| /* |
| * Copyright (C) 2011, 2012 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "DFGPredictionPropagationPhase.h" |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "DFGGraph.h" |
| #include "DFGPhase.h" |
| |
| namespace JSC { namespace DFG { |
| |
| class PredictionPropagationPhase : public Phase { |
| public: |
| PredictionPropagationPhase(Graph& graph) |
| : Phase(graph, "prediction propagation") |
| { |
| } |
| |
| bool run() |
| { |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| m_count = 0; |
| #endif |
| // 1) propagate predictions |
| |
| do { |
| m_changed = false; |
| |
| // Forward propagation is near-optimal for both topologically-sorted and |
| // DFS-sorted code. |
| propagateForward(); |
| if (!m_changed) |
| break; |
| |
| // Backward propagation reduces the likelihood that pathological code will |
| // cause slowness. Loops (especially nested ones) resemble backward flow. |
| // This pass captures two cases: (1) it detects if the forward fixpoint |
| // found a sound solution and (2) short-circuits backward flow. |
| m_changed = false; |
| propagateBackward(); |
| } while (m_changed); |
| |
| // 2) repropagate predictions while doing double voting. |
| |
| do { |
| m_changed = false; |
| doRoundOfDoubleVoting(); |
| propagateForward(); |
| if (!m_changed) |
| break; |
| |
| m_changed = false; |
| doRoundOfDoubleVoting(); |
| propagateBackward(); |
| } while (m_changed); |
| |
| return true; |
| } |
| |
| private: |
| bool setPrediction(SpeculatedType prediction) |
| { |
| ASSERT(m_graph[m_compileIndex].hasResult()); |
| |
| // setPrediction() is used when we know that there is no way that we can change |
| // our minds about what the prediction is going to be. There is no semantic |
| // difference between setPrediction() and mergeSpeculation() other than the |
| // increased checking to validate this property. |
| ASSERT(m_graph[m_compileIndex].prediction() == SpecNone || m_graph[m_compileIndex].prediction() == prediction); |
| |
| return m_graph[m_compileIndex].predict(prediction); |
| } |
| |
| bool mergePrediction(SpeculatedType prediction) |
| { |
| ASSERT(m_graph[m_compileIndex].hasResult()); |
| |
| return m_graph[m_compileIndex].predict(prediction); |
| } |
| |
| bool isNotNegZero(NodeIndex nodeIndex) |
| { |
| if (!m_graph.isNumberConstant(nodeIndex)) |
| return false; |
| double value = m_graph.valueOfNumberConstant(nodeIndex); |
| return !value && 1.0 / value < 0.0; |
| } |
| |
| bool isNotZero(NodeIndex nodeIndex) |
| { |
| if (!m_graph.isNumberConstant(nodeIndex)) |
| return false; |
| return !!m_graph.valueOfNumberConstant(nodeIndex); |
| } |
| |
| void propagate(Node& node) |
| { |
| if (!node.shouldGenerate()) |
| return; |
| |
| NodeType op = node.op(); |
| NodeFlags flags = node.flags() & NodeBackPropMask; |
| |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog(" %s @%u: %s ", Graph::opName(op), m_compileIndex, nodeFlagsAsString(flags)); |
| #endif |
| |
| bool changed = false; |
| |
| switch (op) { |
| case JSConstant: |
| case WeakJSConstant: { |
| changed |= setPrediction(speculationFromValue(m_graph.valueOfJSConstant(m_compileIndex))); |
| break; |
| } |
| |
| case GetLocal: { |
| VariableAccessData* variableAccessData = node.variableAccessData(); |
| SpeculatedType prediction = variableAccessData->prediction(); |
| if (prediction) |
| changed |= mergePrediction(prediction); |
| |
| changed |= variableAccessData->mergeFlags(flags); |
| break; |
| } |
| |
| case SetLocal: { |
| VariableAccessData* variableAccessData = node.variableAccessData(); |
| changed |= variableAccessData->predict(m_graph[node.child1()].prediction()); |
| changed |= m_graph[node.child1()].mergeFlags(variableAccessData->flags()); |
| break; |
| } |
| |
| case Flush: { |
| // Make sure that the analysis knows that flushed locals escape. |
| VariableAccessData* variableAccessData = node.variableAccessData(); |
| changed |= variableAccessData->mergeFlags(NodeUsedAsValue); |
| break; |
| } |
| |
| case BitAnd: |
| case BitOr: |
| case BitXor: |
| case BitRShift: |
| case BitLShift: |
| case BitURShift: { |
| changed |= setPrediction(SpecInt32); |
| flags |= NodeUsedAsInt; |
| flags &= ~(NodeUsedAsNumber | NodeNeedsNegZero); |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ValueToInt32: { |
| changed |= setPrediction(SpecInt32); |
| flags |= NodeUsedAsInt; |
| flags &= ~(NodeUsedAsNumber | NodeNeedsNegZero); |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArrayPop: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case ArrayPush: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsValue); |
| break; |
| } |
| |
| case RegExpExec: |
| case RegExpTest: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case StringCharCodeAt: { |
| changed |= mergePrediction(SpecInt32); |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| break; |
| } |
| |
| case ArithMod: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (isInt32Speculation(mergeSpeculations(left, right)) |
| && nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(SpecInt32); |
| else |
| changed |= mergePrediction(SpecDouble); |
| } |
| |
| flags |= NodeUsedAsValue; |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case UInt32ToNumber: { |
| if (nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(SpecInt32); |
| else |
| changed |= mergePrediction(SpecNumber); |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| } |
| |
| case ValueAdd: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (isNumberSpeculation(left) && isNumberSpeculation(right)) { |
| if (m_graph.addShouldSpeculateInteger(node)) |
| changed |= mergePrediction(SpecInt32); |
| else |
| changed |= mergePrediction(SpecDouble); |
| } else if (!(left & SpecNumber) || !(right & SpecNumber)) { |
| // left or right is definitely something other than a number. |
| changed |= mergePrediction(SpecString); |
| } else |
| changed |= mergePrediction(SpecString | SpecInt32 | SpecDouble); |
| } |
| |
| if (isNotNegZero(node.child1().index()) || isNotNegZero(node.child2().index())) |
| flags &= ~NodeNeedsNegZero; |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithAdd: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (m_graph.addShouldSpeculateInteger(node)) |
| changed |= mergePrediction(SpecInt32); |
| else |
| changed |= mergePrediction(SpecDouble); |
| } |
| |
| if (isNotNegZero(node.child1().index()) || isNotNegZero(node.child2().index())) |
| flags &= ~NodeNeedsNegZero; |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithSub: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (m_graph.addShouldSpeculateInteger(node)) |
| changed |= mergePrediction(SpecInt32); |
| else |
| changed |= mergePrediction(SpecDouble); |
| } |
| |
| if (isNotZero(node.child1().index()) || isNotZero(node.child2().index())) |
| flags &= ~NodeNeedsNegZero; |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithNegate: |
| if (m_graph[node.child1()].prediction()) { |
| if (m_graph.negateShouldSpeculateInteger(node)) |
| changed |= mergePrediction(SpecInt32); |
| else |
| changed |= mergePrediction(SpecDouble); |
| } |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| |
| case ArithMin: |
| case ArithMax: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (isInt32Speculation(mergeSpeculations(left, right)) |
| && nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(SpecInt32); |
| else |
| changed |= mergePrediction(SpecDouble); |
| } |
| |
| flags |= NodeUsedAsNumber; |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithMul: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (m_graph.mulShouldSpeculateInteger(node)) |
| changed |= mergePrediction(SpecInt32); |
| else |
| changed |= mergePrediction(SpecDouble); |
| } |
| |
| // As soon as a multiply happens, we can easily end up in the part |
| // of the double domain where the point at which you do truncation |
| // can change the outcome. So, ArithMul always checks for overflow |
| // no matter what, and always forces its inputs to check as well. |
| |
| flags |= NodeUsedAsNumber | NodeNeedsNegZero; |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithDiv: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (isInt32Speculation(mergeSpeculations(left, right)) |
| && nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(SpecInt32); |
| else |
| changed |= mergePrediction(SpecDouble); |
| } |
| |
| // As soon as a multiply happens, we can easily end up in the part |
| // of the double domain where the point at which you do truncation |
| // can change the outcome. So, ArithMul always checks for overflow |
| // no matter what, and always forces its inputs to check as well. |
| |
| flags |= NodeUsedAsNumber | NodeNeedsNegZero; |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithSqrt: { |
| changed |= setPrediction(SpecDouble); |
| changed |= m_graph[node.child1()].mergeFlags(flags | NodeUsedAsValue); |
| break; |
| } |
| |
| case ArithAbs: { |
| SpeculatedType child = m_graph[node.child1()].prediction(); |
| if (nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(child); |
| else |
| changed |= setPrediction(SpecDouble); |
| |
| flags &= ~NodeNeedsNegZero; |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| } |
| |
| case LogicalNot: |
| case CompareLess: |
| case CompareLessEq: |
| case CompareGreater: |
| case CompareGreaterEq: |
| case CompareEq: |
| case CompareStrictEq: |
| case InstanceOf: |
| case IsUndefined: |
| case IsBoolean: |
| case IsNumber: |
| case IsString: |
| case IsObject: |
| case IsFunction: { |
| changed |= setPrediction(SpecBoolean); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case GetById: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case GetByIdFlush: |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| |
| case GetByVal: { |
| if (m_graph[node.child1()].shouldSpeculateFloat32Array() |
| || m_graph[node.child1()].shouldSpeculateFloat64Array()) |
| changed |= mergePrediction(SpecDouble); |
| else |
| changed |= mergePrediction(node.getHeapPrediction()); |
| |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| break; |
| } |
| |
| case GetMyArgumentByValSafe: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| break; |
| } |
| |
| case GetMyArgumentsLengthSafe: { |
| changed |= setPrediction(SpecInt32); |
| break; |
| } |
| |
| case GetPropertyStorage: |
| case GetIndexedPropertyStorage: |
| case AllocatePropertyStorage: |
| case ReallocatePropertyStorage: { |
| changed |= setPrediction(SpecOther); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case GetByOffset: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case Call: |
| case Construct: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| for (unsigned childIdx = node.firstChild(); |
| childIdx < node.firstChild() + node.numChildren(); |
| ++childIdx) { |
| Edge edge = m_graph.m_varArgChildren[childIdx]; |
| changed |= m_graph[edge].mergeFlags(NodeUsedAsValue); |
| } |
| break; |
| } |
| |
| case ConvertThis: { |
| SpeculatedType prediction = m_graph[node.child1()].prediction(); |
| if (prediction) { |
| if (prediction & ~SpecObjectMask) { |
| prediction &= SpecObjectMask; |
| prediction = mergeSpeculations(prediction, SpecObjectOther); |
| } |
| changed |= mergePrediction(prediction); |
| } |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case GetGlobalVar: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| break; |
| } |
| |
| case PutGlobalVar: |
| case PutGlobalVarCheck: { |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| break; |
| } |
| |
| case GetScopedVar: |
| case Resolve: |
| case ResolveBase: |
| case ResolveBaseStrictPut: |
| case ResolveGlobal: { |
| SpeculatedType prediction = node.getHeapPrediction(); |
| changed |= mergePrediction(prediction); |
| break; |
| } |
| |
| case GetScopeChain: { |
| changed |= setPrediction(SpecCellOther); |
| break; |
| } |
| |
| case GetCallee: { |
| changed |= setPrediction(SpecFunction); |
| break; |
| } |
| |
| case CreateThis: |
| case NewObject: { |
| changed |= setPrediction(SpecFinalObject); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case NewArray: { |
| changed |= setPrediction(SpecArray); |
| for (unsigned childIdx = node.firstChild(); |
| childIdx < node.firstChild() + node.numChildren(); |
| ++childIdx) { |
| Edge edge = m_graph.m_varArgChildren[childIdx]; |
| changed |= m_graph[edge].mergeFlags(NodeUsedAsValue); |
| } |
| break; |
| } |
| |
| case NewArrayWithSize: { |
| changed |= setPrediction(SpecArray); |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| break; |
| } |
| |
| case NewArrayBuffer: { |
| changed |= setPrediction(SpecArray); |
| break; |
| } |
| |
| case NewRegexp: { |
| changed |= setPrediction(SpecObjectOther); |
| break; |
| } |
| |
| case StringCharAt: { |
| changed |= setPrediction(SpecString); |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| break; |
| } |
| |
| case StrCat: { |
| changed |= setPrediction(SpecString); |
| for (unsigned childIdx = node.firstChild(); |
| childIdx < node.firstChild() + node.numChildren(); |
| ++childIdx) |
| changed |= m_graph[m_graph.m_varArgChildren[childIdx]].mergeFlags(NodeUsedAsNumber); |
| break; |
| } |
| |
| case ToPrimitive: { |
| SpeculatedType child = m_graph[node.child1()].prediction(); |
| if (child) { |
| if (isObjectSpeculation(child)) { |
| // I'd love to fold this case into the case below, but I can't, because |
| // removing SpecObjectMask from something that only has an object |
| // prediction and nothing else means we have an ill-formed SpeculatedType |
| // (strong predict-none). This should be killed once we remove all traces |
| // of static (aka weak) predictions. |
| changed |= mergePrediction(SpecString); |
| } else if (child & SpecObjectMask) { |
| // Objects get turned into strings. So if the input has hints of objectness, |
| // the output will have hinsts of stringiness. |
| changed |= mergePrediction( |
| mergeSpeculations(child & ~SpecObjectMask, SpecString)); |
| } else |
| changed |= mergePrediction(child); |
| } |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| } |
| |
| case CreateActivation: { |
| changed |= setPrediction(SpecObjectOther); |
| break; |
| } |
| |
| case CreateArguments: { |
| // At this stage we don't try to predict whether the arguments are ours or |
| // someone else's. We could, but we don't, yet. |
| changed |= setPrediction(SpecArguments); |
| break; |
| } |
| |
| case NewFunction: |
| case NewFunctionNoCheck: |
| case NewFunctionExpression: { |
| changed |= setPrediction(SpecFunction); |
| break; |
| } |
| |
| case PutByValAlias: |
| case GetArrayLength: |
| case Int32ToDouble: |
| case DoubleAsInt32: |
| case GetLocalUnlinked: |
| case GetMyArgumentsLength: |
| case GetMyArgumentByVal: |
| case PhantomPutStructure: |
| case PhantomArguments: { |
| // This node should never be visible at this stage of compilation. It is |
| // inserted by fixup(), which follows this phase. |
| ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| case PutByVal: |
| changed |= m_graph[m_graph.varArgChild(node, 0)].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[m_graph.varArgChild(node, 1)].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| changed |= m_graph[m_graph.varArgChild(node, 2)].mergeFlags(NodeUsedAsValue); |
| break; |
| |
| case PutScopedVar: |
| case Return: |
| case Throw: |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| break; |
| |
| case PutById: |
| case PutByIdDirect: |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsValue); |
| break; |
| |
| case PutByOffset: |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child3()].mergeFlags(NodeUsedAsValue); |
| break; |
| |
| case Phi: |
| break; |
| |
| #ifndef NDEBUG |
| // These get ignored because they don't return anything. |
| case DFG::Jump: |
| case Branch: |
| case Breakpoint: |
| case CheckHasInstance: |
| case ThrowReferenceError: |
| case ForceOSRExit: |
| case SetArgument: |
| case CheckStructure: |
| case ForwardCheckStructure: |
| case StructureTransitionWatchpoint: |
| case ForwardStructureTransitionWatchpoint: |
| case CheckFunction: |
| case PutStructure: |
| case TearOffActivation: |
| case TearOffArguments: |
| case CheckNumber: |
| case CheckArgumentsNotCreated: |
| case GlobalVarWatchpoint: |
| changed |= mergeDefaultFlags(node); |
| break; |
| |
| // These gets ignored because it doesn't do anything. |
| case Phantom: |
| case InlineStart: |
| case Nop: |
| break; |
| |
| case LastNodeType: |
| ASSERT_NOT_REACHED(); |
| break; |
| #else |
| default: |
| changed |= mergeDefaultFlags(node); |
| break; |
| #endif |
| } |
| |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog("%s\n", speculationToString(m_graph[m_compileIndex].prediction())); |
| #endif |
| |
| m_changed |= changed; |
| } |
| |
| bool mergeDefaultFlags(Node& node) |
| { |
| bool changed = false; |
| if (node.flags() & NodeHasVarArgs) { |
| for (unsigned childIdx = node.firstChild(); |
| childIdx < node.firstChild() + node.numChildren(); |
| childIdx++) |
| changed |= m_graph[m_graph.m_varArgChildren[childIdx]].mergeFlags(NodeUsedAsValue); |
| } else { |
| if (!node.child1()) |
| return changed; |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| if (!node.child2()) |
| return changed; |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsValue); |
| if (!node.child3()) |
| return changed; |
| changed |= m_graph[node.child3()].mergeFlags(NodeUsedAsValue); |
| } |
| return changed; |
| } |
| |
| void propagateForward() |
| { |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog("Propagating predictions forward [%u]\n", ++m_count); |
| #endif |
| for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex) |
| propagate(m_graph[m_compileIndex]); |
| } |
| |
| void propagateBackward() |
| { |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog("Propagating predictions backward [%u]\n", ++m_count); |
| #endif |
| for (m_compileIndex = m_graph.size(); m_compileIndex-- > 0;) |
| propagate(m_graph[m_compileIndex]); |
| } |
| |
| void doRoundOfDoubleVoting() |
| { |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog("Voting on double uses of locals [%u]\n", m_count); |
| #endif |
| for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) |
| m_graph.m_variableAccessData[i].find()->clearVotes(); |
| for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex) { |
| Node& node = m_graph[m_compileIndex]; |
| switch (node.op()) { |
| case ValueAdd: |
| case ArithAdd: |
| case ArithSub: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| DoubleBallot ballot; |
| |
| if (isNumberSpeculation(left) && isNumberSpeculation(right) |
| && !m_graph.addShouldSpeculateInteger(node)) |
| ballot = VoteDouble; |
| else |
| ballot = VoteValue; |
| |
| m_graph.vote(node.child1(), ballot); |
| m_graph.vote(node.child2(), ballot); |
| break; |
| } |
| |
| case ArithMul: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| DoubleBallot ballot; |
| |
| if (isNumberSpeculation(left) && isNumberSpeculation(right) |
| && !m_graph.mulShouldSpeculateInteger(node)) |
| ballot = VoteDouble; |
| else |
| ballot = VoteValue; |
| |
| m_graph.vote(node.child1(), ballot); |
| m_graph.vote(node.child2(), ballot); |
| break; |
| } |
| |
| case ArithMin: |
| case ArithMax: |
| case ArithMod: |
| case ArithDiv: { |
| SpeculatedType left = m_graph[node.child1()].prediction(); |
| SpeculatedType right = m_graph[node.child2()].prediction(); |
| |
| DoubleBallot ballot; |
| |
| if (isNumberSpeculation(left) && isNumberSpeculation(right) |
| && !(Node::shouldSpeculateInteger(m_graph[node.child1()], m_graph[node.child1()]) |
| && node.canSpeculateInteger())) |
| ballot = VoteDouble; |
| else |
| ballot = VoteValue; |
| |
| m_graph.vote(node.child1(), ballot); |
| m_graph.vote(node.child2(), ballot); |
| break; |
| } |
| |
| case ArithAbs: |
| DoubleBallot ballot; |
| if (!(m_graph[node.child1()].shouldSpeculateInteger() |
| && node.canSpeculateInteger())) |
| ballot = VoteDouble; |
| else |
| ballot = VoteValue; |
| |
| m_graph.vote(node.child1(), ballot); |
| break; |
| |
| case ArithSqrt: |
| m_graph.vote(node.child1(), VoteDouble); |
| break; |
| |
| case SetLocal: { |
| SpeculatedType prediction = m_graph[node.child1()].prediction(); |
| if (isDoubleSpeculation(prediction)) |
| node.variableAccessData()->vote(VoteDouble); |
| else if (!isNumberSpeculation(prediction) || isInt32Speculation(prediction)) |
| node.variableAccessData()->vote(VoteValue); |
| break; |
| } |
| |
| default: |
| m_graph.vote(node, VoteValue); |
| break; |
| } |
| } |
| for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) { |
| VariableAccessData* variableAccessData = &m_graph.m_variableAccessData[i]; |
| if (!variableAccessData->isRoot()) |
| continue; |
| if (operandIsArgument(variableAccessData->local()) |
| || variableAccessData->isCaptured()) |
| continue; |
| m_changed |= variableAccessData->tallyVotesForShouldUseDoubleFormat(); |
| } |
| for (unsigned i = 0; i < m_graph.m_argumentPositions.size(); ++i) |
| m_changed |= m_graph.m_argumentPositions[i].mergeArgumentAwareness(); |
| for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) { |
| VariableAccessData* variableAccessData = &m_graph.m_variableAccessData[i]; |
| if (!variableAccessData->isRoot()) |
| continue; |
| if (operandIsArgument(variableAccessData->local()) |
| || variableAccessData->isCaptured()) |
| continue; |
| m_changed |= variableAccessData->makePredictionForDoubleFormat(); |
| } |
| } |
| |
| NodeIndex m_compileIndex; |
| bool m_changed; |
| |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| unsigned m_count; |
| #endif |
| }; |
| |
| bool performPredictionPropagation(Graph& graph) |
| { |
| SamplingRegion samplingRegion("DFG Prediction Propagation Phase"); |
| return runPhase<PredictionPropagationPhase>(graph); |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif // ENABLE(DFG_JIT) |
| |