blob: df73f53fdc20e50dcf5f896a741c02348400ccd5 [file] [log] [blame]
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// VaryingPacking:
// Class which describes a mapping from varyings to registers, according
// to the spec, or using custom packing algorithms. We also keep a register
// allocation list for the D3D renderer.
//
#include "libANGLE/VaryingPacking.h"
#include "common/utilities.h"
#include "libANGLE/Program.h"
#include "libANGLE/Shader.h"
namespace gl
{
namespace
{
// true if varying x has a higher priority in packing than y
bool ComparePackedVarying(const PackedVarying &x, const PackedVarying &y)
{
// If the PackedVarying 'x' or 'y' to be compared is an array element, this clones an equivalent
// non-array shader variable 'vx' or 'vy' for actual comparison instead.
sh::ShaderVariable vx, vy;
const sh::ShaderVariable *px, *py;
px = &x.varying();
py = &y.varying();
if (x.isArrayElement())
{
vx = *px;
vx.arraySizes.clear();
px = &vx;
}
if (y.isArrayElement())
{
vy = *py;
vy.arraySizes.clear();
py = &vy;
}
return gl::CompareShaderVar(*px, *py);
}
} // anonymous namespace
// Implementation of VaryingInShaderRef
VaryingInShaderRef::VaryingInShaderRef(ShaderType stageIn, const sh::ShaderVariable *varyingIn)
: varying(varyingIn), stage(stageIn)
{}
VaryingInShaderRef::~VaryingInShaderRef() = default;
VaryingInShaderRef::VaryingInShaderRef(VaryingInShaderRef &&other)
{
*this = std::move(other);
}
VaryingInShaderRef &VaryingInShaderRef::operator=(VaryingInShaderRef &&other)
{
std::swap(varying, other.varying);
std::swap(stage, other.stage);
std::swap(parentStructName, other.parentStructName);
std::swap(parentStructMappedName, other.parentStructMappedName);
return *this;
}
// Implementation of PackedVarying
PackedVarying::PackedVarying(VaryingInShaderRef &&frontVaryingIn,
VaryingInShaderRef &&backVaryingIn,
sh::InterpolationType interpolationIn)
: PackedVarying(std::move(frontVaryingIn), std::move(backVaryingIn), interpolationIn, 0)
{}
PackedVarying::PackedVarying(VaryingInShaderRef &&frontVaryingIn,
VaryingInShaderRef &&backVaryingIn,
sh::InterpolationType interpolationIn,
GLuint fieldIndexIn)
: frontVarying(std::move(frontVaryingIn)),
backVarying(std::move(backVaryingIn)),
interpolation(interpolationIn),
arrayIndex(GL_INVALID_INDEX),
fieldIndex(fieldIndexIn)
{}
PackedVarying::~PackedVarying() = default;
PackedVarying::PackedVarying(PackedVarying &&other)
: frontVarying(other.frontVarying.stage, other.frontVarying.varying),
backVarying(other.backVarying.stage, other.backVarying.varying)
{
*this = std::move(other);
}
PackedVarying &PackedVarying::operator=(PackedVarying &&other)
{
std::swap(frontVarying, other.frontVarying);
std::swap(backVarying, other.backVarying);
std::swap(interpolation, other.interpolation);
std::swap(arrayIndex, other.arrayIndex);
std::swap(fieldIndex, other.fieldIndex);
return *this;
}
// Implementation of VaryingPacking
VaryingPacking::VaryingPacking(GLuint maxVaryingVectors, PackMode packMode)
: mRegisterMap(maxVaryingVectors), mPackMode(packMode)
{}
VaryingPacking::~VaryingPacking() = default;
void VaryingPacking::reset()
{
clearRegisterMap();
mRegisterList.clear();
mPackedVaryings.clear();
for (std::vector<std::string> inactiveVaryingMappedNames : mInactiveVaryingMappedNames)
{
inactiveVaryingMappedNames.clear();
}
}
void VaryingPacking::clearRegisterMap()
{
std::fill(mRegisterMap.begin(), mRegisterMap.end(), Register());
}
// Packs varyings into generic varying registers, using the algorithm from
// See [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
// Also [OpenGL ES Shading Language 3.00 rev. 4] Section 11 page 119
// Returns false if unsuccessful.
bool VaryingPacking::packVarying(const PackedVarying &packedVarying)
{
const sh::ShaderVariable &varying = packedVarying.varying();
// "Non - square matrices of type matCxR consume the same space as a square matrix of type matN
// where N is the greater of C and R."
// Here we are a bit more conservative and allow packing non-square matrices more tightly.
// Make sure we use transposed matrix types to count registers correctly.
ASSERT(!varying.isStruct());
GLenum transposedType = gl::TransposeMatrixType(varying.type);
unsigned int varyingRows = gl::VariableRowCount(transposedType);
unsigned int varyingColumns = gl::VariableColumnCount(transposedType);
// Special pack mode for D3D9. Each varying takes a full register, no sharing.
// TODO(jmadill): Implement more sophisticated component packing in D3D9.
if (mPackMode == PackMode::ANGLE_NON_CONFORMANT_D3D9)
{
varyingColumns = 4;
}
// "Variables of type mat2 occupies 2 complete rows."
// For non-WebGL contexts, we allow mat2 to occupy only two columns per row.
else if (mPackMode == PackMode::WEBGL_STRICT && varying.type == GL_FLOAT_MAT2)
{
varyingColumns = 4;
}
// "Arrays of size N are assumed to take N times the size of the base type"
// GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of
// structures, so we may use getBasicTypeElementCount().
const unsigned int elementCount = varying.getBasicTypeElementCount();
varyingRows *= (packedVarying.isArrayElement() ? 1 : elementCount);
unsigned int maxVaryingVectors = static_cast<unsigned int>(mRegisterMap.size());
// Fail if we are packing a single over-large varying.
if (varyingRows > maxVaryingVectors)
{
return false;
}
// "For 2, 3 and 4 component variables packing is started using the 1st column of the 1st row.
// Variables are then allocated to successive rows, aligning them to the 1st column."
if (varyingColumns >= 2 && varyingColumns <= 4)
{
for (unsigned int row = 0; row <= maxVaryingVectors - varyingRows; ++row)
{
if (isFree(row, 0, varyingRows, varyingColumns))
{
insert(row, 0, packedVarying);
return true;
}
}
// "For 2 component variables, when there are no spare rows, the strategy is switched to
// using the highest numbered row and the lowest numbered column where the variable will
// fit."
if (varyingColumns == 2)
{
for (unsigned int r = maxVaryingVectors - varyingRows + 1; r-- >= 1;)
{
if (isFree(r, 2, varyingRows, 2))
{
insert(r, 2, packedVarying);
return true;
}
}
}
return false;
}
// "1 component variables have their own packing rule. They are packed in order of size, largest
// first. Each variable is placed in the column that leaves the least amount of space in the
// column and aligned to the lowest available rows within that column."
ASSERT(varyingColumns == 1);
unsigned int contiguousSpace[4] = {0};
unsigned int bestContiguousSpace[4] = {0};
unsigned int totalSpace[4] = {0};
for (unsigned int row = 0; row < maxVaryingVectors; ++row)
{
for (unsigned int column = 0; column < 4; ++column)
{
if (mRegisterMap[row][column])
{
contiguousSpace[column] = 0;
}
else
{
contiguousSpace[column]++;
totalSpace[column]++;
if (contiguousSpace[column] > bestContiguousSpace[column])
{
bestContiguousSpace[column] = contiguousSpace[column];
}
}
}
}
unsigned int bestColumn = 0;
for (unsigned int column = 1; column < 4; ++column)
{
if (bestContiguousSpace[column] >= varyingRows &&
(bestContiguousSpace[bestColumn] < varyingRows ||
totalSpace[column] < totalSpace[bestColumn]))
{
bestColumn = column;
}
}
if (bestContiguousSpace[bestColumn] >= varyingRows)
{
for (unsigned int row = 0; row < maxVaryingVectors; row++)
{
if (isFree(row, bestColumn, varyingRows, 1))
{
for (unsigned int arrayIndex = 0; arrayIndex < varyingRows; ++arrayIndex)
{
// If varyingRows > 1, it must be an array.
PackedVaryingRegister registerInfo;
registerInfo.packedVarying = &packedVarying;
registerInfo.registerRow = row + arrayIndex;
registerInfo.registerColumn = bestColumn;
registerInfo.varyingArrayIndex =
(packedVarying.isArrayElement() ? packedVarying.arrayIndex : arrayIndex);
registerInfo.varyingRowIndex = 0;
// Do not record register info for builtins.
// TODO(jmadill): Clean this up.
if (!varying.isBuiltIn())
{
mRegisterList.push_back(registerInfo);
}
mRegisterMap[row + arrayIndex][bestColumn] = true;
}
break;
}
}
return true;
}
return false;
}
bool VaryingPacking::isFree(unsigned int registerRow,
unsigned int registerColumn,
unsigned int varyingRows,
unsigned int varyingColumns) const
{
for (unsigned int row = 0; row < varyingRows; ++row)
{
ASSERT(registerRow + row < mRegisterMap.size());
for (unsigned int column = 0; column < varyingColumns; ++column)
{
ASSERT(registerColumn + column < 4);
if (mRegisterMap[registerRow + row][registerColumn + column])
{
return false;
}
}
}
return true;
}
void VaryingPacking::insert(unsigned int registerRow,
unsigned int registerColumn,
const PackedVarying &packedVarying)
{
unsigned int varyingRows = 0;
unsigned int varyingColumns = 0;
const sh::ShaderVariable &varying = packedVarying.varying();
ASSERT(!varying.isStruct());
GLenum transposedType = gl::TransposeMatrixType(varying.type);
varyingRows = gl::VariableRowCount(transposedType);
varyingColumns = gl::VariableColumnCount(transposedType);
PackedVaryingRegister registerInfo;
registerInfo.packedVarying = &packedVarying;
registerInfo.registerColumn = registerColumn;
// GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of
// structures, so we may use getBasicTypeElementCount().
const unsigned int arrayElementCount = varying.getBasicTypeElementCount();
for (unsigned int arrayElement = 0; arrayElement < arrayElementCount; ++arrayElement)
{
if (packedVarying.isArrayElement() && arrayElement != packedVarying.arrayIndex)
{
continue;
}
for (unsigned int varyingRow = 0; varyingRow < varyingRows; ++varyingRow)
{
registerInfo.registerRow = registerRow + (arrayElement * varyingRows) + varyingRow;
registerInfo.varyingRowIndex = varyingRow;
registerInfo.varyingArrayIndex = arrayElement;
// Do not record register info for builtins.
// TODO(jmadill): Clean this up.
if (!varying.isBuiltIn())
{
mRegisterList.push_back(registerInfo);
}
for (unsigned int columnIndex = 0; columnIndex < varyingColumns; ++columnIndex)
{
mRegisterMap[registerInfo.registerRow][registerColumn + columnIndex] = true;
}
}
}
}
void VaryingPacking::packUserVarying(const ProgramVaryingRef &ref,
VaryingUniqueFullNames *uniqueFullNames)
{
const sh::ShaderVariable *input = ref.frontShader;
const sh::ShaderVariable *output = ref.backShader;
// Will get the vertex shader interpolation by default.
sh::InterpolationType interpolation = input ? input->interpolation : output->interpolation;
VaryingInShaderRef frontVarying(ref.frontShaderStage, input);
VaryingInShaderRef backVarying(ref.backShaderStage, output);
mPackedVaryings.emplace_back(std::move(frontVarying), std::move(backVarying), interpolation);
if (input)
{
(*uniqueFullNames)[ref.frontShaderStage].insert(
mPackedVaryings.back().fullName(ref.frontShaderStage));
}
if (output)
{
(*uniqueFullNames)[ref.backShaderStage].insert(
mPackedVaryings.back().fullName(ref.backShaderStage));
}
}
void VaryingPacking::packUserVaryingField(const ProgramVaryingRef &ref,
GLuint fieldIndex,
VaryingUniqueFullNames *uniqueFullNames)
{
const sh::ShaderVariable *input = ref.frontShader;
const sh::ShaderVariable *output = ref.backShader;
// Will get the vertex shader interpolation by default.
sh::InterpolationType interpolation = input ? input->interpolation : output->interpolation;
const sh::ShaderVariable *frontField = input ? &input->fields[fieldIndex] : nullptr;
const sh::ShaderVariable *backField = output ? &output->fields[fieldIndex] : nullptr;
VaryingInShaderRef frontVarying(ref.frontShaderStage, frontField);
VaryingInShaderRef backVarying(ref.backShaderStage, backField);
if (input)
{
ASSERT(!frontField->isStruct() && !frontField->isArray());
frontVarying.parentStructName = input->name;
frontVarying.parentStructMappedName = input->mappedName;
}
if (output)
{
ASSERT(!backField->isStruct() && !backField->isArray());
backVarying.parentStructName = output->name;
backVarying.parentStructMappedName = output->mappedName;
}
mPackedVaryings.emplace_back(std::move(frontVarying), std::move(backVarying), interpolation,
fieldIndex);
if (input)
{
(*uniqueFullNames)[ref.frontShaderStage].insert(
mPackedVaryings.back().fullName(ref.frontShaderStage));
}
if (output)
{
(*uniqueFullNames)[ref.backShaderStage].insert(
mPackedVaryings.back().fullName(ref.backShaderStage));
}
}
void VaryingPacking::packUserVaryingTF(const ProgramVaryingRef &ref, size_t subscript)
{
const sh::ShaderVariable *input = ref.frontShader;
VaryingInShaderRef frontVarying(ref.frontShaderStage, input);
VaryingInShaderRef backVarying(ref.backShaderStage, nullptr);
mPackedVaryings.emplace_back(std::move(frontVarying), std::move(backVarying),
input->interpolation);
mPackedVaryings.back().arrayIndex = static_cast<GLuint>(subscript);
}
void VaryingPacking::packUserVaryingFieldTF(const ProgramVaryingRef &ref,
const sh::ShaderVariable &field,
GLuint fieldIndex)
{
const sh::ShaderVariable *input = ref.frontShader;
VaryingInShaderRef frontVarying(ref.frontShaderStage, &field);
VaryingInShaderRef backVarying(ref.backShaderStage, nullptr);
frontVarying.parentStructName = input->name;
frontVarying.parentStructMappedName = input->mappedName;
mPackedVaryings.emplace_back(std::move(frontVarying), std::move(backVarying),
input->interpolation, fieldIndex);
}
bool VaryingPacking::collectAndPackUserVaryings(gl::InfoLog &infoLog,
const ProgramMergedVaryings &mergedVaryings,
const std::vector<std::string> &tfVaryings,
const bool isSeparableProgram)
{
VaryingUniqueFullNames uniqueFullNames;
mPackedVaryings.clear();
clearRegisterMap();
for (const ProgramVaryingRef &ref : mergedVaryings)
{
const sh::ShaderVariable *input = ref.frontShader;
const sh::ShaderVariable *output = ref.backShader;
// Only pack statically used varyings that have a matched input or output, plus special
// builtins. Note that we pack all statically used user-defined varyings even if they are
// not active. GLES specs are a bit vague on whether it's allowed to only pack active
// varyings, though GLES 3.1 spec section 11.1.2.1 says that "device-dependent
// optimizations" may be used to make vertex shader outputs fit.
if ((input && output && output->staticUse) ||
(input && input->isBuiltIn() && input->active) ||
(output && output->isBuiltIn() && output->active) ||
(isSeparableProgram && ((input && input->active) || (output && output->active))))
{
const sh::ShaderVariable *varying = output ? output : input;
// Don't count gl_Position. Also don't count gl_PointSize for D3D9.
if (varying->name != "gl_Position" &&
!(varying->name == "gl_PointSize" &&
mPackMode == PackMode::ANGLE_NON_CONFORMANT_D3D9))
{
if (varying->isStruct())
{
ASSERT(!(varying->isArray() && varying == input));
for (GLuint fieldIndex = 0; fieldIndex < varying->fields.size(); ++fieldIndex)
{
packUserVaryingField(ref, fieldIndex, &uniqueFullNames);
}
if (input)
{
uniqueFullNames[ref.frontShaderStage].insert(input->name);
}
if (output)
{
uniqueFullNames[ref.backShaderStage].insert(output->name);
}
}
else
{
packUserVarying(ref, &uniqueFullNames);
}
continue;
}
}
// If the varying is not used in the input, we know it is inactive, unless it's a separable
// program, in which case the input shader may not exist in this program.
if (!input && !isSeparableProgram)
{
mInactiveVaryingMappedNames[ref.backShaderStage].push_back(output->mappedName);
continue;
}
// Keep Transform FB varyings in the merged list always.
for (const std::string &tfVarying : tfVaryings)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(tfVarying, &subscripts);
size_t subscript = GL_INVALID_INDEX;
if (!subscripts.empty())
{
subscript = subscripts.back();
}
// Already packed for fragment shader.
if (uniqueFullNames[ref.frontShaderStage].count(tfVarying) > 0 ||
uniqueFullNames[ref.frontShaderStage].count(baseName) > 0)
{
continue;
}
if (input->isStruct())
{
GLuint fieldIndex = 0;
const sh::ShaderVariable *field =
FindShaderVarField(*input, tfVarying, &fieldIndex);
if (field != nullptr)
{
ASSERT(!field->isStruct() && !field->isArray());
packUserVaryingFieldTF(ref, *field, fieldIndex);
uniqueFullNames[ref.frontShaderStage].insert(tfVarying);
}
uniqueFullNames[ref.frontShaderStage].insert(input->name);
}
// Array as a whole and array element conflict has already been checked in
// linkValidateTransformFeedback.
else if (baseName == input->name)
{
// only pack varyings that are not builtins.
if (tfVarying.compare(0, 3, "gl_") != 0)
{
packUserVaryingTF(ref, subscript);
uniqueFullNames[ref.frontShaderStage].insert(tfVarying);
}
// Continue to match next array element for 'input' if the current match is array
// element.
if (subscript == GL_INVALID_INDEX)
{
break;
}
}
}
if (input && uniqueFullNames[ref.frontShaderStage].count(input->name) == 0)
{
mInactiveVaryingMappedNames[ref.frontShaderStage].push_back(input->mappedName);
}
if (output && uniqueFullNames[ref.backShaderStage].count(output->name) == 0)
{
mInactiveVaryingMappedNames[ref.backShaderStage].push_back(output->mappedName);
}
}
std::sort(mPackedVaryings.begin(), mPackedVaryings.end(), ComparePackedVarying);
return packUserVaryings(infoLog, mPackedVaryings);
}
// See comment on packVarying.
bool VaryingPacking::packUserVaryings(gl::InfoLog &infoLog,
const std::vector<PackedVarying> &packedVaryings)
{
// "Variables are packed into the registers one at a time so that they each occupy a contiguous
// subrectangle. No splitting of variables is permitted."
for (const PackedVarying &packedVarying : packedVaryings)
{
if (!packVarying(packedVarying))
{
ShaderType eitherStage = packedVarying.frontVarying.varying
? packedVarying.frontVarying.stage
: packedVarying.backVarying.stage;
infoLog << "Could not pack varying " << packedVarying.fullName(eitherStage);
// TODO(jmadill): Implement more sophisticated component packing in D3D9.
if (mPackMode == PackMode::ANGLE_NON_CONFORMANT_D3D9)
{
infoLog << "Note: Additional non-conformant packing restrictions are enforced on "
"D3D9.";
}
return false;
}
}
// Sort the packed register list
std::sort(mRegisterList.begin(), mRegisterList.end());
return true;
}
} // namespace gl