| /* |
| * Copyright (C) 2013-2015 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "FTLOSRExitCompiler.h" |
| |
| #if ENABLE(FTL_JIT) |
| |
| #include "DFGOSRExitCompilerCommon.h" |
| #include "DFGOSRExitPreparation.h" |
| #include "FTLExitArgumentForOperand.h" |
| #include "FTLJITCode.h" |
| #include "FTLOSRExit.h" |
| #include "FTLOperations.h" |
| #include "FTLState.h" |
| #include "FTLSaveRestore.h" |
| #include "LinkBuffer.h" |
| #include "MaxFrameExtentForSlowPathCall.h" |
| #include "OperandsInlines.h" |
| #include "JSCInlines.h" |
| #include "RegisterPreservationWrapperGenerator.h" |
| |
| namespace JSC { namespace FTL { |
| |
| using namespace DFG; |
| |
| static void compileRecovery( |
| CCallHelpers& jit, const ExitValue& value, StackMaps::Record* record, StackMaps& stackmaps, |
| char* registerScratch, |
| const HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*>& materializationToPointer) |
| { |
| switch (value.kind()) { |
| case ExitValueDead: |
| jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT0); |
| break; |
| |
| case ExitValueConstant: |
| jit.move(MacroAssembler::TrustedImm64(JSValue::encode(value.constant())), GPRInfo::regT0); |
| break; |
| |
| case ExitValueArgument: |
| record->locations[value.exitArgument().argument()].restoreInto( |
| jit, stackmaps, registerScratch, GPRInfo::regT0); |
| break; |
| |
| case ExitValueInJSStack: |
| case ExitValueInJSStackAsInt32: |
| case ExitValueInJSStackAsInt52: |
| case ExitValueInJSStackAsDouble: |
| jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0); |
| break; |
| |
| case ExitValueRecovery: |
| record->locations[value.rightRecoveryArgument()].restoreInto( |
| jit, stackmaps, registerScratch, GPRInfo::regT1); |
| record->locations[value.leftRecoveryArgument()].restoreInto( |
| jit, stackmaps, registerScratch, GPRInfo::regT0); |
| switch (value.recoveryOpcode()) { |
| case AddRecovery: |
| switch (value.recoveryFormat()) { |
| case ValueFormatInt32: |
| jit.add32(GPRInfo::regT1, GPRInfo::regT0); |
| break; |
| case ValueFormatInt52: |
| jit.add64(GPRInfo::regT1, GPRInfo::regT0); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| case SubRecovery: |
| switch (value.recoveryFormat()) { |
| case ValueFormatInt32: |
| jit.sub32(GPRInfo::regT1, GPRInfo::regT0); |
| break; |
| case ValueFormatInt52: |
| jit.sub64(GPRInfo::regT1, GPRInfo::regT0); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| |
| case ExitValueMaterializeNewObject: |
| jit.loadPtr(materializationToPointer.get(value.objectMaterialization()), GPRInfo::regT0); |
| break; |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| reboxAccordingToFormat( |
| value.valueFormat(), jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); |
| } |
| |
| static void compileStub( |
| unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock) |
| { |
| StackMaps::Record* record = nullptr; |
| |
| for (unsigned i = jitCode->stackmaps.records.size(); i--;) { |
| record = &jitCode->stackmaps.records[i]; |
| if (record->patchpointID == exit.m_stackmapID) |
| break; |
| } |
| |
| RELEASE_ASSERT(record->patchpointID == exit.m_stackmapID); |
| |
| // This code requires framePointerRegister is the same as callFrameRegister |
| static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same"); |
| |
| CCallHelpers jit(vm, codeBlock); |
| |
| // We need scratch space to save all registers, to build up the JS stack, to deal with unwind |
| // fixup, pointers to all of the objects we materialize, and the elements inside those objects |
| // that we materialize. |
| |
| // Figure out how much space we need for those object allocations. |
| unsigned numMaterializations = 0; |
| size_t maxMaterializationNumArguments = 0; |
| for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) { |
| numMaterializations++; |
| |
| maxMaterializationNumArguments = std::max( |
| maxMaterializationNumArguments, |
| materialization->properties().size()); |
| } |
| |
| ScratchBuffer* scratchBuffer = vm->scratchBufferForSize( |
| sizeof(EncodedJSValue) * ( |
| exit.m_values.size() + numMaterializations + maxMaterializationNumArguments) + |
| requiredScratchMemorySizeInBytes() + |
| jitCode->unwindInfo.m_registers.size() * sizeof(uint64_t)); |
| EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; |
| EncodedJSValue* materializationPointers = scratch + exit.m_values.size(); |
| EncodedJSValue* materializationArguments = materializationPointers + numMaterializations; |
| char* registerScratch = bitwise_cast<char*>(materializationArguments + maxMaterializationNumArguments); |
| uint64_t* unwindScratch = bitwise_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes()); |
| |
| HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer; |
| unsigned materializationCount = 0; |
| for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) { |
| materializationToPointer.add( |
| materialization, materializationPointers + materializationCount++); |
| } |
| |
| // Note that we come in here, the stack used to be as LLVM left it except that someone called pushToSave(). |
| // We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use |
| // that slot for saveAllRegisters(). |
| |
| saveAllRegisters(jit, registerScratch); |
| |
| // Bring the stack back into a sane form and assert that it's sane. |
| jit.popToRestore(GPRInfo::regT0); |
| jit.checkStackPointerAlignment(); |
| |
| if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) { |
| Profiler::Database& database = *vm->m_perBytecodeProfiler; |
| Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get(); |
| |
| Profiler::OSRExit* profilerExit = compilation->addOSRExit( |
| exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin), |
| exit.m_kind, exit.m_kind == UncountableInvalidation); |
| jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress())); |
| } |
| |
| // The remaining code assumes that SP/FP are in the same state that they were in the FTL's |
| // call frame. |
| |
| // Get the call frame and tag thingies. |
| // Restore the exiting function's callFrame value into a regT4 |
| jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister); |
| jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister); |
| |
| // Do some value profiling. |
| if (exit.m_profileValueFormat != InvalidValueFormat) { |
| record->locations[0].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0); |
| reboxAccordingToFormat( |
| exit.m_profileValueFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); |
| |
| if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { |
| CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; |
| if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) { |
| jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1); |
| jit.store32(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructureID()); |
| jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeOffset()), GPRInfo::regT1); |
| jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2); |
| jit.lshift32(GPRInfo::regT1, GPRInfo::regT2); |
| jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes())); |
| } |
| } |
| |
| if (!!exit.m_valueProfile) |
| jit.store64(GPRInfo::regT0, exit.m_valueProfile.getSpecFailBucket(0)); |
| } |
| |
| // Materialize all objects. Don't materialize an object until all |
| // of the objects it needs have been materialized. We break cycles |
| // by populating objects late - we only consider an object as |
| // needing another object if the later is needed for the |
| // allocation of the former. |
| |
| HashSet<ExitTimeObjectMaterialization*> toMaterialize; |
| for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) |
| toMaterialize.add(materialization); |
| |
| while (!toMaterialize.isEmpty()) { |
| unsigned previousToMaterializeSize = toMaterialize.size(); |
| |
| Vector<ExitTimeObjectMaterialization*> worklist; |
| worklist.appendRange(toMaterialize.begin(), toMaterialize.end()); |
| for (ExitTimeObjectMaterialization* materialization : worklist) { |
| // Check if we can do anything about this right now. |
| bool allGood = true; |
| for (ExitPropertyValue value : materialization->properties()) { |
| if (!value.value().isObjectMaterialization()) |
| continue; |
| if (!value.location().neededForMaterialization()) |
| continue; |
| if (toMaterialize.contains(value.value().objectMaterialization())) { |
| // Gotta skip this one, since it needs a |
| // materialization that hasn't been materialized. |
| allGood = false; |
| break; |
| } |
| } |
| if (!allGood) |
| continue; |
| |
| // All systems go for materializing the object. First we |
| // recover the values of all of its fields and then we |
| // call a function to actually allocate the beast. |
| // We only recover the fields that are needed for the allocation. |
| for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { |
| const ExitPropertyValue& property = materialization->properties()[propertyIndex]; |
| const ExitValue& value = property.value(); |
| if (!property.location().neededForMaterialization()) |
| continue; |
| |
| compileRecovery( |
| jit, value, record, jitCode->stackmaps, registerScratch, |
| materializationToPointer); |
| jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); |
| } |
| |
| // This call assumes that we don't pass arguments on the stack. |
| jit.setupArgumentsWithExecState( |
| CCallHelpers::TrustedImmPtr(materialization), |
| CCallHelpers::TrustedImmPtr(materializationArguments)); |
| jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0); |
| jit.call(GPRInfo::nonArgGPR0); |
| jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization)); |
| |
| // Let everyone know that we're done. |
| toMaterialize.remove(materialization); |
| } |
| |
| // We expect progress! This ensures that we crash rather than looping infinitely if there |
| // is something broken about this fixpoint. Or, this could happen if we ever violate the |
| // "materializations form a DAG" rule. |
| RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize); |
| } |
| |
| // Now that all the objects have been allocated, we populate them |
| // with the correct values. This time we can recover all the |
| // fields, including those that are only needed for the allocation. |
| for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) { |
| for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { |
| const ExitValue& value = materialization->properties()[propertyIndex].value(); |
| compileRecovery( |
| jit, value, record, jitCode->stackmaps, registerScratch, |
| materializationToPointer); |
| jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); |
| } |
| |
| // This call assumes that we don't pass arguments on the stack |
| jit.setupArgumentsWithExecState( |
| CCallHelpers::TrustedImmPtr(materialization), |
| CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)), |
| CCallHelpers::TrustedImmPtr(materializationArguments)); |
| jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0); |
| jit.call(GPRInfo::nonArgGPR0); |
| } |
| |
| // Save all state from wherever the exit data tells us it was, into the appropriate place in |
| // the scratch buffer. This also does the reboxing. |
| |
| for (unsigned index = exit.m_values.size(); index--;) { |
| compileRecovery( |
| jit, exit.m_values[index], record, jitCode->stackmaps, registerScratch, |
| materializationToPointer); |
| jit.store64(GPRInfo::regT0, scratch + index); |
| } |
| |
| // Henceforth we make it look like the exiting function was called through a register |
| // preservation wrapper. This implies that FP must be nudged down by a certain amount. Then |
| // we restore the various things according to either exit.m_values or by copying from the |
| // old frame, and finally we save the various callee-save registers into where the |
| // restoration thunk would restore them from. |
| |
| ptrdiff_t offset = registerPreservationOffset(); |
| RegisterSet toSave = registersToPreserve(); |
| |
| // Before we start messing with the frame, we need to set aside any registers that the |
| // FTL code was preserving. |
| for (unsigned i = jitCode->unwindInfo.m_registers.size(); i--;) { |
| RegisterAtOffset entry = jitCode->unwindInfo.m_registers[i]; |
| jit.load64( |
| MacroAssembler::Address(MacroAssembler::framePointerRegister, entry.offset()), |
| GPRInfo::regT0); |
| jit.store64(GPRInfo::regT0, unwindScratch + i); |
| } |
| |
| jit.load32(CCallHelpers::payloadFor(JSStack::ArgumentCount), GPRInfo::regT2); |
| |
| // Let's say that the FTL function had failed its arity check. In that case, the stack will |
| // contain some extra stuff. |
| // |
| // First we compute the padded stack space: |
| // |
| // paddedStackSpace = roundUp(codeBlock->numParameters - regT2 + 1) |
| // |
| // The stack will have regT2 + CallFrameHeaderSize stuff, but above it there will be |
| // paddedStackSpace gunk used by the arity check fail restoration thunk. When that happens |
| // we want to make the stack look like this, from higher addresses down: |
| // |
| // - register preservation return PC |
| // - preserved registers |
| // - arity check fail return PC |
| // - argument padding |
| // - actual arguments |
| // - call frame header |
| // |
| // So that the actual call frame header appears to return to the arity check fail return |
| // PC, and that then returns to the register preservation thunk. The arity check thunk that |
| // we return to will have the padding size encoded into it. It will then know to return |
| // into the register preservation thunk, which uses the argument count to figure out where |
| // registers are preserved. |
| |
| // This code assumes that we're dealing with FunctionCode. |
| RELEASE_ASSERT(codeBlock->codeType() == FunctionCode); |
| |
| jit.add32( |
| MacroAssembler::TrustedImm32(-codeBlock->numParameters()), GPRInfo::regT2, |
| GPRInfo::regT3); |
| MacroAssembler::Jump arityIntact = jit.branch32( |
| MacroAssembler::GreaterThanOrEqual, GPRInfo::regT3, MacroAssembler::TrustedImm32(0)); |
| jit.neg32(GPRInfo::regT3); |
| jit.add32(MacroAssembler::TrustedImm32(1 + stackAlignmentRegisters() - 1), GPRInfo::regT3); |
| jit.and32(MacroAssembler::TrustedImm32(-stackAlignmentRegisters()), GPRInfo::regT3); |
| jit.add32(GPRInfo::regT3, GPRInfo::regT2); |
| arityIntact.link(&jit); |
| |
| // First set up SP so that our data doesn't get clobbered by signals. |
| unsigned conservativeStackDelta = |
| registerPreservationOffset() + |
| exit.m_values.numberOfLocals() * sizeof(Register) + |
| maxFrameExtentForSlowPathCall; |
| conservativeStackDelta = WTF::roundUpToMultipleOf( |
| stackAlignmentBytes(), conservativeStackDelta); |
| jit.addPtr( |
| MacroAssembler::TrustedImm32(-conservativeStackDelta), |
| MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister); |
| jit.checkStackPointerAlignment(); |
| |
| jit.subPtr( |
| MacroAssembler::TrustedImm32(registerPreservationOffset()), |
| MacroAssembler::framePointerRegister); |
| |
| // Copy the old frame data into its new location. |
| jit.add32(MacroAssembler::TrustedImm32(JSStack::CallFrameHeaderSize), GPRInfo::regT2); |
| jit.move(MacroAssembler::framePointerRegister, GPRInfo::regT1); |
| MacroAssembler::Label loop = jit.label(); |
| jit.sub32(MacroAssembler::TrustedImm32(1), GPRInfo::regT2); |
| jit.load64(MacroAssembler::Address(GPRInfo::regT1, offset), GPRInfo::regT0); |
| jit.store64(GPRInfo::regT0, GPRInfo::regT1); |
| jit.addPtr(MacroAssembler::TrustedImm32(sizeof(Register)), GPRInfo::regT1); |
| jit.branchTest32(MacroAssembler::NonZero, GPRInfo::regT2).linkTo(loop, &jit); |
| |
| // At this point regT1 points to where we would save our registers. Save them here. |
| ptrdiff_t currentOffset = 0; |
| for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) { |
| if (!toSave.get(reg)) |
| continue; |
| currentOffset += sizeof(Register); |
| unsigned unwindIndex = jitCode->unwindInfo.indexOf(reg); |
| if (unwindIndex == UINT_MAX) { |
| // The FTL compilation didn't preserve this register. This means that it also |
| // didn't use the register. So its value at the beginning of OSR exit should be |
| // preserved by the thunk. Luckily, we saved all registers into the register |
| // scratch buffer, so we can restore them from there. |
| jit.load64(registerScratch + offsetOfReg(reg), GPRInfo::regT0); |
| } else { |
| // The FTL compilation preserved the register. Its new value is therefore |
| // irrelevant, but we can get the value that was preserved by using the unwind |
| // data. We've already copied all unwind-able preserved registers into the unwind |
| // scratch buffer, so we can get it from there. |
| jit.load64(unwindScratch + unwindIndex, GPRInfo::regT0); |
| } |
| jit.store64(GPRInfo::regT0, AssemblyHelpers::Address(GPRInfo::regT1, currentOffset)); |
| } |
| |
| // We need to make sure that we return into the register restoration thunk. This works |
| // differently depending on whether or not we had arity issues. |
| MacroAssembler::Jump arityIntactForReturnPC = jit.branch32( |
| MacroAssembler::GreaterThanOrEqual, |
| CCallHelpers::payloadFor(JSStack::ArgumentCount), |
| MacroAssembler::TrustedImm32(codeBlock->numParameters())); |
| |
| // The return PC in the call frame header points at exactly the right arity restoration |
| // thunk. We don't want to change that. But the arity restoration thunk's frame has a |
| // return PC and we want to reroute that to our register restoration thunk. The arity |
| // restoration's return PC just just below regT1, and the register restoration's return PC |
| // is right at regT1. |
| jit.loadPtr(MacroAssembler::Address(GPRInfo::regT1, -static_cast<ptrdiff_t>(sizeof(Register))), GPRInfo::regT0); |
| jit.storePtr(GPRInfo::regT0, GPRInfo::regT1); |
| jit.storePtr( |
| MacroAssembler::TrustedImmPtr(vm->getCTIStub(registerRestorationThunkGenerator).code().executableAddress()), |
| MacroAssembler::Address(GPRInfo::regT1, -static_cast<ptrdiff_t>(sizeof(Register)))); |
| |
| MacroAssembler::Jump arityReturnPCReady = jit.jump(); |
| |
| arityIntactForReturnPC.link(&jit); |
| |
| jit.loadPtr(MacroAssembler::Address(MacroAssembler::framePointerRegister, CallFrame::returnPCOffset()), GPRInfo::regT0); |
| jit.storePtr(GPRInfo::regT0, GPRInfo::regT1); |
| jit.storePtr( |
| MacroAssembler::TrustedImmPtr(vm->getCTIStub(registerRestorationThunkGenerator).code().executableAddress()), |
| MacroAssembler::Address(MacroAssembler::framePointerRegister, CallFrame::returnPCOffset())); |
| |
| arityReturnPCReady.link(&jit); |
| |
| // Now get state out of the scratch buffer and place it back into the stack. The values are |
| // already reboxed so we just move them. |
| for (unsigned index = exit.m_values.size(); index--;) { |
| int operand = exit.m_values.operandForIndex(index); |
| |
| jit.load64(scratch + index, GPRInfo::regT0); |
| jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(static_cast<VirtualRegister>(operand))); |
| } |
| |
| handleExitCounts(jit, exit); |
| reifyInlinedCallFrames(jit, exit); |
| adjustAndJumpToTarget(jit, exit); |
| |
| LinkBuffer patchBuffer(*vm, jit, codeBlock); |
| exit.m_code = FINALIZE_CODE_IF( |
| shouldShowDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(), |
| patchBuffer, |
| ("FTL OSR exit #%u (%s, %s) from %s, with operands = %s, and record = %s", |
| exitID, toCString(exit.m_codeOrigin).data(), |
| exitKindToString(exit.m_kind), toCString(*codeBlock).data(), |
| toCString(ignoringContext<DumpContext>(exit.m_values)).data(), |
| toCString(*record).data())); |
| } |
| |
| extern "C" void* compileFTLOSRExit(ExecState* exec, unsigned exitID) |
| { |
| SamplingRegion samplingRegion("FTL OSR Exit Compilation"); |
| |
| if (shouldShowDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit()) |
| dataLog("Compiling OSR exit with exitID = ", exitID, "\n"); |
| |
| CodeBlock* codeBlock = exec->codeBlock(); |
| |
| ASSERT(codeBlock); |
| ASSERT(codeBlock->jitType() == JITCode::FTLJIT); |
| |
| VM* vm = &exec->vm(); |
| |
| // It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't |
| // really be profitable. |
| DeferGCForAWhile deferGC(vm->heap); |
| |
| JITCode* jitCode = codeBlock->jitCode()->ftl(); |
| OSRExit& exit = jitCode->osrExit[exitID]; |
| |
| if (shouldShowDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit()) { |
| dataLog(" Owning block: ", pointerDump(codeBlock), "\n"); |
| dataLog(" Origin: ", exit.m_codeOrigin, "\n"); |
| if (exit.m_codeOriginForExitProfile != exit.m_codeOrigin) |
| dataLog(" Origin for exit profile: ", exit.m_codeOriginForExitProfile, "\n"); |
| dataLog(" Exit values: ", exit.m_values, "\n"); |
| if (!exit.m_materializations.isEmpty()) { |
| dataLog(" Materializations:\n"); |
| for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) |
| dataLog(" ", pointerDump(materialization), "\n"); |
| } |
| } |
| |
| prepareCodeOriginForOSRExit(exec, exit.m_codeOrigin); |
| |
| compileStub(exitID, jitCode, exit, vm, codeBlock); |
| |
| MacroAssembler::repatchJump( |
| exit.codeLocationForRepatch(codeBlock), CodeLocationLabel(exit.m_code.code())); |
| |
| return exit.m_code.code().executableAddress(); |
| } |
| |
| } } // namespace JSC::FTL |
| |
| #endif // ENABLE(FTL_JIT) |
| |