| /* |
| * Copyright (C) 2008-2020 Apple Inc. All rights reserved. |
| * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "CodeBlock.h" |
| |
| #include "ArithProfile.h" |
| #include "BasicBlockLocation.h" |
| #include "ByValInfo.h" |
| #include "BytecodeDumper.h" |
| #include "BytecodeLivenessAnalysis.h" |
| #include "BytecodeOperandsForCheckpoint.h" |
| #include "BytecodeStructs.h" |
| #include "CodeBlockInlines.h" |
| #include "CodeBlockSet.h" |
| #include "DFGCapabilities.h" |
| #include "DFGCommon.h" |
| #include "DFGJITCode.h" |
| #include "DFGWorklist.h" |
| #include "EvalCodeBlock.h" |
| #include "FullCodeOrigin.h" |
| #include "FunctionCodeBlock.h" |
| #include "FunctionExecutableDump.h" |
| #include "GetPutInfo.h" |
| #include "InlineCallFrame.h" |
| #include "Instruction.h" |
| #include "InstructionStream.h" |
| #include "IsoCellSetInlines.h" |
| #include "JIT.h" |
| #include "JITMathIC.h" |
| #include "JSCInlines.h" |
| #include "JSCJSValue.h" |
| #include "JSLexicalEnvironment.h" |
| #include "JSModuleEnvironment.h" |
| #include "JSSet.h" |
| #include "JSString.h" |
| #include "JSTemplateObjectDescriptor.h" |
| #include "LLIntData.h" |
| #include "LLIntEntrypoint.h" |
| #include "LLIntPrototypeLoadAdaptiveStructureWatchpoint.h" |
| #include "MetadataTable.h" |
| #include "ModuleProgramCodeBlock.h" |
| #include "ObjectAllocationProfileInlines.h" |
| #include "PCToCodeOriginMap.h" |
| #include "ProfilerDatabase.h" |
| #include "ProgramCodeBlock.h" |
| #include "ReduceWhitespace.h" |
| #include "SlotVisitorInlines.h" |
| #include "StackVisitor.h" |
| #include "StructureStubInfo.h" |
| #include "TypeLocationCache.h" |
| #include "TypeProfiler.h" |
| #include "VMInlines.h" |
| #include <wtf/Forward.h> |
| #include <wtf/SimpleStats.h> |
| #include <wtf/StringPrintStream.h> |
| #include <wtf/text/UniquedStringImpl.h> |
| |
| #if ENABLE(ASSEMBLER) |
| #include "RegisterAtOffsetList.h" |
| #endif |
| |
| #if ENABLE(FTL_JIT) |
| #include "FTLJITCode.h" |
| #endif |
| |
| namespace JSC { |
| |
| DEFINE_ALLOCATOR_WITH_HEAP_IDENTIFIER(CodeBlockRareData); |
| |
| const ClassInfo CodeBlock::s_info = { |
| "CodeBlock", nullptr, nullptr, nullptr, |
| CREATE_METHOD_TABLE(CodeBlock) |
| }; |
| |
| CString CodeBlock::inferredName() const |
| { |
| switch (codeType()) { |
| case GlobalCode: |
| return "<global>"; |
| case EvalCode: |
| return "<eval>"; |
| case FunctionCode: |
| return jsCast<FunctionExecutable*>(ownerExecutable())->ecmaName().utf8(); |
| case ModuleCode: |
| return "<module>"; |
| default: |
| CRASH(); |
| return CString("", 0); |
| } |
| } |
| |
| bool CodeBlock::hasHash() const |
| { |
| return !!m_hash; |
| } |
| |
| bool CodeBlock::isSafeToComputeHash() const |
| { |
| return !isCompilationThread(); |
| } |
| |
| CodeBlockHash CodeBlock::hash() const |
| { |
| if (!m_hash) { |
| RELEASE_ASSERT(isSafeToComputeHash()); |
| m_hash = CodeBlockHash(ownerExecutable()->source(), specializationKind()); |
| } |
| return m_hash; |
| } |
| |
| CString CodeBlock::sourceCodeForTools() const |
| { |
| if (codeType() != FunctionCode) |
| return ownerExecutable()->source().toUTF8(); |
| |
| SourceProvider* provider = source().provider(); |
| FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable()); |
| UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); |
| unsigned unlinkedStartOffset = unlinked->startOffset(); |
| unsigned linkedStartOffset = executable->source().startOffset(); |
| int delta = linkedStartOffset - unlinkedStartOffset; |
| unsigned rangeStart = delta + unlinked->unlinkedFunctionNameStart(); |
| unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength(); |
| return toCString( |
| "function ", |
| provider->source().substring(rangeStart, rangeEnd - rangeStart).utf8()); |
| } |
| |
| CString CodeBlock::sourceCodeOnOneLine() const |
| { |
| return reduceWhitespace(sourceCodeForTools()); |
| } |
| |
| CString CodeBlock::hashAsStringIfPossible() const |
| { |
| if (hasHash() || isSafeToComputeHash()) |
| return toCString(hash()); |
| return "<no-hash>"; |
| } |
| |
| void CodeBlock::dumpAssumingJITType(PrintStream& out, JITType jitType) const |
| { |
| out.print(inferredName(), "#", hashAsStringIfPossible()); |
| out.print(":[", RawPointer(this), "->"); |
| if (!!m_alternative) |
| out.print(RawPointer(alternative()), "->"); |
| out.print(RawPointer(ownerExecutable()), ", ", jitType, codeType()); |
| |
| if (codeType() == FunctionCode) |
| out.print(specializationKind()); |
| out.print(", ", instructionsSize()); |
| if (this->jitType() == JITType::BaselineJIT && m_shouldAlwaysBeInlined) |
| out.print(" (ShouldAlwaysBeInlined)"); |
| if (ownerExecutable()->neverInline()) |
| out.print(" (NeverInline)"); |
| if (ownerExecutable()->neverOptimize()) |
| out.print(" (NeverOptimize)"); |
| else if (ownerExecutable()->neverFTLOptimize()) |
| out.print(" (NeverFTLOptimize)"); |
| if (ownerExecutable()->didTryToEnterInLoop()) |
| out.print(" (DidTryToEnterInLoop)"); |
| if (ownerExecutable()->isInStrictContext()) |
| out.print(" (StrictMode)"); |
| if (m_didFailJITCompilation) |
| out.print(" (JITFail)"); |
| if (this->jitType() == JITType::BaselineJIT && m_didFailFTLCompilation) |
| out.print(" (FTLFail)"); |
| if (this->jitType() == JITType::BaselineJIT && m_hasBeenCompiledWithFTL) |
| out.print(" (HadFTLReplacement)"); |
| out.print("]"); |
| } |
| |
| void CodeBlock::dump(PrintStream& out) const |
| { |
| dumpAssumingJITType(out, jitType()); |
| } |
| |
| void CodeBlock::dumpSource() |
| { |
| dumpSource(WTF::dataFile()); |
| } |
| |
| void CodeBlock::dumpSource(PrintStream& out) |
| { |
| ScriptExecutable* executable = ownerExecutable(); |
| if (executable->isFunctionExecutable()) { |
| FunctionExecutable* functionExecutable = reinterpret_cast<FunctionExecutable*>(executable); |
| StringView source = functionExecutable->source().provider()->getRange( |
| functionExecutable->parametersStartOffset(), |
| functionExecutable->typeProfilingEndOffset(vm()) + 1); // Type profiling end offset is the character before the '}'. |
| |
| out.print("function ", inferredName(), source); |
| return; |
| } |
| out.print(executable->source().view()); |
| } |
| |
| void CodeBlock::dumpBytecode() |
| { |
| dumpBytecode(WTF::dataFile()); |
| } |
| |
| void CodeBlock::dumpBytecode(PrintStream& out) |
| { |
| ICStatusMap statusMap; |
| getICStatusMap(statusMap); |
| BytecodeGraph graph(this, this->instructions()); |
| CodeBlockBytecodeDumper<CodeBlock>::dumpGraph(this, instructions(), graph, out, statusMap); |
| } |
| |
| void CodeBlock::dumpBytecode(PrintStream& out, const InstructionStream::Ref& it, const ICStatusMap& statusMap) |
| { |
| BytecodeDumper<CodeBlock>::dumpBytecode(this, out, it, statusMap); |
| } |
| |
| void CodeBlock::dumpBytecode(PrintStream& out, unsigned bytecodeOffset, const ICStatusMap& statusMap) |
| { |
| const auto it = instructions().at(bytecodeOffset); |
| dumpBytecode(out, it, statusMap); |
| } |
| |
| namespace { |
| |
| class PutToScopeFireDetail final : public FireDetail { |
| public: |
| PutToScopeFireDetail(CodeBlock* codeBlock, const Identifier& ident) |
| : m_codeBlock(codeBlock) |
| , m_ident(ident) |
| { |
| } |
| |
| void dump(PrintStream& out) const final |
| { |
| out.print("Linking put_to_scope in ", FunctionExecutableDump(jsCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())), " for ", m_ident); |
| } |
| |
| private: |
| CodeBlock* m_codeBlock; |
| const Identifier& m_ident; |
| }; |
| |
| } // anonymous namespace |
| |
| CodeBlock::CodeBlock(VM& vm, Structure* structure, CopyParsedBlockTag, CodeBlock& other) |
| : JSCell(vm, structure) |
| , m_globalObject(other.m_globalObject) |
| , m_shouldAlwaysBeInlined(true) |
| #if ENABLE(JIT) |
| , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| #endif |
| , m_didFailJITCompilation(false) |
| , m_didFailFTLCompilation(false) |
| , m_hasBeenCompiledWithFTL(false) |
| , m_hasLinkedOSRExit(false) |
| , m_isEligibleForLLIntDowngrade(false) |
| , m_numCalleeLocals(other.m_numCalleeLocals) |
| , m_numVars(other.m_numVars) |
| , m_numberOfArgumentsToSkip(other.m_numberOfArgumentsToSkip) |
| , m_hasDebuggerStatement(false) |
| , m_steppingMode(SteppingModeDisabled) |
| , m_numBreakpoints(0) |
| , m_bytecodeCost(other.m_bytecodeCost) |
| , m_scopeRegister(other.m_scopeRegister) |
| , m_hash(other.m_hash) |
| , m_unlinkedCode(other.vm(), this, other.m_unlinkedCode.get()) |
| , m_ownerExecutable(other.vm(), this, other.m_ownerExecutable.get()) |
| , m_vm(other.m_vm) |
| , m_instructionsRawPointer(other.m_instructionsRawPointer) |
| , m_constantRegisters(other.m_constantRegisters) |
| , m_constantsSourceCodeRepresentation(other.m_constantsSourceCodeRepresentation) |
| , m_functionDecls(other.m_functionDecls) |
| , m_functionExprs(other.m_functionExprs) |
| , m_osrExitCounter(0) |
| , m_optimizationDelayCounter(0) |
| , m_reoptimizationRetryCounter(0) |
| , m_metadata(other.m_metadata) |
| , m_creationTime(MonotonicTime::now()) |
| { |
| ASSERT(heap()->isDeferred()); |
| ASSERT(m_scopeRegister.isLocal()); |
| |
| ASSERT(source().provider()); |
| setNumParameters(other.numParameters()); |
| |
| vm.heap.codeBlockSet().add(this); |
| } |
| |
| void CodeBlock::finishCreation(VM& vm, CopyParsedBlockTag, CodeBlock& other) |
| { |
| Base::finishCreation(vm); |
| finishCreationCommon(vm); |
| |
| optimizeAfterWarmUp(); |
| jitAfterWarmUp(); |
| |
| if (other.m_rareData) { |
| createRareDataIfNecessary(); |
| |
| m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; |
| m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables; |
| m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; |
| } |
| } |
| |
| CodeBlock::CodeBlock(VM& vm, Structure* structure, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope) |
| : JSCell(vm, structure) |
| , m_globalObject(vm, this, scope->globalObject(vm)) |
| , m_shouldAlwaysBeInlined(true) |
| #if ENABLE(JIT) |
| , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| #endif |
| , m_didFailJITCompilation(false) |
| , m_didFailFTLCompilation(false) |
| , m_hasBeenCompiledWithFTL(false) |
| , m_hasLinkedOSRExit(false) |
| , m_isEligibleForLLIntDowngrade(false) |
| , m_numCalleeLocals(unlinkedCodeBlock->numCalleeLocals()) |
| , m_numVars(unlinkedCodeBlock->numVars()) |
| , m_hasDebuggerStatement(false) |
| , m_steppingMode(SteppingModeDisabled) |
| , m_numBreakpoints(0) |
| , m_scopeRegister(unlinkedCodeBlock->scopeRegister()) |
| , m_unlinkedCode(vm, this, unlinkedCodeBlock) |
| , m_ownerExecutable(vm, this, ownerExecutable) |
| , m_vm(&vm) |
| , m_instructionsRawPointer(unlinkedCodeBlock->instructions().rawPointer()) |
| , m_osrExitCounter(0) |
| , m_optimizationDelayCounter(0) |
| , m_reoptimizationRetryCounter(0) |
| , m_metadata(unlinkedCodeBlock->metadata().link()) |
| , m_creationTime(MonotonicTime::now()) |
| { |
| ASSERT(heap()->isDeferred()); |
| ASSERT(m_scopeRegister.isLocal()); |
| |
| ASSERT(source().provider()); |
| setNumParameters(unlinkedCodeBlock->numParameters()); |
| |
| vm.heap.codeBlockSet().add(this); |
| } |
| |
| // The main purpose of this function is to generate linked bytecode from unlinked bytecode. The process |
| // of linking is taking an abstract representation of bytecode and tying it to a GlobalObject and scope |
| // chain. For example, this process allows us to cache the depth of lexical environment reads that reach |
| // outside of this CodeBlock's compilation unit. It also allows us to generate particular constants that |
| // we can't generate during unlinked bytecode generation. This process is not allowed to generate control |
| // flow or introduce new locals. The reason for this is we rely on liveness analysis to be the same for |
| // all the CodeBlocks of an UnlinkedCodeBlock. We rely on this fact by caching the liveness analysis |
| // inside UnlinkedCodeBlock. |
| bool CodeBlock::finishCreation(VM& vm, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, |
| JSScope* scope) |
| { |
| Base::finishCreation(vm); |
| finishCreationCommon(vm); |
| |
| auto throwScope = DECLARE_THROW_SCOPE(vm); |
| |
| if (m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes() || m_unlinkedCode->wasCompiledWithControlFlowProfilerOpcodes()) |
| vm.functionHasExecutedCache()->removeUnexecutedRange(ownerExecutable->sourceID(), ownerExecutable->typeProfilingStartOffset(vm), ownerExecutable->typeProfilingEndOffset(vm)); |
| |
| ScriptExecutable* topLevelExecutable = ownerExecutable->topLevelExecutable(); |
| setConstantRegisters(unlinkedCodeBlock->constantRegisters(), unlinkedCodeBlock->constantsSourceCodeRepresentation(), topLevelExecutable); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| // We already have the cloned symbol table for the module environment since we need to instantiate |
| // the module environments before linking the code block. We replace the stored symbol table with the already cloned one. |
| if (UnlinkedModuleProgramCodeBlock* unlinkedModuleProgramCodeBlock = jsDynamicCast<UnlinkedModuleProgramCodeBlock*>(vm, unlinkedCodeBlock)) { |
| SymbolTable* clonedSymbolTable = jsCast<ModuleProgramExecutable*>(ownerExecutable)->moduleEnvironmentSymbolTable(); |
| if (m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes()) { |
| ConcurrentJSLocker locker(clonedSymbolTable->m_lock); |
| clonedSymbolTable->prepareForTypeProfiling(locker); |
| } |
| replaceConstant(VirtualRegister(unlinkedModuleProgramCodeBlock->moduleEnvironmentSymbolTableConstantRegisterOffset()), clonedSymbolTable); |
| } |
| |
| bool shouldUpdateFunctionHasExecutedCache = m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes() || m_unlinkedCode->wasCompiledWithControlFlowProfilerOpcodes(); |
| m_functionDecls = RefCountedArray<WriteBarrier<FunctionExecutable>>(unlinkedCodeBlock->numberOfFunctionDecls()); |
| for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { |
| UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); |
| if (shouldUpdateFunctionHasExecutedCache) |
| vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); |
| m_functionDecls[i].set(vm, this, unlinkedExecutable->link(vm, topLevelExecutable, ownerExecutable->source(), WTF::nullopt, NoIntrinsic, ownerExecutable->isInsideOrdinaryFunction())); |
| } |
| |
| m_functionExprs = RefCountedArray<WriteBarrier<FunctionExecutable>>(unlinkedCodeBlock->numberOfFunctionExprs()); |
| for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { |
| UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); |
| if (shouldUpdateFunctionHasExecutedCache) |
| vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); |
| m_functionExprs[i].set(vm, this, unlinkedExecutable->link(vm, topLevelExecutable, ownerExecutable->source(), WTF::nullopt, NoIntrinsic, ownerExecutable->isInsideOrdinaryFunction())); |
| } |
| |
| if (unlinkedCodeBlock->hasRareData()) { |
| createRareDataIfNecessary(); |
| |
| setConstantIdentifierSetRegisters(vm, unlinkedCodeBlock->constantIdentifierSets()); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { |
| m_rareData->m_exceptionHandlers.resizeToFit(count); |
| for (size_t i = 0; i < count; i++) { |
| const UnlinkedHandlerInfo& unlinkedHandler = unlinkedCodeBlock->exceptionHandler(i); |
| HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; |
| #if ENABLE(JIT) |
| auto& instruction = *instructions().at(unlinkedHandler.target).ptr(); |
| MacroAssemblerCodePtr<BytecodePtrTag> codePtr = LLInt::getCodePtr<BytecodePtrTag>(instruction); |
| handler.initialize(unlinkedHandler, CodeLocationLabel<ExceptionHandlerPtrTag>(codePtr.retagged<ExceptionHandlerPtrTag>())); |
| #else |
| handler.initialize(unlinkedHandler); |
| #endif |
| } |
| } |
| |
| if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { |
| m_rareData->m_stringSwitchJumpTables.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); |
| UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); |
| for (; ptr != end; ++ptr) { |
| OffsetLocation offset; |
| offset.branchOffset = ptr->value.branchOffset; |
| m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); |
| } |
| } |
| } |
| |
| if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) { |
| m_rareData->m_switchJumpTables.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i); |
| SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i]; |
| destTable.branchOffsets.resizeToFit(sourceTable.branchOffsets.size()); |
| std::copy(sourceTable.branchOffsets.begin(), sourceTable.branchOffsets.end(), destTable.branchOffsets.begin()); |
| destTable.min = sourceTable.min; |
| } |
| } |
| } |
| |
| // Bookkeep the strongly referenced module environments. |
| HashSet<JSModuleEnvironment*> stronglyReferencedModuleEnvironments; |
| |
| auto link_profile = [&](const auto& /*instruction*/, auto /*bytecode*/, auto& /*metadata*/) { |
| m_numberOfNonArgumentValueProfiles++; |
| }; |
| |
| auto link_objectAllocationProfile = [&](const auto& /*instruction*/, auto bytecode, auto& metadata) { |
| metadata.m_objectAllocationProfile.initializeProfile(vm, m_globalObject.get(), this, m_globalObject->objectPrototype(), bytecode.m_inlineCapacity); |
| }; |
| |
| auto link_arrayAllocationProfile = [&](const auto& /*instruction*/, auto bytecode, auto& metadata) { |
| metadata.m_arrayAllocationProfile.initializeIndexingMode(bytecode.m_recommendedIndexingType); |
| }; |
| |
| #define LINK_FIELD(__field) \ |
| WTF_LAZY_JOIN(link_, __field)(instruction, bytecode, metadata); |
| |
| #define INITIALIZE_METADATA(__op) \ |
| auto bytecode = instruction->as<__op>(); \ |
| auto& metadata = bytecode.metadata(this); \ |
| new (&metadata) __op::Metadata { bytecode }; \ |
| |
| #define CASE(__op) case __op::opcodeID |
| |
| #define LINK(...) \ |
| CASE(WTF_LAZY_FIRST(__VA_ARGS__)): { \ |
| INITIALIZE_METADATA(WTF_LAZY_FIRST(__VA_ARGS__)) \ |
| WTF_LAZY_HAS_REST(__VA_ARGS__)({ \ |
| WTF_LAZY_FOR_EACH_TERM(LINK_FIELD, WTF_LAZY_REST_(__VA_ARGS__)) \ |
| }) \ |
| break; \ |
| } |
| |
| const InstructionStream& instructionStream = instructions(); |
| for (const auto& instruction : instructionStream) { |
| OpcodeID opcodeID = instruction->opcodeID(); |
| m_bytecodeCost += opcodeLengths[opcodeID]; |
| switch (opcodeID) { |
| LINK(OpHasIndexedProperty) |
| |
| LINK(OpCallVarargs, profile) |
| LINK(OpTailCallVarargs, profile) |
| LINK(OpTailCallForwardArguments, profile) |
| LINK(OpConstructVarargs, profile) |
| LINK(OpGetByVal, profile) |
| |
| LINK(OpGetDirectPname, profile) |
| LINK(OpGetByIdWithThis, profile) |
| LINK(OpTryGetById, profile) |
| LINK(OpGetByIdDirect, profile) |
| LINK(OpGetByValWithThis, profile) |
| LINK(OpGetPrototypeOf, profile) |
| LINK(OpGetFromArguments, profile) |
| LINK(OpToNumber, profile) |
| LINK(OpToNumeric, profile) |
| LINK(OpToObject, profile) |
| LINK(OpGetArgument, profile) |
| LINK(OpGetInternalField, profile) |
| LINK(OpToThis, profile) |
| LINK(OpBitand, profile) |
| LINK(OpBitor, profile) |
| LINK(OpBitnot, profile) |
| LINK(OpBitxor, profile) |
| LINK(OpLshift, profile) |
| LINK(OpRshift, profile) |
| |
| LINK(OpGetById, profile) |
| |
| LINK(OpCall, profile) |
| LINK(OpTailCall, profile) |
| LINK(OpCallEval, profile) |
| LINK(OpConstruct, profile) |
| |
| LINK(OpInByVal) |
| LINK(OpPutByVal) |
| LINK(OpPutByValDirect) |
| |
| LINK(OpNewArray) |
| LINK(OpNewArrayWithSize) |
| LINK(OpNewArrayBuffer, arrayAllocationProfile) |
| |
| LINK(OpNewObject, objectAllocationProfile) |
| |
| LINK(OpPutById) |
| LINK(OpCreateThis) |
| LINK(OpCreatePromise) |
| LINK(OpCreateGenerator) |
| |
| LINK(OpAdd) |
| LINK(OpMul) |
| LINK(OpDiv) |
| LINK(OpSub) |
| |
| LINK(OpNegate) |
| LINK(OpInc) |
| LINK(OpDec) |
| |
| LINK(OpJneqPtr) |
| |
| LINK(OpCatch) |
| LINK(OpProfileControlFlow) |
| |
| case op_iterator_open: { |
| INITIALIZE_METADATA(OpIteratorOpen) |
| |
| m_numberOfNonArgumentValueProfiles += 3; |
| break; |
| } |
| |
| case op_iterator_next: { |
| INITIALIZE_METADATA(OpIteratorNext) |
| |
| m_numberOfNonArgumentValueProfiles += 3; |
| break; |
| } |
| |
| case op_resolve_scope: { |
| INITIALIZE_METADATA(OpResolveScope) |
| |
| const Identifier& ident = identifier(bytecode.m_var); |
| RELEASE_ASSERT(bytecode.m_resolveType != LocalClosureVar); |
| |
| ResolveOp op = JSScope::abstractResolve(m_globalObject.get(), bytecode.m_localScopeDepth, scope, ident, Get, bytecode.m_resolveType, InitializationMode::NotInitialization); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| metadata.m_resolveType = op.type; |
| metadata.m_localScopeDepth = op.depth; |
| if (op.lexicalEnvironment) { |
| if (op.type == ModuleVar) { |
| // Keep the linked module environment strongly referenced. |
| if (stronglyReferencedModuleEnvironments.add(jsCast<JSModuleEnvironment*>(op.lexicalEnvironment)).isNewEntry) |
| addConstant(ConcurrentJSLocker(m_lock), op.lexicalEnvironment); |
| metadata.m_lexicalEnvironment.set(vm, this, op.lexicalEnvironment); |
| } else |
| metadata.m_symbolTable.set(vm, this, op.lexicalEnvironment->symbolTable()); |
| } else if (JSScope* constantScope = JSScope::constantScopeForCodeBlock(op.type, this)) { |
| metadata.m_constantScope.set(vm, this, constantScope); |
| if (op.type == GlobalProperty || op.type == GlobalPropertyWithVarInjectionChecks) |
| metadata.m_globalLexicalBindingEpoch = m_globalObject->globalLexicalBindingEpoch(); |
| } else |
| metadata.m_globalObject.clear(); |
| break; |
| } |
| |
| case op_get_from_scope: { |
| INITIALIZE_METADATA(OpGetFromScope) |
| |
| link_profile(instruction, bytecode, metadata); |
| metadata.m_watchpointSet = nullptr; |
| |
| ASSERT(!isInitialization(bytecode.m_getPutInfo.initializationMode())); |
| if (bytecode.m_getPutInfo.resolveType() == LocalClosureVar) { |
| metadata.m_getPutInfo = GetPutInfo(bytecode.m_getPutInfo.resolveMode(), ClosureVar, bytecode.m_getPutInfo.initializationMode(), bytecode.m_getPutInfo.ecmaMode()); |
| break; |
| } |
| |
| const Identifier& ident = identifier(bytecode.m_var); |
| ResolveOp op = JSScope::abstractResolve(m_globalObject.get(), bytecode.m_localScopeDepth, scope, ident, Get, bytecode.m_getPutInfo.resolveType(), InitializationMode::NotInitialization); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| metadata.m_getPutInfo = GetPutInfo(bytecode.m_getPutInfo.resolveMode(), op.type, bytecode.m_getPutInfo.initializationMode(), bytecode.m_getPutInfo.ecmaMode()); |
| if (op.type == ModuleVar) |
| metadata.m_getPutInfo = GetPutInfo(bytecode.m_getPutInfo.resolveMode(), ClosureVar, bytecode.m_getPutInfo.initializationMode(), bytecode.m_getPutInfo.ecmaMode()); |
| if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) |
| metadata.m_watchpointSet = op.watchpointSet; |
| else if (op.structure) |
| metadata.m_structure.set(vm, this, op.structure); |
| metadata.m_operand = op.operand; |
| break; |
| } |
| |
| case op_put_to_scope: { |
| INITIALIZE_METADATA(OpPutToScope) |
| |
| if (bytecode.m_getPutInfo.resolveType() == LocalClosureVar) { |
| // Only do watching if the property we're putting to is not anonymous. |
| if (bytecode.m_var != UINT_MAX) { |
| SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(bytecode.m_symbolTableOrScopeDepth.symbolTable())); |
| const Identifier& ident = identifier(bytecode.m_var); |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| auto iter = symbolTable->find(locker, ident.impl()); |
| ASSERT(iter != symbolTable->end(locker)); |
| iter->value.prepareToWatch(); |
| metadata.m_watchpointSet = iter->value.watchpointSet(); |
| } else |
| metadata.m_watchpointSet = nullptr; |
| break; |
| } |
| |
| const Identifier& ident = identifier(bytecode.m_var); |
| metadata.m_watchpointSet = nullptr; |
| ResolveOp op = JSScope::abstractResolve(m_globalObject.get(), bytecode.m_symbolTableOrScopeDepth.scopeDepth(), scope, ident, Put, bytecode.m_getPutInfo.resolveType(), bytecode.m_getPutInfo.initializationMode()); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| metadata.m_getPutInfo = GetPutInfo(bytecode.m_getPutInfo.resolveMode(), op.type, bytecode.m_getPutInfo.initializationMode(), bytecode.m_getPutInfo.ecmaMode()); |
| if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) |
| metadata.m_watchpointSet = op.watchpointSet; |
| else if (op.type == ClosureVar || op.type == ClosureVarWithVarInjectionChecks) { |
| if (op.watchpointSet) |
| op.watchpointSet->invalidate(vm, PutToScopeFireDetail(this, ident)); |
| } else if (op.structure) |
| metadata.m_structure.set(vm, this, op.structure); |
| metadata.m_operand = op.operand; |
| break; |
| } |
| |
| case op_profile_type: { |
| RELEASE_ASSERT(m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes()); |
| |
| INITIALIZE_METADATA(OpProfileType) |
| |
| size_t instructionOffset = instruction.offset() + instruction->size() - 1; |
| unsigned divotStart, divotEnd; |
| GlobalVariableID globalVariableID = 0; |
| RefPtr<TypeSet> globalTypeSet; |
| bool shouldAnalyze = m_unlinkedCode->typeProfilerExpressionInfoForBytecodeOffset(instructionOffset, divotStart, divotEnd); |
| SymbolTable* symbolTable = nullptr; |
| |
| switch (bytecode.m_flag) { |
| case ProfileTypeBytecodeClosureVar: { |
| const Identifier& ident = identifier(bytecode.m_identifier); |
| unsigned localScopeDepth = bytecode.m_symbolTableOrScopeDepth.scopeDepth(); |
| // Even though type profiling may be profiling either a Get or a Put, we can always claim a Get because |
| // we're abstractly "read"ing from a JSScope. |
| ResolveOp op = JSScope::abstractResolve(m_globalObject.get(), localScopeDepth, scope, ident, Get, bytecode.m_resolveType, InitializationMode::NotInitialization); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| if (op.type == ClosureVar || op.type == ModuleVar) |
| symbolTable = op.lexicalEnvironment->symbolTable(); |
| else if (op.type == GlobalVar) |
| symbolTable = m_globalObject.get()->symbolTable(); |
| |
| UniquedStringImpl* impl = (op.type == ModuleVar) ? op.importedName.get() : ident.impl(); |
| if (symbolTable) { |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. |
| symbolTable->prepareForTypeProfiling(locker); |
| globalVariableID = symbolTable->uniqueIDForVariable(locker, impl, vm); |
| globalTypeSet = symbolTable->globalTypeSetForVariable(locker, impl, vm); |
| } else |
| globalVariableID = TypeProfilerNoGlobalIDExists; |
| |
| break; |
| } |
| case ProfileTypeBytecodeLocallyResolved: { |
| SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(bytecode.m_symbolTableOrScopeDepth.symbolTable())); |
| const Identifier& ident = identifier(bytecode.m_identifier); |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. |
| globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), vm); |
| globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), vm); |
| |
| break; |
| } |
| case ProfileTypeBytecodeDoesNotHaveGlobalID: |
| case ProfileTypeBytecodeFunctionArgument: { |
| globalVariableID = TypeProfilerNoGlobalIDExists; |
| break; |
| } |
| case ProfileTypeBytecodeFunctionReturnStatement: { |
| RELEASE_ASSERT(ownerExecutable->isFunctionExecutable()); |
| globalTypeSet = jsCast<FunctionExecutable*>(ownerExecutable)->returnStatementTypeSet(); |
| globalVariableID = TypeProfilerReturnStatement; |
| if (!shouldAnalyze) { |
| // Because a return statement can be added implicitly to return undefined at the end of a function, |
| // and these nodes don't emit expression ranges because they aren't in the actual source text of |
| // the user's program, give the type profiler some range to identify these return statements. |
| // Currently, the text offset that is used as identification is "f" in the function keyword |
| // and is stored on TypeLocation's m_divotForFunctionOffsetIfReturnStatement member variable. |
| divotStart = divotEnd = ownerExecutable->typeProfilingStartOffset(vm); |
| shouldAnalyze = true; |
| } |
| break; |
| } |
| } |
| |
| std::pair<TypeLocation*, bool> locationPair = vm.typeProfiler()->typeLocationCache()->getTypeLocation(globalVariableID, |
| ownerExecutable->sourceID(), divotStart, divotEnd, WTFMove(globalTypeSet), &vm); |
| TypeLocation* location = locationPair.first; |
| bool isNewLocation = locationPair.second; |
| |
| if (bytecode.m_flag == ProfileTypeBytecodeFunctionReturnStatement) |
| location->m_divotForFunctionOffsetIfReturnStatement = ownerExecutable->typeProfilingStartOffset(vm); |
| |
| if (shouldAnalyze && isNewLocation) |
| vm.typeProfiler()->insertNewLocation(location); |
| |
| metadata.m_typeLocation = location; |
| break; |
| } |
| |
| case op_debug: { |
| if (instruction->as<OpDebug>().m_debugHookType == DidReachDebuggerStatement) |
| m_hasDebuggerStatement = true; |
| break; |
| } |
| |
| case op_create_rest: { |
| int numberOfArgumentsToSkip = instruction->as<OpCreateRest>().m_numParametersToSkip; |
| ASSERT_UNUSED(numberOfArgumentsToSkip, numberOfArgumentsToSkip >= 0); |
| // This is used when rematerializing the rest parameter during OSR exit in the FTL JIT."); |
| m_numberOfArgumentsToSkip = numberOfArgumentsToSkip; |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| #undef CASE |
| #undef INITIALIZE_METADATA |
| #undef LINK_FIELD |
| #undef LINK |
| |
| if (m_unlinkedCode->wasCompiledWithControlFlowProfilerOpcodes()) |
| insertBasicBlockBoundariesForControlFlowProfiler(); |
| |
| // Set optimization thresholds only after instructions is initialized, since these |
| // rely on the instruction count (and are in theory permitted to also inspect the |
| // instruction stream to more accurate assess the cost of tier-up). |
| optimizeAfterWarmUp(); |
| jitAfterWarmUp(); |
| |
| // If the concurrent thread will want the code block's hash, then compute it here |
| // synchronously. |
| if (Options::alwaysComputeHash()) |
| hash(); |
| |
| if (Options::dumpGeneratedBytecodes()) |
| dumpBytecode(); |
| |
| if (m_metadata) |
| vm.heap.reportExtraMemoryAllocated(m_metadata->sizeInBytes()); |
| |
| return true; |
| } |
| |
| void CodeBlock::finishCreationCommon(VM& vm) |
| { |
| m_ownerEdge.set(vm, this, ExecutableToCodeBlockEdge::create(vm, this)); |
| } |
| |
| CodeBlock::~CodeBlock() |
| { |
| VM& vm = *m_vm; |
| |
| #if ENABLE(DFG_JIT) |
| // The JITCode (and its corresponding DFG::CommonData) may outlive the CodeBlock by |
| // a short amount of time after the CodeBlock is destructed. For example, the |
| // Interpreter::execute methods will ref JITCode before invoking it. This can |
| // result in the JITCode having a non-zero refCount when its owner CodeBlock is |
| // destructed. |
| // |
| // Hence, we cannot rely on DFG::CommonData destruction to clear these now invalid |
| // watchpoints in a timely manner. We'll ensure they are cleared here eagerly. |
| // |
| // We only need to do this for a DFG/FTL CodeBlock because only these will have a |
| // DFG:CommonData. Hence, the LLInt and Baseline will not have any of these watchpoints. |
| // |
| // Note also that the LLIntPrototypeLoadAdaptiveStructureWatchpoint is also related |
| // to the CodeBlock. However, its lifecycle is tied directly to the CodeBlock, and |
| // will be automatically cleared when the CodeBlock destructs. |
| |
| if (JITCode::isOptimizingJIT(jitType())) |
| jitCode()->dfgCommon()->clearWatchpoints(); |
| #endif |
| vm.heap.codeBlockSet().remove(this); |
| |
| if (UNLIKELY(vm.m_perBytecodeProfiler)) |
| vm.m_perBytecodeProfiler->notifyDestruction(this); |
| |
| if (!vm.heap.isShuttingDown() && unlinkedCodeBlock()->didOptimize() == TriState::Indeterminate) |
| unlinkedCodeBlock()->setDidOptimize(TriState::False); |
| |
| #if ENABLE(VERBOSE_VALUE_PROFILE) |
| dumpValueProfiles(); |
| #endif |
| |
| // We may be destroyed before any CodeBlocks that refer to us are destroyed. |
| // Consider that two CodeBlocks become unreachable at the same time. There |
| // is no guarantee about the order in which the CodeBlocks are destroyed. |
| // So, if we don't remove incoming calls, and get destroyed before the |
| // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's |
| // destructor will try to remove nodes from our (no longer valid) linked list. |
| unlinkIncomingCalls(); |
| |
| // Note that our outgoing calls will be removed from other CodeBlocks' |
| // m_incomingCalls linked lists through the execution of the ~CallLinkInfo |
| // destructors. |
| |
| #if ENABLE(JIT) |
| if (auto* jitData = m_jitData.get()) { |
| for (StructureStubInfo* stubInfo : jitData->m_stubInfos) { |
| stubInfo->aboutToDie(); |
| stubInfo->deref(); |
| } |
| } |
| #endif // ENABLE(JIT) |
| } |
| |
| void CodeBlock::setConstantIdentifierSetRegisters(VM& vm, const RefCountedArray<ConstantIdentifierSetEntry>& constants) |
| { |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| JSGlobalObject* globalObject = m_globalObject.get(); |
| |
| for (const auto& entry : constants) { |
| const IdentifierSet& set = entry.first; |
| |
| Structure* setStructure = globalObject->setStructure(); |
| RETURN_IF_EXCEPTION(scope, void()); |
| JSSet* jsSet = JSSet::create(globalObject, vm, setStructure, set.size()); |
| RETURN_IF_EXCEPTION(scope, void()); |
| |
| for (const auto& setEntry : set) { |
| JSString* jsString = jsOwnedString(vm, setEntry.get()); |
| jsSet->add(globalObject, jsString); |
| RETURN_IF_EXCEPTION(scope, void()); |
| } |
| m_constantRegisters[entry.second].set(vm, this, jsSet); |
| } |
| } |
| |
| void CodeBlock::setConstantRegisters(const RefCountedArray<WriteBarrier<Unknown>>& constants, const RefCountedArray<SourceCodeRepresentation>& constantsSourceCodeRepresentation, ScriptExecutable* topLevelExecutable) |
| { |
| VM& vm = *m_vm; |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| JSGlobalObject* globalObject = m_globalObject.get(); |
| |
| ASSERT(constants.size() == constantsSourceCodeRepresentation.size()); |
| size_t count = constants.size(); |
| { |
| ConcurrentJSLocker locker(m_lock); |
| m_constantRegisters.resizeToFit(count); |
| m_constantsSourceCodeRepresentation.resizeToFit(count); |
| } |
| for (size_t i = 0; i < count; i++) { |
| JSValue constant = constants[i].get(); |
| SourceCodeRepresentation representation = constantsSourceCodeRepresentation[i]; |
| m_constantsSourceCodeRepresentation[i] = representation; |
| switch (representation) { |
| case SourceCodeRepresentation::LinkTimeConstant: |
| constant = globalObject->linkTimeConstant(static_cast<LinkTimeConstant>(constant.asInt32AsAnyInt())); |
| break; |
| case SourceCodeRepresentation::Other: |
| case SourceCodeRepresentation::Integer: |
| case SourceCodeRepresentation::Double: |
| if (!constant.isEmpty()) { |
| if (constant.isCell()) { |
| JSCell* cell = constant.asCell(); |
| if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(vm, cell)) { |
| if (m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes()) { |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| symbolTable->prepareForTypeProfiling(locker); |
| } |
| |
| SymbolTable* clone = symbolTable->cloneScopePart(vm); |
| if (wasCompiledWithDebuggingOpcodes()) |
| clone->setRareDataCodeBlock(this); |
| |
| constant = clone; |
| } else if (auto* descriptor = jsDynamicCast<JSTemplateObjectDescriptor*>(vm, cell)) { |
| auto* templateObject = topLevelExecutable->createTemplateObject(globalObject, descriptor); |
| RETURN_IF_EXCEPTION(scope, void()); |
| constant = templateObject; |
| } |
| } |
| } |
| break; |
| } |
| m_constantRegisters[i].set(vm, this, constant); |
| } |
| } |
| |
| void CodeBlock::setAlternative(VM& vm, CodeBlock* alternative) |
| { |
| RELEASE_ASSERT(alternative); |
| RELEASE_ASSERT(alternative->jitCode()); |
| m_alternative.set(vm, this, alternative); |
| } |
| |
| void CodeBlock::setNumParameters(int newValue) |
| { |
| m_numParameters = newValue; |
| |
| m_argumentValueProfiles = RefCountedArray<ValueProfile>(Options::useJIT() ? newValue : 0); |
| } |
| |
| CodeBlock* CodeBlock::specialOSREntryBlockOrNull() |
| { |
| #if ENABLE(FTL_JIT) |
| if (jitType() != JITType::DFGJIT) |
| return nullptr; |
| DFG::JITCode* jitCode = m_jitCode->dfg(); |
| return jitCode->osrEntryBlock(); |
| #else // ENABLE(FTL_JIT) |
| return 0; |
| #endif // ENABLE(FTL_JIT) |
| } |
| |
| size_t CodeBlock::estimatedSize(JSCell* cell, VM& vm) |
| { |
| CodeBlock* thisObject = jsCast<CodeBlock*>(cell); |
| size_t extraMemoryAllocated = 0; |
| if (thisObject->m_metadata) |
| extraMemoryAllocated += thisObject->m_metadata->sizeInBytes(); |
| RefPtr<JITCode> jitCode = thisObject->m_jitCode; |
| if (jitCode && !jitCode->isShared()) |
| extraMemoryAllocated += jitCode->size(); |
| return Base::estimatedSize(cell, vm) + extraMemoryAllocated; |
| } |
| |
| void CodeBlock::visitChildren(JSCell* cell, SlotVisitor& visitor) |
| { |
| CodeBlock* thisObject = jsCast<CodeBlock*>(cell); |
| ASSERT_GC_OBJECT_INHERITS(thisObject, info()); |
| Base::visitChildren(cell, visitor); |
| visitor.append(thisObject->m_ownerEdge); |
| thisObject->visitChildren(visitor); |
| } |
| |
| void CodeBlock::visitChildren(SlotVisitor& visitor) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) |
| visitor.appendUnbarriered(otherBlock); |
| |
| size_t extraMemory = 0; |
| if (m_metadata) |
| extraMemory += m_metadata->sizeInBytes(); |
| if (m_jitCode && !m_jitCode->isShared()) |
| extraMemory += m_jitCode->size(); |
| visitor.reportExtraMemoryVisited(extraMemory); |
| |
| stronglyVisitStrongReferences(locker, visitor); |
| stronglyVisitWeakReferences(locker, visitor); |
| |
| VM::SpaceAndSet::setFor(*subspace()).add(this); |
| } |
| |
| bool CodeBlock::shouldVisitStrongly(const ConcurrentJSLocker& locker) |
| { |
| if (Options::forceCodeBlockLiveness()) |
| return true; |
| |
| if (shouldJettisonDueToOldAge(locker)) |
| return false; |
| |
| // Interpreter and Baseline JIT CodeBlocks don't need to be jettisoned when |
| // their weak references go stale. So if a basline JIT CodeBlock gets |
| // scanned, we can assume that this means that it's live. |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return true; |
| |
| return false; |
| } |
| |
| bool CodeBlock::shouldJettisonDueToWeakReference(VM& vm) |
| { |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return false; |
| return !vm.heap.isMarked(this); |
| } |
| |
| static Seconds timeToLive(JITType jitType) |
| { |
| if (UNLIKELY(Options::useEagerCodeBlockJettisonTiming())) { |
| switch (jitType) { |
| case JITType::InterpreterThunk: |
| return 10_ms; |
| case JITType::BaselineJIT: |
| return 30_ms; |
| case JITType::DFGJIT: |
| return 40_ms; |
| case JITType::FTLJIT: |
| return 120_ms; |
| default: |
| return Seconds::infinity(); |
| } |
| } |
| |
| switch (jitType) { |
| case JITType::InterpreterThunk: |
| return 5_s; |
| case JITType::BaselineJIT: |
| // Effectively 10 additional seconds, since BaselineJIT and |
| // InterpreterThunk share a CodeBlock. |
| return 15_s; |
| case JITType::DFGJIT: |
| return 20_s; |
| case JITType::FTLJIT: |
| return 60_s; |
| default: |
| return Seconds::infinity(); |
| } |
| } |
| |
| bool CodeBlock::shouldJettisonDueToOldAge(const ConcurrentJSLocker&) |
| { |
| if (m_vm->heap.isMarked(this)) |
| return false; |
| |
| if (UNLIKELY(Options::forceCodeBlockToJettisonDueToOldAge())) |
| return true; |
| |
| if (timeSinceCreation() < timeToLive(jitType())) |
| return false; |
| |
| return true; |
| } |
| |
| #if ENABLE(DFG_JIT) |
| static bool shouldMarkTransition(VM& vm, DFG::WeakReferenceTransition& transition) |
| { |
| if (transition.m_codeOrigin && !vm.heap.isMarked(transition.m_codeOrigin.get())) |
| return false; |
| |
| if (!vm.heap.isMarked(transition.m_from.get())) |
| return false; |
| |
| return true; |
| } |
| |
| BytecodeIndex CodeBlock::bytecodeIndexForExit(BytecodeIndex exitIndex) const |
| { |
| if (exitIndex.checkpoint()) { |
| const auto& instruction = instructions().at(exitIndex); |
| exitIndex = instruction.next().index(); |
| } |
| return exitIndex; |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| void CodeBlock::propagateTransitions(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| { |
| VM& vm = *m_vm; |
| |
| if (jitType() == JITType::InterpreterThunk) { |
| if (m_metadata) { |
| m_metadata->forEach<OpPutById>([&] (auto& metadata) { |
| StructureID oldStructureID = metadata.m_oldStructureID; |
| StructureID newStructureID = metadata.m_newStructureID; |
| if (!oldStructureID || !newStructureID) |
| return; |
| Structure* oldStructure = |
| vm.heap.structureIDTable().get(oldStructureID); |
| Structure* newStructure = |
| vm.heap.structureIDTable().get(newStructureID); |
| if (vm.heap.isMarked(oldStructure)) |
| visitor.appendUnbarriered(newStructure); |
| }); |
| } |
| } |
| |
| #if ENABLE(JIT) |
| if (JITCode::isJIT(jitType())) { |
| if (auto* jitData = m_jitData.get()) { |
| for (StructureStubInfo* stubInfo : jitData->m_stubInfos) |
| stubInfo->propagateTransitions(visitor); |
| } |
| } |
| #endif // ENABLE(JIT) |
| |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) { |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| |
| dfgCommon->recordedStatuses.markIfCheap(visitor); |
| |
| for (StructureID structureID : dfgCommon->weakStructureReferences) |
| vm.getStructure(structureID)->markIfCheap(visitor); |
| |
| for (auto& transition : dfgCommon->transitions) { |
| if (shouldMarkTransition(vm, transition)) { |
| // If the following three things are live, then the target of the |
| // transition is also live: |
| // |
| // - This code block. We know it's live already because otherwise |
| // we wouldn't be scanning ourselves. |
| // |
| // - The code origin of the transition. Transitions may arise from |
| // code that was inlined. They are not relevant if the user's |
| // object that is required for the inlinee to run is no longer |
| // live. |
| // |
| // - The source of the transition. The transition checks if some |
| // heap location holds the source, and if so, stores the target. |
| // Hence the source must be live for the transition to be live. |
| // |
| // We also short-circuit the liveness if the structure is harmless |
| // to mark (i.e. its global object and prototype are both already |
| // live). |
| |
| visitor.append(transition.m_to); |
| } |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| void CodeBlock::determineLiveness(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| #if ENABLE(DFG_JIT) |
| VM& vm = *m_vm; |
| if (vm.heap.isMarked(this)) |
| return; |
| |
| // In rare and weird cases, this could be called on a baseline CodeBlock. One that I found was |
| // that we might decide that the CodeBlock should be jettisoned due to old age, so the |
| // isMarked check doesn't protect us. |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return; |
| |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| // Now check all of our weak references. If all of them are live, then we |
| // have proved liveness and so we scan our strong references. If at end of |
| // GC we still have not proved liveness, then this code block is toast. |
| bool allAreLiveSoFar = true; |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| JSCell* reference = dfgCommon->weakReferences[i].get(); |
| ASSERT(!jsDynamicCast<CodeBlock*>(vm, reference)); |
| if (!vm.heap.isMarked(reference)) { |
| allAreLiveSoFar = false; |
| break; |
| } |
| } |
| if (allAreLiveSoFar) { |
| for (StructureID structureID : dfgCommon->weakStructureReferences) { |
| Structure* structure = vm.getStructure(structureID); |
| if (!vm.heap.isMarked(structure)) { |
| allAreLiveSoFar = false; |
| break; |
| } |
| } |
| } |
| |
| // If some weak references are dead, then this fixpoint iteration was |
| // unsuccessful. |
| if (!allAreLiveSoFar) |
| return; |
| |
| // All weak references are live. Record this information so we don't |
| // come back here again, and scan the strong references. |
| visitor.appendUnbarriered(this); |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| void CodeBlock::finalizeLLIntInlineCaches() |
| { |
| VM& vm = *m_vm; |
| |
| if (m_metadata) { |
| // FIXME: https://bugs.webkit.org/show_bug.cgi?id=166418 |
| // We need to add optimizations for op_resolve_scope_for_hoisting_func_decl_in_eval to do link time scope resolution. |
| |
| auto clearIfNeeded = [&] (GetByIdModeMetadata& modeMetadata, ASCIILiteral opName) { |
| if (modeMetadata.mode != GetByIdMode::Default) |
| return; |
| StructureID oldStructureID = modeMetadata.defaultMode.structureID; |
| if (!oldStructureID || vm.heap.isMarked(vm.heap.structureIDTable().get(oldStructureID))) |
| return; |
| dataLogLnIf(Options::verboseOSR(), "Clearing ", opName, " LLInt property access."); |
| LLIntPrototypeLoadAdaptiveStructureWatchpoint::clearLLIntGetByIdCache(modeMetadata); |
| }; |
| |
| m_metadata->forEach<OpIteratorOpen>([&] (auto& metadata) { |
| clearIfNeeded(metadata.m_modeMetadata, "iterator open"_s); |
| }); |
| |
| m_metadata->forEach<OpIteratorNext>([&] (auto& metadata) { |
| clearIfNeeded(metadata.m_doneModeMetadata, "iterator next"_s); |
| clearIfNeeded(metadata.m_valueModeMetadata, "iterator next"_s); |
| }); |
| |
| m_metadata->forEach<OpGetById>([&] (auto& metadata) { |
| clearIfNeeded(metadata.m_modeMetadata, "get by id"_s); |
| }); |
| |
| m_metadata->forEach<OpGetByIdDirect>([&] (auto& metadata) { |
| StructureID oldStructureID = metadata.m_structureID; |
| if (!oldStructureID || vm.heap.isMarked(vm.heap.structureIDTable().get(oldStructureID))) |
| return; |
| dataLogLnIf(Options::verboseOSR(), "Clearing LLInt property access."); |
| metadata.m_structureID = 0; |
| metadata.m_offset = 0; |
| }); |
| |
| m_metadata->forEach<OpGetPrivateName>([&] (auto& metadata) { |
| JSCell* property = metadata.m_property.get(); |
| StructureID structureID = metadata.m_structureID; |
| |
| if ((!property || vm.heap.isMarked(property)) && (!structureID || vm.heap.isMarked(vm.heap.structureIDTable().get(structureID)))) |
| return; |
| |
| dataLogLnIf(Options::verboseOSR(), "Clearing LLInt private property access."); |
| metadata.m_structureID = 0; |
| metadata.m_offset = 0; |
| metadata.m_property.clear(); |
| }); |
| |
| m_metadata->forEach<OpPutById>([&] (auto& metadata) { |
| StructureID oldStructureID = metadata.m_oldStructureID; |
| StructureID newStructureID = metadata.m_newStructureID; |
| StructureChain* chain = metadata.m_structureChain.get(); |
| if ((!oldStructureID || vm.heap.isMarked(vm.heap.structureIDTable().get(oldStructureID))) |
| && (!newStructureID || vm.heap.isMarked(vm.heap.structureIDTable().get(newStructureID))) |
| && (!chain || vm.heap.isMarked(chain))) |
| return; |
| dataLogLnIf(Options::verboseOSR(), "Clearing LLInt put transition."); |
| metadata.m_oldStructureID = 0; |
| metadata.m_offset = 0; |
| metadata.m_newStructureID = 0; |
| metadata.m_structureChain.clear(); |
| }); |
| |
| m_metadata->forEach<OpToThis>([&] (auto& metadata) { |
| if (!metadata.m_cachedStructureID || vm.heap.isMarked(vm.heap.structureIDTable().get(metadata.m_cachedStructureID))) |
| return; |
| if (Options::verboseOSR()) { |
| Structure* structure = vm.heap.structureIDTable().get(metadata.m_cachedStructureID); |
| dataLogF("Clearing LLInt to_this with structure %p.\n", structure); |
| } |
| metadata.m_cachedStructureID = 0; |
| metadata.m_toThisStatus = merge(metadata.m_toThisStatus, ToThisClearedByGC); |
| }); |
| |
| auto handleCreateBytecode = [&] (auto& metadata, ASCIILiteral name) { |
| auto& cacheWriteBarrier = metadata.m_cachedCallee; |
| if (!cacheWriteBarrier || cacheWriteBarrier.unvalidatedGet() == JSCell::seenMultipleCalleeObjects()) |
| return; |
| JSCell* cachedFunction = cacheWriteBarrier.get(); |
| if (vm.heap.isMarked(cachedFunction)) |
| return; |
| dataLogLnIf(Options::verboseOSR(), "Clearing LLInt ", name, " with cached callee ", RawPointer(cachedFunction), "."); |
| cacheWriteBarrier.clear(); |
| }; |
| |
| m_metadata->forEach<OpCreateThis>([&] (auto& metadata) { |
| handleCreateBytecode(metadata, "op_create_this"_s); |
| }); |
| m_metadata->forEach<OpCreatePromise>([&] (auto& metadata) { |
| handleCreateBytecode(metadata, "op_create_promise"_s); |
| }); |
| m_metadata->forEach<OpCreateGenerator>([&] (auto& metadata) { |
| handleCreateBytecode(metadata, "op_create_generator"_s); |
| }); |
| m_metadata->forEach<OpCreateAsyncGenerator>([&] (auto& metadata) { |
| handleCreateBytecode(metadata, "op_create_async_generator"_s); |
| }); |
| |
| m_metadata->forEach<OpResolveScope>([&] (auto& metadata) { |
| // Right now this isn't strictly necessary. Any symbol tables that this will refer to |
| // are for outer functions, and we refer to those functions strongly, and they refer |
| // to the symbol table strongly. But it's nice to be on the safe side. |
| WriteBarrierBase<SymbolTable>& symbolTable = metadata.m_symbolTable; |
| if (!symbolTable || vm.heap.isMarked(symbolTable.get())) |
| return; |
| dataLogLnIf(Options::verboseOSR(), "Clearing dead symbolTable ", RawPointer(symbolTable.get())); |
| symbolTable.clear(); |
| }); |
| |
| auto handleGetPutFromScope = [&] (auto& metadata) { |
| GetPutInfo getPutInfo = metadata.m_getPutInfo; |
| if (getPutInfo.resolveType() == GlobalVar || getPutInfo.resolveType() == GlobalVarWithVarInjectionChecks |
| || getPutInfo.resolveType() == LocalClosureVar || getPutInfo.resolveType() == GlobalLexicalVar || getPutInfo.resolveType() == GlobalLexicalVarWithVarInjectionChecks) |
| return; |
| WriteBarrierBase<Structure>& structure = metadata.m_structure; |
| if (!structure || vm.heap.isMarked(structure.get())) |
| return; |
| dataLogLnIf(Options::verboseOSR(), "Clearing scope access with structure ", RawPointer(structure.get())); |
| structure.clear(); |
| }; |
| |
| m_metadata->forEach<OpGetFromScope>(handleGetPutFromScope); |
| m_metadata->forEach<OpPutToScope>(handleGetPutFromScope); |
| } |
| |
| // We can't just remove all the sets when we clear the caches since we might have created a watchpoint set |
| // then cleared the cache without GCing in between. |
| m_llintGetByIdWatchpointMap.removeIf([&] (const StructureWatchpointMap::KeyValuePairType& pair) -> bool { |
| auto clear = [&] () { |
| auto& instruction = instructions().at(std::get<1>(pair.key)); |
| OpcodeID opcode = instruction->opcodeID(); |
| switch (opcode) { |
| case op_get_by_id: { |
| dataLogLnIf(Options::verboseOSR(), "Clearing LLInt property access."); |
| LLIntPrototypeLoadAdaptiveStructureWatchpoint::clearLLIntGetByIdCache(instruction->as<OpGetById>().metadata(this).m_modeMetadata); |
| break; |
| } |
| case op_iterator_open: { |
| dataLogLnIf(Options::verboseOSR(), "Clearing LLInt iterator open property access."); |
| LLIntPrototypeLoadAdaptiveStructureWatchpoint::clearLLIntGetByIdCache(instruction->as<OpIteratorOpen>().metadata(this).m_modeMetadata); |
| break; |
| } |
| case op_iterator_next: { |
| dataLogLnIf(Options::verboseOSR(), "Clearing LLInt iterator next property access."); |
| // FIXME: We don't really want to clear both caches here but it's kinda annoying to figure out which one this is referring to... |
| // See: https://bugs.webkit.org/show_bug.cgi?id=210693 |
| auto& metadata = instruction->as<OpIteratorNext>().metadata(this); |
| LLIntPrototypeLoadAdaptiveStructureWatchpoint::clearLLIntGetByIdCache(metadata.m_doneModeMetadata); |
| LLIntPrototypeLoadAdaptiveStructureWatchpoint::clearLLIntGetByIdCache(metadata.m_valueModeMetadata); |
| break; |
| } |
| default: |
| break; |
| } |
| return true; |
| }; |
| |
| if (!vm.heap.isMarked(vm.heap.structureIDTable().get(std::get<0>(pair.key)))) |
| return clear(); |
| |
| for (const LLIntPrototypeLoadAdaptiveStructureWatchpoint& watchpoint : pair.value) { |
| if (!watchpoint.key().isStillLive(vm)) |
| return clear(); |
| } |
| |
| return false; |
| }); |
| |
| forEachLLIntCallLinkInfo([&](LLIntCallLinkInfo& callLinkInfo) { |
| if (callLinkInfo.isLinked() && !vm.heap.isMarked(callLinkInfo.callee())) { |
| dataLogLnIf(Options::verboseOSR(), "Clearing LLInt call from ", *this); |
| callLinkInfo.unlink(); |
| } |
| if (callLinkInfo.lastSeenCallee() && !vm.heap.isMarked(callLinkInfo.lastSeenCallee())) |
| callLinkInfo.clearLastSeenCallee(); |
| }); |
| } |
| |
| #if ENABLE(JIT) |
| CodeBlock::JITData& CodeBlock::ensureJITDataSlow(const ConcurrentJSLocker&) |
| { |
| ASSERT(!m_jitData); |
| auto jitData = makeUnique<JITData>(); |
| // calleeSaveRegisters() can access m_jitData without taking a lock from Baseline JIT. This is OK since JITData::m_calleeSaveRegisters is filled in DFG and FTL CodeBlocks. |
| // But we should not see garbage pointer in that case. We ensure JITData::m_calleeSaveRegisters is initialized as nullptr before exposing it to BaselineJIT by store-store-fence. |
| WTF::storeStoreFence(); |
| m_jitData = WTFMove(jitData); |
| return *m_jitData; |
| } |
| |
| void CodeBlock::finalizeBaselineJITInlineCaches() |
| { |
| if (auto* jitData = m_jitData.get()) { |
| for (CallLinkInfo* callLinkInfo : jitData->m_callLinkInfos) |
| callLinkInfo->visitWeak(vm()); |
| |
| for (StructureStubInfo* stubInfo : jitData->m_stubInfos) |
| stubInfo->visitWeakReferences(this); |
| } |
| } |
| #endif |
| |
| void CodeBlock::finalizeUnconditionally(VM& vm) |
| { |
| UNUSED_PARAM(vm); |
| |
| updateAllPredictions(); |
| |
| #if ENABLE(JIT) |
| bool isEligibleForLLIntDowngrade = m_isEligibleForLLIntDowngrade; |
| m_isEligibleForLLIntDowngrade = false; |
| // If BaselineJIT code is not executing, and an optimized replacement exists, we attempt |
| // to discard baseline JIT code and reinstall LLInt code to save JIT memory. |
| if (Options::useLLInt() && !m_hasLinkedOSRExit && jitType() == JITType::BaselineJIT && !m_vm->heap.codeBlockSet().isCurrentlyExecuting(this)) { |
| if (CodeBlock* optimizedCodeBlock = optimizedReplacement()) { |
| if (!optimizedCodeBlock->m_osrExitCounter) { |
| if (isEligibleForLLIntDowngrade) { |
| m_jitCode = nullptr; |
| LLInt::setEntrypoint(this); |
| RELEASE_ASSERT(jitType() == JITType::InterpreterThunk); |
| |
| for (size_t i = 0; i < m_unlinkedCode->numberOfExceptionHandlers(); i++) { |
| const UnlinkedHandlerInfo& unlinkedHandler = m_unlinkedCode->exceptionHandler(i); |
| HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; |
| auto& instruction = *instructions().at(unlinkedHandler.target).ptr(); |
| MacroAssemblerCodePtr<BytecodePtrTag> codePtr = LLInt::getCodePtr<BytecodePtrTag>(instruction); |
| handler.initialize(unlinkedHandler, CodeLocationLabel<ExceptionHandlerPtrTag>(codePtr.retagged<ExceptionHandlerPtrTag>())); |
| } |
| |
| unlinkIncomingCalls(); |
| |
| // It's safe to clear these out here because in finalizeUnconditionally all compiler threads |
| // are safepointed, meaning they're running either before or after bytecode parser, and bytecode |
| // parser is the only data structure pointing into the various *infos. |
| resetJITData(); |
| } else |
| m_isEligibleForLLIntDowngrade = true; |
| } |
| } |
| } |
| |
| #endif |
| |
| if (JITCode::couldBeInterpreted(jitType())) |
| finalizeLLIntInlineCaches(); |
| |
| #if ENABLE(JIT) |
| if (!!jitCode()) |
| finalizeBaselineJITInlineCaches(); |
| #endif |
| |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) { |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| dfgCommon->recordedStatuses.finalize(vm); |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| auto updateActivity = [&] { |
| if (!VM::useUnlinkedCodeBlockJettisoning()) |
| return; |
| JITCode* jitCode = m_jitCode.get(); |
| double count = 0; |
| bool alwaysActive = false; |
| switch (JITCode::jitTypeFor(jitCode)) { |
| case JITType::None: |
| case JITType::HostCallThunk: |
| return; |
| case JITType::InterpreterThunk: |
| count = m_llintExecuteCounter.count(); |
| break; |
| case JITType::BaselineJIT: |
| count = m_jitExecuteCounter.count(); |
| break; |
| case JITType::DFGJIT: |
| #if ENABLE(FTL_JIT) |
| count = static_cast<DFG::JITCode*>(jitCode)->tierUpCounter.count(); |
| #else |
| alwaysActive = true; |
| #endif |
| break; |
| case JITType::FTLJIT: |
| alwaysActive = true; |
| break; |
| } |
| if (alwaysActive || m_previousCounter < count) { |
| // CodeBlock is active right now, so resetting UnlinkedCodeBlock's age. |
| m_unlinkedCode->resetAge(); |
| } |
| m_previousCounter = count; |
| }; |
| updateActivity(); |
| |
| VM::SpaceAndSet::setFor(*subspace()).remove(this); |
| } |
| |
| void CodeBlock::destroy(JSCell* cell) |
| { |
| static_cast<CodeBlock*>(cell)->~CodeBlock(); |
| } |
| |
| void CodeBlock::getICStatusMap(const ConcurrentJSLocker&, ICStatusMap& result) |
| { |
| #if ENABLE(JIT) |
| if (JITCode::isJIT(jitType())) { |
| if (auto* jitData = m_jitData.get()) { |
| for (StructureStubInfo* stubInfo : jitData->m_stubInfos) |
| result.add(stubInfo->codeOrigin, ICStatus()).iterator->value.stubInfo = stubInfo; |
| for (CallLinkInfo* callLinkInfo : jitData->m_callLinkInfos) |
| result.add(callLinkInfo->codeOrigin(), ICStatus()).iterator->value.callLinkInfo = callLinkInfo; |
| for (ByValInfo* byValInfo : jitData->m_byValInfos) |
| result.add(CodeOrigin(byValInfo->bytecodeIndex), ICStatus()).iterator->value.byValInfo = byValInfo; |
| } |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) { |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| for (auto& pair : dfgCommon->recordedStatuses.calls) |
| result.add(pair.first, ICStatus()).iterator->value.callStatus = pair.second.get(); |
| for (auto& pair : dfgCommon->recordedStatuses.gets) |
| result.add(pair.first, ICStatus()).iterator->value.getStatus = pair.second.get(); |
| for (auto& pair : dfgCommon->recordedStatuses.puts) |
| result.add(pair.first, ICStatus()).iterator->value.putStatus = pair.second.get(); |
| for (auto& pair : dfgCommon->recordedStatuses.ins) |
| result.add(pair.first, ICStatus()).iterator->value.inStatus = pair.second.get(); |
| for (auto& pair : dfgCommon->recordedStatuses.deletes) |
| result.add(pair.first, ICStatus()).iterator->value.deleteStatus = pair.second.get(); |
| } |
| #endif |
| } |
| #else |
| UNUSED_PARAM(result); |
| #endif |
| } |
| |
| void CodeBlock::getICStatusMap(ICStatusMap& result) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| getICStatusMap(locker, result); |
| } |
| |
| #if ENABLE(JIT) |
| StructureStubInfo* CodeBlock::addStubInfo(AccessType accessType) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return ensureJITData(locker).m_stubInfos.add(accessType); |
| } |
| |
| JITAddIC* CodeBlock::addJITAddIC(BinaryArithProfile* arithProfile) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return ensureJITData(locker).m_addICs.add(arithProfile); |
| } |
| |
| JITMulIC* CodeBlock::addJITMulIC(BinaryArithProfile* arithProfile) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return ensureJITData(locker).m_mulICs.add(arithProfile); |
| } |
| |
| JITSubIC* CodeBlock::addJITSubIC(BinaryArithProfile* arithProfile) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return ensureJITData(locker).m_subICs.add(arithProfile); |
| } |
| |
| JITNegIC* CodeBlock::addJITNegIC(UnaryArithProfile* arithProfile) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return ensureJITData(locker).m_negICs.add(arithProfile); |
| } |
| |
| StructureStubInfo* CodeBlock::findStubInfo(CodeOrigin codeOrigin) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| if (auto* jitData = m_jitData.get()) { |
| for (StructureStubInfo* stubInfo : jitData->m_stubInfos) { |
| if (stubInfo->codeOrigin == codeOrigin) |
| return stubInfo; |
| } |
| } |
| return nullptr; |
| } |
| |
| ByValInfo* CodeBlock::findByValInfo(CodeOrigin codeOrigin) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| if (auto* jitData = m_jitData.get()) { |
| for (ByValInfo* byValInfo : jitData->m_byValInfos) { |
| if (byValInfo->bytecodeIndex == codeOrigin.bytecodeIndex()) |
| return byValInfo; |
| } |
| } |
| return nullptr; |
| } |
| |
| ByValInfo* CodeBlock::addByValInfo() |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return ensureJITData(locker).m_byValInfos.add(); |
| } |
| |
| CallLinkInfo* CodeBlock::addCallLinkInfo() |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return ensureJITData(locker).m_callLinkInfos.add(); |
| } |
| |
| CallLinkInfo* CodeBlock::getCallLinkInfoForBytecodeIndex(BytecodeIndex index) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| if (auto* jitData = m_jitData.get()) { |
| for (CallLinkInfo* callLinkInfo : jitData->m_callLinkInfos) { |
| if (callLinkInfo->codeOrigin() == CodeOrigin(index)) |
| return callLinkInfo; |
| } |
| } |
| return nullptr; |
| } |
| |
| void CodeBlock::setRareCaseProfiles(RefCountedArray<RareCaseProfile>&& rareCaseProfiles) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| ensureJITData(locker).m_rareCaseProfiles = WTFMove(rareCaseProfiles); |
| } |
| |
| RareCaseProfile* CodeBlock::rareCaseProfileForBytecodeIndex(const ConcurrentJSLocker&, BytecodeIndex bytecodeIndex) |
| { |
| if (auto* jitData = m_jitData.get()) { |
| return tryBinarySearch<RareCaseProfile, BytecodeIndex>( |
| jitData->m_rareCaseProfiles, jitData->m_rareCaseProfiles.size(), bytecodeIndex, |
| getRareCaseProfileBytecodeIndex); |
| } |
| return nullptr; |
| } |
| |
| unsigned CodeBlock::rareCaseProfileCountForBytecodeIndex(const ConcurrentJSLocker& locker, BytecodeIndex bytecodeIndex) |
| { |
| RareCaseProfile* profile = rareCaseProfileForBytecodeIndex(locker, bytecodeIndex); |
| if (profile) |
| return profile->m_counter; |
| return 0; |
| } |
| |
| void CodeBlock::setCalleeSaveRegisters(RegisterSet calleeSaveRegisters) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| ensureJITData(locker).m_calleeSaveRegisters = makeUnique<RegisterAtOffsetList>(calleeSaveRegisters); |
| } |
| |
| void CodeBlock::setCalleeSaveRegisters(std::unique_ptr<RegisterAtOffsetList> registerAtOffsetList) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| ensureJITData(locker).m_calleeSaveRegisters = WTFMove(registerAtOffsetList); |
| } |
| |
| void CodeBlock::resetJITData() |
| { |
| RELEASE_ASSERT(!JITCode::isJIT(jitType())); |
| ConcurrentJSLocker locker(m_lock); |
| |
| if (auto* jitData = m_jitData.get()) { |
| // We can clear these because no other thread will have references to any stub infos, call |
| // link infos, or by val infos if we don't have JIT code. Attempts to query these data |
| // structures using the concurrent API (getICStatusMap and friends) will return nothing if we |
| // don't have JIT code. So it's safe to call this if we fail a baseline JIT compile. |
| // |
| // We also call this from finalizeUnconditionally when we degrade from baseline JIT to LLInt |
| // code. This is safe to do since all compiler threads are safepointed in finalizeUnconditionally, |
| // which means we've made it past bytecode parsing. Only the bytecode parser will hold onto |
| // references to these various *infos via its use of ICStatusMap. Also, OSR exit might point to |
| // these *infos, but when we have an OSR exit linked to this CodeBlock, we won't downgrade |
| // to LLInt. |
| |
| for (StructureStubInfo* stubInfo : jitData->m_stubInfos) { |
| stubInfo->aboutToDie(); |
| stubInfo->deref(); |
| } |
| |
| // We can clear this because the DFG's queries to these data structures are guarded by whether |
| // there is JIT code. |
| |
| m_jitData = nullptr; |
| } |
| } |
| #endif |
| |
| void CodeBlock::visitOSRExitTargets(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| { |
| // We strongly visit OSR exits targets because we don't want to deal with |
| // the complexity of generating an exit target CodeBlock on demand and |
| // guaranteeing that it matches the details of the CodeBlock we compiled |
| // the OSR exit against. |
| |
| visitor.append(m_alternative); |
| |
| #if ENABLE(DFG_JIT) |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| if (dfgCommon->inlineCallFrames) { |
| for (auto* inlineCallFrame : *dfgCommon->inlineCallFrames) { |
| ASSERT(inlineCallFrame->baselineCodeBlock); |
| visitor.append(inlineCallFrame->baselineCodeBlock); |
| } |
| } |
| #endif |
| } |
| |
| void CodeBlock::stronglyVisitStrongReferences(const ConcurrentJSLocker& locker, SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(locker); |
| |
| visitor.append(m_globalObject); |
| visitor.append(m_ownerExecutable); // This is extra important since it causes the ExecutableToCodeBlockEdge to be marked. |
| visitor.append(m_unlinkedCode); |
| if (m_rareData) |
| m_rareData->m_directEvalCodeCache.visitAggregate(visitor); |
| visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); |
| for (auto& functionExpr : m_functionExprs) |
| visitor.append(functionExpr); |
| for (auto& functionDecl : m_functionDecls) |
| visitor.append(functionDecl); |
| forEachObjectAllocationProfile([&](ObjectAllocationProfile& objectAllocationProfile) { |
| objectAllocationProfile.visitAggregate(visitor); |
| }); |
| |
| #if ENABLE(JIT) |
| if (auto* jitData = m_jitData.get()) { |
| for (ByValInfo* byValInfo : jitData->m_byValInfos) |
| byValInfo->visitAggregate(visitor); |
| for (StructureStubInfo* stubInfo : jitData->m_stubInfos) |
| stubInfo->visitAggregate(visitor); |
| } |
| #endif |
| |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) { |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| dfgCommon->recordedStatuses.visitAggregate(visitor); |
| visitOSRExitTargets(locker, visitor); |
| } |
| #endif |
| } |
| |
| void CodeBlock::stronglyVisitWeakReferences(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| #if ENABLE(DFG_JIT) |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return; |
| |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| |
| for (auto& transition : dfgCommon->transitions) { |
| if (!!transition.m_codeOrigin) |
| visitor.append(transition.m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. |
| visitor.append(transition.m_from); |
| visitor.append(transition.m_to); |
| } |
| |
| for (auto& weakReference : dfgCommon->weakReferences) |
| visitor.append(weakReference); |
| |
| for (StructureID structureID : dfgCommon->weakStructureReferences) |
| visitor.appendUnbarriered(visitor.vm().getStructure(structureID)); |
| |
| dfgCommon->livenessHasBeenProved = true; |
| #endif |
| } |
| |
| CodeBlock* CodeBlock::baselineAlternative() |
| { |
| #if ENABLE(JIT) |
| CodeBlock* result = this; |
| while (result->alternative()) |
| result = result->alternative(); |
| RELEASE_ASSERT(result); |
| RELEASE_ASSERT(JITCode::isBaselineCode(result->jitType()) || result->jitType() == JITType::None); |
| return result; |
| #else |
| return this; |
| #endif |
| } |
| |
| CodeBlock* CodeBlock::baselineVersion() |
| { |
| #if ENABLE(JIT) |
| JITType selfJITType = jitType(); |
| if (JITCode::isBaselineCode(selfJITType)) |
| return this; |
| CodeBlock* result = replacement(); |
| if (!result) { |
| if (JITCode::isOptimizingJIT(selfJITType)) { |
| // The replacement can be null if we've had a memory clean up and the executable |
| // has been purged of its codeBlocks (see ExecutableBase::clearCode()). Regardless, |
| // the current codeBlock is still live on the stack, and as an optimizing JIT |
| // codeBlock, it will keep its baselineAlternative() alive for us to fetch below. |
| result = this; |
| } else { |
| // This can happen if we're creating the original CodeBlock for an executable. |
| // Assume that we're the baseline CodeBlock. |
| RELEASE_ASSERT(selfJITType == JITType::None); |
| return this; |
| } |
| } |
| result = result->baselineAlternative(); |
| ASSERT(result); |
| return result; |
| #else |
| return this; |
| #endif |
| } |
| |
| #if ENABLE(JIT) |
| CodeBlock* CodeBlock::optimizedReplacement(JITType typeToReplace) |
| { |
| CodeBlock* replacement = this->replacement(); |
| if (!replacement) |
| return nullptr; |
| if (JITCode::isHigherTier(replacement->jitType(), typeToReplace)) |
| return replacement; |
| return nullptr; |
| } |
| |
| CodeBlock* CodeBlock::optimizedReplacement() |
| { |
| return optimizedReplacement(jitType()); |
| } |
| |
| bool CodeBlock::hasOptimizedReplacement(JITType typeToReplace) |
| { |
| return !!optimizedReplacement(typeToReplace); |
| } |
| |
| bool CodeBlock::hasOptimizedReplacement() |
| { |
| return hasOptimizedReplacement(jitType()); |
| } |
| #endif |
| |
| HandlerInfo* CodeBlock::handlerForBytecodeIndex(BytecodeIndex bytecodeIndex, RequiredHandler requiredHandler) |
| { |
| RELEASE_ASSERT(bytecodeIndex.offset() < instructions().size()); |
| return handlerForIndex(bytecodeIndex.offset(), requiredHandler); |
| } |
| |
| HandlerInfo* CodeBlock::handlerForIndex(unsigned index, RequiredHandler requiredHandler) |
| { |
| if (!m_rareData) |
| return nullptr; |
| return HandlerInfo::handlerForIndex<HandlerInfo>(m_rareData->m_exceptionHandlers, index, requiredHandler); |
| } |
| |
| DisposableCallSiteIndex CodeBlock::newExceptionHandlingCallSiteIndex(CallSiteIndex originalCallSite) |
| { |
| #if ENABLE(DFG_JIT) |
| RELEASE_ASSERT(JITCode::isOptimizingJIT(jitType())); |
| RELEASE_ASSERT(canGetCodeOrigin(originalCallSite)); |
| ASSERT(!!handlerForIndex(originalCallSite.bits())); |
| CodeOrigin originalOrigin = codeOrigin(originalCallSite); |
| return m_jitCode->dfgCommon()->codeOrigins->addDisposableCallSiteIndex(originalOrigin); |
| #else |
| // We never create new on-the-fly exception handling |
| // call sites outside the DFG/FTL inline caches. |
| UNUSED_PARAM(originalCallSite); |
| RELEASE_ASSERT_NOT_REACHED(); |
| return DisposableCallSiteIndex(0u); |
| #endif |
| } |
| |
| |
| |
| void CodeBlock::ensureCatchLivenessIsComputedForBytecodeIndex(BytecodeIndex bytecodeIndex) |
| { |
| auto& instruction = instructions().at(bytecodeIndex); |
| OpCatch op = instruction->as<OpCatch>(); |
| auto& metadata = op.metadata(this); |
| if (!!metadata.m_buffer) { |
| #if ASSERT_ENABLED |
| ConcurrentJSLocker locker(m_lock); |
| bool found = false; |
| auto* rareData = m_rareData.get(); |
| ASSERT(rareData); |
| for (auto& profile : rareData->m_catchProfiles) { |
| if (profile.get() == metadata.m_buffer) { |
| found = true; |
| break; |
| } |
| } |
| ASSERT(found); |
| #endif // ASSERT_ENABLED |
| return; |
| } |
| |
| ensureCatchLivenessIsComputedForBytecodeIndexSlow(op, bytecodeIndex); |
| } |
| |
| void CodeBlock::ensureCatchLivenessIsComputedForBytecodeIndexSlow(const OpCatch& op, BytecodeIndex bytecodeIndex) |
| { |
| BytecodeLivenessAnalysis& bytecodeLiveness = livenessAnalysis(); |
| |
| // We get the live-out set of variables at op_catch, not the live-in. This |
| // is because the variables that the op_catch defines might be dead, and |
| // we can avoid profiling them and extracting them when doing OSR entry |
| // into the DFG. |
| |
| auto nextOffset = instructions().at(bytecodeIndex).next().offset(); |
| FastBitVector liveLocals = bytecodeLiveness.getLivenessInfoAtBytecodeIndex(this, BytecodeIndex(nextOffset)); |
| Vector<VirtualRegister> liveOperands; |
| liveOperands.reserveInitialCapacity(liveLocals.bitCount()); |
| liveLocals.forEachSetBit([&] (unsigned liveLocal) { |
| liveOperands.append(virtualRegisterForLocal(liveLocal)); |
| }); |
| |
| for (int i = 0; i < numParameters(); ++i) |
| liveOperands.append(virtualRegisterForArgumentIncludingThis(i)); |
| |
| auto profiles = makeUnique<ValueProfileAndVirtualRegisterBuffer>(liveOperands.size()); |
| RELEASE_ASSERT(profiles->m_size == liveOperands.size()); |
| for (unsigned i = 0; i < profiles->m_size; ++i) |
| profiles->m_buffer.get()[i].m_operand = liveOperands[i]; |
| |
| createRareDataIfNecessary(); |
| |
| // The compiler thread will read this pointer value and then proceed to dereference it |
| // if it is not null. We need to make sure all above stores happen before this store so |
| // the compiler thread reads fully initialized data. |
| WTF::storeStoreFence(); |
| |
| op.metadata(this).m_buffer = profiles.get(); |
| { |
| ConcurrentJSLocker locker(m_lock); |
| m_rareData->m_catchProfiles.append(WTFMove(profiles)); |
| } |
| } |
| |
| void CodeBlock::removeExceptionHandlerForCallSite(DisposableCallSiteIndex callSiteIndex) |
| { |
| RELEASE_ASSERT(m_rareData); |
| Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers; |
| unsigned index = callSiteIndex.bits(); |
| for (size_t i = 0; i < exceptionHandlers.size(); ++i) { |
| HandlerInfo& handler = exceptionHandlers[i]; |
| if (handler.start <= index && handler.end > index) { |
| exceptionHandlers.remove(i); |
| return; |
| } |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| unsigned CodeBlock::lineNumberForBytecodeIndex(BytecodeIndex bytecodeIndex) |
| { |
| RELEASE_ASSERT(bytecodeIndex.offset() < instructions().size()); |
| return ownerExecutable()->firstLine() + m_unlinkedCode->lineNumberForBytecodeIndex(bytecodeIndex); |
| } |
| |
| unsigned CodeBlock::columnNumberForBytecodeIndex(BytecodeIndex bytecodeIndex) |
| { |
| int divot; |
| int startOffset; |
| int endOffset; |
| unsigned line; |
| unsigned column; |
| expressionRangeForBytecodeIndex(bytecodeIndex, divot, startOffset, endOffset, line, column); |
| return column; |
| } |
| |
| void CodeBlock::expressionRangeForBytecodeIndex(BytecodeIndex bytecodeIndex, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) const |
| { |
| m_unlinkedCode->expressionRangeForBytecodeIndex(bytecodeIndex, divot, startOffset, endOffset, line, column); |
| divot += sourceOffset(); |
| column += line ? 1 : firstLineColumnOffset(); |
| line += ownerExecutable()->firstLine(); |
| } |
| |
| bool CodeBlock::hasOpDebugForLineAndColumn(unsigned line, Optional<unsigned> column) |
| { |
| const InstructionStream& instructionStream = instructions(); |
| for (const auto& it : instructionStream) { |
| if (it->is<OpDebug>()) { |
| int unused; |
| unsigned opDebugLine; |
| unsigned opDebugColumn; |
| expressionRangeForBytecodeIndex(it.index(), unused, unused, unused, opDebugLine, opDebugColumn); |
| if (line == opDebugLine && (!column || column == opDebugColumn)) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void CodeBlock::shrinkToFit(const ConcurrentJSLocker&, ShrinkMode shrinkMode) |
| { |
| #if USE(JSVALUE32_64) |
| // Only 32bit Baseline JIT is touching m_constantRegisters address directly. |
| if (shrinkMode == ShrinkMode::EarlyShrink) |
| m_constantRegisters.shrinkToFit(); |
| #else |
| m_constantRegisters.shrinkToFit(); |
| #endif |
| m_constantsSourceCodeRepresentation.shrinkToFit(); |
| |
| if (shrinkMode == ShrinkMode::EarlyShrink) { |
| if (m_rareData) { |
| m_rareData->m_switchJumpTables.shrinkToFit(); |
| m_rareData->m_stringSwitchJumpTables.shrinkToFit(); |
| } |
| } // else don't shrink these, because we would have already pointed pointers into these tables. |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::linkIncomingCall(CallFrame* callerFrame, CallLinkInfo* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| ConcurrentJSLocker locker(m_lock); |
| ensureJITData(locker).m_incomingCalls.push(incoming); |
| } |
| |
| void CodeBlock::linkIncomingPolymorphicCall(CallFrame* callerFrame, PolymorphicCallNode* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| { |
| ConcurrentJSLocker locker(m_lock); |
| ensureJITData(locker).m_incomingPolymorphicCalls.push(incoming); |
| } |
| } |
| #endif // ENABLE(JIT) |
| |
| void CodeBlock::unlinkIncomingCalls() |
| { |
| while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) |
| m_incomingLLIntCalls.begin()->unlink(); |
| #if ENABLE(JIT) |
| JITData* jitData = nullptr; |
| { |
| ConcurrentJSLocker locker(m_lock); |
| jitData = m_jitData.get(); |
| } |
| if (jitData) { |
| while (jitData->m_incomingCalls.begin() != jitData->m_incomingCalls.end()) |
| jitData->m_incomingCalls.begin()->unlink(vm()); |
| while (jitData->m_incomingPolymorphicCalls.begin() != jitData->m_incomingPolymorphicCalls.end()) |
| jitData->m_incomingPolymorphicCalls.begin()->unlink(vm()); |
| } |
| #endif // ENABLE(JIT) |
| } |
| |
| void CodeBlock::linkIncomingCall(CallFrame* callerFrame, LLIntCallLinkInfo* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| m_incomingLLIntCalls.push(incoming); |
| } |
| |
| CodeBlock* CodeBlock::newReplacement() |
| { |
| return ownerExecutable()->newReplacementCodeBlockFor(specializationKind()); |
| } |
| |
| #if ENABLE(JIT) |
| CodeBlock* CodeBlock::replacement() |
| { |
| const ClassInfo* classInfo = this->classInfo(vm()); |
| |
| if (classInfo == FunctionCodeBlock::info()) |
| return jsCast<FunctionExecutable*>(ownerExecutable())->codeBlockFor(isConstructor() ? CodeForConstruct : CodeForCall); |
| |
| if (classInfo == EvalCodeBlock::info()) |
| return jsCast<EvalExecutable*>(ownerExecutable())->codeBlock(); |
| |
| if (classInfo == ProgramCodeBlock::info()) |
| return jsCast<ProgramExecutable*>(ownerExecutable())->codeBlock(); |
| |
| if (classInfo == ModuleProgramCodeBlock::info()) |
| return jsCast<ModuleProgramExecutable*>(ownerExecutable())->codeBlock(); |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| } |
| |
| DFG::CapabilityLevel CodeBlock::computeCapabilityLevel() |
| { |
| const ClassInfo* classInfo = this->classInfo(vm()); |
| |
| if (classInfo == FunctionCodeBlock::info()) { |
| if (isConstructor()) |
| return DFG::functionForConstructCapabilityLevel(this); |
| return DFG::functionForCallCapabilityLevel(this); |
| } |
| |
| if (classInfo == EvalCodeBlock::info()) |
| return DFG::evalCapabilityLevel(this); |
| |
| if (classInfo == ProgramCodeBlock::info()) |
| return DFG::programCapabilityLevel(this); |
| |
| if (classInfo == ModuleProgramCodeBlock::info()) |
| return DFG::programCapabilityLevel(this); |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return DFG::CannotCompile; |
| } |
| |
| #endif // ENABLE(JIT) |
| |
| void CodeBlock::jettison(Profiler::JettisonReason reason, ReoptimizationMode mode, const FireDetail* detail) |
| { |
| #if !ENABLE(DFG_JIT) |
| UNUSED_PARAM(mode); |
| UNUSED_PARAM(detail); |
| #endif |
| |
| VM& vm = *m_vm; |
| |
| CodeBlock* codeBlock = this; // Placate GCC for use in CODEBLOCK_LOG_EVENT (does not like this). |
| CODEBLOCK_LOG_EVENT(codeBlock, "jettison", ("due to ", reason, ", counting = ", mode == CountReoptimization, ", detail = ", pointerDump(detail))); |
| |
| RELEASE_ASSERT(reason != Profiler::NotJettisoned); |
| |
| #if ENABLE(DFG_JIT) |
| if (DFG::shouldDumpDisassembly()) { |
| dataLog("Jettisoning ", *this); |
| if (mode == CountReoptimization) |
| dataLog(" and counting reoptimization"); |
| dataLog(" due to ", reason); |
| if (detail) |
| dataLog(", ", *detail); |
| dataLog(".\n"); |
| } |
| |
| if (reason == Profiler::JettisonDueToWeakReference) { |
| if (DFG::shouldDumpDisassembly()) { |
| dataLog(*this, " will be jettisoned because of the following dead references:\n"); |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| for (auto& transition : dfgCommon->transitions) { |
| JSCell* origin = transition.m_codeOrigin.get(); |
| JSCell* from = transition.m_from.get(); |
| JSCell* to = transition.m_to.get(); |
| if ((!origin || vm.heap.isMarked(origin)) && vm.heap.isMarked(from)) |
| continue; |
| dataLog(" Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n"); |
| } |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| JSCell* weak = dfgCommon->weakReferences[i].get(); |
| if (vm.heap.isMarked(weak)) |
| continue; |
| dataLog(" Weak reference ", RawPointer(weak), ".\n"); |
| } |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| DeferGCForAWhile deferGC(*heap()); |
| |
| // We want to accomplish two things here: |
| // 1) Make sure that if this CodeBlock is on the stack right now, then if we return to it |
| // we should OSR exit at the top of the next bytecode instruction after the return. |
| // 2) Make sure that if we call the owner executable, then we shouldn't call this CodeBlock. |
| |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) |
| jitCode()->dfgCommon()->clearWatchpoints(); |
| |
| if (reason != Profiler::JettisonDueToOldAge) { |
| Profiler::Compilation* compilation = jitCode()->dfgCommon()->compilation.get(); |
| if (UNLIKELY(compilation)) |
| compilation->setJettisonReason(reason, detail); |
| |
| // This accomplishes (1), and does its own book-keeping about whether it has already happened. |
| if (!jitCode()->dfgCommon()->invalidate()) { |
| // We've already been invalidated. |
| RELEASE_ASSERT(this != replacement() || (vm.heap.isCurrentThreadBusy() && !vm.heap.isMarked(ownerExecutable()))); |
| return; |
| } |
| } |
| |
| if (DFG::shouldDumpDisassembly()) |
| dataLog(" Did invalidate ", *this, "\n"); |
| |
| // Count the reoptimization if that's what the user wanted. |
| if (mode == CountReoptimization) { |
| // FIXME: Maybe this should call alternative(). |
| // https://bugs.webkit.org/show_bug.cgi?id=123677 |
| baselineAlternative()->countReoptimization(); |
| if (DFG::shouldDumpDisassembly()) |
| dataLog(" Did count reoptimization for ", *this, "\n"); |
| } |
| |
| if (this != replacement()) { |
| // This means that we were never the entrypoint. This can happen for OSR entry code |
| // blocks. |
| return; |
| } |
| |
| if (alternative()) |
| alternative()->optimizeAfterWarmUp(); |
| |
| if (reason != Profiler::JettisonDueToOldAge && reason != Profiler::JettisonDueToVMTraps) |
| tallyFrequentExitSites(); |
| #endif // ENABLE(DFG_JIT) |
| |
| // Jettison can happen during GC. We don't want to install code to a dead executable |
| // because that would add a dead object to the remembered set. |
| if (vm.heap.isCurrentThreadBusy() && !vm.heap.isMarked(ownerExecutable())) |
| return; |
| |
| #if ENABLE(JIT) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| if (JITData* jitData = m_jitData.get()) { |
| for (CallLinkInfo* callLinkInfo : jitData->m_callLinkInfos) |
| callLinkInfo->setClearedByJettison(); |
| } |
| } |
| #endif |
| |
| // This accomplishes (2). |
| ownerExecutable()->installCode(vm, alternative(), codeType(), specializationKind()); |
| |
| #if ENABLE(DFG_JIT) |
| if (DFG::shouldDumpDisassembly()) |
| dataLog(" Did install baseline version of ", *this, "\n"); |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) |
| { |
| auto* inlineCallFrame = codeOrigin.inlineCallFrame(); |
| if (!inlineCallFrame) |
| return globalObject(); |
| return inlineCallFrame->baselineCodeBlock->globalObject(); |
| } |
| |
| class RecursionCheckFunctor { |
| public: |
| RecursionCheckFunctor(CallFrame* startCallFrame, CodeBlock* codeBlock, unsigned depthToCheck) |
| : m_startCallFrame(startCallFrame) |
| , m_codeBlock(codeBlock) |
| , m_depthToCheck(depthToCheck) |
| , m_foundStartCallFrame(false) |
| , m_didRecurse(false) |
| { } |
| |
| StackVisitor::Status operator()(StackVisitor& visitor) const |
| { |
| CallFrame* currentCallFrame = visitor->callFrame(); |
| |
| if (currentCallFrame == m_startCallFrame) |
| m_foundStartCallFrame = true; |
| |
| if (m_foundStartCallFrame) { |
| if (visitor->callFrame()->codeBlock() == m_codeBlock) { |
| m_didRecurse = true; |
| return StackVisitor::Done; |
| } |
| |
| if (!m_depthToCheck--) |
| return StackVisitor::Done; |
| } |
| |
| return StackVisitor::Continue; |
| } |
| |
| bool didRecurse() const { return m_didRecurse; } |
| |
| private: |
| CallFrame* m_startCallFrame; |
| CodeBlock* m_codeBlock; |
| mutable unsigned m_depthToCheck; |
| mutable bool m_foundStartCallFrame; |
| mutable bool m_didRecurse; |
| }; |
| |
| void CodeBlock::noticeIncomingCall(CallFrame* callerFrame) |
| { |
| CodeBlock* callerCodeBlock = callerFrame->codeBlock(); |
| |
| dataLogLnIf(Options::verboseCallLink(), "Noticing call link from ", pointerDump(callerCodeBlock), " to ", *this); |
| |
| #if ENABLE(DFG_JIT) |
| if (!m_shouldAlwaysBeInlined) |
| return; |
| |
| if (!callerCodeBlock) { |
| m_shouldAlwaysBeInlined = false; |
| dataLogLnIf(Options::verboseCallLink(), " Clearing SABI because caller is native."); |
| return; |
| } |
| |
| if (!hasBaselineJITProfiling()) |
| return; |
| |
| if (!DFG::mightInlineFunction(this)) |
| return; |
| |
| if (!canInline(capabilityLevelState())) |
| return; |
| |
| if (!DFG::isSmallEnoughToInlineCodeInto(callerCodeBlock)) { |
| m_shouldAlwaysBeInlined = false; |
| dataLogLnIf(Options::verboseCallLink(), " Clearing SABI because caller is too large."); |
| return; |
| } |
| |
| if (callerCodeBlock->jitType() == JITType::InterpreterThunk) { |
| // If the caller is still in the interpreter, then we can't expect inlining to |
| // happen anytime soon. Assume it's profitable to optimize it separately. This |
| // ensures that a function is SABI only if it is called no more frequently than |
| // any of its callers. |
| m_shouldAlwaysBeInlined = false; |
| dataLogLnIf(Options::verboseCallLink(), " Clearing SABI because caller is in LLInt."); |
| return; |
| } |
| |
| if (JITCode::isOptimizingJIT(callerCodeBlock->jitType())) { |
| m_shouldAlwaysBeInlined = false; |
| dataLogLnIf(Options::verboseCallLink(), " Clearing SABI bcause caller was already optimized."); |
| return; |
| } |
| |
| if (callerCodeBlock->codeType() != FunctionCode) { |
| // If the caller is either eval or global code, assume that that won't be |
| // optimized anytime soon. For eval code this is particularly true since we |
| // delay eval optimization by a *lot*. |
| m_shouldAlwaysBeInlined = false; |
| dataLogLnIf(Options::verboseCallLink(), " Clearing SABI because caller is not a function."); |
| return; |
| } |
| |
| // Recursive calls won't be inlined. |
| RecursionCheckFunctor functor(callerFrame, this, Options::maximumInliningDepth()); |
| vm().topCallFrame->iterate(vm(), functor); |
| |
| if (functor.didRecurse()) { |
| dataLogLnIf(Options::verboseCallLink(), " Clearing SABI because recursion was detected."); |
| m_shouldAlwaysBeInlined = false; |
| return; |
| } |
| |
| if (callerCodeBlock->capabilityLevelState() == DFG::CapabilityLevelNotSet) { |
| dataLog("In call from ", FullCodeOrigin(callerCodeBlock, callerFrame->codeOrigin()), " to ", *this, ": caller's DFG capability level is not set.\n"); |
| CRASH(); |
| } |
| |
| if (canCompile(callerCodeBlock->capabilityLevelState())) |
| return; |
| |
| dataLogLnIf(Options::verboseCallLink(), " Clearing SABI because the caller is not a DFG candidate."); |
| |
| m_shouldAlwaysBeInlined = false; |
| #endif |
| } |
| |
| unsigned CodeBlock::reoptimizationRetryCounter() const |
| { |
| #if ENABLE(JIT) |
| ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); |
| return m_reoptimizationRetryCounter; |
| #else |
| return 0; |
| #endif // ENABLE(JIT) |
| } |
| |
| #if !ENABLE(C_LOOP) |
| const RegisterAtOffsetList* CodeBlock::calleeSaveRegisters() const |
| { |
| #if ENABLE(JIT) |
| if (auto* jitData = m_jitData.get()) { |
| if (const RegisterAtOffsetList* registers = jitData->m_calleeSaveRegisters.get()) |
| return registers; |
| } |
| #endif |
| return &RegisterAtOffsetList::llintBaselineCalleeSaveRegisters(); |
| } |
| |
| |
| static size_t roundCalleeSaveSpaceAsVirtualRegisters(size_t calleeSaveRegisters) |
| { |
| |
| return (WTF::roundUpToMultipleOf(sizeof(Register), calleeSaveRegisters * sizeof(CPURegister)) / sizeof(Register)); |
| |
| } |
| |
| size_t CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters() |
| { |
| return roundCalleeSaveSpaceAsVirtualRegisters(numberOfLLIntBaselineCalleeSaveRegisters()); |
| } |
| |
| size_t CodeBlock::calleeSaveSpaceAsVirtualRegisters() |
| { |
| return roundCalleeSaveSpaceAsVirtualRegisters(calleeSaveRegisters()->size()); |
| } |
| #endif |
| |
| #if ENABLE(JIT) |
| |
| void CodeBlock::countReoptimization() |
| { |
| m_reoptimizationRetryCounter++; |
| if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) |
| m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); |
| } |
| |
| unsigned CodeBlock::numberOfDFGCompiles() |
| { |
| ASSERT(JITCode::isBaselineCode(jitType())); |
| if (Options::testTheFTL()) { |
| if (m_didFailFTLCompilation) |
| return 1000000; |
| return (m_hasBeenCompiledWithFTL ? 1 : 0) + m_reoptimizationRetryCounter; |
| } |
| CodeBlock* replacement = this->replacement(); |
| return ((replacement && JITCode::isOptimizingJIT(replacement->jitType())) ? 1 : 0) + m_reoptimizationRetryCounter; |
| } |
| |
| int32_t CodeBlock::codeTypeThresholdMultiplier() const |
| { |
| if (codeType() == EvalCode) |
| return Options::evalThresholdMultiplier(); |
| |
| return 1; |
| } |
| |
| double CodeBlock::optimizationThresholdScalingFactor() |
| { |
| // This expression arises from doing a least-squares fit of |
| // |
| // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d |
| // |
| // against the data points: |
| // |
| // x F[x_] |
| // 10 0.9 (smallest reasonable code block) |
| // 200 1.0 (typical small-ish code block) |
| // 320 1.2 (something I saw in 3d-cube that I wanted to optimize) |
| // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize) |
| // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort) |
| // 10000 6.0 (similar to above) |
| // |
| // I achieve the minimization using the following Mathematica code: |
| // |
| // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d |
| // |
| // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} |
| // |
| // solution = |
| // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), |
| // {a, b, c, d}][[2]] |
| // |
| // And the code below (to initialize a, b, c, d) is generated by: |
| // |
| // Print["const double " <> ToString[#[[1]]] <> " = " <> |
| // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution |
| // |
| // We've long known the following to be true: |
| // - Small code blocks are cheap to optimize and so we should do it sooner rather |
| // than later. |
| // - Large code blocks are expensive to optimize and so we should postpone doing so, |
| // and sometimes have a large enough threshold that we never optimize them. |
| // - The difference in cost is not totally linear because (a) just invoking the |
| // DFG incurs some base cost and (b) for large code blocks there is enough slop |
| // in the correlation between instruction count and the actual compilation cost |
| // that for those large blocks, the instruction count should not have a strong |
| // influence on our threshold. |
| // |
| // I knew the goals but I didn't know how to achieve them; so I picked an interesting |
| // example where the heuristics were right (code block in 3d-cube with instruction |
| // count 320, which got compiled early as it should have been) and one where they were |
| // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive |
| // to compile and didn't run often enough to warrant compilation in my opinion), and |
| // then threw in additional data points that represented my own guess of what our |
| // heuristics should do for some round-numbered examples. |
| // |
| // The expression to which I decided to fit the data arose because I started with an |
| // affine function, and then did two things: put the linear part in an Abs to ensure |
| // that the fit didn't end up choosing a negative value of c (which would result in |
| // the function turning over and going negative for large x) and I threw in a Sqrt |
| // term because Sqrt represents my intution that the function should be more sensitive |
| // to small changes in small values of x, but less sensitive when x gets large. |
| |
| // Note that the current fit essentially eliminates the linear portion of the |
| // expression (c == 0.0). |
| const double a = 0.061504; |
| const double b = 1.02406; |
| const double c = 0.0; |
| const double d = 0.825914; |
| |
| double bytecodeCost = this->bytecodeCost(); |
| |
| ASSERT(bytecodeCost); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. |
| |
| double result = d + a * sqrt(bytecodeCost + b) + c * bytecodeCost; |
| |
| result *= codeTypeThresholdMultiplier(); |
| |
| dataLogLnIf(Options::verboseOSR(), |
| *this, ": bytecode cost is ", bytecodeCost, |
| ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier()); |
| return result; |
| } |
| |
| static int32_t clipThreshold(double threshold) |
| { |
| if (threshold < 1.0) |
| return 1; |
| |
| if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max())) |
| return std::numeric_limits<int32_t>::max(); |
| |
| return static_cast<int32_t>(threshold); |
| } |
| |
| int32_t CodeBlock::adjustedCounterValue(int32_t desiredThreshold) |
| { |
| return clipThreshold( |
| static_cast<double>(desiredThreshold) * |
| optimizationThresholdScalingFactor() * |
| (1 << reoptimizationRetryCounter())); |
| } |
| |
| bool CodeBlock::checkIfOptimizationThresholdReached() |
| { |
| #if ENABLE(DFG_JIT) |
| if (DFG::Worklist* worklist = DFG::existingGlobalDFGWorklistOrNull()) { |
| if (worklist->compilationState(DFG::CompilationKey(this, DFG::DFGMode)) |
| == DFG::Worklist::Compiled) { |
| optimizeNextInvocation(); |
| return true; |
| } |
| } |
| #endif |
| |
| return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| auto CodeBlock::updateOSRExitCounterAndCheckIfNeedToReoptimize(DFG::OSRExitState& exitState) -> OptimizeAction |
| { |
| DFG::OSRExitBase& exit = exitState.exit; |
| if (!exitKindMayJettison(exit.m_kind)) { |
| // FIXME: We may want to notice that we're frequently exiting |
| // at an op_catch that we didn't compile an entrypoint for, and |
| // then trigger a reoptimization of this CodeBlock: |
| // https://bugs.webkit.org/show_bug.cgi?id=175842 |
| return OptimizeAction::None; |
| } |
| |
| exit.m_count++; |
| m_osrExitCounter++; |
| |
| CodeBlock* baselineCodeBlock = exitState.baselineCodeBlock; |
| ASSERT(baselineCodeBlock == baselineAlternative()); |
| if (UNLIKELY(baselineCodeBlock->jitExecuteCounter().hasCrossedThreshold())) |
| return OptimizeAction::ReoptimizeNow; |
| |
| // We want to figure out if there's a possibility that we're in a loop. For the outermost |
| // code block in the inline stack, we handle this appropriately by having the loop OSR trigger |
| // check the exit count of the replacement of the CodeBlock from which we are OSRing. The |
| // problem is the inlined functions, which might also have loops, but whose baseline versions |
| // don't know where to look for the exit count. Figure out if those loops are severe enough |
| // that we had tried to OSR enter. If so, then we should use the loop reoptimization trigger. |
| // Otherwise, we should use the normal reoptimization trigger. |
| |
| bool didTryToEnterInLoop = false; |
| for (InlineCallFrame* inlineCallFrame = exit.m_codeOrigin.inlineCallFrame(); inlineCallFrame; inlineCallFrame = inlineCallFrame->directCaller.inlineCallFrame()) { |
| if (inlineCallFrame->baselineCodeBlock->ownerExecutable()->didTryToEnterInLoop()) { |
| didTryToEnterInLoop = true; |
| break; |
| } |
| } |
| |
| uint32_t exitCountThreshold = didTryToEnterInLoop |
| ? exitCountThresholdForReoptimizationFromLoop() |
| : exitCountThresholdForReoptimization(); |
| |
| if (m_osrExitCounter > exitCountThreshold) |
| return OptimizeAction::ReoptimizeNow; |
| |
| // Too few fails. Adjust the execution counter such that the target is to only optimize after a while. |
| baselineCodeBlock->m_jitExecuteCounter.setNewThresholdForOSRExit(exitState.activeThreshold, exitState.memoryUsageAdjustedThreshold); |
| return OptimizeAction::None; |
| } |
| #endif |
| |
| void CodeBlock::optimizeNextInvocation() |
| { |
| dataLogLnIf(Options::verboseOSR(), *this, ": Optimizing next invocation."); |
| m_jitExecuteCounter.setNewThreshold(0, this); |
| } |
| |
| void CodeBlock::dontOptimizeAnytimeSoon() |
| { |
| dataLogLnIf(Options::verboseOSR(), *this, ": Not optimizing anytime soon."); |
| m_jitExecuteCounter.deferIndefinitely(); |
| } |
| |
| void CodeBlock::optimizeAfterWarmUp() |
| { |
| dataLogLnIf(Options::verboseOSR(), *this, ": Optimizing after warm-up."); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold( |
| adjustedCounterValue(Options::thresholdForOptimizeAfterWarmUp()), this); |
| #endif |
| } |
| |
| void CodeBlock::optimizeAfterLongWarmUp() |
| { |
| dataLogLnIf(Options::verboseOSR(), *this, ": Optimizing after long warm-up."); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold( |
| adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp()), this); |
| #endif |
| } |
| |
| void CodeBlock::optimizeSoon() |
| { |
| dataLogLnIf(Options::verboseOSR(), *this, ": Optimizing soon."); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold( |
| adjustedCounterValue(Options::thresholdForOptimizeSoon()), this); |
| #endif |
| } |
| |
| void CodeBlock::forceOptimizationSlowPathConcurrently() |
| { |
| dataLogLnIf(Options::verboseOSR(), *this, ": Forcing slow path concurrently."); |
| m_jitExecuteCounter.forceSlowPathConcurrently(); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result) |
| { |
| JITType type = jitType(); |
| if (type != JITType::BaselineJIT) { |
| dataLogLn(*this, ": expected to have baseline code but have ", type); |
| CRASH_WITH_INFO(bitwise_cast<uintptr_t>(jitCode().get()), static_cast<uint8_t>(type)); |
| } |
| |
| CodeBlock* replacement = this->replacement(); |
| bool hasReplacement = (replacement && replacement != this); |
| if ((result == CompilationSuccessful) != hasReplacement) { |
| dataLog(*this, ": we have result = ", result, " but "); |
| if (replacement == this) |
| dataLog("we are our own replacement.\n"); |
| else |
| dataLog("our replacement is ", pointerDump(replacement), "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| switch (result) { |
| case CompilationSuccessful: |
| RELEASE_ASSERT(replacement && JITCode::isOptimizingJIT(replacement->jitType())); |
| optimizeNextInvocation(); |
| return; |
| case CompilationFailed: |
| dontOptimizeAnytimeSoon(); |
| return; |
| case CompilationDeferred: |
| // We'd like to do dontOptimizeAnytimeSoon() but we cannot because |
| // forceOptimizationSlowPathConcurrently() is inherently racy. It won't |
| // necessarily guarantee anything. So, we make sure that even if that |
| // function ends up being a no-op, we still eventually retry and realize |
| // that we have optimized code ready. |
| optimizeAfterWarmUp(); |
| return; |
| case CompilationInvalidated: |
| // Retry with exponential backoff. |
| countReoptimization(); |
| optimizeAfterWarmUp(); |
| return; |
| } |
| |
| dataLog("Unrecognized result: ", static_cast<int>(result), "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| #endif |
| |
| uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) |
| { |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| // Compute this the lame way so we don't saturate. This is called infrequently |
| // enough that this loop won't hurt us. |
| unsigned result = desiredThreshold; |
| for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { |
| unsigned newResult = result << 1; |
| if (newResult < result) |
| return std::numeric_limits<uint32_t>::max(); |
| result = newResult; |
| } |
| return result; |
| } |
| |
| uint32_t CodeBlock::exitCountThresholdForReoptimization() |
| { |
| return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); |
| } |
| |
| uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() |
| { |
| return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); |
| } |
| |
| bool CodeBlock::shouldReoptimizeNow() |
| { |
| return osrExitCounter() >= exitCountThresholdForReoptimization(); |
| } |
| |
| bool CodeBlock::shouldReoptimizeFromLoopNow() |
| { |
| return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); |
| } |
| #endif |
| |
| ArrayProfile* CodeBlock::getArrayProfile(const ConcurrentJSLocker&, BytecodeIndex bytecodeIndex) |
| { |
| auto instruction = instructions().at(bytecodeIndex); |
| switch (instruction->opcodeID()) { |
| #define CASE1(Op) \ |
| case Op::opcodeID: \ |
| return &instruction->as<Op>().metadata(this).m_arrayProfile; |
| |
| #define CASE2(Op) \ |
| case Op::opcodeID: \ |
| return &instruction->as<Op>().metadata(this).m_callLinkInfo.m_arrayProfile; |
| |
| FOR_EACH_OPCODE_WITH_ARRAY_PROFILE(CASE1) |
| FOR_EACH_OPCODE_WITH_LLINT_CALL_LINK_INFO(CASE2) |
| |
| #undef CASE1 |
| #undef CASE2 |
| |
| case OpGetById::opcodeID: { |
| auto bytecode = instruction->as<OpGetById>(); |
| auto& metadata = bytecode.metadata(this); |
| if (metadata.m_modeMetadata.mode == GetByIdMode::ArrayLength) |
| return &metadata.m_modeMetadata.arrayLengthMode.arrayProfile; |
| break; |
| } |
| default: |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| ArrayProfile* CodeBlock::getArrayProfile(BytecodeIndex bytecodeIndex) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return getArrayProfile(locker, bytecodeIndex); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| DFG::CodeOriginPool& CodeBlock::codeOrigins() |
| { |
| return m_jitCode->dfgCommon()->codeOrigins.get(); |
| } |
| |
| size_t CodeBlock::numberOfDFGIdentifiers() const |
| { |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return 0; |
| |
| return m_jitCode->dfgCommon()->dfgIdentifiers.size(); |
| } |
| |
| const Identifier& CodeBlock::identifier(int index) const |
| { |
| size_t unlinkedIdentifiers = m_unlinkedCode->numberOfIdentifiers(); |
| if (static_cast<unsigned>(index) < unlinkedIdentifiers) |
| return m_unlinkedCode->identifier(index); |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| return m_jitCode->dfgCommon()->dfgIdentifiers[index - unlinkedIdentifiers]; |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| void CodeBlock::updateAllValueProfilePredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| |
| numberOfLiveNonArgumentValueProfiles = 0; |
| numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. |
| |
| forEachValueProfile([&](ValueProfile& profile, bool isArgument) { |
| unsigned numSamples = profile.totalNumberOfSamples(); |
| static_assert(ValueProfile::numberOfBuckets == 1); |
| if (numSamples > ValueProfile::numberOfBuckets) |
| numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. |
| numberOfSamplesInProfiles += numSamples; |
| if (isArgument) { |
| profile.computeUpdatedPrediction(locker); |
| return; |
| } |
| if (profile.numberOfSamples() || profile.isSampledBefore()) |
| numberOfLiveNonArgumentValueProfiles++; |
| profile.computeUpdatedPrediction(locker); |
| }); |
| |
| if (auto* rareData = m_rareData.get()) { |
| for (auto& profileBucket : rareData->m_catchProfiles) { |
| profileBucket->forEach([&] (ValueProfileAndVirtualRegister& profile) { |
| profile.computeUpdatedPrediction(locker); |
| }); |
| } |
| } |
| |
| #if ENABLE(DFG_JIT) |
| lazyOperandValueProfiles(locker).computeUpdatedPredictions(locker); |
| #endif |
| } |
| |
| void CodeBlock::updateAllValueProfilePredictions() |
| { |
| unsigned ignoredValue1, ignoredValue2; |
| updateAllValueProfilePredictionsAndCountLiveness(ignoredValue1, ignoredValue2); |
| } |
| |
| void CodeBlock::updateAllArrayPredictions() |
| { |
| ConcurrentJSLocker locker(m_lock); |
| |
| forEachArrayProfile([&](ArrayProfile& profile) { |
| profile.computeUpdatedPrediction(locker, this); |
| }); |
| |
| forEachArrayAllocationProfile([&](ArrayAllocationProfile& profile) { |
| profile.updateProfile(); |
| }); |
| } |
| |
| void CodeBlock::updateAllPredictions() |
| { |
| updateAllValueProfilePredictions(); |
| updateAllArrayPredictions(); |
| } |
| |
| bool CodeBlock::shouldOptimizeNow() |
| { |
| dataLogLnIf(Options::verboseOSR(), "Considering optimizing ", *this, "..."); |
| |
| if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) |
| return true; |
| |
| updateAllArrayPredictions(); |
| |
| unsigned numberOfLiveNonArgumentValueProfiles; |
| unsigned numberOfSamplesInProfiles; |
| updateAllValueProfilePredictionsAndCountLiveness(numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); |
| |
| if (Options::verboseOSR()) { |
| dataLogF( |
| "Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", |
| (double)numberOfLiveNonArgumentValueProfiles / numberOfNonArgumentValueProfiles(), |
| numberOfLiveNonArgumentValueProfiles, numberOfNonArgumentValueProfiles(), |
| (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfNonArgumentValueProfiles(), |
| numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfNonArgumentValueProfiles()); |
| } |
| |
| if ((!numberOfNonArgumentValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfNonArgumentValueProfiles() >= Options::desiredProfileLivenessRate()) |
| && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) |
| && static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) |
| return true; |
| |
| ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max()); |
| m_optimizationDelayCounter++; |
| optimizeAfterWarmUp(); |
| return false; |
| } |
| |
| #if ENABLE(DFG_JIT) |
| void CodeBlock::tallyFrequentExitSites() |
| { |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| ASSERT(JITCode::isBaselineCode(alternative()->jitType())); |
| |
| CodeBlock* profiledBlock = alternative(); |
| |
| switch (jitType()) { |
| case JITType::DFGJIT: { |
| DFG::JITCode* jitCode = m_jitCode->dfg(); |
| for (auto& exit : jitCode->osrExit) |
| exit.considerAddingAsFrequentExitSite(profiledBlock); |
| break; |
| } |
| |
| #if ENABLE(FTL_JIT) |
| case JITType::FTLJIT: { |
| // There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit |
| // vector contains a totally different type, that just so happens to behave like |
| // DFG::JITCode::osrExit. |
| FTL::JITCode* jitCode = m_jitCode->ftl(); |
| for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { |
| FTL::OSRExit& exit = jitCode->osrExit[i]; |
| exit.considerAddingAsFrequentExitSite(profiledBlock); |
| } |
| break; |
| } |
| #endif |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| void CodeBlock::notifyLexicalBindingUpdate() |
| { |
| JSGlobalObject* globalObject = m_globalObject.get(); |
| JSGlobalLexicalEnvironment* globalLexicalEnvironment = jsCast<JSGlobalLexicalEnvironment*>(globalObject->globalScope()); |
| SymbolTable* symbolTable = globalLexicalEnvironment->symbolTable(); |
| |
| ConcurrentJSLocker locker(m_lock); |
| |
| auto isShadowed = [&] (UniquedStringImpl* uid) { |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| return symbolTable->contains(locker, uid); |
| }; |
| |
| const InstructionStream& instructionStream = instructions(); |
| for (const auto& instruction : instructionStream) { |
| OpcodeID opcodeID = instruction->opcodeID(); |
| switch (opcodeID) { |
| case op_resolve_scope: { |
| auto bytecode = instruction->as<OpResolveScope>(); |
| auto& metadata = bytecode.metadata(this); |
| ResolveType originalResolveType = metadata.m_resolveType; |
| if (originalResolveType == GlobalProperty || originalResolveType == GlobalPropertyWithVarInjectionChecks) { |
| const Identifier& ident = identifier(bytecode.m_var); |
| if (isShadowed(ident.impl())) |
| metadata.m_globalLexicalBindingEpoch = 0; |
| else |
| metadata.m_globalLexicalBindingEpoch = globalObject->globalLexicalBindingEpoch(); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| } |
| |
| #if ENABLE(VERBOSE_VALUE_PROFILE) |
| void CodeBlock::dumpValueProfiles() |
| { |
| dataLog("ValueProfile for ", *this, ":\n"); |
| forEachValueProfile([](ValueProfile& profile, bool isArgument) { |
| if (isArgument) |
| dataLogF(" arg: "); |
| else |
| dataLogF(" bc: "); |
| if (!profile.numberOfSamples() && profile.m_prediction == SpecNone) { |
| dataLogF("<empty>\n"); |
| continue; |
| } |
| profile.dump(WTF::dataFile()); |
| dataLogF("\n"); |
| }); |
| dataLog("RareCaseProfile for ", *this, ":\n"); |
| if (auto* jitData = m_jitData.get()) { |
| for (RareCaseProfile* profile : jitData->m_rareCaseProfiles) |
| dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); |
| } |
| } |
| #endif // ENABLE(VERBOSE_VALUE_PROFILE) |
| |
| unsigned CodeBlock::frameRegisterCount() |
| { |
| switch (jitType()) { |
| case JITType::InterpreterThunk: |
| return LLInt::frameRegisterCountFor(this); |
| |
| #if ENABLE(JIT) |
| case JITType::BaselineJIT: |
| return JIT::frameRegisterCountFor(this); |
| #endif // ENABLE(JIT) |
| |
| #if ENABLE(DFG_JIT) |
| case JITType::DFGJIT: |
| case JITType::FTLJIT: |
| return jitCode()->dfgCommon()->frameRegisterCount; |
| #endif // ENABLE(DFG_JIT) |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| } |
| |
| int CodeBlock::stackPointerOffset() |
| { |
| return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); |
| } |
| |
| size_t CodeBlock::predictedMachineCodeSize() |
| { |
| VM* vm = m_vm; |
| // This will be called from CodeBlock::CodeBlock before either m_vm or the |
| // instructions have been initialized. It's OK to return 0 because what will really |
| // matter is the recomputation of this value when the slow path is triggered. |
| if (!vm) |
| return 0; |
| |
| if (!*vm->machineCodeBytesPerBytecodeWordForBaselineJIT) |
| return 0; // It's as good of a prediction as we'll get. |
| |
| // Be conservative: return a size that will be an overestimation 84% of the time. |
| double multiplier = vm->machineCodeBytesPerBytecodeWordForBaselineJIT->mean() + |
| vm->machineCodeBytesPerBytecodeWordForBaselineJIT->standardDeviation(); |
| |
| // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing |
| // here is OK, since this whole method is just a heuristic. |
| if (multiplier < 0 || multiplier > 1000) |
| return 0; |
| |
| double doubleResult = multiplier * bytecodeCost(); |
| |
| // Be even more paranoid: silently reject values that won't fit into a size_t. If |
| // the function is so huge that we can't even fit it into virtual memory then we |
| // should probably have some other guards in place to prevent us from even getting |
| // to this point. |
| if (doubleResult >= maxPlusOne<size_t>) |
| return 0; |
| |
| return static_cast<size_t>(doubleResult); |
| } |
| |
| String CodeBlock::nameForRegister(VirtualRegister virtualRegister) |
| { |
| for (auto& constantRegister : m_constantRegisters) { |
| if (constantRegister.get().isEmpty()) |
| continue; |
| if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(vm(), constantRegister.get())) { |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| auto end = symbolTable->end(locker); |
| for (auto ptr = symbolTable->begin(locker); ptr != end; ++ptr) { |
| if (ptr->value.varOffset() == VarOffset(virtualRegister)) { |
| // FIXME: This won't work from the compilation thread. |
| // https://bugs.webkit.org/show_bug.cgi?id=115300 |
| return ptr->key.get(); |
| } |
| } |
| } |
| } |
| if (virtualRegister == thisRegister()) |
| return "this"_s; |
| if (virtualRegister.isArgument()) |
| return makeString("arguments[", pad(' ', 3, virtualRegister.toArgument()), ']'); |
| |
| return emptyString(); |
| } |
| |
| ValueProfile* CodeBlock::tryGetValueProfileForBytecodeIndex(BytecodeIndex bytecodeIndex) |
| { |
| auto instruction = instructions().at(bytecodeIndex); |
| switch (instruction->opcodeID()) { |
| |
| #define CASE(Op) \ |
| case Op::opcodeID: \ |
| return &instruction->as<Op>().metadata(this).m_profile; |
| |
| FOR_EACH_OPCODE_WITH_VALUE_PROFILE(CASE) |
| |
| #undef CASE |
| |
| case op_iterator_open: |
| return &valueProfileFor(instruction->as<OpIteratorOpen>().metadata(this), bytecodeIndex.checkpoint()); |
| case op_iterator_next: |
| return &valueProfileFor(instruction->as<OpIteratorNext>().metadata(this), bytecodeIndex.checkpoint()); |
| |
| default: |
| return nullptr; |
| |
| } |
| } |
| |
| SpeculatedType CodeBlock::valueProfilePredictionForBytecodeIndex(const ConcurrentJSLocker& locker, BytecodeIndex bytecodeIndex) |
| { |
| if (ValueProfile* valueProfile = tryGetValueProfileForBytecodeIndex(bytecodeIndex)) |
| return valueProfile->computeUpdatedPrediction(locker); |
| return SpecNone; |
| } |
| |
| ValueProfile& CodeBlock::valueProfileForBytecodeIndex(BytecodeIndex bytecodeIndex) |
| { |
| return *tryGetValueProfileForBytecodeIndex(bytecodeIndex); |
| } |
| |
| void CodeBlock::validate() |
| { |
| BytecodeLivenessAnalysis liveness(this); // Compute directly from scratch so it doesn't effect CodeBlock footprint. |
| |
| FastBitVector liveAtHead = liveness.getLivenessInfoAtBytecodeIndex(this, BytecodeIndex(0)); |
| |
| if (liveAtHead.numBits() != static_cast<size_t>(m_numCalleeLocals)) { |
| beginValidationDidFail(); |
| dataLog(" Wrong number of bits in result!\n"); |
| dataLog(" Result: ", liveAtHead, "\n"); |
| dataLog(" Bit count: ", liveAtHead.numBits(), "\n"); |
| endValidationDidFail(); |
| } |
| |
| for (unsigned i = m_numCalleeLocals; i--;) { |
| VirtualRegister reg = virtualRegisterForLocal(i); |
| |
| if (liveAtHead[i]) { |
| beginValidationDidFail(); |
| dataLog(" Variable ", reg, " is expected to be dead.\n"); |
| dataLog(" Result: ", liveAtHead, "\n"); |
| endValidationDidFail(); |
| } |
| } |
| |
| const InstructionStream& instructionStream = instructions(); |
| for (const auto& instruction : instructionStream) { |
| OpcodeID opcode = instruction->opcodeID(); |
| if (!!baselineAlternative()->handlerForBytecodeIndex(BytecodeIndex(instruction.offset()))) { |
| if (opcode == op_catch || opcode == op_enter) { |
| // op_catch/op_enter logically represent an entrypoint. Entrypoints are not allowed to be |
| // inside of a try block because they are responsible for bootstrapping state. And they |
| // are never allowed throw an exception because of this. We rely on this when compiling |
| // in the DFG. Because an entrypoint never throws, the bytecode generator will never |
| // allow once inside a try block. |
| beginValidationDidFail(); |
| dataLog(" entrypoint not allowed inside a try block."); |
| endValidationDidFail(); |
| } |
| } |
| } |
| } |
| |
| void CodeBlock::beginValidationDidFail() |
| { |
| dataLog("Validation failure in ", *this, ":\n"); |
| dataLog("\n"); |
| } |
| |
| void CodeBlock::endValidationDidFail() |
| { |
| dataLog("\n"); |
| dumpBytecode(); |
| dataLog("\n"); |
| dataLog("Validation failure.\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| void CodeBlock::addBreakpoint(unsigned numBreakpoints) |
| { |
| m_numBreakpoints += numBreakpoints; |
| ASSERT(m_numBreakpoints); |
| if (JITCode::isOptimizingJIT(jitType())) |
| jettison(Profiler::JettisonDueToDebuggerBreakpoint); |
| } |
| |
| void CodeBlock::setSteppingMode(CodeBlock::SteppingMode mode) |
| { |
| m_steppingMode = mode; |
| if (mode == SteppingModeEnabled && JITCode::isOptimizingJIT(jitType())) |
| jettison(Profiler::JettisonDueToDebuggerStepping); |
| } |
| |
| int CodeBlock::outOfLineJumpOffset(const Instruction* pc) |
| { |
| int offset = bytecodeOffset(pc); |
| return m_unlinkedCode->outOfLineJumpOffset(offset); |
| } |
| |
| const Instruction* CodeBlock::outOfLineJumpTarget(const Instruction* pc) |
| { |
| int offset = bytecodeOffset(pc); |
| int target = m_unlinkedCode->outOfLineJumpOffset(offset); |
| return instructions().at(offset + target).ptr(); |
| } |
| |
| BinaryArithProfile* CodeBlock::binaryArithProfileForBytecodeIndex(BytecodeIndex bytecodeIndex) |
| { |
| return binaryArithProfileForPC(instructions().at(bytecodeIndex.offset()).ptr()); |
| } |
| |
| UnaryArithProfile* CodeBlock::unaryArithProfileForBytecodeIndex(BytecodeIndex bytecodeIndex) |
| { |
| return unaryArithProfileForPC(instructions().at(bytecodeIndex.offset()).ptr()); |
| } |
| |
| BinaryArithProfile* CodeBlock::binaryArithProfileForPC(const Instruction* pc) |
| { |
| switch (pc->opcodeID()) { |
| case op_add: |
| return &pc->as<OpAdd>().metadata(this).m_arithProfile; |
| case op_mul: |
| return &pc->as<OpMul>().metadata(this).m_arithProfile; |
| case op_sub: |
| return &pc->as<OpSub>().metadata(this).m_arithProfile; |
| case op_div: |
| return &pc->as<OpDiv>().metadata(this).m_arithProfile; |
| default: |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| UnaryArithProfile* CodeBlock::unaryArithProfileForPC(const Instruction* pc) |
| { |
| switch (pc->opcodeID()) { |
| case op_negate: |
| return &pc->as<OpNegate>().metadata(this).m_arithProfile; |
| case op_inc: |
| return &pc->as<OpInc>().metadata(this).m_arithProfile; |
| case op_dec: |
| return &pc->as<OpDec>().metadata(this).m_arithProfile; |
| default: |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| bool CodeBlock::couldTakeSpecialArithFastCase(BytecodeIndex bytecodeIndex) |
| { |
| if (!hasBaselineJITProfiling()) |
| return false; |
| BinaryArithProfile* profile = binaryArithProfileForBytecodeIndex(bytecodeIndex); |
| if (!profile) |
| return false; |
| return profile->tookSpecialFastPath(); |
| } |
| |
| #if ENABLE(JIT) |
| DFG::CapabilityLevel CodeBlock::capabilityLevel() |
| { |
| DFG::CapabilityLevel result = computeCapabilityLevel(); |
| m_capabilityLevelState = result; |
| return result; |
| } |
| #endif |
| |
| void CodeBlock::insertBasicBlockBoundariesForControlFlowProfiler() |
| { |
| if (!unlinkedCodeBlock()->hasOpProfileControlFlowBytecodeOffsets()) |
| return; |
| const RefCountedArray<InstructionStream::Offset>& bytecodeOffsets = unlinkedCodeBlock()->opProfileControlFlowBytecodeOffsets(); |
| for (size_t i = 0, offsetsLength = bytecodeOffsets.size(); i < offsetsLength; i++) { |
| // Because op_profile_control_flow is emitted at the beginning of every basic block, finding |
| // the next op_profile_control_flow will give us the text range of a single basic block. |
| size_t startIdx = bytecodeOffsets[i]; |
| auto instruction = instructions().at(startIdx); |
| RELEASE_ASSERT(instruction->opcodeID() == op_profile_control_flow); |
| auto bytecode = instruction->as<OpProfileControlFlow>(); |
| auto& metadata = bytecode.metadata(this); |
| int basicBlockStartOffset = bytecode.m_textOffset; |
| int basicBlockEndOffset; |
| if (i + 1 < offsetsLength) { |
| size_t endIdx = bytecodeOffsets[i + 1]; |
| auto endInstruction = instructions().at(endIdx); |
| RELEASE_ASSERT(endInstruction->opcodeID() == op_profile_control_flow); |
| basicBlockEndOffset = endInstruction->as<OpProfileControlFlow>().m_textOffset - 1; |
| } else { |
| basicBlockEndOffset = sourceOffset() + ownerExecutable()->source().length() - 1; // Offset before the closing brace. |
| basicBlockStartOffset = std::min(basicBlockStartOffset, basicBlockEndOffset); // Some start offsets may be at the closing brace, ensure it is the offset before. |
| } |
| |
| // The following check allows for the same textual JavaScript basic block to have its bytecode emitted more |
| // than once and still play nice with the control flow profiler. When basicBlockStartOffset is larger than |
| // basicBlockEndOffset, it indicates that the bytecode generator has emitted code for the same AST node |
| // more than once (for example: ForInNode, Finally blocks in TryNode, etc). Though these are different |
| // basic blocks at the bytecode level, they are generated from the same textual basic block in the JavaScript |
| // program. The condition: |
| // (basicBlockEndOffset < basicBlockStartOffset) |
| // is encountered when op_profile_control_flow lies across the boundary of these duplicated bytecode basic |
| // blocks and the textual offset goes from the end of the duplicated block back to the beginning. These |
| // ranges are dummy ranges and are ignored. The duplicated bytecode basic blocks point to the same |
| // internal data structure, so if any of them execute, it will record the same textual basic block in the |
| // JavaScript program as executing. |
| // At the bytecode level, this situation looks like: |
| // j: op_profile_control_flow (from j->k, we have basicBlockEndOffset < basicBlockStartOffset) |
| // ... |
| // k: op_profile_control_flow (we want to skip over the j->k block and start fresh at offset k as the start of a new basic block k->m). |
| // ... |
| // m: op_profile_control_flow |
| if (basicBlockEndOffset < basicBlockStartOffset) { |
| RELEASE_ASSERT(i + 1 < offsetsLength); // We should never encounter dummy blocks at the end of a CodeBlock. |
| metadata.m_basicBlockLocation = vm().controlFlowProfiler()->dummyBasicBlock(); |
| continue; |
| } |
| |
| BasicBlockLocation* basicBlockLocation = vm().controlFlowProfiler()->getBasicBlockLocation(ownerExecutable()->sourceID(), basicBlockStartOffset, basicBlockEndOffset); |
| |
| // Find all functions that are enclosed within the range: [basicBlockStartOffset, basicBlockEndOffset] |
| // and insert these functions' start/end offsets as gaps in the current BasicBlockLocation. |
| // This is necessary because in the original source text of a JavaScript program, |
| // function literals form new basic blocks boundaries, but they aren't represented |
| // inside the CodeBlock's instruction stream. |
| auto insertFunctionGaps = [basicBlockLocation, basicBlockStartOffset, basicBlockEndOffset] (const WriteBarrier<FunctionExecutable>& functionExecutable) { |
| const UnlinkedFunctionExecutable* executable = functionExecutable->unlinkedExecutable(); |
| int functionStart = executable->typeProfilingStartOffset(); |
| int functionEnd = executable->typeProfilingEndOffset(); |
| if (functionStart >= basicBlockStartOffset && functionEnd <= basicBlockEndOffset) |
| basicBlockLocation->insertGap(functionStart, functionEnd); |
| }; |
| |
| for (const WriteBarrier<FunctionExecutable>& executable : m_functionDecls) |
| insertFunctionGaps(executable); |
| for (const WriteBarrier<FunctionExecutable>& executable : m_functionExprs) |
| insertFunctionGaps(executable); |
| |
| metadata.m_basicBlockLocation = basicBlockLocation; |
| } |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::setPCToCodeOriginMap(std::unique_ptr<PCToCodeOriginMap>&& map) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| ensureJITData(locker).m_pcToCodeOriginMap = WTFMove(map); |
| } |
| |
| Optional<CodeOrigin> CodeBlock::findPC(void* pc) |
| { |
| { |
| ConcurrentJSLocker locker(m_lock); |
| if (auto* jitData = m_jitData.get()) { |
| if (jitData->m_pcToCodeOriginMap) { |
| if (Optional<CodeOrigin> codeOrigin = jitData->m_pcToCodeOriginMap->findPC(pc)) |
| return codeOrigin; |
| } |
| |
| for (StructureStubInfo* stubInfo : jitData->m_stubInfos) { |
| if (stubInfo->containsPC(pc)) |
| return Optional<CodeOrigin>(stubInfo->codeOrigin); |
| } |
| } |
| } |
| |
| if (Optional<CodeOrigin> codeOrigin = m_jitCode->findPC(this, pc)) |
| return codeOrigin; |
| |
| return WTF::nullopt; |
| } |
| #endif // ENABLE(JIT) |
| |
| Optional<BytecodeIndex> CodeBlock::bytecodeIndexFromCallSiteIndex(CallSiteIndex callSiteIndex) |
| { |
| Optional<BytecodeIndex> bytecodeIndex; |
| JITType jitType = this->jitType(); |
| if (jitType == JITType::InterpreterThunk || jitType == JITType::BaselineJIT) |
| bytecodeIndex = callSiteIndex.bytecodeIndex(); |
| else if (jitType == JITType::DFGJIT || jitType == JITType::FTLJIT) { |
| #if ENABLE(DFG_JIT) |
| RELEASE_ASSERT(canGetCodeOrigin(callSiteIndex)); |
| CodeOrigin origin = codeOrigin(callSiteIndex); |
| bytecodeIndex = origin.bytecodeIndex(); |
| #else |
| RELEASE_ASSERT_NOT_REACHED(); |
| #endif |
| } |
| |
| return bytecodeIndex; |
| } |
| |
| int32_t CodeBlock::thresholdForJIT(int32_t threshold) |
| { |
| switch (unlinkedCodeBlock()->didOptimize()) { |
| case TriState::Indeterminate: |
| return threshold; |
| case TriState::False: |
| return threshold * 4; |
| case TriState::True: |
| return threshold / 2; |
| } |
| ASSERT_NOT_REACHED(); |
| return threshold; |
| } |
| |
| void CodeBlock::jitAfterWarmUp() |
| { |
| m_llintExecuteCounter.setNewThreshold(thresholdForJIT(Options::thresholdForJITAfterWarmUp()), this); |
| } |
| |
| void CodeBlock::jitSoon() |
| { |
| m_llintExecuteCounter.setNewThreshold(thresholdForJIT(Options::thresholdForJITSoon()), this); |
| } |
| |
| bool CodeBlock::hasInstalledVMTrapBreakpoints() const |
| { |
| #if ENABLE(SIGNAL_BASED_VM_TRAPS) |
| // This function may be called from a signal handler. We need to be |
| // careful to not call anything that is not signal handler safe, e.g. |
| // we should not perturb the refCount of m_jitCode. |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return false; |
| return m_jitCode->dfgCommon()->hasInstalledVMTrapsBreakpoints(); |
| #else |
| return false; |
| #endif |
| } |
| |
| bool CodeBlock::installVMTrapBreakpoints() |
| { |
| #if ENABLE(SIGNAL_BASED_VM_TRAPS) |
| // This function may be called from a signal handler. We need to be |
| // careful to not call anything that is not signal handler safe, e.g. |
| // we should not perturb the refCount of m_jitCode. |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return false; |
| auto& commonData = *m_jitCode->dfgCommon(); |
| commonData.installVMTrapBreakpoints(this); |
| return true; |
| #else |
| UNREACHABLE_FOR_PLATFORM(); |
| return false; |
| #endif |
| } |
| |
| void CodeBlock::dumpMathICStats() |
| { |
| #if ENABLE(MATH_IC_STATS) |
| double numAdds = 0.0; |
| double totalAddSize = 0.0; |
| double numMuls = 0.0; |
| double totalMulSize = 0.0; |
| double numNegs = 0.0; |
| double totalNegSize = 0.0; |
| double numSubs = 0.0; |
| double totalSubSize = 0.0; |
| |
| auto countICs = [&] (CodeBlock* codeBlock) { |
| if (auto* jitData = codeBlock->m_jitData.get()) { |
| for (JITAddIC* addIC : jitData->m_addICs) { |
| numAdds++; |
| totalAddSize += addIC->codeSize(); |
| } |
| |
| for (JITMulIC* mulIC : jitData->m_mulICs) { |
| numMuls++; |
| totalMulSize += mulIC->codeSize(); |
| } |
| |
| for (JITNegIC* negIC : jitData->m_negICs) { |
| numNegs++; |
| totalNegSize += negIC->codeSize(); |
| } |
| |
| for (JITSubIC* subIC : jitData->m_subICs) { |
| numSubs++; |
| totalSubSize += subIC->codeSize(); |
| } |
| } |
| }; |
| heap()->forEachCodeBlock(countICs); |
| |
| dataLog("Num Adds: ", numAdds, "\n"); |
| dataLog("Total Add size in bytes: ", totalAddSize, "\n"); |
| dataLog("Average Add size: ", totalAddSize / numAdds, "\n"); |
| dataLog("\n"); |
| dataLog("Num Muls: ", numMuls, "\n"); |
| dataLog("Total Mul size in bytes: ", totalMulSize, "\n"); |
| dataLog("Average Mul size: ", totalMulSize / numMuls, "\n"); |
| dataLog("\n"); |
| dataLog("Num Negs: ", numNegs, "\n"); |
| dataLog("Total Neg size in bytes: ", totalNegSize, "\n"); |
| dataLog("Average Neg size: ", totalNegSize / numNegs, "\n"); |
| dataLog("\n"); |
| dataLog("Num Subs: ", numSubs, "\n"); |
| dataLog("Total Sub size in bytes: ", totalSubSize, "\n"); |
| dataLog("Average Sub size: ", totalSubSize / numSubs, "\n"); |
| |
| dataLog("-----------------------\n"); |
| #endif |
| } |
| |
| void setPrinter(Printer::PrintRecord& record, CodeBlock* codeBlock) |
| { |
| Printer::setPrinter(record, toCString(codeBlock)); |
| } |
| |
| } // namespace JSC |
| |
| namespace WTF { |
| |
| void printInternal(PrintStream& out, JSC::CodeBlock* codeBlock) |
| { |
| if (UNLIKELY(!codeBlock)) { |
| out.print("<null codeBlock>"); |
| return; |
| } |
| out.print(*codeBlock); |
| } |
| |
| } // namespace WTF |