blob: b41a9b6b02efc253ffbb59f9d626b12ab22787d2 [file] [log] [blame]
//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libANGLE/Program.h"
#include <algorithm>
#include <utility>
#include "common/bitset_utils.h"
#include "common/debug.h"
#include "common/platform.h"
#include "common/string_utils.h"
#include "common/utilities.h"
#include "common/version.h"
#include "compiler/translator/blocklayout.h"
#include "libANGLE/Context.h"
#include "libANGLE/ErrorStrings.h"
#include "libANGLE/MemoryProgramCache.h"
#include "libANGLE/ProgramLinkedResources.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/Uniform.h"
#include "libANGLE/VaryingPacking.h"
#include "libANGLE/Version.h"
#include "libANGLE/features.h"
#include "libANGLE/histogram_macros.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/renderer/GLImplFactory.h"
#include "libANGLE/renderer/ProgramImpl.h"
#include "platform/FrontendFeatures.h"
#include "platform/Platform.h"
namespace gl
{
namespace
{
// This simplified cast function doesn't need to worry about advanced concepts like
// depth range values, or casting to bool.
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value);
// From-Float-To-Integer Casts
template <>
GLint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLint>(roundf(value));
}
template <>
GLuint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLuint>(roundf(value));
}
// From-Integer-to-Integer Casts
template <>
GLint UniformStateQueryCast(GLuint value)
{
return clampCast<GLint>(value);
}
template <>
GLuint UniformStateQueryCast(GLint value)
{
return clampCast<GLuint>(value);
}
// From-Boolean-to-Anything Casts
template <>
GLfloat UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1.0f : 0.0f);
}
template <>
GLint UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1 : 0);
}
template <>
GLuint UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1u : 0u);
}
// Default to static_cast
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value)
{
return static_cast<DestT>(value);
}
template <typename SrcT, typename DestT>
void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components)
{
for (int comp = 0; comp < components; ++comp)
{
// We only work with strides of 4 bytes for uniform components. (GLfloat/GLint)
// Don't use SrcT stride directly since GLboolean has a stride of 1 byte.
size_t offset = comp * 4;
const SrcT *typedSrcPointer = reinterpret_cast<const SrcT *>(&srcPointer[offset]);
dataOut[comp] = UniformStateQueryCast<DestT>(*typedSrcPointer);
}
}
template <typename VarT>
GLuint GetResourceIndexFromName(const std::vector<VarT> &list, const std::string &name)
{
std::string nameAsArrayName = name + "[0]";
for (size_t index = 0; index < list.size(); index++)
{
const VarT &resource = list[index];
if (resource.name == name || (resource.isArray() && resource.name == nameAsArrayName))
{
return static_cast<GLuint>(index);
}
}
return GL_INVALID_INDEX;
}
GLint GetVariableLocation(const std::vector<sh::ShaderVariable> &list,
const std::vector<VariableLocation> &locationList,
const std::string &name)
{
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
for (size_t location = 0u; location < locationList.size(); ++location)
{
const VariableLocation &variableLocation = locationList[location];
if (!variableLocation.used())
{
continue;
}
const sh::ShaderVariable &variable = list[variableLocation.index];
// Array output variables may be bound out of order, so we need to ensure we only pick the
// first element if given the base name.
if ((variable.name == name) && (variableLocation.arrayIndex == 0))
{
return static_cast<GLint>(location);
}
if (variable.isArray() && variableLocation.arrayIndex == arrayIndex &&
angle::BeginsWith(variable.name, name, nameLengthWithoutArrayIndex))
{
return static_cast<GLint>(location);
}
}
return -1;
}
GLint GetVariableLocation(const std::vector<LinkedUniform> &list,
const std::vector<VariableLocation> &locationList,
const std::string &name)
{
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
for (size_t location = 0u; location < locationList.size(); ++location)
{
const VariableLocation &variableLocation = locationList[location];
if (!variableLocation.used())
{
continue;
}
const LinkedUniform &variable = list[variableLocation.index];
// Array output variables may be bound out of order, so we need to ensure we only pick the
// first element if given the base name. Uniforms don't allow this behavior and some code
// seemingly depends on the opposite behavior, so only enable it for output variables.
if (angle::BeginsWith(variable.name, name) && (variableLocation.arrayIndex == 0))
{
if (name.length() == variable.name.length())
{
ASSERT(name == variable.name);
// GLES 3.1 November 2016 page 87.
// The string exactly matches the name of the active variable.
return static_cast<GLint>(location);
}
if (name.length() + 3u == variable.name.length() && variable.isArray())
{
ASSERT(name + "[0]" == variable.name);
// The string identifies the base name of an active array, where the string would
// exactly match the name of the variable if the suffix "[0]" were appended to the
// string.
return static_cast<GLint>(location);
}
}
if (variable.isArray() && variableLocation.arrayIndex == arrayIndex &&
nameLengthWithoutArrayIndex + 3u == variable.name.length() &&
angle::BeginsWith(variable.name, name, nameLengthWithoutArrayIndex))
{
ASSERT(name.substr(0u, nameLengthWithoutArrayIndex) + "[0]" == variable.name);
// The string identifies an active element of the array, where the string ends with the
// concatenation of the "[" character, an integer (with no "+" sign, extra leading
// zeroes, or whitespace) identifying an array element, and the "]" character, the
// integer is less than the number of active elements of the array variable, and where
// the string would exactly match the enumerated name of the array if the decimal
// integer were replaced with zero.
return static_cast<GLint>(location);
}
}
return -1;
}
void CopyStringToBuffer(GLchar *buffer,
const std::string &string,
GLsizei bufSize,
GLsizei *lengthOut)
{
ASSERT(bufSize > 0);
size_t length = std::min<size_t>(bufSize - 1, string.length());
memcpy(buffer, string.c_str(), length);
buffer[length] = '\0';
if (lengthOut)
{
*lengthOut = static_cast<GLsizei>(length);
}
}
bool IncludeSameArrayElement(const std::set<std::string> &nameSet, const std::string &name)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(name, &subscripts);
for (const std::string &nameInSet : nameSet)
{
std::vector<unsigned int> arrayIndices;
std::string arrayName = ParseResourceName(nameInSet, &arrayIndices);
if (baseName == arrayName &&
(subscripts.empty() || arrayIndices.empty() || subscripts == arrayIndices))
{
return true;
}
}
return false;
}
std::string GetInterfaceBlockLimitName(ShaderType shaderType, sh::BlockType blockType)
{
std::ostringstream stream;
stream << "GL_MAX_" << GetShaderTypeString(shaderType) << "_";
switch (blockType)
{
case sh::BlockType::BLOCK_UNIFORM:
stream << "UNIFORM_BUFFERS";
break;
case sh::BlockType::BLOCK_BUFFER:
stream << "SHADER_STORAGE_BLOCKS";
break;
default:
UNREACHABLE();
return "";
}
if (shaderType == ShaderType::Geometry)
{
stream << "_EXT";
}
return stream.str();
}
const char *GetInterfaceBlockTypeString(sh::BlockType blockType)
{
switch (blockType)
{
case sh::BlockType::BLOCK_UNIFORM:
return "uniform block";
case sh::BlockType::BLOCK_BUFFER:
return "shader storage block";
default:
UNREACHABLE();
return "";
}
}
void LogInterfaceBlocksExceedLimit(InfoLog &infoLog,
ShaderType shaderType,
sh::BlockType blockType,
GLuint limit)
{
infoLog << GetShaderTypeString(shaderType) << " shader "
<< GetInterfaceBlockTypeString(blockType) << " count exceeds "
<< GetInterfaceBlockLimitName(shaderType, blockType) << " (" << limit << ")";
}
bool ValidateInterfaceBlocksCount(GLuint maxInterfaceBlocks,
const std::vector<sh::InterfaceBlock> &interfaceBlocks,
ShaderType shaderType,
sh::BlockType blockType,
GLuint *combinedInterfaceBlocksCount,
InfoLog &infoLog)
{
GLuint blockCount = 0;
for (const sh::InterfaceBlock &block : interfaceBlocks)
{
if (IsActiveInterfaceBlock(block))
{
blockCount += std::max(block.arraySize, 1u);
if (blockCount > maxInterfaceBlocks)
{
LogInterfaceBlocksExceedLimit(infoLog, shaderType, blockType, maxInterfaceBlocks);
return false;
}
}
}
// [OpenGL ES 3.1] Chapter 7.6.2 Page 105:
// If a uniform block is used by multiple shader stages, each such use counts separately
// against this combined limit.
// [OpenGL ES 3.1] Chapter 7.8 Page 111:
// If a shader storage block in a program is referenced by multiple shaders, each such
// reference counts separately against this combined limit.
if (combinedInterfaceBlocksCount)
{
*combinedInterfaceBlocksCount += blockCount;
}
return true;
}
GLuint GetInterfaceBlockIndex(const std::vector<InterfaceBlock> &list, const std::string &name)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(name, &subscripts);
unsigned int numBlocks = static_cast<unsigned int>(list.size());
for (unsigned int blockIndex = 0; blockIndex < numBlocks; blockIndex++)
{
const auto &block = list[blockIndex];
if (block.name == baseName)
{
const bool arrayElementZero =
(subscripts.empty() && (!block.isArray || block.arrayElement == 0));
const bool arrayElementMatches =
(subscripts.size() == 1 && subscripts[0] == block.arrayElement);
if (arrayElementMatches || arrayElementZero)
{
return blockIndex;
}
}
}
return GL_INVALID_INDEX;
}
void GetInterfaceBlockName(const GLuint index,
const std::vector<InterfaceBlock> &list,
GLsizei bufSize,
GLsizei *length,
GLchar *name)
{
ASSERT(index < list.size());
const auto &block = list[index];
if (bufSize > 0)
{
std::string blockName = block.name;
if (block.isArray)
{
blockName += ArrayString(block.arrayElement);
}
CopyStringToBuffer(name, blockName, bufSize, length);
}
}
void InitUniformBlockLinker(const ProgramState &state, UniformBlockLinker *blockLinker)
{
for (ShaderType shaderType : AllShaderTypes())
{
Shader *shader = state.getAttachedShader(shaderType);
if (shader)
{
blockLinker->addShaderBlocks(shaderType, &shader->getUniformBlocks());
}
}
}
void InitShaderStorageBlockLinker(const ProgramState &state, ShaderStorageBlockLinker *blockLinker)
{
for (ShaderType shaderType : AllShaderTypes())
{
Shader *shader = state.getAttachedShader(shaderType);
if (shader != nullptr)
{
blockLinker->addShaderBlocks(shaderType, &shader->getShaderStorageBlocks());
}
}
}
// Find the matching varying or field by name.
const sh::ShaderVariable *FindOutputVaryingOrField(const ProgramMergedVaryings &varyings,
ShaderType stage,
const std::string &name)
{
const sh::ShaderVariable *var = nullptr;
for (const ProgramVaryingRef &ref : varyings)
{
if (ref.frontShaderStage != stage)
{
continue;
}
const sh::ShaderVariable *varying = ref.get(stage);
if (varying->name == name)
{
var = varying;
break;
}
GLuint fieldIndex = 0;
var = FindShaderVarField(*varying, name, &fieldIndex);
if (var != nullptr)
{
break;
}
}
return var;
}
void AddParentPrefix(const std::string &parentName, std::string *mismatchedFieldName)
{
ASSERT(mismatchedFieldName);
if (mismatchedFieldName->empty())
{
*mismatchedFieldName = parentName;
}
else
{
std::ostringstream stream;
stream << parentName << "." << *mismatchedFieldName;
*mismatchedFieldName = stream.str();
}
}
const char *GetLinkMismatchErrorString(LinkMismatchError linkError)
{
switch (linkError)
{
case LinkMismatchError::TYPE_MISMATCH:
return "Type";
case LinkMismatchError::ARRAY_SIZE_MISMATCH:
return "Array size";
case LinkMismatchError::PRECISION_MISMATCH:
return "Precision";
case LinkMismatchError::STRUCT_NAME_MISMATCH:
return "Structure name";
case LinkMismatchError::FIELD_NUMBER_MISMATCH:
return "Field number";
case LinkMismatchError::FIELD_NAME_MISMATCH:
return "Field name";
case LinkMismatchError::INTERPOLATION_TYPE_MISMATCH:
return "Interpolation type";
case LinkMismatchError::INVARIANCE_MISMATCH:
return "Invariance";
case LinkMismatchError::BINDING_MISMATCH:
return "Binding layout qualifier";
case LinkMismatchError::LOCATION_MISMATCH:
return "Location layout qualifier";
case LinkMismatchError::OFFSET_MISMATCH:
return "Offset layout qualifier";
case LinkMismatchError::INSTANCE_NAME_MISMATCH:
return "Instance name qualifier";
case LinkMismatchError::FORMAT_MISMATCH:
return "Format qualifier";
case LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH:
return "Layout qualifier";
case LinkMismatchError::MATRIX_PACKING_MISMATCH:
return "Matrix Packing";
default:
UNREACHABLE();
return "";
}
}
LinkMismatchError LinkValidateInterfaceBlockFields(const sh::ShaderVariable &blockField1,
const sh::ShaderVariable &blockField2,
bool webglCompatibility,
std::string *mismatchedBlockFieldName)
{
if (blockField1.name != blockField2.name)
{
return LinkMismatchError::FIELD_NAME_MISMATCH;
}
// If webgl, validate precision of UBO fields, otherwise don't. See Khronos bug 10287.
LinkMismatchError linkError = Program::LinkValidateVariablesBase(
blockField1, blockField2, webglCompatibility, true, mismatchedBlockFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
AddParentPrefix(blockField1.name, mismatchedBlockFieldName);
return linkError;
}
if (blockField1.isRowMajorLayout != blockField2.isRowMajorLayout)
{
AddParentPrefix(blockField1.name, mismatchedBlockFieldName);
return LinkMismatchError::MATRIX_PACKING_MISMATCH;
}
return LinkMismatchError::NO_MISMATCH;
}
LinkMismatchError AreMatchingInterfaceBlocks(const sh::InterfaceBlock &interfaceBlock1,
const sh::InterfaceBlock &interfaceBlock2,
bool webglCompatibility,
std::string *mismatchedBlockFieldName)
{
// validate blocks for the same member types
if (interfaceBlock1.fields.size() != interfaceBlock2.fields.size())
{
return LinkMismatchError::FIELD_NUMBER_MISMATCH;
}
if (interfaceBlock1.arraySize != interfaceBlock2.arraySize)
{
return LinkMismatchError::ARRAY_SIZE_MISMATCH;
}
if (interfaceBlock1.layout != interfaceBlock2.layout ||
interfaceBlock1.binding != interfaceBlock2.binding)
{
return LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH;
}
if (interfaceBlock1.instanceName.empty() != interfaceBlock2.instanceName.empty())
{
return LinkMismatchError::INSTANCE_NAME_MISMATCH;
}
const unsigned int numBlockMembers = static_cast<unsigned int>(interfaceBlock1.fields.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::ShaderVariable &member1 = interfaceBlock1.fields[blockMemberIndex];
const sh::ShaderVariable &member2 = interfaceBlock2.fields[blockMemberIndex];
LinkMismatchError linkError = LinkValidateInterfaceBlockFields(
member1, member2, webglCompatibility, mismatchedBlockFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
return linkError;
}
}
return LinkMismatchError::NO_MISMATCH;
}
using ShaderInterfaceBlock = std::pair<ShaderType, const sh::InterfaceBlock *>;
using InterfaceBlockMap = std::map<std::string, ShaderInterfaceBlock>;
void InitializeInterfaceBlockMap(const std::vector<sh::InterfaceBlock> &interfaceBlocks,
ShaderType shaderType,
InterfaceBlockMap *linkedInterfaceBlocks)
{
ASSERT(linkedInterfaceBlocks);
for (const sh::InterfaceBlock &interfaceBlock : interfaceBlocks)
{
(*linkedInterfaceBlocks)[interfaceBlock.name] = std::make_pair(shaderType, &interfaceBlock);
}
}
bool ValidateGraphicsInterfaceBlocksPerShader(
const std::vector<sh::InterfaceBlock> &interfaceBlocksToLink,
ShaderType shaderType,
bool webglCompatibility,
InterfaceBlockMap *linkedBlocks,
InfoLog &infoLog)
{
ASSERT(linkedBlocks);
for (const sh::InterfaceBlock &block : interfaceBlocksToLink)
{
const auto &entry = linkedBlocks->find(block.name);
if (entry != linkedBlocks->end())
{
const sh::InterfaceBlock &linkedBlock = *(entry->second.second);
std::string mismatchedStructFieldName;
LinkMismatchError linkError = AreMatchingInterfaceBlocks(
block, linkedBlock, webglCompatibility, &mismatchedStructFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
LogLinkMismatch(infoLog, block.name, GetInterfaceBlockTypeString(block.blockType),
linkError, mismatchedStructFieldName, entry->second.first,
shaderType);
return false;
}
}
else
{
(*linkedBlocks)[block.name] = std::make_pair(shaderType, &block);
}
}
return true;
}
bool ValidateInterfaceBlocksMatch(
GLuint numShadersHasInterfaceBlocks,
const ShaderMap<const std::vector<sh::InterfaceBlock> *> &shaderInterfaceBlocks,
InfoLog &infoLog,
bool webglCompatibility)
{
if (numShadersHasInterfaceBlocks < 2u)
{
return true;
}
ASSERT(!shaderInterfaceBlocks[ShaderType::Compute]);
// Check that interface blocks defined in the graphics shaders are identical
InterfaceBlockMap linkedInterfaceBlocks;
bool interfaceBlockMapInitialized = false;
for (ShaderType shaderType : kAllGraphicsShaderTypes)
{
if (!shaderInterfaceBlocks[shaderType])
{
continue;
}
if (!interfaceBlockMapInitialized)
{
InitializeInterfaceBlockMap(*shaderInterfaceBlocks[shaderType], shaderType,
&linkedInterfaceBlocks);
interfaceBlockMapInitialized = true;
}
else if (!ValidateGraphicsInterfaceBlocksPerShader(*shaderInterfaceBlocks[shaderType],
shaderType, webglCompatibility,
&linkedInterfaceBlocks, infoLog))
{
return false;
}
}
return true;
}
void WriteShaderVariableBuffer(BinaryOutputStream *stream, const ShaderVariableBuffer &var)
{
stream->writeInt(var.binding);
stream->writeInt(var.dataSize);
for (ShaderType shaderType : AllShaderTypes())
{
stream->writeInt(var.isActive(shaderType));
}
stream->writeInt(var.memberIndexes.size());
for (unsigned int memberCounterIndex : var.memberIndexes)
{
stream->writeInt(memberCounterIndex);
}
}
void LoadShaderVariableBuffer(BinaryInputStream *stream, ShaderVariableBuffer *var)
{
var->binding = stream->readInt<int>();
var->dataSize = stream->readInt<unsigned int>();
for (ShaderType shaderType : AllShaderTypes())
{
var->setActive(shaderType, stream->readBool());
}
unsigned int numMembers = stream->readInt<unsigned int>();
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++)
{
var->memberIndexes.push_back(stream->readInt<unsigned int>());
}
}
void WriteBufferVariable(BinaryOutputStream *stream, const BufferVariable &var)
{
WriteShaderVar(stream, var);
stream->writeInt(var.bufferIndex);
WriteBlockMemberInfo(stream, var.blockInfo);
stream->writeInt(var.topLevelArraySize);
for (ShaderType shaderType : AllShaderTypes())
{
stream->writeInt(var.isActive(shaderType));
}
}
void LoadBufferVariable(BinaryInputStream *stream, BufferVariable *var)
{
LoadShaderVar(stream, var);
var->bufferIndex = stream->readInt<int>();
LoadBlockMemberInfo(stream, &var->blockInfo);
var->topLevelArraySize = stream->readInt<int>();
for (ShaderType shaderType : AllShaderTypes())
{
var->setActive(shaderType, stream->readBool());
}
}
void WriteInterfaceBlock(BinaryOutputStream *stream, const InterfaceBlock &block)
{
stream->writeString(block.name);
stream->writeString(block.mappedName);
stream->writeInt(block.isArray);
stream->writeInt(block.arrayElement);
WriteShaderVariableBuffer(stream, block);
}
void LoadInterfaceBlock(BinaryInputStream *stream, InterfaceBlock *block)
{
block->name = stream->readString();
block->mappedName = stream->readString();
block->isArray = stream->readBool();
block->arrayElement = stream->readInt<unsigned int>();
LoadShaderVariableBuffer(stream, block);
}
} // anonymous namespace
// Saves the linking context for later use in resolveLink().
struct Program::LinkingState
{
std::shared_ptr<ProgramExecutable> linkedExecutable;
std::unique_ptr<ProgramLinkedResources> resources;
egl::BlobCache::Key programHash;
std::unique_ptr<rx::LinkEvent> linkEvent;
bool linkingFromBinary;
};
const char *const g_fakepath = "C:\\fakepath";
// InfoLog implementation.
InfoLog::InfoLog() : mLazyStream(nullptr) {}
InfoLog::~InfoLog() {}
size_t InfoLog::getLength() const
{
if (!mLazyStream)
{
return 0;
}
const std::string &logString = mLazyStream->str();
return logString.empty() ? 0 : logString.length() + 1;
}
void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
size_t index = 0;
if (bufSize > 0)
{
const std::string logString(str());
if (!logString.empty())
{
index = std::min(static_cast<size_t>(bufSize) - 1, logString.length());
memcpy(infoLog, logString.c_str(), index);
}
infoLog[index] = '\0';
}
if (length)
{
*length = static_cast<GLsizei>(index);
}
}
// append a santized message to the program info log.
// The D3D compiler includes a fake file path in some of the warning or error
// messages, so lets remove all occurrences of this fake file path from the log.
void InfoLog::appendSanitized(const char *message)
{
ensureInitialized();
std::string msg(message);
size_t found;
do
{
found = msg.find(g_fakepath);
if (found != std::string::npos)
{
msg.erase(found, strlen(g_fakepath));
}
} while (found != std::string::npos);
*mLazyStream << message << std::endl;
}
void InfoLog::reset()
{
if (mLazyStream)
{
mLazyStream.reset(nullptr);
}
}
bool InfoLog::empty() const
{
if (!mLazyStream)
{
return true;
}
return mLazyStream->rdbuf()->in_avail() == 0;
}
void LogLinkMismatch(InfoLog &infoLog,
const std::string &variableName,
const char *variableType,
LinkMismatchError linkError,
const std::string &mismatchedStructOrBlockFieldName,
ShaderType shaderType1,
ShaderType shaderType2)
{
std::ostringstream stream;
stream << GetLinkMismatchErrorString(linkError) << "s of " << variableType << " '"
<< variableName;
if (!mismatchedStructOrBlockFieldName.empty())
{
stream << "' member '" << variableName << "." << mismatchedStructOrBlockFieldName;
}
stream << "' differ between " << GetShaderTypeString(shaderType1) << " and "
<< GetShaderTypeString(shaderType2) << " shaders.";
infoLog << stream.str();
}
bool IsActiveInterfaceBlock(const sh::InterfaceBlock &interfaceBlock)
{
// Only 'packed' blocks are allowed to be considered inactive.
return interfaceBlock.active || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED;
}
void WriteBlockMemberInfo(BinaryOutputStream *stream, const sh::BlockMemberInfo &var)
{
stream->writeInt(var.arrayStride);
stream->writeInt(var.isRowMajorMatrix);
stream->writeInt(var.matrixStride);
stream->writeInt(var.offset);
stream->writeInt(var.topLevelArrayStride);
}
void LoadBlockMemberInfo(BinaryInputStream *stream, sh::BlockMemberInfo *var)
{
var->arrayStride = stream->readInt<int>();
var->isRowMajorMatrix = stream->readBool();
var->matrixStride = stream->readInt<int>();
var->offset = stream->readInt<int>();
var->topLevelArrayStride = stream->readInt<int>();
}
void WriteShaderVar(BinaryOutputStream *stream, const sh::ShaderVariable &var)
{
stream->writeInt(var.type);
stream->writeInt(var.precision);
stream->writeString(var.name);
stream->writeString(var.mappedName);
stream->writeIntVector(var.arraySizes);
stream->writeInt(var.staticUse);
stream->writeInt(var.active);
stream->writeInt(var.binding);
stream->writeString(var.structName);
stream->writeInt(var.hasParentArrayIndex() ? var.parentArrayIndex() : -1);
stream->writeInt(var.imageUnitFormat);
stream->writeInt(var.offset);
stream->writeInt(var.readonly);
stream->writeInt(var.writeonly);
ASSERT(var.fields.empty());
}
void LoadShaderVar(BinaryInputStream *stream, sh::ShaderVariable *var)
{
var->type = stream->readInt<GLenum>();
var->precision = stream->readInt<GLenum>();
var->name = stream->readString();
var->mappedName = stream->readString();
stream->readIntVector<unsigned int>(&var->arraySizes);
var->staticUse = stream->readBool();
var->active = stream->readBool();
var->binding = stream->readInt<int>();
var->structName = stream->readString();
var->setParentArrayIndex(stream->readInt<int>());
var->imageUnitFormat = stream->readInt<GLenum>();
var->offset = stream->readInt<int>();
var->readonly = stream->readBool();
var->writeonly = stream->readBool();
}
// VariableLocation implementation.
VariableLocation::VariableLocation() : arrayIndex(0), index(kUnused), ignored(false) {}
VariableLocation::VariableLocation(unsigned int arrayIndex, unsigned int index)
: arrayIndex(arrayIndex), index(index), ignored(false)
{
ASSERT(arrayIndex != GL_INVALID_INDEX);
}
// SamplerBindings implementation.
SamplerBinding::SamplerBinding(TextureType textureTypeIn,
SamplerFormat formatIn,
size_t elementCount,
bool unreferenced)
: textureType(textureTypeIn),
format(formatIn),
boundTextureUnits(elementCount, 0),
unreferenced(unreferenced)
{}
SamplerBinding::SamplerBinding(const SamplerBinding &other) = default;
SamplerBinding::~SamplerBinding() = default;
// ProgramBindings implementation.
ProgramBindings::ProgramBindings() {}
ProgramBindings::~ProgramBindings() {}
void ProgramBindings::bindLocation(GLuint index, const std::string &name)
{
mBindings[name] = index;
}
int ProgramBindings::getBindingByName(const std::string &name) const
{
auto iter = mBindings.find(name);
return (iter != mBindings.end()) ? iter->second : -1;
}
int ProgramBindings::getBinding(const sh::ShaderVariable &variable) const
{
return getBindingByName(variable.name);
}
ProgramBindings::const_iterator ProgramBindings::begin() const
{
return mBindings.begin();
}
ProgramBindings::const_iterator ProgramBindings::end() const
{
return mBindings.end();
}
// ProgramAliasedBindings implementation.
ProgramAliasedBindings::ProgramAliasedBindings() {}
ProgramAliasedBindings::~ProgramAliasedBindings() {}
void ProgramAliasedBindings::bindLocation(GLuint index, const std::string &name)
{
mBindings[name] = ProgramBinding(index);
// EXT_blend_func_extended spec: "If it specifies the base name of an array,
// it identifies the resources associated with the first element of the array."
//
// Normalize array bindings so that "name" and "name[0]" map to the same entry.
// If this binding is of the form "name[0]", then mark the "name" binding as
// aliased but do not update it yet in case "name" is not actually an array.
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
if (arrayIndex == 0)
{
std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex);
auto iter = mBindings.find(baseName);
if (iter != mBindings.end())
{
iter->second.aliased = true;
}
}
}
int ProgramAliasedBindings::getBindingByName(const std::string &name) const
{
auto iter = mBindings.find(name);
return (iter != mBindings.end()) ? iter->second.location : -1;
}
int ProgramAliasedBindings::getBindingByLocation(GLuint location) const
{
for (const auto &iter : mBindings)
{
if (iter.second.location == location)
{
return iter.second.location;
}
}
return -1;
}
int ProgramAliasedBindings::getBinding(const sh::ShaderVariable &variable) const
{
const std::string &name = variable.name;
// Check with the normalized array name if applicable.
if (variable.isArray())
{
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
if (arrayIndex == 0)
{
std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex);
auto iter = mBindings.find(baseName);
// If "name" exists and is not aliased, that means it was modified more
// recently than its "name[0]" form and should be used instead of that.
if (iter != mBindings.end() && !iter->second.aliased)
{
return iter->second.location;
}
}
else if (arrayIndex == GL_INVALID_INDEX)
{
auto iter = mBindings.find(variable.name);
// If "name" exists and is not aliased, that means it was modified more
// recently than its "name[0]" form and should be used instead of that.
if (iter != mBindings.end() && !iter->second.aliased)
{
return iter->second.location;
}
// The base name was aliased, so use the name with the array notation.
return getBindingByName(name + "[0]");
}
}
return getBindingByName(name);
}
ProgramAliasedBindings::const_iterator ProgramAliasedBindings::begin() const
{
return mBindings.begin();
}
ProgramAliasedBindings::const_iterator ProgramAliasedBindings::end() const
{
return mBindings.end();
}
// ImageBinding implementation.
ImageBinding::ImageBinding(size_t count) : boundImageUnits(count, 0), unreferenced(false) {}
ImageBinding::ImageBinding(GLuint imageUnit, size_t count, bool unreferenced)
: unreferenced(unreferenced)
{
for (size_t index = 0; index < count; ++index)
{
boundImageUnits.push_back(imageUnit + static_cast<GLuint>(index));
}
}
ImageBinding::ImageBinding(const ImageBinding &other) = default;
ImageBinding::~ImageBinding() = default;
// ProgramState implementation.
ProgramState::ProgramState()
: mLabel(),
mAttachedShaders{},
mAttachedShadersMarkedForDetach{},
mDefaultUniformRange(0, 0),
mAtomicCounterUniformRange(0, 0),
mBinaryRetrieveableHint(false),
mSeparable(false),
mNumViews(-1),
// [GL_EXT_geometry_shader] Table 20.22
mGeometryShaderInputPrimitiveType(PrimitiveMode::Triangles),
mGeometryShaderOutputPrimitiveType(PrimitiveMode::TriangleStrip),
mGeometryShaderInvocations(1),
mGeometryShaderMaxVertices(0),
mDrawIDLocation(-1),
mBaseVertexLocation(-1),
mBaseInstanceLocation(-1),
mCachedBaseVertex(0),
mCachedBaseInstance(0),
mExecutable(new ProgramExecutable())
{
mComputeShaderLocalSize.fill(1);
mExecutable->setProgramState(this);
}
ProgramState::~ProgramState()
{
ASSERT(!hasAttachedShader());
}
const std::string &ProgramState::getLabel()
{
return mLabel;
}
Shader *ProgramState::getAttachedShader(ShaderType shaderType) const
{
ASSERT(shaderType != ShaderType::InvalidEnum);
return mAttachedShaders[shaderType];
}
size_t ProgramState::getTransformFeedbackBufferCount() const
{
return mExecutable->mTransformFeedbackStrides.size();
}
GLuint ProgramState::getUniformIndexFromName(const std::string &name) const
{
return GetResourceIndexFromName(mExecutable->mUniforms, name);
}
GLuint ProgramState::getBufferVariableIndexFromName(const std::string &name) const
{
return GetResourceIndexFromName(mBufferVariables, name);
}
GLuint ProgramState::getUniformIndexFromLocation(UniformLocation location) const
{
ASSERT(location.value >= 0 && static_cast<size_t>(location.value) < mUniformLocations.size());
return mUniformLocations[location.value].index;
}
Optional<GLuint> ProgramState::getSamplerIndex(UniformLocation location) const
{
GLuint index = getUniformIndexFromLocation(location);
if (!isSamplerUniformIndex(index))
{
return Optional<GLuint>::Invalid();
}
return getSamplerIndexFromUniformIndex(index);
}
bool ProgramState::isSamplerUniformIndex(GLuint index) const
{
return mExecutable->mSamplerUniformRange.contains(index);
}
GLuint ProgramState::getSamplerIndexFromUniformIndex(GLuint uniformIndex) const
{
ASSERT(isSamplerUniformIndex(uniformIndex));
return uniformIndex - mExecutable->mSamplerUniformRange.low();
}
GLuint ProgramState::getUniformIndexFromSamplerIndex(GLuint samplerIndex) const
{
ASSERT(samplerIndex < mExecutable->mSamplerUniformRange.length());
return samplerIndex + mExecutable->mSamplerUniformRange.low();
}
bool ProgramState::isImageUniformIndex(GLuint index) const
{
return mExecutable->mImageUniformRange.contains(index);
}
GLuint ProgramState::getImageIndexFromUniformIndex(GLuint uniformIndex) const
{
ASSERT(isImageUniformIndex(uniformIndex));
return uniformIndex - mExecutable->mImageUniformRange.low();
}
GLuint ProgramState::getUniformIndexFromImageIndex(GLuint imageIndex) const
{
ASSERT(imageIndex < mExecutable->mImageUniformRange.length());
return imageIndex + mExecutable->mImageUniformRange.low();
}
GLuint ProgramState::getAttributeLocation(const std::string &name) const
{
for (const sh::ShaderVariable &attribute : mExecutable->mProgramInputs)
{
if (attribute.name == name)
{
return attribute.location;
}
}
return static_cast<GLuint>(-1);
}
bool ProgramState::hasAttachedShader() const
{
for (const Shader *shader : mAttachedShaders)
{
if (shader)
{
return true;
}
}
return false;
}
ShaderType ProgramState::getFirstAttachedShaderStageType() const
{
if (mExecutable->getLinkedShaderStages().none())
{
return ShaderType::InvalidEnum;
}
return *mExecutable->getLinkedShaderStages().begin();
}
ShaderType ProgramState::getLastAttachedShaderStageType() const
{
for (int i = gl::kAllGraphicsShaderTypes.size() - 1; i >= 0; --i)
{
const gl::ShaderType shaderType = gl::kAllGraphicsShaderTypes[i];
if (mExecutable->hasLinkedShaderStage(shaderType))
{
return shaderType;
}
}
if (mExecutable->hasLinkedShaderStage(ShaderType::Compute))
{
return ShaderType::Compute;
}
return ShaderType::InvalidEnum;
}
Program::Program(rx::GLImplFactory *factory, ShaderProgramManager *manager, ShaderProgramID handle)
: mSerial(factory->generateSerial()),
mProgram(factory->createProgram(mState)),
mValidated(false),
mLinked(false),
mDeleteStatus(false),
mRefCount(0),
mResourceManager(manager),
mHandle(handle)
{
ASSERT(mProgram);
unlink();
}
Program::~Program()
{
ASSERT(!mProgram);
}
void Program::onDestroy(const Context *context)
{
resolveLink(context);
for (ShaderType shaderType : AllShaderTypes())
{
if (mState.mAttachedShaders[shaderType])
{
mState.mAttachedShaders[shaderType]->release(context);
mState.mAttachedShaders[shaderType] = nullptr;
mState.mAttachedShadersMarkedForDetach[shaderType] = false;
}
}
mProgram->destroy(context);
ASSERT(!mState.hasAttachedShader());
SafeDelete(mProgram);
delete this;
}
ShaderProgramID Program::id() const
{
ASSERT(!mLinkingState);
return mHandle;
}
void Program::setLabel(const Context *context, const std::string &label)
{
ASSERT(!mLinkingState);
mState.mLabel = label;
}
const std::string &Program::getLabel() const
{
ASSERT(!mLinkingState);
return mState.mLabel;
}
void Program::attachShader(const Context *context, Shader *shader)
{
ASSERT(!mLinkingState);
ShaderType shaderType = shader->getType();
ASSERT(shaderType != ShaderType::InvalidEnum);
// Since detachShader doesn't actually detach anymore, we need to do that work when attaching a
// new shader to make sure we don't lose track of it and free the resources.
if (mState.mAttachedShaders[shaderType])
{
mState.mAttachedShaders[shaderType]->release(context);
mState.mAttachedShaders[shaderType] = nullptr;
mState.mAttachedShadersMarkedForDetach[shaderType] = false;
}
mState.mAttachedShaders[shaderType] = shader;
mState.mAttachedShaders[shaderType]->addRef();
}
void Program::detachShader(const Context *context, Shader *shader)
{
ASSERT(!mLinkingState);
ShaderType shaderType = shader->getType();
ASSERT(shaderType != ShaderType::InvalidEnum);
ASSERT(mState.mAttachedShaders[shaderType] == shader);
if (isSeparable())
{
// Don't actually detach the shader since we still need it in case this
// Program is part of a Program Pipeline Object. Instead, leave a mark
// that indicates we intended to.
mState.mAttachedShadersMarkedForDetach[shaderType] = true;
return;
}
shader->release(context);
mState.mAttachedShaders[shaderType] = nullptr;
mState.mAttachedShadersMarkedForDetach[shaderType] = false;
}
int Program::getAttachedShadersCount() const
{
ASSERT(!mLinkingState);
int numAttachedShaders = 0;
for (const Shader *shader : mState.mAttachedShaders)
{
if (shader)
{
++numAttachedShaders;
}
}
return numAttachedShaders;
}
const Shader *Program::getAttachedShader(ShaderType shaderType) const
{
ASSERT(!mLinkingState);
return mState.getAttachedShader(shaderType);
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
ASSERT(!mLinkingState);
mAttributeBindings.bindLocation(index, name);
}
void Program::bindUniformLocation(UniformLocation location, const char *name)
{
ASSERT(!mLinkingState);
mState.mUniformLocationBindings.bindLocation(location.value, name);
}
void Program::bindFragmentOutputLocation(GLuint index, const char *name)
{
mFragmentOutputLocations.bindLocation(index, name);
}
void Program::bindFragmentOutputIndex(GLuint index, const char *name)
{
mFragmentOutputIndexes.bindLocation(index, name);
}
angle::Result Program::linkMergedVaryings(const Context *context,
const ProgramExecutable &executable,
const ProgramMergedVaryings &mergedVaryings)
{
ShaderType tfStage =
mState.mAttachedShaders[ShaderType::Geometry] ? ShaderType::Geometry : ShaderType::Vertex;
InfoLog &infoLog = getExecutable().getInfoLog();
if (!linkValidateTransformFeedback(context->getClientVersion(), infoLog, mergedVaryings,
tfStage, context->getCaps()))
{
return angle::Result::Stop;
}
if (!executable.mResources->varyingPacking.collectAndPackUserVaryings(
infoLog, mergedVaryings, mState.getTransformFeedbackVaryingNames(), isSeparable()))
{
return angle::Result::Stop;
}
gatherTransformFeedbackVaryings(mergedVaryings, tfStage);
mState.updateTransformFeedbackStrides();
return angle::Result::Continue;
}
angle::Result Program::link(const Context *context)
{
angle::Result result = linkImpl(context);
// Avoid having two ProgramExecutables if the link failed and the Program had successfully
// linked previously.
if (mLinkingState && mLinkingState->linkedExecutable)
{
mState.mExecutable = mLinkingState->linkedExecutable;
}
return result;
}
// The attached shaders are checked for linking errors by matching up their variables.
// Uniform, input and output variables get collected.
// The code gets compiled into binaries.
angle::Result Program::linkImpl(const Context *context)
{
ASSERT(!mLinkingState);
// Don't make any local variables pointing to anything within the ProgramExecutable, since
// unlink() could make a new ProgramExecutable making any references/pointers invalid.
const auto &data = context->getState();
auto *platform = ANGLEPlatformCurrent();
double startTime = platform->currentTime(platform);
// Unlink the program, but do not clear the validation-related caching yet, since we can still
// use the previously linked program if linking the shaders fails.
mLinked = false;
mState.mExecutable->getInfoLog().reset();
// Validate we have properly attached shaders before checking the cache.
if (!linkValidateShaders(mState.mExecutable->getInfoLog()))
{
return angle::Result::Continue;
}
egl::BlobCache::Key programHash = {0};
MemoryProgramCache *cache = context->getMemoryProgramCache();
// TODO: http://anglebug.com/4530: Enable program caching for separable programs
if (cache && !isSeparable())
{
angle::Result cacheResult = cache->getProgram(context, this, &programHash);
ANGLE_TRY(cacheResult);
// Check explicitly for Continue, Incomplete means a cache miss
if (cacheResult == angle::Result::Continue)
{
// Succeeded in loading the binaries in the front-end, back end may still be loading
// asynchronously
double delta = platform->currentTime(platform) - startTime;
int us = static_cast<int>(delta * 1000000.0);
ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheHitTimeUS", us);
return angle::Result::Continue;
}
}
// Cache load failed, fall through to normal linking.
unlink();
InfoLog &infoLog = mState.mExecutable->getInfoLog();
// Re-link shaders after the unlink call.
bool result = linkValidateShaders(infoLog);
ASSERT(result);
if (mState.mAttachedShaders[ShaderType::Compute])
{
mState.mExecutable->mResources.reset(new ProgramLinkedResources(
0, PackMode::ANGLE_RELAXED, &mState.mExecutable->mUniformBlocks,
&mState.mExecutable->mUniforms, &mState.mExecutable->mShaderStorageBlocks,
&mState.mBufferVariables, &mState.mExecutable->mAtomicCounterBuffers));
GLuint combinedImageUniforms = 0u;
if (!linkUniforms(context->getCaps(), context->getClientVersion(), infoLog,
mState.mUniformLocationBindings, &combinedImageUniforms,
&mState.mExecutable->getResources().unusedUniforms))
{
return angle::Result::Continue;
}
GLuint combinedShaderStorageBlocks = 0u;
if (!linkInterfaceBlocks(context->getCaps(), context->getClientVersion(),
context->getExtensions().webglCompatibility, infoLog,
&combinedShaderStorageBlocks))
{
return angle::Result::Continue;
}
// [OpenGL ES 3.1] Chapter 8.22 Page 203:
// A link error will be generated if the sum of the number of active image uniforms used in
// all shaders, the number of active shader storage blocks, and the number of active
// fragment shader outputs exceeds the implementation-dependent value of
// MAX_COMBINED_SHADER_OUTPUT_RESOURCES.
if (combinedImageUniforms + combinedShaderStorageBlocks >
static_cast<GLuint>(context->getCaps().maxCombinedShaderOutputResources))
{
infoLog
<< "The sum of the number of active image uniforms, active shader storage blocks "
"and active fragment shader outputs exceeds "
"MAX_COMBINED_SHADER_OUTPUT_RESOURCES ("
<< context->getCaps().maxCombinedShaderOutputResources << ")";
return angle::Result::Continue;
}
InitUniformBlockLinker(mState, &mState.mExecutable->getResources().uniformBlockLinker);
InitShaderStorageBlockLinker(mState,
&mState.mExecutable->getResources().shaderStorageBlockLinker);
}
else
{
// Map the varyings to the register file
// In WebGL, we use a slightly different handling for packing variables.
gl::PackMode packMode = PackMode::ANGLE_RELAXED;
if (data.getLimitations().noFlexibleVaryingPacking)
{
// D3D9 pack mode is strictly more strict than WebGL, so takes priority.
packMode = PackMode::ANGLE_NON_CONFORMANT_D3D9;
}
else if (data.getExtensions().webglCompatibility)
{
packMode = PackMode::WEBGL_STRICT;
}
mState.mExecutable->mResources.reset(new ProgramLinkedResources(
static_cast<GLuint>(data.getCaps().maxVaryingVectors), packMode,
&mState.mExecutable->mUniformBlocks, &mState.mExecutable->mUniforms,
&mState.mExecutable->mShaderStorageBlocks, &mState.mBufferVariables,
&mState.mExecutable->mAtomicCounterBuffers));
if (!linkAttributes(context, infoLog))
{
return angle::Result::Continue;
}
if (!linkVaryings(infoLog))
{
return angle::Result::Continue;
}
GLuint combinedImageUniforms = 0u;
if (!linkUniforms(context->getCaps(), context->getClientVersion(), infoLog,
mState.mUniformLocationBindings, &combinedImageUniforms,
&mState.mExecutable->getResources().unusedUniforms))
{
return angle::Result::Continue;
}
GLuint combinedShaderStorageBlocks = 0u;
if (!linkInterfaceBlocks(context->getCaps(), context->getClientVersion(),
context->getExtensions().webglCompatibility, infoLog,
&combinedShaderStorageBlocks))
{
return angle::Result::Continue;
}
if (!mState.mExecutable->linkValidateGlobalNames(infoLog))
{
return angle::Result::Continue;
}
if (!linkOutputVariables(context->getCaps(), context->getExtensions(),
context->getClientVersion(), combinedImageUniforms,
combinedShaderStorageBlocks))
{
return angle::Result::Continue;
}
gl::Shader *vertexShader = mState.mAttachedShaders[ShaderType::Vertex];
if (vertexShader)
{
mState.mNumViews = vertexShader->getNumViews();
}
gl::Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment];
if (fragmentShader)
{
mState.mEarlyFramentTestsOptimization =
fragmentShader->hasEarlyFragmentTestsOptimization();
}
InitUniformBlockLinker(mState, &mState.mExecutable->getResources().uniformBlockLinker);
InitShaderStorageBlockLinker(mState,
&mState.mExecutable->getResources().shaderStorageBlockLinker);
ProgramPipeline *programPipeline = context->getState().getProgramPipeline();
if (programPipeline && programPipeline->usesShaderProgram(id()))
{
const ProgramMergedVaryings &mergedVaryings =
context->getState().getProgramPipeline()->getMergedVaryings();
ANGLE_TRY(linkMergedVaryings(context, *mState.mExecutable, mergedVaryings));
}
else
{
const ProgramMergedVaryings &mergedVaryings = getMergedVaryings();
ANGLE_TRY(linkMergedVaryings(context, *mState.mExecutable, mergedVaryings));
}
}
updateLinkedShaderStages();
mLinkingState.reset(new LinkingState());
mLinkingState->linkingFromBinary = false;
mLinkingState->programHash = programHash;
mLinkingState->linkEvent = mProgram->link(context, mState.mExecutable->getResources(), infoLog);
// Must be after mProgram->link() to avoid misleading the linker about output variables.
mState.updateProgramInterfaceInputs();
mState.updateProgramInterfaceOutputs();
// Linking has succeeded, so we need to save some information that may get overwritten by a
// later linkProgram() that could fail.
if (mState.mSeparable)
{
mState.mExecutable->saveLinkedStateInfo();
mLinkingState->linkedExecutable = mState.mExecutable;
}
return angle::Result::Continue;
}
bool Program::isLinking() const
{
return (mLinkingState.get() && mLinkingState->linkEvent &&
mLinkingState->linkEvent->isLinking());
}
void Program::resolveLinkImpl(const Context *context)
{
ASSERT(mLinkingState.get());
angle::Result result = mLinkingState->linkEvent->wait(context);
mLinked = result == angle::Result::Continue;
std::unique_ptr<LinkingState> linkingState = std::move(mLinkingState);
if (!mLinked)
{
return;
}
if (linkingState->linkingFromBinary)
{
// All internal Program state is already loaded from the binary.
return;
}
initInterfaceBlockBindings();
// According to GLES 3.0/3.1 spec for LinkProgram and UseProgram,
// Only successfully linked program can replace the executables.
ASSERT(mLinked);
// Mark implementation-specific unreferenced uniforms as ignored.
mProgram->markUnusedUniformLocations(&mState.mUniformLocations, &mState.mSamplerBindings,
&mState.mImageBindings);
// Must be called after markUnusedUniformLocations.
postResolveLink(context);
// Save to the program cache.
MemoryProgramCache *cache = context->getMemoryProgramCache();
// TODO: http://anglebug.com/4530: Enable program caching for separable programs
if (cache && !isSeparable() &&
(mState.mExecutable->mLinkedTransformFeedbackVaryings.empty() ||
!context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled))
{
if (cache->putProgram(linkingState->programHash, context, this) == angle::Result::Stop)
{
// Don't fail linking if putting the program binary into the cache fails, the program is
// still usable.
WARN() << "Failed to save linked program to memory program cache.";
}
}
}
void Program::updateLinkedShaderStages()
{
mState.mExecutable->resetLinkedShaderStages();
for (const Shader *shader : mState.mAttachedShaders)
{
if (shader)
{
mState.mExecutable->setLinkedShaderStages(shader->getType());
}
}
}
void ProgramState::updateTransformFeedbackStrides()
{
if (mExecutable->mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS)
{
mExecutable->mTransformFeedbackStrides.resize(1);
size_t totalSize = 0;
for (const TransformFeedbackVarying &varying :
mExecutable->mLinkedTransformFeedbackVaryings)
{
totalSize += varying.size() * VariableExternalSize(varying.type);
}
mExecutable->mTransformFeedbackStrides[0] = static_cast<GLsizei>(totalSize);
}
else
{
mExecutable->mTransformFeedbackStrides.resize(
mExecutable->mLinkedTransformFeedbackVaryings.size());
for (size_t i = 0; i < mExecutable->mLinkedTransformFeedbackVaryings.size(); i++)
{
TransformFeedbackVarying &varying = mExecutable->mLinkedTransformFeedbackVaryings[i];
mExecutable->mTransformFeedbackStrides[i] =
static_cast<GLsizei>(varying.size() * VariableExternalSize(varying.type));
}
}
}
void ProgramState::updateActiveSamplers()
{
mExecutable->mActiveSamplerRefCounts.fill(0);
mExecutable->updateActiveSamplers(*this);
}
void ProgramState::updateActiveImages()
{
mExecutable->updateActiveImages(mImageBindings);
}
void ProgramState::updateProgramInterfaceInputs()
{
const ShaderType firstAttachedShaderType = getFirstAttachedShaderStageType();
if (firstAttachedShaderType == ShaderType::Vertex)
{
// Vertex attributes are already what we need, so nothing to do
return;
}
Shader *shader = getAttachedShader(firstAttachedShaderType);
ASSERT(shader);
// Copy over each input varying, since the Shader could go away
if (shader->getType() == ShaderType::Compute)
{
for (const sh::ShaderVariable &attribute : shader->getAllAttributes())
{
// Compute Shaders have the following built-in input variables.
//
// in uvec3 gl_NumWorkGroups;
// in uvec3 gl_WorkGroupID;
// in uvec3 gl_LocalInvocationID;
// in uvec3 gl_GlobalInvocationID;
// in uint gl_LocalInvocationIndex;
// They are all vecs or uints, so no special handling is required.
mExecutable->mProgramInputs.emplace_back(attribute);
}
}
else if (shader->getType() == ShaderType::Fragment)
{
for (const sh::ShaderVariable &varying : shader->getInputVaryings())
{
if (varying.isStruct())
{
for (const sh::ShaderVariable &field : varying.fields)
{
sh::ShaderVariable fieldVarying = sh::ShaderVariable(field);
fieldVarying.location = varying.location;
fieldVarying.name = varying.name + "." + field.name;
mExecutable->mProgramInputs.emplace_back(fieldVarying);
}
}
else
{
mExecutable->mProgramInputs.emplace_back(varying);
}
}
}
}
void ProgramState::updateProgramInterfaceOutputs()
{
const ShaderType lastAttachedShaderType = getLastAttachedShaderStageType();
if (lastAttachedShaderType == ShaderType::Fragment)
{
// Fragment outputs are already what we need, so nothing to do
return;
}
if (lastAttachedShaderType == ShaderType::Compute)
{
// If the program only contains a Compute Shader, then there are no user-defined outputs.
return;
}
Shader *shader = getAttachedShader(lastAttachedShaderType);
ASSERT(shader);
// Copy over each output varying, since the Shader could go away
for (const sh::ShaderVariable &varying : shader->getOutputVaryings())
{
if (varying.isStruct())
{
for (const sh::ShaderVariable &field : varying.fields)
{
sh::ShaderVariable fieldVarying = sh::ShaderVariable(field);
fieldVarying.location = varying.location;
fieldVarying.name = varying.name + "." + field.name;
mExecutable->mOutputVariables.emplace_back(fieldVarying);
}
}
else
{
mExecutable->mOutputVariables.emplace_back(varying);
}
}
}
// Returns the program object to an unlinked state, before re-linking, or at destruction
void Program::unlink()
{
if (mLinkingState && mLinkingState->linkedExecutable)
{
// The new ProgramExecutable that we'll attempt to link with needs to start from a copy of
// the last successfully linked ProgramExecutable, so we don't lose any state information.
mState.mExecutable.reset(new ProgramExecutable(*mLinkingState->linkedExecutable));
}
mState.mExecutable->reset();
mState.mUniformLocations.clear();
mState.mBufferVariables.clear();
mState.mActiveUniformBlockBindings.reset();
mState.mSecondaryOutputLocations.clear();
mState.mOutputVariableTypes.clear();
mState.mDrawBufferTypeMask.reset();
mState.mActiveOutputVariables.reset();
mState.mComputeShaderLocalSize.fill(1);
mState.mSamplerBindings.clear();
mState.mImageBindings.clear();
mState.mNumViews = -1;
mState.mGeometryShaderInputPrimitiveType = PrimitiveMode::Triangles;
mState.mGeometryShaderOutputPrimitiveType = PrimitiveMode::TriangleStrip;
mState.mGeometryShaderInvocations = 1;
mState.mGeometryShaderMaxVertices = 0;
mState.mDrawIDLocation = -1;
mState.mBaseVertexLocation = -1;
mState.mBaseInstanceLocation = -1;
mState.mCachedBaseVertex = 0;
mState.mCachedBaseInstance = 0;
mState.mEarlyFramentTestsOptimization = false;
mValidated = false;
mLinked = false;
}
angle::Result Program::loadBinary(const Context *context,
GLenum binaryFormat,
const void *binary,
GLsizei length)
{
ASSERT(!mLinkingState);
unlink();
InfoLog &infoLog = mState.mExecutable->getInfoLog();
#if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED
return angle::Result::Continue;
#else
ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE);
if (binaryFormat != GL_PROGRAM_BINARY_ANGLE)
{
infoLog << "Invalid program binary format.";
return angle::Result::Continue;
}
BinaryInputStream stream(binary, length);
ANGLE_TRY(deserialize(context, stream, infoLog));
// Currently we require the full shader text to compute the program hash.
// We could also store the binary in the internal program cache.
for (size_t uniformBlockIndex = 0;
uniformBlockIndex < mState.mExecutable->getActiveUniformBlockCount(); ++uniformBlockIndex)
{
mDirtyBits.set(uniformBlockIndex);
}
// The rx::LinkEvent returned from ProgramImpl::load is a base class with multiple
// implementations. In some implementations, a background thread is used to compile the
// shaders. Any calls to the LinkEvent object, therefore, are racy and may interfere with
// the operation.
// We do not want to call LinkEvent::wait because that will cause the background thread
// to finish its task before returning, thus defeating the purpose of background compilation.
// We need to defer waiting on background compilation until the very last minute when we
// absolutely need the results, such as when the developer binds the program or queries
// for the completion status.
// If load returns nullptr, we know for sure that the binary is not compatible with the backend.
// The loaded binary could have been read from the on-disk shader cache and be corrupted or
// serialized with different revision and subsystem id than the currently loaded backend.
// Returning 'Incomplete' to the caller results in link happening using the original shader
// sources.
angle::Result result;
std::unique_ptr<LinkingState> linkingState;
std::unique_ptr<rx::LinkEvent> linkEvent = mProgram->load(context, &stream, infoLog);
if (linkEvent)
{
linkingState = std::make_unique<LinkingState>();
linkingState->linkingFromBinary = true;
linkingState->linkEvent = std::move(linkEvent);
result = angle::Result::Continue;
}
else
{
result = angle::Result::Incomplete;
}
mLinkingState = std::move(linkingState);
return result;
#endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED
}
angle::Result Program::saveBinary(Context *context,
GLenum *binaryFormat,
void *binary,
GLsizei bufSize,
GLsizei *length) const
{
ASSERT(!mLinkingState);
if (binaryFormat)
{
*binaryFormat = GL_PROGRAM_BINARY_ANGLE;
}
angle::MemoryBuffer memoryBuf;
ANGLE_TRY(serialize(context, &memoryBuf));
GLsizei streamLength = static_cast<GLsizei>(memoryBuf.size());
const uint8_t *streamState = memoryBuf.data();
if (streamLength > bufSize)
{
if (length)
{
*length = 0;
}
// TODO: This should be moved to the validation layer but computing the size of the binary
// before saving it causes the save to happen twice. It may be possible to write the binary
// to a separate buffer, validate sizes and then copy it.
ANGLE_CHECK(context, false, "Insufficient buffer size", GL_INVALID_OPERATION);
}
if (binary)
{
char *ptr = reinterpret_cast<char *>(binary);
memcpy(ptr, streamState, streamLength);
ptr += streamLength;
ASSERT(ptr - streamLength == binary);
}
if (length)
{
*length = streamLength;
}
return angle::Result::Continue;
}
GLint Program::getBinaryLength(Context *context) const
{
ASSERT(!mLinkingState);
if (!mLinked)
{
return 0;
}
GLint length;
angle::Result result =
saveBinary(context, nullptr, nullptr, std::numeric_limits<GLint>::max(), &length);
if (result != angle::Result::Continue)
{
return 0;
}
return length;
}
void Program::setBinaryRetrievableHint(bool retrievable)
{
ASSERT(!mLinkingState);
// TODO(jmadill) : replace with dirty bits
mProgram->setBinaryRetrievableHint(retrievable);
mState.mBinaryRetrieveableHint = retrievable;
}
bool Program::getBinaryRetrievableHint() const
{
ASSERT(!mLinkingState);
return mState.mBinaryRetrieveableHint;
}
void Program::setSeparable(bool separable)
{
ASSERT(!mLinkingState);
// TODO(yunchao) : replace with dirty bits
if (mState.mSeparable != separable)
{
mProgram->setSeparable(separable);
mState.mSeparable = separable;
}
}
bool Program::isSeparable() const
{
ASSERT(!mLinkingState);
return mState.mSeparable;
}
void Program::deleteSelf(const Context *context)
{
ASSERT(mRefCount == 0 && mDeleteStatus);
mResourceManager->deleteProgram(context, mHandle);
}
unsigned int Program::getRefCount() const
{
return mRefCount;
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, ShaderProgramID *shaders) const
{
ASSERT(!mLinkingState);
int total = 0;
for (const Shader *shader : mState.mAttachedShaders)
{
if (shader && (total < maxCount))
{
shaders[total] = shader->getHandle();
++total;
}
}
if (count)
{
*count = total;
}
}
GLuint Program::getAttributeLocation(const std::string &name) const
{
ASSERT(!mLinkingState);
return mState.getAttributeLocation(name);
}
void Program::getActiveAttribute(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
ASSERT(!mLinkingState);
if (!mLinked)
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*type = GL_NONE;
*size = 1;
return;
}
ASSERT(index < mState.mExecutable->getProgramInputs().size());
const sh::ShaderVariable &attrib = mState.mExecutable->getProgramInputs()[index];
if (bufsize > 0)
{
CopyStringToBuffer(name, attrib.name, bufsize, length);
}
// Always a single 'type' instance
*size = 1;
*type = attrib.type;
}
GLint Program::getActiveAttributeCount() const
{
ASSERT(!mLinkingState);
if (!mLinked)
{
return 0;
}
return static_cast<GLint>(mState.mExecutable->getProgramInputs().size());
}
GLint Program::getActiveAttributeMaxLength() const
{
ASSERT(!mLinkingState);
if (!mLinked)
{
return 0;
}
size_t maxLength = 0;
for (const sh::ShaderVariable &attrib : mState.mExecutable->getProgramInputs())
{
maxLength = std::max(attrib.name.length() + 1, maxLength);
}
return static_cast<GLint>(maxLength);
}
const std::vector<sh::ShaderVariable> &Program::getAttributes() const
{
ASSERT(!mLinkingState);
return mState.mExecutable->getProgramInputs();
}
const std::vector<SamplerBinding> &Program::getSamplerBindings() const
{
ASSERT(!mLinkingState);
return mState.mSamplerBindings;
}
const sh::WorkGroupSize &Program::getComputeShaderLocalSize() const
{
ASSERT(!mLinkingState);
return mState.mComputeShaderLocalSize;
}
PrimitiveMode Program::getGeometryShaderInputPrimitiveType() const
{
ASSERT(!mLinkingState);
return mState.mGeometryShaderInputPrimitiveType;
}
PrimitiveMode Program::getGeometryShaderOutputPrimitiveType() const
{
ASSERT(!mLinkingState);
return mState.mGeometryShaderOutputPrimitiveType;
}
GLint Program::getGeometryShaderInvocations() const
{
ASSERT(!mLinkingState);
return mState.mGeometryShaderInvocations;
}
GLint Program::getGeometryShaderMaxVertices() const
{
ASSERT(!mLinkingState);
return mState.mGeometryShaderMaxVertices;
}
const sh::ShaderVariable &Program::getInputResource(size_t index) const
{
ASSERT(!mLinkingState);
ASSERT(index < mState.mExecutable->getProgramInputs().size());
return mState.mExecutable->getProgramInputs()[index];
}
GLuint Program::getInputResourceIndex(const GLchar *name) const
{
ASSERT(!mLinkingState);
const std::string nameString = StripLastArrayIndex(name);
for (size_t index = 0; index < mState.mExecutable->getProgramInputs().size(); index++)
{
sh::ShaderVariable resource = getInputResource(index);
if (resource.name == nameString)
{
return static_cast<GLuint>(index);
}
}
return GL_INVALID_INDEX;
}
GLuint Program::getResourceMaxNameSize(const sh::ShaderVariable &resource, GLint max) const
{
if (resource.isArray())
{
return std::max(max, clampCast<GLint>((resource.name + "[0]").size()));
}
else
{
return std::max(max, clampCast<GLint>((resource.name).size()));
}
}
GLuint Program::getInputResourceMaxNameSize() const
{
GLint max = 0;
for (const sh::ShaderVariable &resource : mState.mExecutable->getProgramInputs())
{
max = getResourceMaxNameSize(resource, max);
}
return max;
}
GLuint Program::getOutputResourceMaxNameSize() const
{
GLint max = 0;
for (const sh::ShaderVariable &resource : mState.mExecutable->getOutputVariables())
{
max = getResourceMaxNameSize(resource, max);
}
return max;
}
GLuint Program::getResourceLocation(const GLchar *name, const sh::ShaderVariable &variable) const
{
if (variable.isBuiltIn())
{
return GL_INVALID_INDEX;
}
GLint location = variable.location;
if (variable.isArray())
{
size_t nameLengthWithoutArrayIndexOut;
size_t arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndexOut);
// The 'name' string may not contain the array notation "[0]"
if (arrayIndex != GL_INVALID_INDEX)
{
location += arrayIndex;
}
}
return location;
}
GLuint Program::getInputResourceLocation(const GLchar *name) const
{
const GLuint index = getInputResourceIndex(name);
if (index == GL_INVALID_INDEX)
{
return index;
}
const sh::ShaderVariable &variable = getInputResource(index);
return getResourceLocation(name, variable);
}
GLuint Program::getOutputResourceLocation(const GLchar *name) const
{
const GLuint index = getOutputResourceIndex(name);
if (index == GL_INVALID_INDEX)
{
return index;
}
const sh::ShaderVariable &variable = getOutputResource(index);
return getResourceLocation(name, variable);
}
GLuint Program::getOutputResourceIndex(const GLchar *name) const
{
ASSERT(!mLinkingState);
const std::string nameString = StripLastArrayIndex(name);
for (size_t index = 0; index < mState.mExecutable->getOutputVariables().size(); index++)
{
sh::ShaderVariable resource = getOutputResource(index);
if (resource.name == nameString)
{
return static_cast<GLuint>(index);
}
}
return GL_INVALID_INDEX;
}
size_t Program::getOutputResourceCount() const
{
ASSERT(!mLinkingState);
return (mLinked ? mState.mExecutable->getOutputVariables().size() : 0);
}
const std::vector<GLenum> &Program::getOutputVariableTypes() const
{
ASSERT(!mLinkingState);
return mState.mOutputVariableTypes;
}
void Program::getResourceName(const std::string name,
GLsizei bufSize,
GLsizei *length,
GLchar *dest) const
{
if (length)
{
*length = 0;
}
if (!mLinked)
{
if (bufSize > 0)
{
dest[0] = '\0';
}
return;
}
if (bufSize > 0)
{
CopyStringToBuffer(dest, name, bufSize, length);
}
}
void Program::getInputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
ASSERT(!mLinkingState);
getResourceName(getInputResourceName(index), bufSize, length, name);
}
void Program::getOutputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
ASSERT(!mLinkingState);
getResourceName(getOutputResourceName(index), bufSize, length, name);
}
void Program::getUniformResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
ASSERT(!mLinkingState);
ASSERT(index < mState.mExecutable->getUniforms().size());
getResourceName(mState.mExecutable->getUniforms()[index].name, bufSize, length, name);
}
void Program::getBufferVariableResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
ASSERT(!mLinkingState);
ASSERT(index < mState.mBufferVariables.size());
getResourceName(mState.mBufferVariables[index].name, bufSize, length, name);
}
const std::string Program::getResourceName(const sh::ShaderVariable &resource) const
{
std::string resourceName = resource.name;
if (resource.isArray())
{
resourceName += "[0]";
}
return resourceName;
}
const std::string Program::getInputResourceName(GLuint index) const
{
ASSERT(!mLinkingState);
const sh::ShaderVariable &resource = getInputResource(index);
return getResourceName(resource);
}
const std::string Program::getOutputResourceName(GLuint index) const
{
ASSERT(!mLinkingState);
const sh::ShaderVariable &resource = getOutputResource(index);
return getResourceName(resource);
}
const sh::ShaderVariable &Program::getOutputResource(size_t index) const
{
ASSERT(!mLinkingState);
ASSERT(index < mState.mExecutable->getOutputVariables().size());
return mState.mExecutable->getOutputVariables()[index];
}
const ProgramBindings &Program::getAttributeBindings() const
{
ASSERT(!mLinkingState);
return mAttributeBindings;
}
const ProgramAliasedBindings &Program::getUniformLocationBindings() const
{
ASSERT(!mLinkingState);
return mState.mUniformLocationBindings;
}
const gl::ProgramAliasedBindings &Program::getFragmentOutputLocations() const
{
ASSERT(!mLinkingState);
return mFragmentOutputLocations;
}
const gl::ProgramAliasedBindings &Program::getFragmentOutputIndexes() const
{
ASSERT(!mLinkingState);
return mFragmentOutputIndexes;
}
ComponentTypeMask Program::getDrawBufferTypeMask() const
{
ASSERT(!mLinkingState);
return mState.mDrawBufferTypeMask;
}
const std::vector<GLsizei> &Program::getTransformFeedbackStrides() const
{
ASSERT(!mLinkingState);
return mState.mExecutable->getTransformFeedbackStrides();
}
GLint Program::getFragDataLocation(const std::string &name) const
{
ASSERT(!mLinkingState);
GLint primaryLocation = GetVariableLocation(mState.mExecutable->getOutputVariables(),
mState.mExecutable->getOutputLocations(), name);
if (primaryLocation != -1)
{
return primaryLocation;
}
return GetVariableLocation(mState.mExecutable->getOutputVariables(),
mState.mSecondaryOutputLocations, name);
}
GLint Program::getFragDataIndex(const std::string &name) const
{
ASSERT(!mLinkingState);
if (GetVariableLocation(mState.mExecutable->getOutputVariables(),
mState.mExecutable->getOutputLocations(), name) != -1)
{
return 0;
}
if (GetVariableLocation(mState.mExecutable->getOutputVariables(),
mState.mSecondaryOutputLocations, name) != -1)
{
return 1;
}
return -1;
}
void Program::getActiveUniform(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
ASSERT(!mLinkingState);
if (mLinked)
{
// index must be smaller than getActiveUniformCount()
ASSERT(index < mState.mExecutable->getUniforms().size());
const LinkedUniform &uniform = mState.mExecutable->getUniforms()[index];
if (bufsize > 0)
{
std::string string = uniform.name;
CopyStringToBuffer(name, string, bufsize, length);
}
*size = clampCast<GLint>(uniform.getBasicTypeElementCount());
*type = uniform.type;
}
else
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*size = 0;
*type = GL_NONE;
}
}
GLint Program::getActiveUniformCount() const
{
ASSERT(!mLinkingState);
if (mLinked)
{
return static_cast<GLint>(mState.mExecutable->getUniforms().size());
}
else
{
return 0;
}
}
size_t Program::getActiveBufferVariableCount() const
{
ASSERT(!mLinkingState);
return mLinked ? mState.mBufferVariables.size() : 0;
}
GLint Program::getActiveUniformMaxLength() const
{
ASSERT(!mLinkingState);
size_t maxLength = 0;
if (mLinked)
{
for (const LinkedUniform &uniform : mState.mExecutable->getUniforms())
{
if (!uniform.name.empty())
{
size_t length = uniform.name.length() + 1u;
if (uniform.isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
}
return static_cast<GLint>(maxLength);
}
bool Program::isValidUniformLocation(UniformLocation location) const
{
ASSERT(!mLinkingState);
ASSERT(angle::IsValueInRangeForNumericType<GLint>(mState.mUniformLocations.size()));
return (location.value >= 0 &&
static_cast<size_t>(location.value) < mState.mUniformLocations.size() &&
mState.mUniformLocations[static_cast<size_t>(location.value)].used());
}
const LinkedUniform &Program::getUniformByLocation(UniformLocation location) const
{
ASSERT(!mLinkingState);
ASSERT(location.value >= 0 &&
static_cast<size_t>(location.value) < mState.mUniformLocations.size());
return mState.mExecutable->getUniforms()[mState.getUniformIndexFromLocation(location)];
}
const VariableLocation &Program::getUniformLocation(UniformLocation location) const
{
ASSERT(!mLinkingState);
ASSERT(location.value >= 0 &&
static_cast<size_t>(location.value) < mState.mUniformLocations.size());
return mState.mUniformLocations[location.value];
}
const BufferVariable &Program::getBufferVariableByIndex(GLuint index) const
{
ASSERT(!mLinkingState);
ASSERT(index < static_cast<size_t>(mState.mBufferVariables.size()));
return mState.mBufferVariables[index];
}
UniformLocation Program::getUniformLocation(const std::string &name) const
{
ASSERT(!mLinkingState);
return {GetVariableLocation(mState.mExecutable->getUniforms(), mState.mUniformLocations, name)};
}
GLuint Program::getUniformIndex(const std::string &name) const
{
ASSERT(!mLinkingState);
return mState.getUniformIndexFromName(name);
}
bool Program::shouldIgnoreUniform(UniformLocation location) const
{
if (location.value == -1)
{
return true;
}
if (mState.mUniformLocations[static_cast<size_t>(location.value)].ignored)
{
return true;
}
return false;
}
void Program::setUniform1fv(UniformLocation location, GLsizei count, const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1fv(location.value, clampedCount, v);
}
void Program::setUniform2fv(UniformLocation location, GLsizei count, const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2fv(location.value, clampedCount, v);
}
void Program::setUniform3fv(UniformLocation location, GLsizei count, const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3fv(location.value, clampedCount, v);
}
void Program::setUniform4fv(UniformLocation location, GLsizei count, const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4fv(location.value, clampedCount, v);
}
void Program::setUniform1iv(Context *context,
UniformLocation location,
GLsizei count,
const GLint *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1iv(location.value, clampedCount, v);
if (mState.isSamplerUniformIndex(locationInfo.index))
{
updateSamplerUniform(context, locationInfo, clampedCount, v);
}
}
void Program::setUniform2iv(UniformLocation location, GLsizei count, const GLint *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2iv(location.value, clampedCount, v);
}
void Program::setUniform3iv(UniformLocation location, GLsizei count, const GLint *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3iv(location.value, clampedCount, v);
}
void Program::setUniform4iv(UniformLocation location, GLsizei count, const GLint *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4iv(location.value, clampedCount, v);
}
void Program::setUniform1uiv(UniformLocation location, GLsizei count, const GLuint *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1uiv(location.value, clampedCount, v);
}
void Program::setUniform2uiv(UniformLocation location, GLsizei count, const GLuint *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2uiv(location.value, clampedCount, v);
}
void Program::setUniform3uiv(UniformLocation location, GLsizei count, const GLuint *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3uiv(location.value, clampedCount, v);
}
void Program::setUniform4uiv(UniformLocation location, GLsizei count, const GLuint *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4uiv(location.value, clampedCount, v);
}
void Program::setUniformMatrix2fv(UniformLocation location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
GLsizei clampedCount = clampMatrixUniformCount<2, 2>(location, count, transpose, v);
mProgram->setUniformMatrix2fv(location.value, clampedCount, transpose, v);
}
void Program::setUniformMatrix3fv(UniformLocation location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
GLsizei clampedCount = clampMatrixUniformCount<3, 3>(location, count, transpose, v);
mProgram->setUniformMatrix3fv(location.value, clampedCount, transpose, v);
}
void Program::setUniformMatrix4fv(UniformLocation location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
GLsizei clampedCount = clampMatrixUniformCount<4, 4>(location, count, transpose, v);
mProgram->setUniformMatrix4fv(location.value, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x3fv(UniformLocation location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
GLsizei clampedCount = clampMatrixUniformCount<2, 3>(location, count, transpose, v);
mProgram->setUniformMatrix2x3fv(location.value, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x4fv(UniformLocation location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
GLsizei clampedCount = clampMatrixUniformCount<2, 4>(location, count, transpose, v);
mProgram->setUniformMatrix2x4fv(location.value, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x2fv(UniformLocation location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
GLsizei clampedCount = clampMatrixUniformCount<3, 2>(location, count, transpose, v);
mProgram->setUniformMatrix3x2fv(location.value, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x4fv(UniformLocation location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
GLsizei clampedCount = clampMatrixUniformCount<3, 4>(location, count, transpose, v);
mProgram->setUniformMatrix3x4fv(location.value, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x2fv(UniformLocation location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
GLsizei clampedCount = clampMatrixUniformCount<4, 2>(location, count, transpose, v);
mProgram->setUniformMatrix4x2fv(location.value, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x3fv(UniformLocation location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(!mLinkingState);
if (shouldIgnoreUniform(location))
{
return;
}
GLsizei clampedCount = clampMatrixUniformCount<4, 3>(location, count, transpose, v);
mProgram->setUniformMatrix4x3fv(location.value, clampedCount, transpose, v);
}
GLuint Program::getSamplerUniformBinding(const VariableLocation &uniformLocation) const
{
ASSERT(!mLinkingState);
GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(uniformLocation.index);
const std::vector<GLuint> &boundTextureUnits =
mState.mSamplerBindings[samplerIndex].boundTextureUnits;
return boundTextureUnits[uniformLocation.arrayIndex];
}
GLuint Program::getImageUniformBinding(const VariableLocation &uniformLocation) const
{
ASSERT(!mLinkingState);
GLuint imageIndex = mState.getImageIndexFromUniformIndex(uniformLocation.index);
const std::vector<GLuint> &boundImageUnits = mState.mImageBindings[imageIndex].boundImageUnits;
return boundImageUnits[uniformLocation.arrayIndex];
}
void Program::getUniformfv(const Context *context, UniformLocation location, GLfloat *v) const
{
ASSERT(!mLinkingState);
const VariableLocation &uniformLocation = mState.getUniformLocations()[location.value];
const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index];
if (uniform.isSampler())
{
*v = static_cast<GLfloat>(getSamplerUniformBinding(uniformLocation));
return;
}
else if (uniform.isImage())
{
*v = static_cast<GLfloat>(getImageUniformBinding(uniformLocation));
return;
}
const GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_FLOAT)
{
mProgram->getUniformfv(context, location.value, v);
}
else
{
getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type));
}
}
void Program::getUniformiv(const Context *context, UniformLocation location, GLint *v) const
{
ASSERT(!mLinkingState);
const VariableLocation &uniformLocation = mState.getUniformLocations()[location.value];
const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index];
if (uniform.isSampler())
{
*v = static_cast<GLint>(getSamplerUniformBinding(uniformLocation));
return;
}
else if (uniform.isImage())
{
*v = static_cast<GLint>(getImageUniformBinding(uniformLocation));
return;
}
const GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_INT || nativeType == GL_BOOL)
{
mProgram->getUniformiv(context, location.value, v);
}
else
{
getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type));
}
}
void Program::getUniformuiv(const Context *context, UniformLocation location, GLuint *v) const
{
ASSERT(!mLinkingState);
const VariableLocation &uniformLocation = mState.getUniformLocations()[location.value];
const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index];
if (uniform.isSampler())
{
*v = getSamplerUniformBinding(uniformLocation);
return;
}
else if (uniform.isImage())
{
*v = getImageUniformBinding(uniformLocation);
return;
}
const GLenum nativeType = VariableComponentType(uniform.type);
if (nativeType == GL_UNSIGNED_INT)
{
mProgram->getUniformuiv(context, location.value, v);
}
else
{
getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type));
}
}
void Program::flagForDeletion()
{
ASSERT(!mLinkingState);
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
ASSERT(!mLinkingState);
return mDeleteStatus;
}
void Program::validate(const Caps &caps)
{
ASSERT(!mLinkingState);
mState.mExecutable->resetInfoLog();
InfoLog &infoLog = mState.mExecutable->getInfoLog();
if (mLinked)
{
mValidated = ConvertToBool(mProgram->validate(caps, &infoLog));
}
else
{
infoLog << "Program has not been successfully linked.";
}
}
bool Program::validateSamplersImpl(InfoLog *infoLog, const Caps &caps)
{
const ProgramExecutable *executable = mState.mExecutable.get();
ASSERT(!mLinkingState);
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
for (size_t textureUnit : executable->mActiveSamplersMask)
{
if (executable->mActiveSamplerTypes[textureUnit] == TextureType::InvalidEnum)
{
if (infoLog)
{
(*infoLog) << "Samplers of conflicting types refer to the same texture "
"image unit ("
<< textureUnit << ").";
}
mCachedValidateSamplersResult = false;
return false;
}
}
mCachedValidateSamplersResult = true;
return true;
}
bool Program::isValidated() const
{
ASSERT(!mLinkingState);
return mValidated;
}
void Program::getActiveUniformBlockName(const GLuint blockIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *blockName) const
{
ASSERT(!mLinkingState);
GetInterfaceBlockName(blockIndex, mState.mExecutable->getUniformBlocks(), bufSize, length,
blockName);
}
void Program::getActiveShaderStorageBlockName(const GLuint blockIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *blockName) const
{
ASSERT(!mLinkingState);
GetInterfaceBlockName(blockIndex, mState.mExecutable->getShaderStorageBlocks(), bufSize, length,
blockName);
}
template <typename T>
GLint Program::getActiveInterfaceBlockMaxNameLength(const std::vector<T> &resources) const
{
int maxLength = 0;
if (mLinked)
{
for (const T &resource : resources)
{
if (!resource.name.empty())
{
int length = static_cast<int>(resource.nameWithArrayIndex().length());
maxLength = std::max(length + 1, maxLength);
}
}
}
return maxLength;
}
GLint Program::getActiveUniformBlockMaxNameLength() const
{
ASSERT(!mLinkingState);
return getActiveInterfaceBlockMaxNameLength(mState.mExecutable->getUniformBlocks());
}
GLint Program::getActiveShaderStorageBlockMaxNameLength() const
{
ASSERT(!mLinkingState);
return getActiveInterfaceBlockMaxNameLength(mState.mExecutable->getShaderStorageBlocks());
}
GLuint Program::getUniformBlockIndex(const std::string &name) const
{
ASSERT(!mLinkingState);
return GetInterfaceBlockIndex(mState.mExecutable->getUniformBlocks(), name);
}
GLuint Program::getShaderStorageBlockIndex(const std::string &name) const
{
ASSERT(!mLinkingState);
return GetInterfaceBlockIndex(mState.mExecutable->getShaderStorageBlocks(), name);
}
const InterfaceBlock &Program::getUniformBlockByIndex(GLuint index) const
{
ASSERT(!mLinkingState);
ASSERT(index < static_cast<GLuint>(mState.mExecutable->getActiveUniformBlockCount()));
return mState.mExecutable->getUniformBlocks()[index];
}
const InterfaceBlock &Program::getShaderStorageBlockByIndex(GLuint index) const
{
ASSERT(!mLinkingState);
ASSERT(index < static_cast<GLuint>(mState.mExecutable->getActiveShaderStorageBlockCount()));
return mState.mExecutable->getShaderStorageBlocks()[index];
}
void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding)
{
ASSERT(!mLinkingState);
mState.mExecutable->mUniformBlocks[uniformBlockIndex].binding = uniformBlockBinding;
mState.mActiveUniformBlockBindings.set(uniformBlockIndex, uniformBlockBinding != 0);
mDirtyBits.set(DIRTY_BIT_UNIFORM_BLOCK_BINDING_0 + uniformBlockIndex);
}
GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const
{
ASSERT(!mLinkingState);
return mState.getUniformBlockBinding(uniformBlockIndex);
}
GLuint Program::getShaderStorageBlockBinding(GLuint shaderStorageBlockIndex) const
{
ASSERT(!mLinkingState);
return mState.getShaderStorageBlockBinding(shaderStorageBlockIndex);
}
void Program::setTransformFeedbackVaryings(GLsizei count,
const GLchar *const *varyings,
GLenum bufferMode)
{
ASSERT(!mLinkingState);
mState.mTransformFeedbackVaryingNames.resize(count);
for (GLsizei i = 0; i < count; i++)
{
mState.mTransformFeedbackVaryingNames[i] = varyings[i];
}
mState.mExecutable->mTransformFeedbackBufferMode = bufferMode;
}
void Program::getTransformFeedbackVarying(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLsizei *size,
GLenum *type,
GLchar *name) const
{
ASSERT(!mLinkingState);
if (mLinked)
{
ASSERT(index < mState.mExecutable->mLinkedTransformFeedbackVaryings.size());
const auto &var = mState.mExecutable->mLinkedTransformFeedbackVaryings[index];
std::string varName = var.nameWithArrayIndex();
GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varName.length()));
if (length)
{
*length = lastNameIdx;
}
if (size)
{
*size = var.size();
}
if (type)
{
*type = var.type;
}
if (name)
{
memcpy(name, varName.c_str(), lastNameIdx);
name[lastNameIdx] = '\0';
}
}
}
GLsizei Program::getTransformFeedbackVaryingCount() const
{
ASSERT(!mLinkingState);
if (mLinked)
{
return static_cast<GLsizei>(mState.mExecutable->mLinkedTransformFeedbackVaryings.size());
}
else
{
return 0;
}
}
GLsizei Program::getTransformFeedbackVaryingMaxLength() const
{
ASSERT(!mLinkingState);
if (mLinked)
{
GLsizei maxSize = 0;
for (const auto &var : mState.mExecutable->mLinkedTransformFeedbackVaryings)
{
maxSize =
std::max(maxSize, static_cast<GLsizei>(var.nameWithArrayIndex().length() + 1));
}
return maxSize;
}
else
{
return 0;
}
}
GLenum Program::getTransformFeedbackBufferMode() const
{
ASSERT(!mLinkingState);
return mState.mExecutable->getTransformFeedbackBufferMode();
}
bool Program::linkValidateShaders(InfoLog &infoLog)
{
Shader *vertexShader = mState.mAttachedShaders[ShaderType::Vertex];
Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment];
Shader *computeShader = mState.mAttachedShaders[ShaderType::Compute];
Shader *geometryShader = mState.mAttachedShaders[ShaderType::Geometry];
bool isComputeShaderAttached = (computeShader != nullptr);
bool isGraphicsShaderAttached =
(vertexShader != nullptr || fragmentShader != nullptr || geometryShader != nullptr);
// Check whether we both have a compute and non-compute shaders attached.
// If there are of both types attached, then linking should fail.
// OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram
if (isComputeShaderAttached == true && isGraphicsShaderAttached == true)
{
infoLog << "Both compute and graphics shaders are attached to the same program.";
return false;
}
if (computeShader)
{
if (!computeShader->isCompiled())
{
infoLog << "Attached compute shader is not compiled.";
return false;
}
ASSERT(computeShader->getType() == ShaderType::Compute);
mState.mComputeShaderLocalSize = computeShader->getWorkGroupSize();
// GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs
// If the work group size is not specified, a link time error should occur.
if (!mState.mComputeShaderLocalSize.isDeclared())
{
infoLog << "Work group size is not specified.";
return false;
}
}
else
{
if (isSeparable())
{
if (!fragmentShader && !vertexShader)
{
infoLog << "No compiled shaders.";
return false;
}
ASSERT(!fragmentShader || fragmentShader->getType() == ShaderType::Fragment);
if (fragmentShader && !fragmentShader->isCompiled())
{
infoLog << "Fragment shader is not compiled.";
return false;
}
ASSERT(!vertexShader || vertexShader->getType() == ShaderType::Vertex);
if (vertexShader && !vertexShader->isCompiled())
{
infoLog << "Vertex shader is not compiled.";
return false;
}
}
else
{
if (!fragmentShader || !fragmentShader->isCompiled())
{
infoLog
<< "No compiled fragment shader when at least one graphics shader is attached.";
return false;
}
ASSERT(fragmentShader->getType() == ShaderType::Fragment);
if (!vertexShader || !vertexShader->isCompiled())
{
infoLog
<< "No compiled vertex shader when at least one graphics shader is attached.";
return false;
}
ASSERT(vertexShader->getType() == ShaderType::Vertex);
}
if (vertexShader && fragmentShader)
{
int vertexShaderVersion = vertexShader->getShaderVersion();
int fragmentShaderVersion = fragmentShader->getShaderVersion();
if (fragmentShaderVersion != vertexShaderVersion)
{
infoLog << "Fragment shader version does not match vertex shader version.";
return false;
}
}
if (geometryShader)
{
// [GL_EXT_geometry_shader] Chapter 7
// Linking can fail for a variety of reasons as specified in the OpenGL ES Shading
// Language Specification, as well as any of the following reasons:
// * One or more of the shader objects attached to <program> are not compiled
// successfully.
// * The shaders do not use the same shader language version.
// * <program> contains objects to form a geometry shader, and
// - <program> is not separable and contains no objects to form a vertex shader; or
// - the input primitive type, output primitive type, or maximum output vertex count
// is not specified in the compiled geometry shader object.
if (!geometryShader->isCompiled())
{
infoLog << "The attached geometry shader isn't compiled.";
return false;
}
if (vertexShader &&
(geometryShader->getShaderVersion() != vertexShader->getShaderVersion()))
{
infoLog << "Geometry shader version does not match vertex shader version.";
return false;
}
ASSERT(geometryShader->getType() == ShaderType::Geometry);
Optional<PrimitiveMode> inputPrimitive =
geometryShader->getGeometryShaderInputPrimitiveType();
if (!inputPrimitive.valid())
{
infoLog << "Input primitive type is not specified in the geometry shader.";
return false;
}
Optional<PrimitiveMode> outputPrimitive =
geometryShader->getGeometryShaderOutputPrimitiveType();
if (!outputPrimitive.valid())
{
infoLog << "Output primitive type is not specified in the geometry shader.";
return false;
}
Optional<GLint> maxVertices = geometryShader->getGeometryShaderMaxVertices();
if (!maxVertices.valid())
{
infoLog << "'max_vertices' is not specified in the geometry shader.";
return false;
}
mState.mGeometryShaderInputPrimitiveType = inputPrimitive.value();
mState.mGeometryShaderOutputPrimitiveType = outputPrimitive.value();
mState.mGeometryShaderMaxVertices = maxVertices.value();
mState.mGeometryShaderInvocations = geometryShader->getGeometryShaderInvocations();
}
}
return true;
}
GLuint Program::getTransformFeedbackVaryingResourceIndex(const GLchar *name) const
{
ASSERT(!mLinkingState);
for (GLuint tfIndex = 0; tfIndex < mState.mExecutable->mLinkedTransformFeedbackVaryings.size();
++tfIndex)
{
const auto &tf = mState.mExecutable->mLinkedTransformFeedbackVaryings[tfIndex];
if (tf.nameWithArrayIndex() == name)
{
return tfIndex;
}
}
return GL_INVALID_INDEX;
}
const TransformFeedbackVarying &Program::getTransformFeedbackVaryingResource(GLuint index) const
{
ASSERT(!mLinkingState);
ASSERT(index < mState.mExecutable->mLinkedTransformFeedbackVaryings.size());
return mState.mExecutable->mLinkedTransformFeedbackVaryings[index];
}
bool Program::hasDrawIDUniform() const
{
ASSERT(!mLinkingState);
return mState.mDrawIDLocation >= 0;
}
void Program::setDrawIDUniform(GLint drawid)
{
ASSERT(!mLinkingState);
ASSERT(mState.mDrawIDLocation >= 0);
mProgram->setUniform1iv(mState.mDrawIDLocation, 1, &drawid);
}
bool Program::hasBaseVertexUniform() const
{
ASSERT(!mLinkingState);
return mState.mBaseVertexLocation >= 0;
}
void Program::setBaseVertexUniform(GLint baseVertex)
{
ASSERT(!mLinkingState);
ASSERT(mState.mBaseVertexLocation >= 0);
if (baseVertex == mState.mCachedBaseVertex)
{
return;
}
mState.mCachedBaseVertex = baseVertex;
mProgram->setUniform1iv(mState.mBaseVertexLocation, 1, &baseVertex);
}
bool Program::hasBaseInstanceUniform() const
{
ASSERT(!mLinkingState);
return mState.mBaseInstanceLocation >= 0;
}
void Program::setBaseInstanceUniform(GLuint baseInstance)
{
ASSERT(!mLinkingState);
ASSERT(mState.mBaseInstanceLocation >= 0);
if (baseInstance == mState.mCachedBaseInstance)
{
return;
}
mState.mCachedBaseInstance = baseInstance;
GLint baseInstanceInt = baseInstance;
mProgram->setUniform1iv(mState.mBaseInstanceLocation, 1, &baseInstanceInt);
}
bool Program::linkVaryings(InfoLog &infoLog) const
{
ShaderType previousShaderType = ShaderType::InvalidEnum;
for (ShaderType shaderType : kAllGraphicsShaderTypes)
{
Shader *currentShader = mState.mAttachedShaders[shaderType];
if (!currentShader)
{
continue;
}
if (previousShaderType != ShaderType::InvalidEnum)
{
Shader *previousShader = mState.mAttachedShaders[previousShaderType];
const std::vector<sh::ShaderVariable> &outputVaryings =
previousShader->getOutputVaryings();
if (!linkValidateShaderInterfaceMatching(
outputVaryings, currentShader->getInputVaryings(), previousShaderType,
currentShader->getType(), previousShader->getShaderVersion(),
currentShader->getShaderVersion(), isSeparable(), infoLog))
{
return false;
}
}
previousShaderType = currentShader->getType();
}
Shader *vertexShader = mState.mAttachedShaders[ShaderType::Vertex];
Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment];
if (vertexShader && fragmentShader &&
!linkValidateBuiltInVaryings(vertexShader->getOutputVaryings(),
fragmentShader->getInputVaryings(),
vertexShader->getShaderVersion(), infoLog))
{
return false;
}
return true;
}
void Program::getFilteredVaryings(const std::vector<sh::ShaderVariable> &varyings,
std::vector<const sh::ShaderVariable *> *filteredVaryingsOut)
{
for (const sh::ShaderVariable &varying : varyings)
{
// Built-in varyings obey special rules
if (varying.isBuiltIn())
{
continue;
}
filteredVaryingsOut->push_back(&varying);
}
}
bool Program::doShaderVariablesMatch(int outputShaderVersion,
ShaderType outputShaderType,
ShaderType inputShaderType,
const sh::ShaderVariable &input,
const sh::ShaderVariable &output,
bool validateGeometryShaderInputs,
bool isSeparable,
gl::InfoLog &infoLog)
{
bool namesMatch = input.name == output.name;
bool locationsMatch = (input.location != -1) && (input.location == output.location);
// An output variable is considered to match an input variable in the subsequent
// shader if:
// - the two variables match in name, type, and qualification; or
// - the two variables are declared with the same location qualifier and
// match in type and qualification.
if (namesMatch || locationsMatch)
{
std::string mismatchedStructFieldName;
LinkMismatchError linkError =
LinkValidateVaryings(output, input, outputShaderVersion, validateGeometryShaderInputs,
isSeparable, &mismatchedStructFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
LogLinkMismatch(infoLog, input.name, "varying", linkError, mismatchedStructFieldName,
outputShaderType, inputShaderType);
return false;
}
return true;
}
return false;
}
// [OpenGL ES 3.1] Chapter 7.4.1 "Shader Interface Matching" Page 91
// TODO(jiawei.shao@intel.com): add validation on input/output blocks matching
bool Program::linkValidateShaderInterfaceMatching(
const std::vector<sh::ShaderVariable> &outputVaryings,
const std::vector<sh::ShaderVariable> &inputVaryings,
ShaderType outputShaderType,
ShaderType inputShaderType,
int outputShaderVersion,
int inputShaderVersion,
bool isSeparable,
gl::InfoLog &infoLog)
{
ASSERT(outputShaderVersion == inputShaderVersion);
std::vector<const sh::ShaderVariable *> filteredInputVaryings;
std::vector<const sh::ShaderVariable *> filteredOutputVaryings;
bool validateGeometryShaderInputs = inputShaderType == ShaderType::Geometry;
getFilteredVaryings(inputVaryings, &filteredInputVaryings);
getFilteredVaryings(outputVaryings, &filteredOutputVaryings);
// Separable programs require the number of inputs and outputs match
if (isSeparable && filteredInputVaryings.size() < filteredOutputVaryings.size())
{
infoLog << GetShaderTypeString(inputShaderType)
<< " does not consume all varyings generated by "
<< GetShaderTypeString(outputShaderType);
return false;
}
if (isSeparable && filteredInputVaryings.size() > filteredOutputVaryings.size())
{
infoLog << GetShaderTypeString(outputShaderType)
<< " does not generate all varyings consumed by "
<< GetShaderTypeString(inputShaderType);
return false;
}
// All inputs must match all outputs
for (const sh::ShaderVariable *input : filteredInputVaryings)
{
bool match = false;
for (const sh::ShaderVariable *output : filteredOutputVaryings)
{
if (doShaderVariablesMatch(outputShaderVersion, outputShaderType, inputShaderType,
*input, *output, validateGeometryShaderInputs, isSeparable,
infoLog))
{
match = true;
break;
}
}
// We permit unmatched, unreferenced varyings. Note that this specifically depends on
// whether the input is statically used - a statically used input should fail this test even
// if it is not active. GLSL ES 3.00.6 section 4.3.10.
if (!match && input->staticUse)
{
infoLog << GetShaderTypeString(inputShaderType) << " varying " << input->name
<< " does not match any " << GetShaderTypeString(outputShaderType)
<< " varying";
return false;
}
}
return true;
}
bool Program::linkUniforms(const Caps &caps,
const Version &version,
InfoLog &infoLog,
const ProgramAliasedBindings &uniformLocationBindings,
GLuint *combinedImageUniformsCount,
std::vector<UnusedUniform> *unusedUniforms)
{
UniformLinker linker(mState);
if (!linker.link(caps, infoLog, uniformLocationBindings))
{
return false;
}
linker.getResults(&mState.mExecutable->mUniforms, unusedUniforms, &mState.mUniformLocations);
linkSamplerAndImageBindings(combinedImageUniformsCount);
if (!linkAtomicCounterBuffers())
{
return false;
}
if (version >= Version(3, 1))
{
GLint locationSize = static_cast<GLint>(mState.getUniformLocations().size());
if (locationSize > caps.maxUniformLocations)
{
infoLog << "Exceeded maximum uniform location size";
return false;
}
}
return true;
}
void Program::linkSamplerAndImageBindings(GLuint *combinedImageUniforms)
{
ASSERT(combinedImageUniforms);
// Iterate over mExecutable->mUniforms from the back, and find the range of atomic counters,
// images and samplers in that order.
auto highIter = mState.mExecutable->getUniforms().rbegin();
auto lowIter = highIter;
unsigned int high = static_cast<unsigned int>(mState.mExecutable->getUniforms().size());
unsigned int low = high;
// Note that uniform block uniforms are not yet appended to this list.
ASSERT(mState.mExecutable->getUniforms().size() == 0 || highIter->isAtomicCounter() ||
highIter->isImage() || highIter->isSampler() || highIter->isInDefaultBlock());
for (; lowIter != mState.mExecutable->getUniforms().rend() && lowIter->isAtomicCounter();
++lowIter)
{
--low;
}
mState.mAtomicCounterUniformRange = RangeUI(low, high);
highIter = lowIter;
high = low;
for (; lowIter != mState.mExecutable->getUniforms().rend() && lowIter->isImage(); ++lowIter)
{
--low;
}
mState.mExecutable->mImageUniformRange = RangeUI(low, high);
*combinedImageUniforms = 0u;
// If uniform is a image type, insert it into the mImageBindings array.
for (unsigned int imageIndex : mState.mExecutable->getImageUniformRange())
{
// ES3.1 (section 7.6.1) and GLSL ES3.1 (section 4.4.5), Uniform*i{v} commands
// cannot load values into a uniform defined as an image. if declare without a
// binding qualifier, any uniform image variable (include all elements of
// unbound image array) shoud be bound to unit zero.
auto &imageUniform = mState.mExecutable->getUniforms()[imageIndex];
if (imageUniform.binding == -1)
{
mState.mImageBindings.emplace_back(
ImageBinding(imageUniform.getBasicTypeElementCount()));
}
else
{
mState.mImageBindings.emplace_back(
ImageBinding(imageUniform.binding, imageUniform.getBasicTypeElementCount(), false));
}
GLuint arraySize = imageUniform.isArray() ? imageUniform.arraySizes[0] : 1u;
*combinedImageUniforms += imageUniform.activeShaderCount() * arraySize;
}
highIter = lowIter;
high = low;
for (; lowIter != mState.mExecutable->getUniforms().rend() && lowIter->isSampler(); ++lowIter)
{
--low;
}
mState.mExecutable->mSamplerUniformRange = RangeUI(low, high);
// If uniform is a sampler type, insert it into the mSamplerBindings array.
for (unsigned int samplerIndex : mState.mExecutable->getSamplerUniformRange())
{
const auto &samplerUniform = mState.mExecutable->getUniforms()[samplerIndex];
TextureType textureType = SamplerTypeToTextureType(samplerUniform.type);
unsigned int elementCount = samplerUniform.getBasicTypeElementCount();
SamplerFormat format = samplerUniform.typeInfo->samplerFormat;
mState.mSamplerBindings.emplace_back(textureType, format, elementCount, false);
}
// Whatever is left constitutes the default uniforms.
mState.mDefaultUniformRange = RangeUI(0, low);
}
bool Program::linkAtomicCounterBuffers()
{
for (unsigned int index : mState.mAtomicCounterUniformRange)
{
auto &uniform = mState.mExecutable->mUniforms[index];
uniform.blockInfo.offset = uniform.offset;
uniform.blockInfo.arrayStride = (uniform.isArray() ? 4 : 0);
uniform.blockInfo.matrixStride = 0;
uniform.blockInfo.isRowMajorMatrix = false;
bool found = false;
for (unsigned int bufferIndex = 0;
bufferIndex < mState.mExecutable->getActiveAtomicCounterBufferCount(); ++bufferIndex)
{
auto &buffer = mState.mExecutable->mAtomicCounterBuffers[bufferIndex];
if (buffer.binding == uniform.binding)
{
buffer.memberIndexes.push_back(index);
uniform.bufferIndex = bufferIndex;
found = true;
buffer.unionReferencesWith(uniform);
break;
}
}
if (!found)
{
AtomicCounterBuffer atomicCounterBuffer;
atomicCounterBuffer.binding = uniform.binding;
atomicCounterBuffer.memberIndexes.push_back(index);
atomicCounterBuffer.unionReferencesWith(uniform);
mState.mExecutable->mAtomicCounterBuffers.push_back(atomicCounterBuffer);
uniform.bufferIndex =
static_cast<int>(mState.mExecutable->getActiveAtomicCounterBufferCount() - 1);
}
}
// TODO(jie.a.chen@intel.com): Count each atomic counter buffer to validate against
// gl_Max[Vertex|Fragment|Compute|Geometry|Combined]AtomicCounterBuffers.
return true;
}
// Assigns locations to all attributes (except built-ins) from the bindings and program locations.
bool Program::linkAttributes(const Context *context, InfoLog &infoLog)
{
const Caps &caps = context->getCaps();
const Limitations &limitations = context->getLimitations();
bool webglCompatibility = context->getExtensions().webglCompatibility;
int shaderVersion = -1;
unsigned int usedLocations = 0;
Shader *vertexShader = mState.getAttachedShader(gl::ShaderType::Vertex);
if (!vertexShader)
{
// No vertex shader, so no attributes, so nothing to do
return true;
}
shaderVersion = vertexShader->getShaderVersion();
if (shaderVersion >= 300)
{
// In GLSL ES 3.00.6, aliasing checks should be done with all declared attributes -
// see GLSL ES 3.00.6 section 12.46. Inactive attributes will be pruned after
// aliasing checks.
mState.mExecutable->mProgramInputs = vertexShader->getAllAttributes();
}
else
{
// In GLSL ES 1.00.17 we only do aliasing checks for active attributes.
mState.mExecutable->mProgramInputs = vertexShader->getActiveAttributes();
}
GLuint maxAttribs = static_cast<GLuint>(caps.maxVertexAttributes);
std::vector<sh::ShaderVariable *> usedAttribMap(maxAttribs, nullptr);
// Assign locations to attributes that have a binding location and check for attribute aliasing.
for (sh::ShaderVariable &attribute : mState.mExecutable->mProgramInputs)
{
// GLSL ES 3.10 January 2016 section 4.3.4: Vertex shader inputs can't be arrays or
// structures, so we don't need to worry about adjusting their names or generating entries
// for each member/element (unlike uniforms for example).
ASSERT(!attribute.isArray() && !attribute.isStruct());
int bindingLocation = mAttributeBindings.getBinding(attribute);
if (attribute.location == -1 && bindingLocation != -1)
{
attribute.location = bindingLocation;
}
if (attribute.location != -1)
{
// Location is set by glBindAttribLocation or by location layout qualifier
const int regs = VariableRegisterCount(attribute.type);
if (static_cast<GLuint>(regs + attribute.location) > maxAttribs)
{
infoLog << "Attribute (" << attribute.name << ") at location " << attribute.location
<< " is too big to fit";
return false;
}
for (int reg = 0; reg < regs; reg++)
{
const int regLocation = attribute.location + reg;
sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation];
// In GLSL ES 3.00.6 and in WebGL, attribute aliasing produces a link error.
// In non-WebGL GLSL ES 1.00.17, attribute aliasing is allowed with some
// restrictions - see GLSL ES 1.00.17 section 2.10.4, but ANGLE currently has a bug.
// In D3D 9 and 11, aliasing is not supported, so check a limitation.
if (linkedAttribute)
{
if (shaderVersion >= 300 || webglCompatibility ||
limitations.noVertexAttributeAliasing)
{
infoLog << "Attribute '" << attribute.name << "' aliases attribute '"
<< linkedAttribute->name << "' at location " << regLocation;
return false;
}
}
else
{
usedAttribMap[regLocation] = &attribute;
}
usedLocations |= 1 << regLocation;
}
}
}
// Assign locations to attributes that don't have a binding location.
for (sh::ShaderVariable &attribute : mState.mExecutable->mProgramInputs)
{
// Not set by glBindAttribLocation or by location layout qualifier
if (attribute.location == -1)
{
int regs = VariableRegisterCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs);
if (availableIndex == -1 || static_cast<GLuint>(availableIndex + regs) > maxAttribs)
{
infoLog << "Too many attributes (" << attribute.name << ")";
return false;
}
attribute.location = availableIndex;
}
}
ASSERT(mState.mExecutable->mAttributesTypeMask.none());
ASSERT(mState.mExecutable->mAttributesMask.none());
// Prune inactive attributes. This step is only needed on shaderVersion >= 300 since on earlier
// shader versions we're only processing active attributes to begin with.
if (shaderVersion >= 300)
{
for (auto attributeIter = mState.mExecutable->getProgramInputs().begin();
attributeIter != mState.mExecutable->getProgramInputs().end();)
{
if (attributeIter->active)
{
++attributeIter;
}
else
{
attributeIter = mState.mExecutable->mProgramInputs.erase(attributeIter);
}
}
}
for (const sh::ShaderVariable &attribute : mState.mExecutable->getProgramInputs())
{
ASSERT(attribute.active);
ASSERT(attribute.location != -1);
unsigned int regs = static_cast<unsigned int>(VariableRegisterCount(attribute.type));
unsigned int location = static_cast<unsigned int>(attribute.location);
for (unsigned int r = 0; r < regs; r++)
{
// Built-in active program inputs don't have a bound attribute.
if (!attribute.isBuiltIn())
{
mState.mExecutable->mActiveAttribLocationsMask.set(location);
mState.mExecutable->mMaxActiveAttribLocation =
std::max(mState.mExecutable->mMaxActiveAttribLocation, location + 1);
ComponentType componentType =
GLenumToComponentType(VariableComponentType(attribute.type));
SetComponentTypeMask(componentType, location,
&mState.mExecutable->mAttributesTypeMask);
mState.mExecutable->mAttributesMask.set(location);
location++;
}
}
}
return true;
}
bool Program::linkInterfaceBlocks(const Caps &caps,
const Version &version,
bool webglCompatibility,
InfoLog &infoLog,
GLuint *combinedShaderStorageBlocksCount)
{
ASSERT(combinedShaderStorageBlocksCount);
GLuint combinedUniformBlocksCount = 0u;
GLuint numShadersHasUniformBlocks = 0u;
ShaderMap<const std::vector<sh::InterfaceBlock> *> allShaderUniformBlocks = {};
for (ShaderType shaderType : AllShaderTypes())
{
Shader *shader = mState.mAttachedShaders[shaderType];
if (!shader)
{
continue;
}
const auto &uniformBlocks = shader->getUniformBlocks();
if (!uniformBlocks.empty())
{
if (!ValidateInterfaceBlocksCount(
static_cast<GLuint>(caps.maxShaderUniformBlocks[shaderType]), uniformBlocks,
shaderType, sh::BlockType::BLOCK_UNIFORM, &combinedUniformBlocksCount, infoLog))
{
return false;
}
allShaderUniformBlocks[shaderType] = &uniformBlocks;
++numShadersHasUniformBlocks;
}
}
if (combinedUniformBlocksCount > static_cast<GLuint>(caps.maxCombinedUniformBlocks))
{
infoLog << "The sum of the number of active uniform blocks exceeds "
"MAX_COMBINED_UNIFORM_BLOCKS ("
<< caps.maxCombinedUniformBlocks << ").";
return false;
}
if (!ValidateInterfaceBlocksMatch(numShadersHasUniformBlocks, allShaderUniformBlocks, infoLog,
webglCompatibility))
{
return false;
}
if (version >= Version(3, 1))
{
*combinedShaderStorageBlocksCount = 0u;
GLuint numShadersHasShaderStorageBlocks = 0u;
ShaderMap<const std::vector<sh::InterfaceBlock> *> allShaderStorageBlocks = {};
for (ShaderType shaderType : AllShaderTypes())
{
Shader *shader = mState.mAttachedShaders[shaderType];
if (!shader)
{
continue;
}
const auto &shaderStorageBlocks = shader->getShaderStorageBlocks();
if (!shaderStorageBlocks.empty())
{
if (!ValidateInterfaceBlocksCount(
static_cast<GLuint>(caps.maxShaderStorageBlocks[shaderType]),
shaderStorageBlocks, shaderType, sh::BlockType::BLOCK_BUFFER,
combinedShaderStorageBlocksCount, infoLog))
{
return false;
}
allShaderStorageBlocks[shaderType] = &shaderStorageBlocks;
++numShadersHasShaderStorageBlocks;
}
}
if (*combinedShaderStorageBlocksCount >
static_cast<GLuint>(caps.maxCombinedShaderStorageBlocks))
{
infoLog << "The sum of the number of active shader storage blocks exceeds "
"MAX_COMBINED_SHADER_STORAGE_BLOCKS ("
<< caps.maxCombinedShaderStorageBlocks << ").";
return false;
}
if (!ValidateInterfaceBlocksMatch(numShadersHasShaderStorageBlocks, allShaderStorageBlocks,
infoLog, webglCompatibility))
{
return false;
}
}
return true;
}
LinkMismatchError Program::LinkValidateVariablesBase(const sh::ShaderVariable &variable1,
const sh::ShaderVariable &variable2,
bool validatePrecision,
bool validateArraySize,
std::string *mismatchedStructOrBlockMemberName)
{
if (variable1.type != variable2.type)
{
return LinkMismatchError::TYPE_MISMATCH;
}
if (validateArraySize && variable1.arraySizes != variable2.arraySizes)
{
return LinkMismatchError::ARRAY_SIZE_MISMATCH;
}
if (validatePrecision && variable1.precision != variable2.precision)
{
return LinkMismatchError::PRECISION_MISMATCH;
}
if (variable1.structName != variable2.structName)
{
return LinkMismatchError::STRUCT_NAME_MISMATCH;
}
if (variable1.imageUnitFormat != variable2.imageUnitFormat)
{
return LinkMismatchError::FORMAT_MISMATCH;
}
if (variable1.fields.size() != variable2.fields.size())
{
return LinkMismatchError::FIELD_NUMBER_MISMATCH;
}
const unsigned int numMembers = static_cast<unsigned int>(variable1.fields.size());
for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++)
{
const sh::ShaderVariable &member1 = variable1.fields[memberIndex];
const sh::ShaderVariable &member2 = variable2.fields[memberIndex];
if (member1.name != member2.name)
{
return LinkMismatchError::FIELD_NAME_MISMATCH;
}
LinkMismatchError linkErrorOnField = LinkValidateVariablesBase(
member1, member2, validatePrecision, true, mismatchedStructOrBlockMemberName);
if (linkErrorOnField != LinkMismatchError::NO_MISMATCH)
{
AddParentPrefix(member1.name, mismatchedStructOrBlockMemberName);
return linkErrorOnField;
}
}
return LinkMismatchError::NO_MISMATCH;
}
LinkMismatchError Program::LinkValidateVaryings(const sh::ShaderVariable &outputVarying,
const sh::ShaderVariable &inputVarying,
int shaderVersion,
bool validateGeometryShaderInputVarying,
bool isSeparable,
std::string *mismatchedStructFieldName)
{
if (validateGeometryShaderInputVarying)
{
// [GL_EXT_geometry_shader] Section 11.1gs.4.3:
// The OpenGL ES Shading Language doesn't support multi-dimensional arrays as shader inputs
// or outputs.
ASSERT(inputVarying.arraySizes.size() == 1u);
// Geometry shader input varyings are not treated as arrays, so a vertex array output
// varying cannot match a geometry shader input varying.
// [GL_EXT_geometry_shader] Section 7.4.1:
// Geometry shader per-vertex input variables and blocks are required to be declared as
// arrays, with each element representing input or output values for a single vertex of a
// multi-vertex primitive. For the purposes of interface matching, such variables and blocks
// are treated as though they were not declared as arrays.
if (outputVarying.isArray())
{
return LinkMismatchError::ARRAY_SIZE_MISMATCH;
}
}
// Skip the validation on the array sizes between a vertex output varying and a geometry input
// varying as it has been done before.
bool validatePrecision = isSeparable && (shaderVersion > 100);
LinkMismatchError linkError =
LinkValidateVariablesBase(outputVarying, inputVarying, validatePrecision,
!validateGeometryShaderInputVarying, mismatchedStructFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
return linkError;
}
// Explicit locations must match if the names match.
if ((outputVarying.name == inputVarying.name) &&
(outputVarying.location != inputVarying.location))
{
return LinkMismatchError::LOCATION_MISMATCH;
}
if (!sh::InterpolationTypesMatch(outputVarying.interpolation, inputVarying.interpolation))
{
return LinkMismatchError::INTERPOLATION_TYPE_MISMATCH;
}
if (shaderVersion == 100 && outputVarying.isInvariant != inputVarying.isInvariant)
{
return LinkMismatchError::INVARIANCE_MISMATCH;
}
return LinkMismatchError::NO_MISMATCH;
}
bool Program::linkValidateBuiltInVaryings(const std::vector<sh::ShaderVariable> &vertexVaryings,
const std::vector<sh::ShaderVariable> &fragmentVaryings,
int vertexShaderVersion,
InfoLog &infoLog)
{
if (vertexShaderVersion != 100)
{
// Only ESSL 1.0 has restrictions on matching input and output invariance
return true;
}
bool glPositionIsInvariant = false;
bool glPointSizeIsInvariant = false;
bool glFragCoordIsInvariant = false;
bool glPointCoordIsInvariant = false;
for (const sh::ShaderVariable &varying : vertexVaryings)
{
if (!varying.isBuiltIn())
{
continue;
}
if (varying.name.compare("gl_Position") == 0)
{
glPositionIsInvariant = varying.isInvariant;
}
else if (varying.name.compare("gl_PointSize") == 0)
{
glPointSizeIsInvariant = varying.isInvariant;
}
}
for (const sh::ShaderVariable &varying : fragmentVaryings)
{
if (!varying.isBuiltIn())
{
continue;
}
if (varying.name.compare("gl_FragCoord") == 0)
{
glFragCoordIsInvariant = varying.isInvariant;
}
else if (varying.name.compare("gl_PointCoord") == 0)
{
glPointCoordIsInvariant = varying.isInvariant;
}
}
// There is some ambiguity in ESSL 1.00.17 paragraph 4.6.4 interpretation,
// for example, https://cvs.khronos.org/bugzilla/show_bug.cgi?id=13842.
// Not requiring invariance to match is supported by:
// dEQP, WebGL CTS, Nexus 5X GLES
if (glFragCoordIsInvariant && !glPositionIsInvariant)
{
infoLog << "gl_FragCoord can only be declared invariant if and only if gl_Position is "
"declared invariant.";
return false;
}
if (glPointCoordIsInvariant && !glPointSizeIsInvariant)
{
infoLog << "gl_PointCoord can only be declared invariant if and only if gl_PointSize is "
"declared invariant.";
return false;
}
return true;
}
bool Program::linkValidateTransformFeedback(const Version &version,
InfoLog &infoLog,
const ProgramMergedVaryings &varyings,
ShaderType stage,
const Caps &caps) const
{
// Validate the tf names regardless of the actual program varyings.
std::set<std::string> uniqueNames;
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
if (version < Version(3, 1) && tfVaryingName.find('[') != std::string::npos)
{
infoLog << "Capture of array elements is undefined and not supported.";
return false;
}
if (version >= Version(3, 1))
{
if (IncludeSameArrayElement(uniqueNames, tfVaryingName))
{
infoLog << "Two transform feedback varyings include the same array element ("
<< tfVaryingName << ").";
return false;
}
}
else
{
if (uniqueNames.count(tfVaryingName) > 0)
{
infoLog << "Two transform feedback varyings specify the same output variable ("
<< tfVaryingName << ").";
return false;
}
}
uniqueNames.insert(tfVaryingName);
}
// Validate against program varyings.
size_t totalComponents = 0;
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(tfVaryingName, &subscripts);
const sh::ShaderVariable *var = FindOutputVaryingOrField(varyings, stage, baseName);
if (var == nullptr)
{
infoLog << "Transform feedback varying " << tfVaryingName
<< " does not exist in the vertex shader.";
return false;
}
// Validate the matching variable.
if (var->isStruct())
{
infoLog << "Struct cannot be captured directly (" << baseName << ").";
return false;
}
size_t elementCount = 0;
size_t componentCount = 0;
if (var->isArray())
{
if (version < Version(3, 1))
{
infoLog << "Capture of arrays is undefined and not supported.";
return false;
}
// GLSL ES 3.10 section 4.3.6: A vertex output can't be an array of arrays.
ASSERT(!var->isArrayOfArrays());
if (!subscripts.empty() && subscripts[0] >= var->getOutermostArraySize())
{
infoLog << "Cannot capture outbound array element '" << tfVaryingName << "'.";
return false;
}
elementCount = (subscripts.empty() ? var->getOutermostArraySize() : 1);
}
else
{
if (!subscripts.empty())
{
infoLog << "Varying '" << baseName
<< "' is not an array to be captured by element.";
return false;
}
elementCount = 1;
}
// TODO(jmadill): Investigate implementation limits on D3D11
componentCount = VariableComponentCount(var->type) * elementCount;
if (mState.mExecutable->getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS &&
componentCount > static_cast<GLuint>(caps.maxTransformFeedbackSeparateComponents))
{
infoLog << "Transform feedback varying " << tfVaryingName << " components ("
<< componentCount << ") exceed the maximum separate components ("
<< caps.maxTransformFeedbackSeparateComponents << ").";
return false;
}
totalComponents += componentCount;
if (mState.mExecutable->getTransformFeedbackBufferMode() == GL_INTERLEAVED_ATTRIBS &&
totalComponents > static_cast<GLuint>(caps.maxTransformFeedbackInterleavedComponents))
{
infoLog << "Transform feedback varying total components (" << totalComponents
<< ") exceed the maximum interleaved components ("
<< caps.maxTransformFeedbackInterleavedComponents << ").";
return false;
}
}
return true;
}
void Program::gatherTransformFeedbackVaryings(const ProgramMergedVaryings &varyings,
ShaderType stage)
{
// Gather the linked varyings that are used for transform feedback, they should all exist.
mState.mExecutable->mLinkedTransformFeedbackVaryings.clear();
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(tfVaryingName, &subscripts);
size_t subscript = GL_INVALID_INDEX;
if (!subscripts.empty())
{
subscript = subscripts.back();
}
for (const ProgramVaryingRef &ref : varyings)
{
if (ref.frontShaderStage != stage)
{
continue;
}
const sh::ShaderVariable *varying = ref.get(stage);
if (baseName == varying->name)
{
mState.mExecutable->mLinkedTransformFeedbackVaryings.emplace_back(
*varying, static_cast<GLuint>(subscript));
break;
}
else if (varying->isStruct())
{
GLuint fieldIndex = 0;
const auto *field = FindShaderVarField(*varying, tfVaryingName, &fieldIndex);
if (field != nullptr)
{
mState.mExecutable->mLinkedTransformFeedbackVaryings.emplace_back(*field,
*varying);
break;
}
}
}
}
}
ProgramMergedVaryings Program::getMergedVaryings() const
{
ASSERT(mState.mAttachedShaders[ShaderType::Compute] == nullptr);
// Varyings are matched between pairs of consecutive stages, by location if assigned or
// by name otherwise. Note that it's possible for one stage to specify location and the other
// not: https://cvs.khronos.org/bugzilla/show_bug.cgi?id=16261
// Map stages to the previous active stage in the rendering pipeline. When looking at input
// varyings of a stage, this is used to find the stage whose output varyings are being linked
// with them.
ShaderMap<ShaderType> previousActiveStage;
// Note that kAllGraphicsShaderTypes is sorted according to the rendering pipeline.
ShaderType lastActiveStage = ShaderType::InvalidEnum;
for (ShaderType stage : kAllGraphicsShaderTypes)
{
previousActiveStage[stage] = lastActiveStage;
if (mState.mAttachedShaders[stage])
{
lastActiveStage = stage;
}
}
// First, go through output varyings and create two maps (one by name, one by location) for
// faster lookup when matching input varyings.
ShaderMap<std::map<std::string, size_t>> outputVaryingNameToIndex;
ShaderMap<std::map<int, size_t>> outputVaryingLocationToIndex;
ProgramMergedVaryings merged;
// Gather output varyings.
for (Shader *shader : mState.mAttachedShaders)
{
if (!shader)
{
continue;
}
ShaderType stage = shader->getType();
for (const sh::ShaderVariable &varying : shader->getOutputVaryings())
{
merged.push_back({});
ProgramVaryingRef *ref = &merged.back();
ref->frontShader = &varying;
ref->frontShaderStage = stage;
// Always map by name. Even if location is provided in this stage, it may not be in the
// paired stage.
outputVaryingNameToIndex[stage][varying.name] = merged.size() - 1;
// If location is provided, also keep it in a map by location.
if (varying.location != -1)
{
outputVaryingLocationToIndex[stage][varying.location] = merged.size() - 1;
}
}
}
// Gather input varyings, and match them with output varyings of the previous stage.
for (Shader *shader : mState.mAttachedShaders)
{
if (!shader)
{
continue;
}
ShaderType stage = shader->getType();
ShaderType previousStage = previousActiveStage[stage];
for (const sh::ShaderVariable &varying : shader->getInputVaryings())
{
size_t mergedIndex = merged.size();
if (previousStage != ShaderType::InvalidEnum)
{
// If location is provided, see if we can match by location.
if (varying.location != -1)
{
auto byLocationIter =
outputVaryingLocationToIndex[previousStage].find(varying.location);
if (byLocationIter != outputVaryingLocationToIndex[previousStage].end())
{
mergedIndex = byLocationIter->second;
}
}
// If not found, try to match by name.
if (mergedIndex == merged.size())
{
auto byNameIter = outputVaryingNameToIndex[previousStage].find(varying.name);
if (byNameIter != outputVaryingNameToIndex[previousStage].end())
{
mergedIndex = byNameIter->second;
}
}
}
// If no previous stage, or not matched by location or name, create a new entry for it.
if (mergedIndex == merged.size())
{
merged.push_back({});
mergedIndex = merged.size() - 1;
}
ProgramVaryingRef *ref = &merged[mergedIndex];
ref->backShader = &varying;
ref->backShaderStage = stage;
}
}
return merged;
}
bool CompareOutputVariable(const sh::ShaderVariable &a, const sh::ShaderVariable &b)
{
return a.getArraySizeProduct() > b.getArraySizeProduct();
}
int Program::getOutputLocationForLink(const sh::ShaderVariable &outputVariable) const
{
if (outputVariable.location != -1)
{
return outputVariable.location;
}
int apiLocation = mFragmentOutputLocations.getBinding(outputVariable);
if (apiLocation != -1)
{
return apiLocation;
}
return -1;
}
bool Program::isOutputSecondaryForLink(const sh::ShaderVariable &outputVariable) const
{
if (outputVariable.index != -1)
{
ASSERT(outputVariable.index == 0 || outputVariable.index == 1);
return (outputVariable.index == 1);
}
int apiIndex = mFragmentOutputIndexes.getBinding(outputVariable);
if (apiIndex != -1)
{
// Index layout qualifier from the shader takes precedence, so the index from the API is
// checked only if the index was not set in the shader. This is not specified in the EXT
// spec, but is specified in desktop OpenGL specs.
return (apiIndex == 1);
}
// EXT_blend_func_extended: Outputs get index 0 by default.
return false;
}
namespace
{
bool FindUsedOutputLocation(std::vector<VariableLocation> &outputLocations,
unsigned int baseLocation,
unsigned int elementCount,
const std::vector<VariableLocation> &reservedLocations,
unsigned int variableIndex)
{
if (baseLocation + elementCount > outputLocations.size())
{
elementCount = baseLocation < outputLocations.size()
? static_cast<unsigned int>(outputLocations.size() - baseLocation)
: 0;
}
for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++)
{
const unsigned int location = baseLocation + elementIndex;
if (outputLocations[location].used())
{
VariableLocation locationInfo(elementIndex, variableIndex);
if (std::find(reservedLocations.begin(), reservedLocations.end(), locationInfo) ==
reservedLocations.end())
{
return true;
}
}
}
return false;
}
void AssignOutputLocations(std::vector<VariableLocation> &outputLocations,
unsigned int baseLocation,
unsigned int elementCount,
const std::vector<VariableLocation> &reservedLocations,
unsigned int variableIndex,
sh::ShaderVariable &outputVariable)
{
if (baseLocation + elementCount > outputLocations.size())
{
outputLocations.resize(baseLocation + elementCount);
}
for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++)
{
VariableLocation locationInfo(elementIndex, variableIndex);
if (std::find(reservedLocations.begin(), reservedLocations.end(), locationInfo) ==
reservedLocations.end())
{
outputVariable.location = baseLocation;
const unsigned int location = baseLocation + elementIndex;
outputLocations[location] = locationInfo;
}
}
}
} // anonymous namespace
bool Program::linkOutputVariables(const Caps &caps,
const Extensions &extensions,
const Version &version,
GLuint combinedImageUniformsCount,
GLuint combinedShaderStorageBlocksCount)
{
InfoLog &infoLog = mState.mExecutable->getInfoLog();
Shader *fragmentShader = mState.mAttachedShaders[ShaderType::Fragment];
ASSERT(mState.mOutputVariableTypes.empty());
ASSERT(mState.mActiveOutputVariables.none());
ASSERT(mState.mDrawBufferTypeMask.none());
if (!fragmentShader)
{
// No fragment shader, so nothing to link
return true;
}
const auto &outputVariables = fragmentShader->getActiveOutputVariables();
// Gather output variable types
for (const auto &outputVariable : outputVariables)
{
if (outputVariable.isBuiltIn() && outputVariable.name != "gl_FragColor" &&
outputVariable.name != "gl_FragData")
{
continue;
}
unsigned int baseLocation =
(outputVariable.location == -1 ? 0u
: static_cast<unsigned int>(outputVariable.location));
// GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of
// structures, so we may use getBasicTypeElementCount().
unsigned int elementCount = outputVariable.getBasicTypeElementCount();
for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++)
{
const unsigned int location = baseLocation + elementIndex;
if (location >= mState.mOutputVariableTypes.size())
{
mState.mOutputVariableTypes.resize(location + 1, GL_NONE);
}
ASSERT(location < mState.mActiveOutputVariables.size());
mState.mActiveOutputVariables.set(location);
mState.mOutputVariableTypes[location] = VariableComponentType(outputVariable.type);
ComponentType componentType =
GLenumToComponentType(mState.mOutputVariableTypes[location]);
SetComponentTypeMask(componentType, location, &mState.mDrawBufferTypeMask);
}
}
if (version >= ES_3_1)
{
// [OpenGL ES 3.1] Chapter 8.22 Page 203:
// A link error will be generated if the sum of the number of active image uniforms used in
// all shaders, the number of active shader storage blocks, and the number of active
// fragment shader outputs exceeds the implementation-dependent value of
// MAX_COMBINED_SHADER_OUTPUT_RESOURCES.
if (combinedImageUniformsCount + combinedShaderStorageBlocksCount +
mState.mActiveOutputVariables.count() >
static_cast<GLuint>(caps.maxCombinedShaderOutputResources))
{
infoLog
<< "The sum of the number of active image uniforms, active shader storage blocks "
"and active fragment shader outputs exceeds "
"MAX_COMBINED_SHADER_OUTPUT_RESOURCES ("
<< caps.maxCombinedShaderOutputResources << ")";
return false;
}
}
// Skip this step for GLES2 shaders.
if (fragmentShader && fragmentShader->getShaderVersion() == 100)
return true;
mState.mExecutable->mOutputVariables = outputVariables;
// TODO(jmadill): any caps validation here?
// EXT_blend_func_extended doesn't specify anything related to binding specific elements of an
// output array in explicit terms.
//
// Assuming fragData is an output array, you can defend the position that:
// P1) you must support binding "fragData" because it's specified
// P2) you must support querying "fragData[x]" because it's specified
// P3) you must support binding "fragData[0]" because it's a frequently used pattern
//
// Then you can make the leap of faith:
// P4) you must support binding "fragData[x]" because you support "fragData[0]"
// P5) you must support binding "fragData[x]" because you support querying "fragData[x]"
//
// The spec brings in the "world of arrays" when it mentions binding the arrays and the
// automatic binding. Thus it must be interpreted that the thing is not undefined, rather you
// must infer the only possible interpretation (?). Note again: this need of interpretation
// might be completely off of what GL spec logic is.
//
// The other complexity is that unless you implement this feature, it's hard to understand what
// should happen when the client invokes the feature. You cannot add an additional error as it
// is not specified. One can ignore it, but obviously it creates the discrepancies...
std::vector<VariableLocation> reservedLocations;
// Process any output API bindings for arrays that don't alias to the first element.
for (const auto &binding : mFragmentOutputLocations)
{
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(binding.first, &nameLengthWithoutArrayIndex);
if (arrayIndex == 0 || arrayIndex == GL_INVALID_INDEX)
{
continue;
}
for (unsigned int outputVariableIndex = 0;
outputVariableIndex < mState.mExecutable->getOutputVariables().size();
outputVariableIndex++)
{
const sh::ShaderVariable &outputVariable =
mState.mExecutable->getOutputVariables()[outputVariableIndex];
// Check that the binding corresponds to an output array and its array index fits.
if (outputVariable.isBuiltIn() || !outputVariable.isArray() ||
!angle::BeginsWith(outputVariable.name, binding.first,
nameLengthWithoutArrayIndex) ||
arrayIndex >= outputVariable.getOutermostArraySize())
{
continue;
}
// Get the API index that corresponds to this exact binding.
// This index may differ from the index used for the array's base.
auto &outputLocations = mFragmentOutputIndexes.getBindingByName(binding.first) == 1
? mState.mSecondaryOutputLocations
: mState.mExecutable->mOutputLocations;
unsigned int location = binding.second.location;
VariableLocation locationInfo(arrayIndex, outputVariableIndex);
if (location >= outputLocations.size())
{
outputLocations.resize(location + 1);
}
if (outputLocations[location].used())
{
infoLog << "Location of variable " << outputVariable.name
<< " conflicts with another variable.";
return false;
}
outputLocations[location] = locationInfo;
// Note the array binding location so that it can be skipped later.
reservedLocations.push_back(locationInfo);
}
}
// Reserve locations for output variables whose location is fixed in the shader or through the
// API. Otherwise, the remaining unallocated outputs will be processed later.
for (unsigned int outputVariableIndex = 0;
outputVariableIndex < mState.mExecutable->getOutputVariables().size();
outputVariableIndex++)
{
const sh::ShaderVariable &outputVariable =
mState.mExecutable->getOutputVariables()[outputVariableIndex];
// Don't store outputs for gl_FragDepth, gl_FragColor, etc.
if (outputVariable.isBuiltIn())
continue;
int fixedLocation = getOutputLocationForLink(outputVariable);
if (fixedLocation == -1)
{
// Here we're only reserving locations for variables whose location is fixed.
continue;
}
unsigned int baseLocation = static_cast<unsigned int>(fixedLocation);
auto &outputLocations = isOutputSecondaryForLink(outputVariable)
? mState.mSecondaryOutputLocations
: mState.mExecutable->mOutputLocations;
// GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of
// structures, so we may use getBasicTypeElementCount().
unsigned int elementCount = outputVariable.getBasicTypeElementCount();
if (FindUsedOutputLocation(outputLocations, baseLocation, elementCount, reservedLocations,
outputVariableIndex))
{
infoLog << "Location of variable " << outputVariable.name
<< " conflicts with another variable.";
return false;
}
AssignOutputLocations(outputLocations, baseLocation, elementCount, reservedLocations,
outputVariableIndex,
mState.mExecutable->mOutputVariables[outputVariableIndex]);
}
// Here we assign locations for the output variables that don't yet have them. Note that we're
// not necessarily able to fit the variables optimally, since then we might have to try
// different arrangements of output arrays. Now we just assign the locations in the order that
// we got the output variables. The spec isn't clear on what kind of algorithm is required for
// finding locations for the output variables, so this should be acceptable at least for now.
GLuint maxLocation = static_cast<GLuint>(caps.maxDrawBuffers);
if (!mState.mSecondaryOutputLocations.empty())
{
// EXT_blend_func_extended: Program outputs will be validated against
// MAX_DUAL_SOURCE_DRAW_BUFFERS_EXT if there's even one output with index one.
maxLocation = extensions.maxDualSourceDrawBuffers;
}
for (unsigned int outputVariableIndex = 0;
outputVariableIndex < mState.mExecutable->getOutputVariables().size();
outputVariableIndex++)
{
const sh::ShaderVariable &outputVariable =
mState.mExecutable->getOutputVariables()[outputVariableIndex];
// Don't store outputs for gl_FragDepth, gl_FragColor, etc.
if (outputVariable.isBuiltIn())
continue;
int fixedLocation = getOutputLocationForLink(outputVariable);
auto &outputLocations = isOutputSecondaryForLink(outputVariable)
? mState.mSecondaryOutputLocations
: mState.mExecutable->mOutputLocations;
unsigned int baseLocation = 0;
unsigned int elementCount = outputVariable.getBasicTypeElementCount();
if (fixedLocation != -1)
{
// Secondary inputs might have caused the max location to drop below what has already
// been explicitly assigned locations. Check for any fixed locations above the max
// that should cause linking to fail.
baseLocation = static_cast<unsigned int>(fixedLocation);
}
else
{
// No fixed location, so try to fit the output in unassigned locations.
// Try baseLocations starting from 0 one at a time and see if the variable fits.
while (FindUsedOutputLocation(outputLocations, baseLocation, elementCount,
reservedLocations, outputVariableIndex))
{
baseLocation++;
}
AssignOutputLocations(outputLocations, baseLocation, elementCount, reservedLocations,
outputVariableIndex,
mState.mExecutable->mOutputVariables[outputVariableIndex]);
}
// Check for any elements assigned above the max location that are actually used.
if (baseLocation + elementCount > maxLocation &&
(baseLocation >= maxLocation ||
FindUsedOutputLocation(outputLocations, maxLocation,
baseLocation + elementCount - maxLocation, reservedLocations,
outputVariableIndex)))
{
// EXT_blend_func_extended: Linking can fail:
// "if the explicit binding assignments do not leave enough space for the linker to
// automatically assign a location for a varying out array, which requires multiple
// contiguous locations."
infoLog << "Could not fit output variable into available locations: "
<< outputVariable.name;
return false;
}
}
return true;
}
void Program::setUniformValuesFromBindingQualifiers()
{
for (unsigned int samplerIndex : mState.mExecutable->getSamplerUniformRange())
{
const auto &samplerUniform = mState.mExecutable->getUniforms()[samplerIndex];
if (samplerUniform.binding != -1)
{
UniformLocation location = getUniformLocation(samplerUniform.name);
ASSERT(location.value != -1);
std::vector<GLint> boundTextureUnits;
for (unsigned int elementIndex = 0;
elementIndex < samplerUniform.getBasicTypeElementCount(); ++elementIndex)
{
boundTextureUnits.push_back(samplerUniform.binding + elementIndex);
}
// Here we pass nullptr to avoid a large chain of calls that need a non-const Context.
// We know it's safe not to notify the Context because this is only called after link.
setUniform1iv(nullptr, location, static_cast<GLsizei>(boundTextureUnits.size()),
boundTextureUnits.data());
}
}
}
void Program::initInterfaceBlockBindings()
{
// Set initial bindings from shader.
for (unsigned int blockIndex = 0; blockIndex < mState.mExecutable->getActiveUniformBlockCount();
blockIndex++)
{
InterfaceBlock &uniformBlock = mState.mExecutable->mUniformBlocks[blockIndex];
bindUniformBlock(blockIndex, uniformBlock.binding);
}
}
void Program::updateSamplerUniform(Context *context,
const VariableLocation &locationInfo,
GLsizei clampedCount,
const GLint *v)
{
ASSERT(mState.isSamplerUniformIndex(locationInfo.index));
GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(locationInfo.index);
SamplerBinding &samplerBinding = mState.mSamplerBindings[samplerIndex];
std::vector<GLuint> &boundTextureUnits = samplerBinding.boundTextureUnits;
if (samplerBinding.unreferenced)
return;
// Update the sampler uniforms.
for (GLsizei arrayIndex = 0; arrayIndex < clampedCount; ++arrayIndex)
{
GLint oldTextureUnit = boundTextureUnits[arrayIndex + locationInfo.arrayIndex];
GLint newTextureUnit = v[arrayIndex];
if (oldTextureUnit == newTextureUnit)
continue;
boundTextureUnits[arrayIndex + locationInfo.arrayIndex] = newTextureUnit;
// Update the reference counts.
uint32_t &oldRefCount = mState.mExecutable->mActiveSamplerRefCounts[oldTextureUnit];
uint32_t &newRefCount = mState.mExecutable->mActiveSamplerRefCounts[newTextureUnit];
ASSERT(oldRefCount > 0);
ASSERT(newRefCount < std::numeric_limits<uint32_t>::max());
oldRefCount--;
newRefCount++;
// Check for binding type change.
TextureType &newSamplerType = mState.mExecutable->mActiveSamplerTypes[newTextureUnit];
TextureType &oldSamplerType = mState.mExecutable->mActiveSamplerTypes[oldTextureUnit];
SamplerFormat &newSamplerFormat = mState.mExecutable->mActiveSamplerFormats[newTextureUnit];
SamplerFormat &oldSamplerFormat = mState.mExecutable->mActiveSamplerFormats[oldTextureUnit];
if (newRefCount == 1)
{
newSamplerType = samplerBinding.textureType;
newSamplerFormat = samplerBinding.format;
mState.mExecutable->mActiveSamplersMask.set(newTextureUnit);
mState.mExecutable->mActiveSamplerShaderBits[newTextureUnit] =
mState.mExecutable->getUniforms()[locationInfo.index].activeShaders();
}
else
{
if (newSamplerType != samplerBinding.textureType)
{
// Conflict detected. Ensure we reset it properly.
newSamplerType = TextureType::InvalidEnum;
}
if (newSamplerFormat != samplerBinding.format)
{
newSamplerFormat = SamplerFormat::InvalidEnum;
}
}
// Unset previously active sampler.
if (oldRefCount == 0)
{
oldSamplerType = TextureType::InvalidEnum;
oldSamplerFormat = SamplerFormat::InvalidEnum;
mState.mExecutable->mActiveSamplersMask.reset(oldTextureUnit);
}
else
{
if (oldSamplerType == TextureType::InvalidEnum ||
oldSamplerFormat == SamplerFormat::InvalidEnum)
{
// Previous conflict. Check if this new change fixed the conflict.
mState.setSamplerUniformTextureTypeAndFormat(oldTextureUnit);
}
}
// Notify context.
if (context)
{
context->onSamplerUniformChange(newTextureUnit);
context->onSamplerUniformChange(oldTextureUnit);
}
}
// Invalidate the validation cache.
mCachedValidateSamplersResult.reset();
}
void ProgramState::setSamplerUniformTextureTypeAndFormat(size_t textureUnitIndex)
{
mExecutable->setSamplerUniformTextureTypeAndFormat(textureUnitIndex, mSamplerBindings);
}
template <typename T>
GLsizei Program::clampUniformCount(const VariableLocation &locationInfo,
GLsizei count,
int vectorSize,
const T *v)
{
if (count == 1)
return 1;
const LinkedUniform &linkedUniform = mState.mExecutable->getUniforms()[locationInfo.index];
// OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array
// element index used, as reported by GetActiveUniform, will be ignored by the GL."
unsigned int remainingElements =
linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex;
GLsizei maxElementCount =
static_cast<GLsizei>(remainingElements * linkedUniform.getElementComponents());
if (count * vectorSize > maxElementCount)
{
return maxElementCount / vectorSize;
}
return count;
}
template <size_t cols, size_t rows, typename T>
GLsizei Program::clampMatrixUniformCount(UniformLocation location,
GLsizei count,
GLboolean transpose,
const T *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location.value];
if (!transpose)
{
return clampUniformCount(locationInfo, count, cols * rows, v);
}
const LinkedUniform &linkedUniform = mState.mExecutable->getUniforms()[locationInfo.index];
// OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array
// element index used, as reported by GetActiveUniform, will be ignored by the GL."
unsigned int remainingElements =
linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex;
return std::min(count, static_cast<GLsizei>(remainingElements));
}
// Driver differences mean that doing the uniform value cast ourselves gives consistent results.
// EG: on NVIDIA drivers, it was observed that getUniformi for MAX_INT+1 returned MIN_INT.
template <typename DestT>
void Program::getUniformInternal(const Context *context,
DestT *dataOut,
UniformLocation location,
GLenum nativeType,
int components) const
{
switch (nativeType)
{
case GL_BOOL:
{
GLint tempValue[16] = {0};
mProgram->getUniformiv(context, location.value, tempValue);
UniformStateQueryCastLoop<GLboolean>(
dataOut, reinterpret_cast<const uint8_t *>(tempValue), components);
break;
}
case GL_INT:
{
GLint tempValue[16] = {0};
mProgram->getUniformiv(context, location.value, tempValue);
UniformStateQueryCastLoop<GLint>(dataOut, reinterpret_cast<const uint8_t *>(tempValue),
components);
break;
}
case GL_UNSIGNED_INT:
{
GLuint tempValue[16] = {0};
mProgram->getUniformuiv(context, location.value, tempValue);
UniformStateQueryCastLoop<GLuint>(dataOut, reinterpret_cast<const uint8_t *>(tempValue),
components);
break;
}
case GL_FLOAT:
{
GLfloat tempValue[16] = {0};
mProgram->getUniformfv(context, location.value, tempValue);
UniformStateQueryCastLoop<GLfloat>(
dataOut, reinterpret_cast<const uint8_t *>(tempValue), components);
break;
}
default:
UNREACHABLE();
break;
}
}
angle::Result Program::syncState(const Context *context)
{
if (mDirtyBits.any())
{
ASSERT(!mLinkingState);
ANGLE_TRY(mProgram->syncState(context, mDirtyBits));
mDirtyBits.reset();
}
return angle::Result::Continue;
}
angle::Result Program::serialize(const Context *context, angle::MemoryBuffer *binaryOut) const
{
BinaryOutputStream stream;
stream.writeBytes(reinterpret_cast<const unsigned char *>(ANGLE_COMMIT_HASH),
ANGLE_COMMIT_HASH_SIZE);
// nullptr context is supported when computing binary length.
if (context)
{
stream.writeInt(context->getClientVersion().major);
stream.writeInt(context->getClientVersion().minor);
}
else
{
stream.writeInt(2);
stream.writeInt(0);
}
const auto &computeLocalSize = mState.getComputeShaderLocalSize();
stream.writeInt(computeLocalSize[0]);
stream.writeInt(computeLocalSize[1]);
stream.writeInt(computeLocalSize[2]);
ASSERT(mState.mGeometryShaderInvocations >= 1 && mState.mGeometryShaderMaxVertices >= 0);
stream.writeEnum(mState.mGeometryShaderInputPrimitiveType);
stream.writeEnum(mState.mGeometryShaderOutputPrimitiveType);
stream.writeInt(mState.mGeometryShaderInvocations);
stream.writeInt(mState.mGeometryShaderMaxVertices);
stream.writeInt(mState.mNumViews);
stream.writeInt(mState.mEarlyFramentTestsOptimization);
stream.writeInt(mState.getProgramInputs().size());
for (const sh::ShaderVariable &attrib : mState.getProgramInputs())
{
WriteShaderVar(&stream, attrib);
stream.writeInt(attrib.location);
}
stream.writeInt(mState.getUniforms().size());
for (const LinkedUniform &uniform : mState.getUniforms())
{
WriteShaderVar(&stream, uniform);
// FIXME: referenced
stream.writeInt(uniform.bufferIndex);
WriteBlockMemberInfo(&stream, uniform.blockInfo);
stream.writeIntVector(uniform.outerArraySizes);
// Active shader info
for (ShaderType shaderType : gl::AllShaderTypes())
{
stream.writeInt(uniform.isActive(shaderType));
}
}
stream.writeInt(mState.getUniformLocations().size());
for (const auto &variable : mState.getUniformLocations())
{
stream.writeInt(variable.arrayIndex);
stream.writeIntOrNegOne(variable.index);
stream.writeInt(variable.ignored);
}
stream.writeInt(mState.getUniformBlocks().size());
for (const InterfaceBlock &uniformBlock : mState.getUniformBlocks())
{
WriteInterfaceBlock(&stream, uniformBlock);
}
stream.writeInt(mState.getBufferVariables().size());
for (const BufferVariable &bufferVariable : mState.getBufferVariables())
{
WriteBufferVariable(&stream, bufferVariable);
}
stream.writeInt(mState.getShaderStorageBlocks().size());
for (const InterfaceBlock &shaderStorageBlock : mState.getShaderStorageBlocks())
{
WriteInterfaceBlock(&stream, shaderStorageBlock);
}
stream.writeInt(mState.mExecutable->getActiveAtomicCounterBufferCount());
for (const auto &atomicCounterBuffer : mState.mExecutable->getAtomicCounterBuffers())
{
WriteShaderVariableBuffer(&stream, atomicCounterBuffer);
}
// Warn the app layer if saving a binary with unsupported transform feedback.
if (!mState.getLinkedTransformFeedbackVaryings().empty() &&
context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled)
{
WARN() << "Saving program binary with transform feedback, which is not supported on this "
"driver.";
}
stream.writeInt(mState.getLinkedTransformFeedbackVaryings().size());
for (const auto &var : mState.getLinkedTransformFeedbackVaryings())
{
stream.writeIntVector(var.arraySizes);
stream.writeInt(var.type);
stream.writeString(var.name);
stream.writeIntOrNegOne(var.arrayIndex);
}
stream.writeInt(mState.getTransformFeedbackBufferMode());
stream.writeInt(mState.getOutputVariables().size());
for (const sh::ShaderVariable &output : mState.getOutputVariables())
{
WriteShaderVar(&stream, output);
stream.writeInt(output.location);
stream.writeInt(output.index);
}
stream.writeInt(mState.getOutputLocations().size());
for (const auto &outputVar : mState.getOutputLocations())
{
stream.writeInt(outputVar.arrayIndex);
stream.writeIntOrNegOne(outputVar.index);
stream.writeInt(outputVar.ignored);
}
stream.writeInt(mState.getSecondaryOutputLocations().size());
for (const auto &outputVar : mState.getSecondaryOutputLocations())
{
stream.writeInt(outputVar.arrayIndex);
stream.writeIntOrNegOne(outputVar.index);
stream.writeInt(outputVar.ignored);
}
stream.writeInt(mState.mOutputVariableTypes.size());
for (const auto &outputVariableType : mState.mOutputVariableTypes)
{
stream.writeInt(outputVariableType);
}
static_assert(
IMPLEMENTATION_MAX_DRAW_BUFFERS * 2 <= 8 * sizeof(uint32_t),
"All bits of mDrawBufferTypeMask and mActiveOutputVariables can be contained in 32 bits");
stream.writeInt(static_cast<int>(mState.mDrawBufferTypeMask.to_ulong()));
stream.writeInt(static_cast<int>(mState.mActiveOutputVariables.to_ulong()));
stream.writeInt(mState.getDefaultUniformRange().low());
stream.writeInt(mState.getDefaultUniformRange().high());
stream.writeInt(mState.getSamplerUniformRange().low());
stream.writeInt(mState.getSamplerUniformRange().high());
stream.writeInt(mState.getSamplerBindings().size());
for (const auto &samplerBinding : mState.getSamplerBindings())
{
stream.writeEnum(samplerBinding.textureType);
stream.writeEnum(samplerBinding.format);
stream.writeInt(samplerBinding.boundTextureUnits.size());
stream.writeInt(samplerBinding.unreferenced);
}
stream.writeInt(mState.getImageUniformRange().low());
stream.writeInt(mState.getImageUniformRange().high());
stream.writeInt(mState.getImageBindings().size());
for (const auto &imageBinding : mState.getImageBindings())
{
stream.writeInt(imageBinding.boundImageUnits.size());
for (size_t i = 0; i < imageBinding.boundImageUnits.size(); ++i)
{
stream.writeInt(imageBinding.boundImageUnits[i]);
}
}
stream.writeInt(mState.getAtomicCounterUniformRange().low());
stream.writeInt(mState.getAtomicCounterUniformRange().high());
mState.mExecutable->save(&stream);
mProgram->save(context, &stream);
ASSERT(binaryOut);
if (!binaryOut->resize(stream.length()))
{
WARN() << "Failed to allocate enough memory to serialize a program. (" << stream.length()
<< " bytes )";
return angle::Result::Incomplete;
}
memcpy(binaryOut->data(), stream.data(), stream.length());
return angle::Result::Continue;
}
angle::Result Program::deserialize(const Context *context,
BinaryInputStream &stream,
InfoLog &infoLog)
{
unsigned char commitString[ANGLE_COMMIT_HASH_SIZE];
stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE);
if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) !=
0)
{
infoLog << "Invalid program binary version.";
return angle::Result::Incomplete;
}
int majorVersion = stream.readInt<int>();
int minorVersion = stream.readInt<int>();
if (majorVersion != context->getClientMajorVersion() ||
minorVersion != context->getClientMinorVersion())
{
infoLog << "Cannot load program binaries across different ES context versions.";
return angle::Result::Incomplete;
}
mState.mComputeShaderLocalSize[0] = stream.readInt<int>();
mState.mComputeShaderLocalSize[1] = stream.readInt<int>();
mState.mComputeShaderLocalSize[2] = stream.readInt<int>();
mState.mGeometryShaderInputPrimitiveType = stream.readEnum<PrimitiveMode>();
mState.mGeometryShaderOutputPrimitiveType = stream.readEnum<PrimitiveMode>();
mState.mGeometryShaderInvocations = stream.readInt<int>();
mState.mGeometryShaderMaxVertices = stream.readInt<int>();
mState.mNumViews = stream.readInt<int>();
mState.mEarlyFramentTestsOptimization = stream.readInt<bool>();
unsigned int attribCount = stream.readInt<unsigned int>();
ASSERT(mState.mExecutable->getProgramInputs().empty());
for (unsigned int attribIndex = 0; attribIndex < attribCount; ++attribIndex)
{
sh::ShaderVariable attrib;
LoadShaderVar(&stream, &attrib);
attrib.location = stream.readInt<int>();
mState.mExecutable->mProgramInputs.push_back(attrib);
}
unsigned int uniformCount = stream.readInt<unsigned int>();
ASSERT(mState.mExecutable->getUniforms().empty());
for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; ++uniformIndex)
{
LinkedUniform uniform;
LoadShaderVar(&stream, &uniform);
uniform.bufferIndex = stream.readInt<int>();
LoadBlockMemberInfo(&stream, &uniform.blockInfo);
stream.readIntVector<unsigned int>(&uniform.outerArraySizes);
uniform.typeInfo = &GetUniformTypeInfo(uniform.type);
// Active shader info
for (ShaderType shaderType : gl::AllShaderTypes())
{
uniform.setActive(shaderType, stream.readBool());
}
mState.mExecutable->mUniforms.push_back(uniform);
}
const unsigned int uniformIndexCount = stream.readInt<unsigned int>();
ASSERT(mState.mUniformLocations.empty());
for (unsigned int uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount;
uniformIndexIndex++)
{
VariableLocation variable;
stream.readInt(&variable.arrayIndex);
stream.readInt(&variable.index);
stream.readBool(&variable.ignored);
mState.mUniformLocations.push_back(variable);
}
unsigned int uniformBlockCount = stream.readInt<unsigned int>();
ASSERT(mState.mExecutable->getUniformBlocks().empty());
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlockCount;
++uniformBlockIndex)
{
InterfaceBlock uniformBlock;
LoadInterfaceBlock(&stream, &uniformBlock);
mState.mExecutable->mUniformBlocks.push_back(uniformBlock);
mState.mActiveUniformBlockBindings.set(uniformBlockIndex, uniformBlock.binding != 0);
}
unsigned int bufferVariableCount = stream.readInt<unsigned int>();
ASSERT(mState.mBufferVariables.empty());
for (unsigned int index = 0; index < bufferVariableCount; ++index)
{
BufferVariable bufferVariable;
LoadBufferVariable(&stream, &bufferVariable);
mState.mBufferVariables.push_back(bufferVariable);
}
unsigned int shaderStorageBlockCount = stream.readInt<unsigned int>();
ASSERT(mState.mExecutable->getShaderStorageBlocks().empty());
for (unsigned int shaderStorageBlockIndex = 0;
shaderStorageBlockIndex < shaderStorageBlockCount; ++shaderStorageBlockIndex)
{
InterfaceBlock shaderStorageBlock;
LoadInterfaceBlock(&stream, &shaderStorageBlock);
mState.mExecutable->mShaderStorageBlocks.push_back(shaderStorageBlock);
}
unsigned int atomicCounterBufferCount = stream.readInt<unsigned int>();
ASSERT(mState.mExecutable->getAtomicCounterBuffers().empty());
for (unsigned int bufferIndex = 0; bufferIndex < atomicCounterBufferCount; ++bufferIndex)
{
AtomicCounterBuffer atomicCounterBuffer;
LoadShaderVariableBuffer(&stream, &atomicCounterBuffer);
mState.mExecutable->mAtomicCounterBuffers.push_back(atomicCounterBuffer);
}
unsigned int transformFeedbackVaryingCount = stream.readInt<unsigned int>();
// Reject programs that use transform feedback varyings if the hardware cannot support them.
if (transformFeedbackVaryingCount > 0 &&
context->getFrontendFeatures().disableProgramCachingForTransformFeedback.enabled)
{
infoLog << "Current driver does not support transform feedback in binary programs.";
return angle::Result::Incomplete;
}
ASSERT(mState.mExecutable->mLinkedTransformFeedbackVaryings.empty());
for (unsigned int transformFeedbackVaryingIndex = 0;
transformFeedbackVaryingIndex < transformFeedbackVaryingCount;
++transformFeedbackVaryingIndex)
{
sh::ShaderVariable varying;
stream.readIntVector<unsigned int>(&varying.arraySizes);
stream.readInt(&varying.type);
stream.readString(&varying.name);
GLuint arrayIndex = stream.readInt<GLuint>();
mState.mExecutable->mLinkedTransformFeedbackVaryings.emplace_back(varying, arrayIndex);
}
stream.readInt(&mState.mExecutable->mTransformFeedbackBufferMode);
unsigned int outputCount = stream.readInt<unsigned int>();
ASSERT(mState.mExecutable->getOutputVariables().empty());
for (unsigned int outputIndex = 0; outputIndex < outputCount; ++outputIndex)
{
sh::ShaderVariable output;
LoadShaderVar(&stream, &output);
output.location = stream.readInt<int>();
output.index = stream.readInt<int>();
mState.mExecutable->mOutputVariables.push_back(output);
}
unsigned int outputVarCount = stream.readInt<unsigned int>();
ASSERT(mState.mExecutable->getOutputLocations().empty());
for (unsigned int outputIndex = 0; outputIndex < outputVarCount; ++outputIndex)
{
VariableLocation locationData;
stream.readInt(&locationData.arrayIndex);
stream.readInt(&locationData.index);
stream.readBool(&locationData.ignored);
mState.mExecutable->mOutputLocations.push_back(locationData);
}
unsigned int secondaryOutputVarCount = stream.readInt<unsigned int>();
ASSERT(mState.mSecondaryOutputLocations.empty());
for (unsigned int outputIndex = 0; outputIndex < secondaryOutputVarCount; ++outputIndex)
{
VariableLocation locationData;
stream.readInt(&locationData.arrayIndex);
stream.readInt(&locationData.index);
stream.readBool(&locationData.ignored);
mState.mSecondaryOutputLocations.push_back(locationData);
}
unsigned int outputTypeCount = stream.readInt<unsigned int>();
for (unsigned int outputIndex = 0; outputIndex < outputTypeCount; ++outputIndex)
{
mState.mOutputVariableTypes.push_back(stream.readInt<GLenum>());
}
static_assert(IMPLEMENTATION_MAX_DRAW_BUFFERS * 2 <= 8 * sizeof(uint32_t),
"All bits of mDrawBufferTypeMask and mActiveOutputVariables types and mask fit "
"into 32 bits each");
mState.mDrawBufferTypeMask = gl::ComponentTypeMask(stream.readInt<uint32_t>());
mState.mActiveOutputVariables = stream.readInt<gl::DrawBufferMask>();
unsigned int defaultUniformRangeLow = stream.readInt<unsigned int>();
unsigned int defaultUniformRangeHigh = stream.readInt<unsigned int>();
mState.mDefaultUniformRange = RangeUI(defaultUniformRangeLow, defaultUniformRangeHigh);
unsigned int samplerRangeLow = stream.readInt<unsigned int>();
unsigned int samplerRangeHigh = stream.readInt<unsigned int>();
mState.mExecutable->mSamplerUniformRange = RangeUI(samplerRangeLow, samplerRangeHigh);
unsigned int samplerCount = stream.readInt<unsigned int>();
for (unsigned int samplerIndex = 0; samplerIndex < samplerCount; ++samplerIndex)
{
TextureType textureType = stream.readEnum<TextureType>();
SamplerFormat format = stream.readEnum<SamplerFormat>();
size_t bindingCount = stream.readInt<size_t>();
bool unreferenced = stream.readBool();
mState.mSamplerBindings.emplace_back(textureType, format, bindingCount, unreferenced);
}
unsigned int imageRangeLow = stream.readInt<unsigned int>();
unsigned int imageRangeHigh = stream.readInt<unsigned int>();
mState.mExecutable->mImageUniformRange = RangeUI(imageRangeLow, imageRangeHigh);
unsigned int imageBindingCount = stream.readInt<unsigned int>();
for (unsigned int imageIndex = 0; imageIndex < imageBindingCount; ++imageIndex)
{
unsigned int elementCount = stream.readInt<unsigned int>();
ImageBinding imageBinding(elementCount);
for (unsigned int i = 0; i < elementCount; ++i)
{
imageBinding.boundImageUnits[i] = stream.readInt<unsigned int>();
}
mState.mImageBindings.emplace_back(imageBinding);
}
unsigned int atomicCounterRangeLow = stream.readInt<unsigned int>();
unsigned int atomicCounterRangeHigh = stream.readInt<unsigned int>();
mState.mAtomicCounterUniformRange = RangeUI(atomicCounterRangeLow, atomicCounterRangeHigh);
static_assert(static_cast<unsigned long>(ShaderType::EnumCount) <= sizeof(unsigned long) * 8,
"Too many shader types");
if (!mState.mAttachedShaders[ShaderType::Compute])
{
mState.updateTransformFeedbackStrides();
}
mState.mExecutable->load(&stream);
postResolveLink(context);
mState.mExecutable->updateCanDrawWith();
return angle::Result::Continue;
}
void Program::postResolveLink(const gl::Context *context)
{
mState.updateActiveSamplers();
mState.updateActiveImages();
setUniformValuesFromBindingQualifiers();
if (context->getExtensions().multiDraw)
{
mState.mDrawIDLocation = getUniformLocation("gl_DrawID").value;
}
if (context->getExtensions().baseVertexBaseInstance)
{
mState.mBaseVertexLocation = getUniformLocation("gl_BaseVertex").value;
mState.mBaseInstanceLocation = getUniformLocation("gl_BaseInstance").value;
}
}
} // namespace gl