blob: 8d022e3b825f58d2ef48821b1c2a9425691d1b49 [file] [log] [blame]
/*
* Copyright (C) 2008-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(ASSEMBLER) && CPU(X86)
#include "MacroAssemblerX86Common.h"
namespace JSC {
class MacroAssemblerX86 : public MacroAssemblerX86Common {
public:
static constexpr unsigned numGPRs = 8;
static constexpr unsigned numFPRs = 8;
using MacroAssemblerX86Common::add32;
using MacroAssemblerX86Common::and32;
using MacroAssemblerX86Common::branchAdd32;
using MacroAssemblerX86Common::branchSub32;
using MacroAssemblerX86Common::sub32;
using MacroAssemblerX86Common::or32;
using MacroAssemblerX86Common::load32;
using MacroAssemblerX86Common::load8;
using MacroAssemblerX86Common::store32;
using MacroAssemblerX86Common::store8;
using MacroAssemblerX86Common::branch32;
using MacroAssemblerX86Common::call;
using MacroAssemblerX86Common::jump;
using MacroAssemblerX86Common::farJump;
using MacroAssemblerX86Common::addDouble;
using MacroAssemblerX86Common::loadDouble;
using MacroAssemblerX86Common::storeDouble;
using MacroAssemblerX86Common::convertInt32ToDouble;
using MacroAssemblerX86Common::branch8;
using MacroAssemblerX86Common::branchTest8;
void add32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
m_assembler.leal_mr(imm.m_value, src, dest);
}
void add32(TrustedImm32 imm, AbsoluteAddress address)
{
m_assembler.addl_im(imm.m_value, address.m_ptr);
}
void add32(AbsoluteAddress address, RegisterID dest)
{
m_assembler.addl_mr(address.m_ptr, dest);
}
void add64(TrustedImm32 imm, AbsoluteAddress address)
{
m_assembler.addl_im(imm.m_value, address.m_ptr);
m_assembler.adcl_im(imm.m_value >> 31, reinterpret_cast<const char*>(address.m_ptr) + sizeof(int32_t));
}
void getEffectiveAddress(BaseIndex address, RegisterID dest)
{
return x86Lea32(address, dest);
}
void and32(TrustedImm32 imm, AbsoluteAddress address)
{
m_assembler.andl_im(imm.m_value, address.m_ptr);
}
void or32(TrustedImm32 imm, AbsoluteAddress address)
{
m_assembler.orl_im(imm.m_value, address.m_ptr);
}
void or32(RegisterID reg, AbsoluteAddress address)
{
m_assembler.orl_rm(reg, address.m_ptr);
}
void or16(TrustedImm32 imm, AbsoluteAddress address)
{
m_assembler.orw_im(imm.m_value, address.m_ptr);
}
void sub32(TrustedImm32 imm, AbsoluteAddress address)
{
m_assembler.subl_im(imm.m_value, address.m_ptr);
}
void load32(const void* address, RegisterID dest)
{
m_assembler.movl_mr(address, dest);
}
void load8(const void* address, RegisterID dest)
{
m_assembler.movzbl_mr(address, dest);
}
void abortWithReason(AbortReason reason)
{
move(TrustedImm32(reason), X86Registers::eax);
breakpoint();
}
void abortWithReason(AbortReason reason, intptr_t misc)
{
move(TrustedImm32(misc), X86Registers::edx);
abortWithReason(reason);
}
ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
{
ConvertibleLoadLabel result = ConvertibleLoadLabel(this);
m_assembler.movl_mr(address.offset, address.base, dest);
return result;
}
void addDouble(AbsoluteAddress address, FPRegisterID dest)
{
m_assembler.addsd_mr(address.m_ptr, dest);
}
void storeDouble(FPRegisterID src, TrustedImmPtr address)
{
ASSERT(address.m_value);
m_assembler.movsd_rm(src, address.asPtr());
}
void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest)
{
m_assembler.cvtsi2sd_mr(src.m_ptr, dest);
}
void store32(TrustedImm32 imm, void* address)
{
m_assembler.movl_i32m(imm.m_value, address);
}
void store32(RegisterID src, void* address)
{
m_assembler.movl_rm(src, address);
}
void store8(RegisterID src, void* address)
{
m_assembler.movb_rm(src, address);
}
void store8(TrustedImm32 imm, void* address)
{
TrustedImm32 imm8(static_cast<int8_t>(imm.m_value));
m_assembler.movb_i8m(imm8.m_value, address);
}
void moveDoubleToInts(FPRegisterID src, RegisterID dest1, RegisterID dest2)
{
m_assembler.pextrw_irr(3, src, dest1);
m_assembler.pextrw_irr(2, src, dest2);
lshift32(TrustedImm32(16), dest1);
or32(dest1, dest2);
moveFloatTo32(src, dest1);
}
void moveIntsToDouble(RegisterID src1, RegisterID src2, FPRegisterID dest, FPRegisterID scratch)
{
move32ToFloat(src1, dest);
move32ToFloat(src2, scratch);
lshiftPacked(TrustedImm32(32), scratch);
orPacked(scratch, dest);
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, AbsoluteAddress dest)
{
m_assembler.addl_im(imm.m_value, dest.m_ptr);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSub32(ResultCondition cond, TrustedImm32 imm, AbsoluteAddress dest)
{
m_assembler.subl_im(imm.m_value, dest.m_ptr);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
m_assembler.cmpl_rm(right, left.m_ptr);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch32(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
m_assembler.cmpl_im(right.m_value, left.m_ptr);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Call call(PtrTag)
{
return Call(m_assembler.call(), Call::Linkable);
}
ALWAYS_INLINE Call call(RegisterID callTag) { return UNUSED_PARAM(callTag), call(NoPtrTag); }
// Address is a memory location containing the address to jump to
void farJump(AbsoluteAddress address, PtrTag)
{
m_assembler.jmp_m(address.m_ptr);
}
ALWAYS_INLINE void farJump(AbsoluteAddress address, RegisterID jumpTag) { UNUSED_PARAM(jumpTag), farJump(address, NoPtrTag); }
DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
{
padBeforePatch();
m_assembler.movl_i32r(initialValue.asIntptr(), dest);
return DataLabelPtr(this);
}
Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
TrustedImm32 right8(static_cast<int8_t>(right.m_value));
m_assembler.cmpb_im(right8.m_value, left.m_ptr);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8(static_cast<int8_t>(mask.m_value));
if (mask8.m_value == -1)
m_assembler.cmpb_im(0, address.m_ptr);
else
m_assembler.testb_im(mask8.m_value, address.m_ptr);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr))
{
padBeforePatch();
m_assembler.cmpl_ir_force32(initialRightValue.asIntptr(), left);
dataLabel = DataLabelPtr(this);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr))
{
padBeforePatch();
m_assembler.cmpl_im_force32(initialRightValue.asIntptr(), left.offset, left.base);
dataLabel = DataLabelPtr(this);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
{
padBeforePatch();
m_assembler.cmpl_im_force32(initialRightValue.m_value, left.offset, left.base);
dataLabel = DataLabel32(this);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
{
padBeforePatch();
m_assembler.movl_i32m(initialValue.asIntptr(), address.offset, address.base);
return DataLabelPtr(this);
}
static bool supportsFloatingPoint() { return true; }
static bool supportsFloatingPointTruncate() { return true; }
static bool supportsFloatingPointSqrt() { return true; }
static bool supportsFloatingPointAbs() { return true; }
template<PtrTag resultTag, PtrTag locationTag>
static FunctionPtr<resultTag> readCallTarget(CodeLocationCall<locationTag> call)
{
intptr_t offset = WTF::unalignedLoad<int32_t>(bitwise_cast<int32_t*>(call.dataLocation()) - 1);
return FunctionPtr<resultTag>(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(call.dataLocation()) + offset));
}
static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; }
static bool canJumpReplacePatchableBranch32WithPatch() { return true; }
template<PtrTag tag>
static CodeLocationLabel<tag> startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr<tag> label)
{
const int opcodeBytes = 1;
const int modRMBytes = 1;
const int immediateBytes = 4;
const int totalBytes = opcodeBytes + modRMBytes + immediateBytes;
ASSERT(totalBytes >= maxJumpReplacementSize());
return label.labelAtOffset(-totalBytes);
}
template<PtrTag tag>
static CodeLocationLabel<tag> startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr<tag> label)
{
const int opcodeBytes = 1;
const int modRMBytes = 1;
const int offsetBytes = 0;
const int immediateBytes = 4;
const int totalBytes = opcodeBytes + modRMBytes + offsetBytes + immediateBytes;
ASSERT(totalBytes >= maxJumpReplacementSize());
return label.labelAtOffset(-totalBytes);
}
template<PtrTag tag>
static CodeLocationLabel<tag> startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32<tag> label)
{
const int opcodeBytes = 1;
const int modRMBytes = 1;
const int offsetBytes = 0;
const int immediateBytes = 4;
const int totalBytes = opcodeBytes + modRMBytes + offsetBytes + immediateBytes;
ASSERT(totalBytes >= maxJumpReplacementSize());
return label.labelAtOffset(-totalBytes);
}
template<PtrTag tag>
static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel<tag> instructionStart, RegisterID reg, void* initialValue)
{
X86Assembler::revertJumpTo_cmpl_ir_force32(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), reg);
}
template<PtrTag tag>
static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel<tag> instructionStart, Address address, void* initialValue)
{
ASSERT(!address.offset);
X86Assembler::revertJumpTo_cmpl_im_force32(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), 0, address.base);
}
template<PtrTag tag>
static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel<tag> instructionStart, Address address, int32_t initialValue)
{
ASSERT(!address.offset);
X86Assembler::revertJumpTo_cmpl_im_force32(instructionStart.executableAddress(), initialValue, 0, address.base);
}
template<PtrTag callTag, PtrTag destTag>
static void repatchCall(CodeLocationCall<callTag> call, CodeLocationLabel<destTag> destination)
{
X86Assembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
template<PtrTag callTag, PtrTag destTag>
static void repatchCall(CodeLocationCall<callTag> call, FunctionPtr<destTag> destination)
{
X86Assembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
private:
friend class LinkBuffer;
template<PtrTag tag>
static void linkCall(void* code, Call call, FunctionPtr<tag> function)
{
if (call.isFlagSet(Call::Tail))
X86Assembler::linkJump(code, call.m_label, function.executableAddress());
else
X86Assembler::linkCall(code, call.m_label, function.executableAddress());
}
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)