either blit all render targets with a Vulkan command, or none. |
| bool canBlitWithCommand = !isResolve && noClip && |
| (noFlip || !disableFlippingBlitWithCommand) && |
| HasSrcBlitFeature(renderer, readRenderTarget); |
| bool areChannelsBlitCompatible = true; |
| for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) |
| { |
| RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; |
| canBlitWithCommand = |
| canBlitWithCommand && HasDstBlitFeature(renderer, drawRenderTarget); |
| areChannelsBlitCompatible = |
| areChannelsBlitCompatible && |
| areSrcAndDstColorChannelsBlitCompatible(readRenderTarget, drawRenderTarget); |
| } |
| |
| if (canBlitWithCommand && areChannelsBlitCompatible) |
| { |
| for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) |
| { |
| RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; |
| ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget, |
| drawRenderTarget, filter, true, false, false, flipX, |
| flipY)); |
| } |
| } |
| // If we're not flipping, use Vulkan's builtin resolve. |
| else if (isResolve && !flipX && !flipY && areChannelsBlitCompatible) |
| { |
| ANGLE_TRY(resolveColorWithCommand(contextVk, params, &readRenderTarget->getImage())); |
| } |
| // Otherwise use a shader to do blit or resolve. |
| else |
| { |
| ANGLE_TRY(utilsVk.colorBlitResolve(contextVk, this, &readRenderTarget->getImage(), |
| readRenderTarget->getFetchImageView(), params)); |
| } |
| } |
| |
| if (blitDepthBuffer || blitStencilBuffer) |
| { |
| RenderTargetVk *readRenderTarget = srcFramebufferVk->getDepthStencilRenderTarget(); |
| RenderTargetVk *drawRenderTarget = mRenderTargetCache.getDepthStencil(); |
| params.srcLayer = readRenderTarget->getLayerIndex(); |
| |
| // Multisampled images are not allowed to have mips. |
| ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0); |
| |
| // Similarly, only blit if there's been no clipping. |
| bool canBlitWithCommand = !isResolve && noClip && |
| (noFlip || !disableFlippingBlitWithCommand) && |
| HasSrcBlitFeature(renderer, readRenderTarget) && |
| HasDstBlitFeature(renderer, drawRenderTarget); |
| bool areChannelsBlitCompatible = |
| areSrcAndDstDepthStencilChannelsBlitCompatible(readRenderTarget, drawRenderTarget); |
| |
| if (canBlitWithCommand && areChannelsBlitCompatible) |
| { |
| ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget, |
| drawRenderTarget, filter, false, blitDepthBuffer, |
| blitStencilBuffer, flipX, flipY)); |
| } |
| else |
| { |
| // Create depth- and stencil-only views for reading. |
| vk::DeviceScoped<vk::ImageView> depthView(contextVk->getDevice()); |
| vk::DeviceScoped<vk::ImageView> stencilView(contextVk->getDevice()); |
| |
| vk::ImageHelper *depthStencilImage = &readRenderTarget->getImage(); |
| uint32_t levelIndex = readRenderTarget->getLevelIndex(); |
| uint32_t layerIndex = readRenderTarget->getLayerIndex(); |
| gl::TextureType textureType = vk::Get2DTextureType(depthStencilImage->getLayerCount(), |
| depthStencilImage->getSamples()); |
| |
| if (blitDepthBuffer) |
| { |
| ANGLE_TRY(depthStencilImage->initLayerImageView( |
| contextVk, textureType, VK_IMAGE_ASPECT_DEPTH_BIT, gl::SwizzleState(), |
| &depthView.get(), levelIndex, 1, layerIndex, 1)); |
| } |
| |
| if (blitStencilBuffer) |
| { |
| ANGLE_TRY(depthStencilImage->initLayerImageView( |
| contextVk, textureType, VK_IMAGE_ASPECT_STENCIL_BIT, gl::SwizzleState(), |
| &stencilView.get(), levelIndex, 1, layerIndex, 1)); |
| } |
| |
| // If shader stencil export is not possible, defer stencil blit/stencil to another pass. |
| bool hasShaderStencilExport = |
| contextVk->getRenderer()->getFeatures().supportsShaderStencilExport.enabled; |
| |
| // Blit depth. If shader stencil export is present, blit stencil as well. |
| if (blitDepthBuffer || (blitStencilBuffer && hasShaderStencilExport)) |
| { |
| const vk::ImageView *depth = blitDepthBuffer ? &depthView.get() : nullptr; |
| const vk::ImageView *stencil = |
| blitStencilBuffer && hasShaderStencilExport ? &stencilView.get() : nullptr; |
| |
| ANGLE_TRY(utilsVk.depthStencilBlitResolve(contextVk, this, depthStencilImage, depth, |
| stencil, params)); |
| } |
| |
| // If shader stencil export is not present, blit stencil through a different path. |
| if (blitStencilBuffer && !hasShaderStencilExport) |
| { |
| ANGLE_TRY(utilsVk.stencilBlitResolveNoShaderExport( |
| contextVk, this, depthStencilImage, &stencilView.get(), params)); |
| } |
| |
| vk::ImageView depthViewObject = depthView.release(); |
| vk::ImageView stencilViewObject = stencilView.release(); |
| |
| contextVk->releaseObject(contextVk->getCurrentQueueSerial(), &depthViewObject); |
| contextVk->releaseObject(contextVk->getCurrentQueueSerial(), &stencilViewObject); |
| } |
| } |
| |
| return angle::Result::Continue; |
| } // namespace rx |
| |
| angle::Result FramebufferVk::resolveColorWithCommand(ContextVk *contextVk, |
| const UtilsVk::BlitResolveParameters ¶ms, |
| vk::ImageHelper *srcImage) |
| { |
| if (srcImage->isLayoutChangeNecessary(vk::ImageLayout::TransferSrc)) |
| { |
| vk::CommandBuffer *srcLayoutChange; |
| ANGLE_TRY(srcImage->recordCommands(contextVk, &srcLayoutChange)); |
| srcImage->changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferSrc, |
| srcLayoutChange); |
| } |
| |
| vk::CommandBuffer *commandBuffer = nullptr; |
| ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer)); |
| |
| // Source's layout change should happen before rendering |
| srcImage->addReadDependency(&mFramebuffer); |
| |
| VkImageResolve resolveRegion = {}; |
| resolveRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| resolveRegion.srcSubresource.mipLevel = 0; |
| resolveRegion.srcSubresource.baseArrayLayer = params.srcLayer; |
| resolveRegion.srcSubresource.layerCount = 1; |
| resolveRegion.srcOffset.x = params.srcOffset[0]; |
| resolveRegion.srcOffset.y = params.srcOffset[1]; |
| resolveRegion.srcOffset.z = 0; |
| resolveRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| resolveRegion.dstSubresource.layerCount = 1; |
| resolveRegion.dstOffset.x = params.destOffset[0]; |
| resolveRegion.dstOffset.y = params.destOffset[1]; |
| resolveRegion.dstOffset.z = 0; |
| resolveRegion.extent.width = params.srcExtents[0]; |
| resolveRegion.extent.height = params.srcExtents[1]; |
| resolveRegion.extent.depth = 1; |
| |
| for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) |
| { |
| RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL]; |
| vk::ImageHelper *drawImage = drawRenderTarget->getImageForWrite(&mFramebuffer); |
| drawImage->changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferDst, |
| commandBuffer); |
| |
| resolveRegion.dstSubresource.mipLevel = drawRenderTarget->getLevelIndex(); |
| resolveRegion.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex(); |
| |
| srcImage->resolve(&drawRenderTarget->getImage(), resolveRegion, commandBuffer); |
| } |
| |
| return angle::Result::Continue; |
| } |
| |
| bool FramebufferVk::checkStatus(const gl::Context *context) const |
| { |
| // if we have both a depth and stencil buffer, they must refer to the same object |
| // since we only support packed_depth_stencil and not separate depth and stencil |
| if (mState.hasSeparateDepthAndStencilAttachments()) |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| angle::Result FramebufferVk::updateColorAttachment(const gl::Context *context, size_t colorIndexGL) |
| { |
| ContextVk *contextVk = vk::GetImpl(context); |
| |
| ANGLE_TRY(mRenderTargetCache.updateColorRenderTarget(context, mState, colorIndexGL)); |
| |
| // Update cached masks for masked clears. |
| RenderTargetVk *renderTarget = mRenderTargetCache.getColors()[colorIndexGL]; |
| if (renderTarget) |
| { |
| const angle::Format &emulatedFormat = renderTarget->getImageFormat().imageFormat(); |
| updateActiveColorMasks(colorIndexGL, emulatedFormat.redBits > 0, |
| emulatedFormat.greenBits > 0, emulatedFormat.blueBits > 0, |
| emulatedFormat.alphaBits > 0); |
| |
| const angle::Format &sourceFormat = renderTarget->getImageFormat().angleFormat(); |
| mEmulatedAlphaAttachmentMask.set( |
| colorIndexGL, sourceFormat.alphaBits == 0 && emulatedFormat.alphaBits > 0); |
| |
| contextVk->updateColorMask(context->getState().getBlendState()); |
| } |
| else |
| { |
| updateActiveColorMasks(colorIndexGL, false, false, false, false); |
| } |
| |
| return angle::Result::Continue; |
| } |
| |
| void FramebufferVk::invalidateImpl(ContextVk *contextVk, size_t count, const GLenum *attachments) |
| { |
| ASSERT(mFramebuffer.hasStartedRenderPass()); |
| |
| gl::DrawBufferMask invalidateColorBuffers; |
| bool invalidateDepthBuffer = false; |
| bool invalidateStencilBuffer = false; |
| |
| for (size_t i = 0; i < count; ++i) |
| { |
| const GLenum attachment = attachments[i]; |
| |
| switch (attachment) |
| { |
| case GL_DEPTH: |
| case GL_DEPTH_ATTACHMENT: |
| invalidateDepthBuffer = true; |
| break; |
| case GL_STENCIL: |
| case GL_STENCIL_ATTACHMENT: |
| invalidateStencilBuffer = true; |
| break; |
| case GL_DEPTH_STENCIL_ATTACHMENT: |
| invalidateDepthBuffer = true; |
| invalidateStencilBuffer = true; |
| break; |
| default: |
| ASSERT( |
| (attachment >= GL_COLOR_ATTACHMENT0 && attachment <= GL_COLOR_ATTACHMENT15) || |
| (attachment == GL_COLOR)); |
| |
| invalidateColorBuffers.set( |
| attachment == GL_COLOR ? 0u : (attachment - GL_COLOR_ATTACHMENT0)); |
| } |
| } |
| |
| // Set the appropriate storeOp for attachments. |
| size_t attachmentIndexVk = 0; |
| for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) |
| { |
| if (invalidateColorBuffers.test(colorIndexGL)) |
| { |
| mFramebuffer.invalidateRenderPassColorAttachment(attachmentIndexVk); |
| } |
| ++attachmentIndexVk; |
| } |
| |
| RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil(); |
| if (depthStencilRenderTarget) |
| { |
| if (invalidateDepthBuffer) |
| { |
| mFramebuffer.invalidateRenderPassDepthAttachment(attachmentIndexVk); |
| } |
| |
| if (invalidateStencilBuffer) |
| { |
| mFramebuffer.invalidateRenderPassStencilAttachment(attachmentIndexVk); |
| } |
| } |
| |
| // NOTE: Possible future optimization is to delay setting the storeOp and only do so if the |
| // render pass is closed by itself before another draw call. Otherwise, in a situation like |
| // this: |
| // |
| // draw() |
| // invalidate() |
| // draw() |
| // |
| // We would be discarding the attachments only to load them for the next draw (which is less |
| // efficient than keeping the render pass open and not do the discard at all). While dEQP tests |
| // this pattern, this optimization may not be necessary if no application does this. It is |
| // expected that an application would invalidate() when it's done with the framebuffer, so the |
| // render pass would have closed either way. |
| mFramebuffer.finishCurrentCommands(contextVk); |
| } |
| |
| angle::Result FramebufferVk::syncState(const gl::Context *context, |
| const gl::Framebuffer::DirtyBits &dirtyBits) |
| { |
| ContextVk *contextVk = vk::GetImpl(context); |
| |
| ASSERT(dirtyBits.any()); |
| for (size_t dirtyBit : dirtyBits) |
| { |
| switch (dirtyBit) |
| { |
| case gl::Framebuffer::DIRTY_BIT_DEPTH_ATTACHMENT: |
| case gl::Framebuffer::DIRTY_BIT_STENCIL_ATTACHMENT: |
| ANGLE_TRY(mRenderTargetCache.updateDepthStencilRenderTarget(context, mState)); |
| break; |
| case gl::Framebuffer::DIRTY_BIT_DEPTH_BUFFER_CONTENTS: |
| case gl::Framebuffer::DIRTY_BIT_STENCIL_BUFFER_CONTENTS: |
| ANGLE_TRY(mRenderTargetCache.getDepthStencil()->flushStagedUpdates(contextVk)); |
| break; |
| case gl::Framebuffer::DIRTY_BIT_READ_BUFFER: |
| ANGLE_TRY(mRenderTargetCache.update(context, mState, dirtyBits)); |
| break; |
| case gl::Framebuffer::DIRTY_BIT_DRAW_BUFFERS: |
| case gl::Framebuffer::DIRTY_BIT_DEFAULT_WIDTH: |
| case gl::Framebuffer::DIRTY_BIT_DEFAULT_HEIGHT: |
| case gl::Framebuffer::DIRTY_BIT_DEFAULT_SAMPLES: |
| case gl::Framebuffer::DIRTY_BIT_DEFAULT_FIXED_SAMPLE_LOCATIONS: |
| break; |
| default: |
| { |
| static_assert(gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0 == 0, "FB dirty bits"); |
| if (dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_MAX) |
| { |
| size_t colorIndexGL = static_cast<size_t>( |
| dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0); |
| ANGLE_TRY(updateColorAttachment(context, colorIndexGL)); |
| } |
| else |
| { |
| ASSERT(dirtyBit >= gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0 && |
| dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_MAX); |
| size_t colorIndexGL = static_cast<size_t>( |
| dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0); |
| ANGLE_TRY(mRenderTargetCache.getColors()[colorIndexGL]->flushStagedUpdates( |
| contextVk)); |
| } |
| } |
| } |
| } |
| |
| // The FBOs new attachment may have changed the renderable area |
| const gl::State &glState = context->getState(); |
| contextVk->updateScissor(glState); |
| |
| mActiveColorComponents = gl_vk::GetColorComponentFlags( |
| mActiveColorComponentMasksForClear[0].any(), mActiveColorComponentMasksForClear[1].any(), |
| mActiveColorComponentMasksForClear[2].any(), mActiveColorComponentMasksForClear[3].any()); |
| |
| mFramebuffer.release(contextVk); |
| |
| // Will freeze the current set of dependencies on this FBO. The next time we render we will |
| // create a new entry in the command graph. |
| mFramebuffer.finishCurrentCommands(contextVk); |
| |
| // Notify the ContextVk to update the pipeline desc. |
| updateRenderPassDesc(); |
| |
| FramebufferVk *currentDrawFramebuffer = vk::GetImpl(context->getState().getDrawFramebuffer()); |
| if (currentDrawFramebuffer == this) |
| { |
| contextVk->onDrawFramebufferChange(this); |
| } |
| |
| return angle::Result::Continue; |
| } |
| |
| void FramebufferVk::updateRenderPassDesc() |
| { |
| mRenderPassDesc = {}; |
| mRenderPassDesc.setSamples(getSamples()); |
| |
| const auto &colorRenderTargets = mRenderTargetCache.getColors(); |
| const gl::DrawBufferMask enabledDrawBuffers = mState.getEnabledDrawBuffers(); |
| for (size_t colorIndexGL = 0; colorIndexGL < enabledDrawBuffers.size(); ++colorIndexGL) |
| { |
| if (enabledDrawBuffers[colorIndexGL]) |
| { |
| RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; |
| ASSERT(colorRenderTarget); |
| mRenderPassDesc.packColorAttachment( |
| colorIndexGL, colorRenderTarget->getImage().getFormat().angleFormatID); |
| } |
| else |
| { |
| mRenderPassDesc.packColorAttachmentGap(colorIndexGL); |
| } |
| } |
| |
| RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil(); |
| if (depthStencilRenderTarget) |
| { |
| mRenderPassDesc.packDepthStencilAttachment( |
| depthStencilRenderTarget->getImage().getFormat().angleFormatID); |
| } |
| } |
| |
| angle::Result FramebufferVk::getFramebuffer(ContextVk *contextVk, vk::Framebuffer **framebufferOut) |
| { |
| // If we've already created our cached Framebuffer, return it. |
| if (mFramebuffer.valid()) |
| { |
| *framebufferOut = &mFramebuffer.getFramebuffer(); |
| return angle::Result::Continue; |
| } |
| |
| vk::RenderPass *compatibleRenderPass = nullptr; |
| ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass)); |
| |
| // If we've a Framebuffer provided by a Surface (default FBO/backbuffer), query it. |
| if (mBackbuffer) |
| { |
| return mBackbuffer->getCurrentFramebuffer(contextVk, *compatibleRenderPass, framebufferOut); |
| } |
| |
| // Gather VkImageViews over all FBO attachments, also size of attached region. |
| std::vector<VkImageView> attachments; |
| gl::Extents attachmentsSize; |
| |
| const auto &colorRenderTargets = mRenderTargetCache.getColors(); |
| for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) |
| { |
| RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; |
| ASSERT(colorRenderTarget); |
| attachments.push_back(colorRenderTarget->getDrawImageView()->getHandle()); |
| |
| ASSERT(attachmentsSize.empty() || attachmentsSize == colorRenderTarget->getExtents()); |
| attachmentsSize = colorRenderTarget->getExtents(); |
| } |
| |
| RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil(); |
| if (depthStencilRenderTarget) |
| { |
| attachments.push_back(depthStencilRenderTarget->getDrawImageView()->getHandle()); |
| |
| ASSERT(attachmentsSize.empty() || |
| attachmentsSize == depthStencilRenderTarget->getExtents()); |
| attachmentsSize = depthStencilRenderTarget->getExtents(); |
| } |
| |
| if (attachmentsSize.empty()) |
| { |
| // No attachments, so use the default values. |
| attachmentsSize.height = mState.getDefaultHeight(); |
| attachmentsSize.width = mState.getDefaultWidth(); |
| attachmentsSize.depth = 0; |
| } |
| |
| VkFramebufferCreateInfo framebufferInfo = {}; |
| |
| framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; |
| framebufferInfo.flags = 0; |
| framebufferInfo.renderPass = compatibleRenderPass->getHandle(); |
| framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size()); |
| framebufferInfo.pAttachments = attachments.data(); |
| framebufferInfo.width = static_cast<uint32_t>(attachmentsSize.width); |
| framebufferInfo.height = static_cast<uint32_t>(attachmentsSize.height); |
| framebufferInfo.layers = 1; |
| |
| ANGLE_TRY(mFramebuffer.init(contextVk, framebufferInfo)); |
| |
| *framebufferOut = &mFramebuffer.getFramebuffer(); |
| return angle::Result::Continue; |
| } |
| |
| angle::Result FramebufferVk::clearWithRenderPassOp( |
| ContextVk *contextVk, |
| const gl::Rectangle &clearArea, |
| gl::DrawBufferMask clearColorBuffers, |
| bool clearDepth, |
| bool clearStencil, |
| const VkClearColorValue &clearColorValue, |
| const VkClearDepthStencilValue &clearDepthStencilValue) |
| { |
| // Start a new render pass if: |
| // |
| // - no render pass has started, |
| // - there is a render pass started but it contains commands; we cannot modify its ops, so new |
| // render pass is needed, |
| // - the current render area doesn't match the clear area. We need the render area to be |
| // exactly as specified by the scissor for the loadOp to clear only that area. See |
| // onScissorChange for more information. |
| |
| if (!mFramebuffer.valid() || !mFramebuffer.renderPassStartedButEmpty() || |
| mFramebuffer.getRenderPassRenderArea() != clearArea) |
| { |
| vk::CommandBuffer *commandBuffer; |
| ANGLE_TRY(startNewRenderPass(contextVk, clearArea, &commandBuffer)); |
| } |
| |
| size_t attachmentIndexVk = 0; |
| |
| // Go through clearColorBuffers and set the appropriate loadOp and clear values. |
| for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) |
| { |
| if (clearColorBuffers.test(colorIndexGL)) |
| { |
| RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL); |
| |
| // If the render target doesn't have alpha, but its emulated format has it, clear the |
| // alpha to 1. |
| VkClearColorValue value = clearColorValue; |
| if (mEmulatedAlphaAttachmentMask[colorIndexGL]) |
| { |
| SetEmulatedAlphaValue(renderTarget->getImageFormat(), &value); |
| } |
| |
| mFramebuffer.clearRenderPassColorAttachment(attachmentIndexVk, value); |
| } |
| ++attachmentIndexVk; |
| } |
| |
| // Set the appropriate loadOp and clear values for depth and stencil. |
| RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil(); |
| if (depthStencilRenderTarget) |
| { |
| if (clearDepth) |
| { |
| mFramebuffer.clearRenderPassDepthAttachment(attachmentIndexVk, |
| clearDepthStencilValue.depth); |
| } |
| |
| if (clearStencil) |
| { |
| mFramebuffer.clearRenderPassStencilAttachment(attachmentIndexVk, |
| clearDepthStencilValue.stencil); |
| } |
| } |
| |
| return angle::Result::Continue; |
| } |
| |
| angle::Result FramebufferVk::clearWithDraw(ContextVk *contextVk, |
| const gl::Rectangle &clearArea, |
| gl::DrawBufferMask clearColorBuffers, |
| bool clearStencil, |
| VkColorComponentFlags colorMaskFlags, |
| uint8_t stencilMask, |
| const VkClearColorValue &clearColorValue, |
| uint8_t clearStencilValue) |
| { |
| UtilsVk::ClearFramebufferParameters params = {}; |
| params.clearArea = clearArea; |
| params.colorClearValue = clearColorValue; |
| params.stencilClearValue = clearStencilValue; |
| params.stencilMask = stencilMask; |
| |
| params.clearColor = true; |
| params.clearStencil = clearStencil; |
| |
| const auto &colorRenderTargets = mRenderTargetCache.getColors(); |
| for (size_t colorIndexGL : clearColorBuffers) |
| { |
| const RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; |
| ASSERT(colorRenderTarget); |
| |
| params.colorFormat = &colorRenderTarget->getImage().getFormat().imageFormat(); |
| params.colorAttachmentIndexGL = static_cast<uint32_t>(colorIndexGL); |
| params.colorMaskFlags = colorMaskFlags; |
| if (mEmulatedAlphaAttachmentMask[colorIndexGL]) |
| { |
| params.colorMaskFlags &= ~VK_COLOR_COMPONENT_A_BIT; |
| } |
| |
| ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params)); |
| |
| // Clear stencil only once! |
| params.clearStencil = false; |
| } |
| |
| // If there was no color clear, clear stencil alone. |
| if (params.clearStencil) |
| { |
| params.clearColor = false; |
| ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params)); |
| } |
| |
| return angle::Result::Continue; |
| } |
| |
| angle::Result FramebufferVk::getSamplePosition(const gl::Context *context, |
| size_t index, |
| GLfloat *xy) const |
| { |
| ANGLE_VK_UNREACHABLE(vk::GetImpl(context)); |
| return angle::Result::Stop; |
| } |
| |
| angle::Result FramebufferVk::startNewRenderPass(ContextVk *contextVk, |
| const gl::Rectangle &renderArea, |
| vk::CommandBuffer **commandBufferOut) |
| { |
| vk::Framebuffer *framebuffer = nullptr; |
| ANGLE_TRY(getFramebuffer(contextVk, &framebuffer)); |
| |
| vk::AttachmentOpsArray renderPassAttachmentOps; |
| std::vector<VkClearValue> attachmentClearValues; |
| |
| vk::CommandBuffer *writeCommands = nullptr; |
| ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &writeCommands)); |
| |
| // Initialize RenderPass info. |
| const auto &colorRenderTargets = mRenderTargetCache.getColors(); |
| for (size_t colorIndexGL : mState.getEnabledDrawBuffers()) |
| { |
| RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL]; |
| ASSERT(colorRenderTarget); |
| |
| ANGLE_TRY(colorRenderTarget->onColorDraw(contextVk, &mFramebuffer, writeCommands)); |
| |
| renderPassAttachmentOps.initWithLoadStore(attachmentClearValues.size(), |
| VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, |
| VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); |
| attachmentClearValues.emplace_back(kUninitializedClearValue); |
| } |
| |
| RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil(); |
| if (depthStencilRenderTarget) |
| { |
| ANGLE_TRY( |
| depthStencilRenderTarget->onDepthStencilDraw(contextVk, &mFramebuffer, writeCommands)); |
| |
| renderPassAttachmentOps.initWithLoadStore(attachmentClearValues.size(), |
| VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, |
| VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); |
| attachmentClearValues.emplace_back(kUninitializedClearValue); |
| } |
| |
| return mFramebuffer.beginRenderPass(contextVk, *framebuffer, renderArea, mRenderPassDesc, |
| renderPassAttachmentOps, attachmentClearValues, |
| commandBufferOut); |
| } |
| |
| void FramebufferVk::updateActiveColorMasks(size_t colorIndexGL, bool r, bool g, bool b, bool a) |
| { |
| mActiveColorComponentMasksForClear[0].set(colorIndexGL, r); |
| mActiveColorComponentMasksForClear[1].set(colorIndexGL, g); |
| mActiveColorComponentMasksForClear[2].set(colorIndexGL, b); |
| mActiveColorComponentMasksForClear[3].set(colorIndexGL, a); |
| } |
| |
| const gl::DrawBufferMask &FramebufferVk::getEmulatedAlphaAttachmentMask() const |
| { |
| return mEmulatedAlphaAttachmentMask; |
| } |
| |
| angle::Result FramebufferVk::readPixelsImpl(ContextVk *contextVk, |
| const gl::Rectangle &area, |
| const PackPixelsParams &packPixelsParams, |
| VkImageAspectFlagBits copyAspectFlags, |
| RenderTargetVk *renderTarget, |
| void *pixels) |
| { |
| ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::readPixelsImpl"); |
| |
| RendererVk *renderer = contextVk->getRenderer(); |
| |
| vk::CommandBuffer *commandBuffer = nullptr; |
| ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer)); |
| |
| // Note that although we're reading from the image, we need to update the layout below. |
| vk::ImageHelper *srcImage = |
| renderTarget->getImageForRead(&mFramebuffer, vk::ImageLayout::TransferSrc, commandBuffer); |
| |
| const angle::Format *readFormat = &srcImage->getFormat().imageFormat(); |
| |
| if (copyAspectFlags != VK_IMAGE_ASPECT_COLOR_BIT) |
| { |
| readFormat = &GetDepthStencilImageToBufferFormat(*readFormat, copyAspectFlags); |
| } |
| |
| uint32_t level = renderTarget->getLevelIndex(); |
| uint32_t layer = renderTarget->getLayerIndex(); |
| VkOffset3D srcOffset = {area.x, area.y, 0}; |
| |
| VkImageSubresourceLayers srcSubresource = {}; |
| srcSubresource.aspectMask = copyAspectFlags; |
| srcSubresource.mipLevel = level; |
| srcSubresource.baseArrayLayer = layer; |
| srcSubresource.layerCount = 1; |
| |
| VkExtent3D srcExtent = {static_cast<uint32_t>(area.width), static_cast<uint32_t>(area.height), |
| 1}; |
| |
| if (srcImage->getExtents().depth > 1) |
| { |
| // Depth > 1 means this is a 3D texture and we need special handling |
| srcOffset.z = layer; |
| srcSubresource.baseArrayLayer = 0; |
| } |
| |
| // If the source image is multisampled, we need to resolve it into a temporary image before |
| // performing a readback. |
| bool isMultisampled = srcImage->getSamples() > 1; |
| vk::DeviceScoped<vk::ImageHelper> resolvedImage(contextVk->getDevice()); |
| if (isMultisampled) |
| { |
| ANGLE_TRY(resolvedImage.get().init2DStaging( |
| contextVk, renderer->getMemoryProperties(), gl::Extents(area.width, area.height, 1), |
| srcImage->getFormat(), |
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, 1)); |
| resolvedImage.get().updateQueueSerial(contextVk->getCurrentQueueSerial()); |
| |
| // Note: resolve only works on color images (not depth/stencil). |
| // |
| // TODO: Currently, depth/stencil blit can perform a depth/stencil readback, but that code |
| // path will be optimized away. http://anglebug.com/3200 |
| ASSERT(copyAspectFlags == VK_IMAGE_ASPECT_COLOR_BIT); |
| |
| VkImageResolve resolveRegion = {}; |
| resolveRegion.srcSubresource = srcSubresource; |
| resolveRegion.srcOffset = srcOffset; |
| resolveRegion.dstSubresource.aspectMask = copyAspectFlags; |
| resolveRegion.dstSubresource.mipLevel = 0; |
| resolveRegion.dstSubresource.baseArrayLayer = 0; |
| resolveRegion.dstSubresource.layerCount = 1; |
| resolveRegion.dstOffset = {}; |
| resolveRegion.extent = srcExtent; |
| |
| srcImage->resolve(&resolvedImage.get(), resolveRegion, commandBuffer); |
| |
| resolvedImage.get().changeLayout(copyAspectFlags, vk::ImageLayout::TransferSrc, |
| commandBuffer); |
| |
| // Make the resolved image the target of buffer copy. |
| srcImage = &resolvedImage.get(); |
| level = 0; |
| layer = 0; |
| srcOffset = {0, 0, 0}; |
| srcSubresource.baseArrayLayer = 0; |
| srcSubresource.layerCount = 1; |
| srcSubresource.mipLevel = 0; |
| } |
| |
| VkBuffer bufferHandle = VK_NULL_HANDLE; |
| uint8_t *readPixelBuffer = nullptr; |
| VkDeviceSize stagingOffset = 0; |
| size_t allocationSize = readFormat->pixelBytes * area.width * area.height; |
| |
| ANGLE_TRY(mReadPixelBuffer.allocate(contextVk, allocationSize, &readPixelBuffer, &bufferHandle, |
| &stagingOffset, nullptr)); |
| |
| VkBufferImageCopy region = {}; |
| region.bufferImageHeight = srcExtent.height; |
| region.bufferOffset = stagingOffset; |
| region.bufferRowLength = srcExtent.width; |
| region.imageExtent = srcExtent; |
| region.imageOffset = srcOffset; |
| region.imageSubresource = srcSubresource; |
| |
| commandBuffer->copyImageToBuffer(srcImage->getImage(), srcImage->getCurrentLayout(), |
| bufferHandle, 1, ®ion); |
| |
| // Triggers a full finish. |
| // TODO(jmadill): Don't block on asynchronous readback. |
| ANGLE_TRY(contextVk->finishImpl()); |
| |
| // The buffer we copied to needs to be invalidated before we read from it because its not been |
| // created with the host coherent bit. |
| ANGLE_TRY(mReadPixelBuffer.invalidate(contextVk)); |
| |
| const gl::State &glState = contextVk->getState(); |
| gl::Buffer *packBuffer = glState.getTargetBuffer(gl::BufferBinding::PixelPack); |
| if (packBuffer != nullptr) |
| { |
| // Must map the PBO in order to read its contents (and then unmap it later) |
| BufferVk *packBufferVk = vk::GetImpl(packBuffer); |
| void *mapPtr = nullptr; |
| ANGLE_TRY(packBufferVk->mapImpl(contextVk, &mapPtr)); |
| uint8_t *dest = static_cast<uint8_t *>(mapPtr) + reinterpret_cast<ptrdiff_t>(pixels); |
| PackPixels(packPixelsParams, *readFormat, area.width * readFormat->pixelBytes, |
| readPixelBuffer, static_cast<uint8_t *>(dest)); |
| packBufferVk->unmapImpl(contextVk); |
| } |
| else |
| { |
| PackPixels(packPixelsParams, *readFormat, area.width * readFormat->pixelBytes, |
| readPixelBuffer, static_cast<uint8_t *>(pixels)); |
| } |
| |
| return angle::Result::Continue; |
| } |
| |
| gl::Extents FramebufferVk::getReadImageExtents() const |
| { |
| ASSERT(getColorReadRenderTarget()->getExtents().width == mState.getDimensions().width); |
| ASSERT(getColorReadRenderTarget()->getExtents().height == mState.getDimensions().height); |
| |
| return getColorReadRenderTarget()->getExtents(); |
| } |
| |
| gl::Rectangle FramebufferVk::getCompleteRenderArea() const |
| { |
| const gl::Box &dimensions = mState.getDimensions(); |
| return gl::Rectangle(0, 0, dimensions.width, dimensions.height); |
| } |
| |
| gl::Rectangle FramebufferVk::getScissoredRenderArea(ContextVk *contextVk) const |
| { |
| const gl::Box &dimensions = mState.getDimensions(); |
| const gl::Rectangle renderArea(0, 0, dimensions.width, dimensions.height); |
| bool invertViewport = contextVk->isViewportFlipEnabledForDrawFBO(); |
| |
| return ClipRectToScissor(contextVk->getState(), renderArea, invertViewport); |
| } |
| |
| void FramebufferVk::onScissorChange(ContextVk *contextVk) |
| { |
| gl::Rectangle scissoredRenderArea = getScissoredRenderArea(contextVk); |
| |
| // If the scissor has grown beyond the previous scissoredRenderArea, make sure the render pass |
| // is restarted. Otherwise, we can continue using the same renderpass area. |
| // |
| // Without a scissor, the render pass area covers the whole of the framebuffer. With a |
| // scissored clear, the render pass area could be smaller than the framebuffer size. When the |
| // scissor changes, if the scissor area is completely encompassed by the render pass area, it's |
| // possible to continue using the same render pass. However, if the current render pass area |
| // is too small, we need to start a new one. The latter can happen if a scissored clear starts |
| // a render pass, the scissor is disabled and a draw call is issued to affect the whole |
| // framebuffer. |
| mFramebuffer.updateQueueSerial(contextVk->getCurrentQueueSerial()); |
| if (mFramebuffer.hasStartedRenderPass() && |
| !mFramebuffer.getRenderPassRenderArea().encloses(scissoredRenderArea)) |
| { |
| mFramebuffer.finishCurrentCommands(contextVk); |
| } |
| } |
| |
| RenderTargetVk *FramebufferVk::getFirstRenderTarget() const |
| { |
| for (auto *renderTarget : mRenderTargetCache.getColors()) |
| { |
| if (renderTarget) |
| { |
| return renderTarget; |
| } |
| } |
| |
| return mRenderTargetCache.getDepthStencil(); |
| } |
| |
| GLint FramebufferVk::getSamples() const |
| { |
| RenderTargetVk *firstRT = getFirstRenderTarget(); |
| return firstRT ? firstRT->getImage().getSamples() : 0; |
| } |
| |
| } // namespace rx |