blob: 2a6e0979335fbb1aaa327c8dcb69258175c9067d [file] [log] [blame]
/*
* Copyright (C) 2013-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "FTLOSRExitCompiler.h"
#if ENABLE(FTL_JIT)
#include "DFGOSRExitCompilerCommon.h"
#include "DFGOSRExitPreparation.h"
#include "FTLExitArgumentForOperand.h"
#include "FTLJITCode.h"
#include "FTLOSRExit.h"
#include "FTLOperations.h"
#include "FTLState.h"
#include "FTLSaveRestore.h"
#include "LinkBuffer.h"
#include "MaxFrameExtentForSlowPathCall.h"
#include "OperandsInlines.h"
#include "JSCInlines.h"
#include "RegisterPreservationWrapperGenerator.h"
namespace JSC { namespace FTL {
using namespace DFG;
static void compileRecovery(
CCallHelpers& jit, const ExitValue& value, StackMaps::Record* record, StackMaps& stackmaps,
char* registerScratch,
const HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*>& materializationToPointer)
{
switch (value.kind()) {
case ExitValueDead:
jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT0);
break;
case ExitValueConstant:
jit.move(MacroAssembler::TrustedImm64(JSValue::encode(value.constant())), GPRInfo::regT0);
break;
case ExitValueArgument:
record->locations[value.exitArgument().argument()].restoreInto(
jit, stackmaps, registerScratch, GPRInfo::regT0);
break;
case ExitValueInJSStack:
case ExitValueInJSStackAsInt32:
case ExitValueInJSStackAsInt52:
case ExitValueInJSStackAsDouble:
jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0);
break;
case ExitValueRecovery:
record->locations[value.rightRecoveryArgument()].restoreInto(
jit, stackmaps, registerScratch, GPRInfo::regT1);
record->locations[value.leftRecoveryArgument()].restoreInto(
jit, stackmaps, registerScratch, GPRInfo::regT0);
switch (value.recoveryOpcode()) {
case AddRecovery:
switch (value.recoveryFormat()) {
case ValueFormatInt32:
jit.add32(GPRInfo::regT1, GPRInfo::regT0);
break;
case ValueFormatInt52:
jit.add64(GPRInfo::regT1, GPRInfo::regT0);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
case SubRecovery:
switch (value.recoveryFormat()) {
case ValueFormatInt32:
jit.sub32(GPRInfo::regT1, GPRInfo::regT0);
break;
case ValueFormatInt52:
jit.sub64(GPRInfo::regT1, GPRInfo::regT0);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
break;
case ExitValueMaterializeNewObject:
jit.loadPtr(materializationToPointer.get(value.objectMaterialization()), GPRInfo::regT0);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
reboxAccordingToFormat(
value.valueFormat(), jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2);
}
static void compileStub(
unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock)
{
StackMaps::Record* record = nullptr;
for (unsigned i = jitCode->stackmaps.records.size(); i--;) {
record = &jitCode->stackmaps.records[i];
if (record->patchpointID == exit.m_stackmapID)
break;
}
RELEASE_ASSERT(record->patchpointID == exit.m_stackmapID);
// This code requires framePointerRegister is the same as callFrameRegister
static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same");
CCallHelpers jit(vm, codeBlock);
// We need scratch space to save all registers, to build up the JS stack, to deal with unwind
// fixup, pointers to all of the objects we materialize, and the elements inside those objects
// that we materialize.
// Figure out how much space we need for those object allocations.
unsigned numMaterializations = 0;
size_t maxMaterializationNumArguments = 0;
for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
numMaterializations++;
maxMaterializationNumArguments = std::max(
maxMaterializationNumArguments,
materialization->properties().size());
}
ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(
sizeof(EncodedJSValue) * (
exit.m_values.size() + numMaterializations + maxMaterializationNumArguments) +
requiredScratchMemorySizeInBytes() +
jitCode->unwindInfo.m_registers.size() * sizeof(uint64_t));
EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
EncodedJSValue* materializationPointers = scratch + exit.m_values.size();
EncodedJSValue* materializationArguments = materializationPointers + numMaterializations;
char* registerScratch = bitwise_cast<char*>(materializationArguments + maxMaterializationNumArguments);
uint64_t* unwindScratch = bitwise_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes());
HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer;
unsigned materializationCount = 0;
for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
materializationToPointer.add(
materialization, materializationPointers + materializationCount++);
}
// Note that we come in here, the stack used to be as LLVM left it except that someone called pushToSave().
// We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use
// that slot for saveAllRegisters().
saveAllRegisters(jit, registerScratch);
// Bring the stack back into a sane form and assert that it's sane.
jit.popToRestore(GPRInfo::regT0);
jit.checkStackPointerAlignment();
if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) {
Profiler::Database& database = *vm->m_perBytecodeProfiler;
Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get();
Profiler::OSRExit* profilerExit = compilation->addOSRExit(
exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
exit.m_kind, exit.m_kind == UncountableInvalidation);
jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress()));
}
// The remaining code assumes that SP/FP are in the same state that they were in the FTL's
// call frame.
// Get the call frame and tag thingies.
// Restore the exiting function's callFrame value into a regT4
jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister);
// Do some value profiling.
if (exit.m_profileValueFormat != InvalidValueFormat) {
record->locations[0].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0);
reboxAccordingToFormat(
exit.m_profileValueFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2);
if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1);
jit.store32(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructureID());
jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeOffset()), GPRInfo::regT1);
jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2);
jit.lshift32(GPRInfo::regT1, GPRInfo::regT2);
jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
}
}
if (!!exit.m_valueProfile)
jit.store64(GPRInfo::regT0, exit.m_valueProfile.getSpecFailBucket(0));
}
// Materialize all objects. Don't materialize an object until all
// of the objects it needs have been materialized. We break cycles
// by populating objects late - we only consider an object as
// needing another object if the later is needed for the
// allocation of the former.
HashSet<ExitTimeObjectMaterialization*> toMaterialize;
for (ExitTimeObjectMaterialization* materialization : exit.m_materializations)
toMaterialize.add(materialization);
while (!toMaterialize.isEmpty()) {
unsigned previousToMaterializeSize = toMaterialize.size();
Vector<ExitTimeObjectMaterialization*> worklist;
worklist.appendRange(toMaterialize.begin(), toMaterialize.end());
for (ExitTimeObjectMaterialization* materialization : worklist) {
// Check if we can do anything about this right now.
bool allGood = true;
for (ExitPropertyValue value : materialization->properties()) {
if (!value.value().isObjectMaterialization())
continue;
if (!value.location().neededForMaterialization())
continue;
if (toMaterialize.contains(value.value().objectMaterialization())) {
// Gotta skip this one, since it needs a
// materialization that hasn't been materialized.
allGood = false;
break;
}
}
if (!allGood)
continue;
// All systems go for materializing the object. First we
// recover the values of all of its fields and then we
// call a function to actually allocate the beast.
// We only recover the fields that are needed for the allocation.
for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
const ExitPropertyValue& property = materialization->properties()[propertyIndex];
const ExitValue& value = property.value();
if (!property.location().neededForMaterialization())
continue;
compileRecovery(
jit, value, record, jitCode->stackmaps, registerScratch,
materializationToPointer);
jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
}
// This call assumes that we don't pass arguments on the stack.
jit.setupArgumentsWithExecState(
CCallHelpers::TrustedImmPtr(materialization),
CCallHelpers::TrustedImmPtr(materializationArguments));
jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0);
jit.call(GPRInfo::nonArgGPR0);
jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization));
// Let everyone know that we're done.
toMaterialize.remove(materialization);
}
// We expect progress! This ensures that we crash rather than looping infinitely if there
// is something broken about this fixpoint. Or, this could happen if we ever violate the
// "materializations form a DAG" rule.
RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize);
}
// Now that all the objects have been allocated, we populate them
// with the correct values. This time we can recover all the
// fields, including those that are only needed for the allocation.
for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
const ExitValue& value = materialization->properties()[propertyIndex].value();
compileRecovery(
jit, value, record, jitCode->stackmaps, registerScratch,
materializationToPointer);
jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
}
// This call assumes that we don't pass arguments on the stack
jit.setupArgumentsWithExecState(
CCallHelpers::TrustedImmPtr(materialization),
CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)),
CCallHelpers::TrustedImmPtr(materializationArguments));
jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0);
jit.call(GPRInfo::nonArgGPR0);
}
// Save all state from wherever the exit data tells us it was, into the appropriate place in
// the scratch buffer. This also does the reboxing.
for (unsigned index = exit.m_values.size(); index--;) {
compileRecovery(
jit, exit.m_values[index], record, jitCode->stackmaps, registerScratch,
materializationToPointer);
jit.store64(GPRInfo::regT0, scratch + index);
}
// Henceforth we make it look like the exiting function was called through a register
// preservation wrapper. This implies that FP must be nudged down by a certain amount. Then
// we restore the various things according to either exit.m_values or by copying from the
// old frame, and finally we save the various callee-save registers into where the
// restoration thunk would restore them from.
ptrdiff_t offset = registerPreservationOffset();
RegisterSet toSave = registersToPreserve();
// Before we start messing with the frame, we need to set aside any registers that the
// FTL code was preserving.
for (unsigned i = jitCode->unwindInfo.m_registers.size(); i--;) {
RegisterAtOffset entry = jitCode->unwindInfo.m_registers[i];
jit.load64(
MacroAssembler::Address(MacroAssembler::framePointerRegister, entry.offset()),
GPRInfo::regT0);
jit.store64(GPRInfo::regT0, unwindScratch + i);
}
jit.load32(CCallHelpers::payloadFor(JSStack::ArgumentCount), GPRInfo::regT2);
// Let's say that the FTL function had failed its arity check. In that case, the stack will
// contain some extra stuff.
//
// First we compute the padded stack space:
//
// paddedStackSpace = roundUp(codeBlock->numParameters - regT2 + 1)
//
// The stack will have regT2 + CallFrameHeaderSize stuff, but above it there will be
// paddedStackSpace gunk used by the arity check fail restoration thunk. When that happens
// we want to make the stack look like this, from higher addresses down:
//
// - register preservation return PC
// - preserved registers
// - arity check fail return PC
// - argument padding
// - actual arguments
// - call frame header
//
// So that the actual call frame header appears to return to the arity check fail return
// PC, and that then returns to the register preservation thunk. The arity check thunk that
// we return to will have the padding size encoded into it. It will then know to return
// into the register preservation thunk, which uses the argument count to figure out where
// registers are preserved.
// This code assumes that we're dealing with FunctionCode.
RELEASE_ASSERT(codeBlock->codeType() == FunctionCode);
jit.add32(
MacroAssembler::TrustedImm32(-codeBlock->numParameters()), GPRInfo::regT2,
GPRInfo::regT3);
MacroAssembler::Jump arityIntact = jit.branch32(
MacroAssembler::GreaterThanOrEqual, GPRInfo::regT3, MacroAssembler::TrustedImm32(0));
jit.neg32(GPRInfo::regT3);
jit.add32(MacroAssembler::TrustedImm32(1 + stackAlignmentRegisters() - 1), GPRInfo::regT3);
jit.and32(MacroAssembler::TrustedImm32(-stackAlignmentRegisters()), GPRInfo::regT3);
jit.add32(GPRInfo::regT3, GPRInfo::regT2);
arityIntact.link(&jit);
// First set up SP so that our data doesn't get clobbered by signals.
unsigned conservativeStackDelta =
registerPreservationOffset() +
exit.m_values.numberOfLocals() * sizeof(Register) +
maxFrameExtentForSlowPathCall;
conservativeStackDelta = WTF::roundUpToMultipleOf(
stackAlignmentBytes(), conservativeStackDelta);
jit.addPtr(
MacroAssembler::TrustedImm32(-conservativeStackDelta),
MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister);
jit.checkStackPointerAlignment();
jit.subPtr(
MacroAssembler::TrustedImm32(registerPreservationOffset()),
MacroAssembler::framePointerRegister);
// Copy the old frame data into its new location.
jit.add32(MacroAssembler::TrustedImm32(JSStack::CallFrameHeaderSize), GPRInfo::regT2);
jit.move(MacroAssembler::framePointerRegister, GPRInfo::regT1);
MacroAssembler::Label loop = jit.label();
jit.sub32(MacroAssembler::TrustedImm32(1), GPRInfo::regT2);
jit.load64(MacroAssembler::Address(GPRInfo::regT1, offset), GPRInfo::regT0);
jit.store64(GPRInfo::regT0, GPRInfo::regT1);
jit.addPtr(MacroAssembler::TrustedImm32(sizeof(Register)), GPRInfo::regT1);
jit.branchTest32(MacroAssembler::NonZero, GPRInfo::regT2).linkTo(loop, &jit);
// At this point regT1 points to where we would save our registers. Save them here.
ptrdiff_t currentOffset = 0;
for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
if (!toSave.get(reg))
continue;
currentOffset += sizeof(Register);
unsigned unwindIndex = jitCode->unwindInfo.indexOf(reg);
if (unwindIndex == UINT_MAX) {
// The FTL compilation didn't preserve this register. This means that it also
// didn't use the register. So its value at the beginning of OSR exit should be
// preserved by the thunk. Luckily, we saved all registers into the register
// scratch buffer, so we can restore them from there.
jit.load64(registerScratch + offsetOfReg(reg), GPRInfo::regT0);
} else {
// The FTL compilation preserved the register. Its new value is therefore
// irrelevant, but we can get the value that was preserved by using the unwind
// data. We've already copied all unwind-able preserved registers into the unwind
// scratch buffer, so we can get it from there.
jit.load64(unwindScratch + unwindIndex, GPRInfo::regT0);
}
jit.store64(GPRInfo::regT0, AssemblyHelpers::Address(GPRInfo::regT1, currentOffset));
}
// We need to make sure that we return into the register restoration thunk. This works
// differently depending on whether or not we had arity issues.
MacroAssembler::Jump arityIntactForReturnPC = jit.branch32(
MacroAssembler::GreaterThanOrEqual,
CCallHelpers::payloadFor(JSStack::ArgumentCount),
MacroAssembler::TrustedImm32(codeBlock->numParameters()));
// The return PC in the call frame header points at exactly the right arity restoration
// thunk. We don't want to change that. But the arity restoration thunk's frame has a
// return PC and we want to reroute that to our register restoration thunk. The arity
// restoration's return PC just just below regT1, and the register restoration's return PC
// is right at regT1.
jit.loadPtr(MacroAssembler::Address(GPRInfo::regT1, -static_cast<ptrdiff_t>(sizeof(Register))), GPRInfo::regT0);
jit.storePtr(GPRInfo::regT0, GPRInfo::regT1);
jit.storePtr(
MacroAssembler::TrustedImmPtr(vm->getCTIStub(registerRestorationThunkGenerator).code().executableAddress()),
MacroAssembler::Address(GPRInfo::regT1, -static_cast<ptrdiff_t>(sizeof(Register))));
MacroAssembler::Jump arityReturnPCReady = jit.jump();
arityIntactForReturnPC.link(&jit);
jit.loadPtr(MacroAssembler::Address(MacroAssembler::framePointerRegister, CallFrame::returnPCOffset()), GPRInfo::regT0);
jit.storePtr(GPRInfo::regT0, GPRInfo::regT1);
jit.storePtr(
MacroAssembler::TrustedImmPtr(vm->getCTIStub(registerRestorationThunkGenerator).code().executableAddress()),
MacroAssembler::Address(MacroAssembler::framePointerRegister, CallFrame::returnPCOffset()));
arityReturnPCReady.link(&jit);
// Now get state out of the scratch buffer and place it back into the stack. The values are
// already reboxed so we just move them.
for (unsigned index = exit.m_values.size(); index--;) {
int operand = exit.m_values.operandForIndex(index);
jit.load64(scratch + index, GPRInfo::regT0);
jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(static_cast<VirtualRegister>(operand)));
}
handleExitCounts(jit, exit);
reifyInlinedCallFrames(jit, exit);
adjustAndJumpToTarget(jit, exit);
LinkBuffer patchBuffer(*vm, jit, codeBlock);
exit.m_code = FINALIZE_CODE_IF(
shouldShowDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(),
patchBuffer,
("FTL OSR exit #%u (%s, %s) from %s, with operands = %s, and record = %s",
exitID, toCString(exit.m_codeOrigin).data(),
exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
toCString(ignoringContext<DumpContext>(exit.m_values)).data(),
toCString(*record).data()));
}
extern "C" void* compileFTLOSRExit(ExecState* exec, unsigned exitID)
{
SamplingRegion samplingRegion("FTL OSR Exit Compilation");
if (shouldShowDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit())
dataLog("Compiling OSR exit with exitID = ", exitID, "\n");
CodeBlock* codeBlock = exec->codeBlock();
ASSERT(codeBlock);
ASSERT(codeBlock->jitType() == JITCode::FTLJIT);
VM* vm = &exec->vm();
// It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't
// really be profitable.
DeferGCForAWhile deferGC(vm->heap);
JITCode* jitCode = codeBlock->jitCode()->ftl();
OSRExit& exit = jitCode->osrExit[exitID];
if (shouldShowDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit()) {
dataLog(" Owning block: ", pointerDump(codeBlock), "\n");
dataLog(" Origin: ", exit.m_codeOrigin, "\n");
if (exit.m_codeOriginForExitProfile != exit.m_codeOrigin)
dataLog(" Origin for exit profile: ", exit.m_codeOriginForExitProfile, "\n");
dataLog(" Exit values: ", exit.m_values, "\n");
if (!exit.m_materializations.isEmpty()) {
dataLog(" Materializations:\n");
for (ExitTimeObjectMaterialization* materialization : exit.m_materializations)
dataLog(" ", pointerDump(materialization), "\n");
}
}
prepareCodeOriginForOSRExit(exec, exit.m_codeOrigin);
compileStub(exitID, jitCode, exit, vm, codeBlock);
MacroAssembler::repatchJump(
exit.codeLocationForRepatch(codeBlock), CodeLocationLabel(exit.m_code.code()));
return exit.m_code.code().executableAddress();
}
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)