| /* |
| * Copyright (C) 2008, 2012, 2014, 2015 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef AbstractMacroAssembler_h |
| #define AbstractMacroAssembler_h |
| |
| #include "AbortReason.h" |
| #include "AssemblerBuffer.h" |
| #include "CodeLocation.h" |
| #include "MacroAssemblerCodeRef.h" |
| #include "Options.h" |
| #include "WeakRandom.h" |
| #include <wtf/CryptographicallyRandomNumber.h> |
| #include <wtf/Noncopyable.h> |
| |
| #if ENABLE(ASSEMBLER) |
| |
| namespace JSC { |
| |
| inline bool isARMv7IDIVSupported() |
| { |
| #if HAVE(ARM_IDIV_INSTRUCTIONS) |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| inline bool isARM64() |
| { |
| #if CPU(ARM64) |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| inline bool isX86() |
| { |
| #if CPU(X86_64) || CPU(X86) |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| inline bool optimizeForARMv7IDIVSupported() |
| { |
| return isARMv7IDIVSupported() && Options::enableArchitectureSpecificOptimizations(); |
| } |
| |
| inline bool optimizeForARM64() |
| { |
| return isARM64() && Options::enableArchitectureSpecificOptimizations(); |
| } |
| |
| inline bool optimizeForX86() |
| { |
| return isX86() && Options::enableArchitectureSpecificOptimizations(); |
| } |
| |
| class LinkBuffer; |
| class RepatchBuffer; |
| class Watchpoint; |
| namespace DFG { |
| struct OSRExit; |
| } |
| |
| template <class AssemblerType, class MacroAssemblerType> |
| class AbstractMacroAssembler { |
| public: |
| friend class JITWriteBarrierBase; |
| typedef AbstractMacroAssembler<AssemblerType, MacroAssemblerType> AbstractMacroAssemblerType; |
| typedef AssemblerType AssemblerType_T; |
| |
| typedef MacroAssemblerCodePtr CodePtr; |
| typedef MacroAssemblerCodeRef CodeRef; |
| |
| class Jump; |
| |
| typedef typename AssemblerType::RegisterID RegisterID; |
| typedef typename AssemblerType::FPRegisterID FPRegisterID; |
| |
| static RegisterID firstRegister() { return AssemblerType::firstRegister(); } |
| static RegisterID lastRegister() { return AssemblerType::lastRegister(); } |
| |
| static FPRegisterID firstFPRegister() { return AssemblerType::firstFPRegister(); } |
| static FPRegisterID lastFPRegister() { return AssemblerType::lastFPRegister(); } |
| |
| // Section 1: MacroAssembler operand types |
| // |
| // The following types are used as operands to MacroAssembler operations, |
| // describing immediate and memory operands to the instructions to be planted. |
| |
| enum Scale { |
| TimesOne, |
| TimesTwo, |
| TimesFour, |
| TimesEight, |
| }; |
| |
| static Scale timesPtr() |
| { |
| if (sizeof(void*) == 4) |
| return TimesFour; |
| return TimesEight; |
| } |
| |
| // Address: |
| // |
| // Describes a simple base-offset address. |
| struct Address { |
| explicit Address(RegisterID base, int32_t offset = 0) |
| : base(base) |
| , offset(offset) |
| { |
| } |
| |
| Address withOffset(int32_t additionalOffset) |
| { |
| return Address(base, offset + additionalOffset); |
| } |
| |
| RegisterID base; |
| int32_t offset; |
| }; |
| |
| struct ExtendedAddress { |
| explicit ExtendedAddress(RegisterID base, intptr_t offset = 0) |
| : base(base) |
| , offset(offset) |
| { |
| } |
| |
| RegisterID base; |
| intptr_t offset; |
| }; |
| |
| // ImplicitAddress: |
| // |
| // This class is used for explicit 'load' and 'store' operations |
| // (as opposed to situations in which a memory operand is provided |
| // to a generic operation, such as an integer arithmetic instruction). |
| // |
| // In the case of a load (or store) operation we want to permit |
| // addresses to be implicitly constructed, e.g. the two calls: |
| // |
| // load32(Address(addrReg), destReg); |
| // load32(addrReg, destReg); |
| // |
| // Are equivalent, and the explicit wrapping of the Address in the former |
| // is unnecessary. |
| struct ImplicitAddress { |
| ImplicitAddress(RegisterID base) |
| : base(base) |
| , offset(0) |
| { |
| } |
| |
| ImplicitAddress(Address address) |
| : base(address.base) |
| , offset(address.offset) |
| { |
| } |
| |
| RegisterID base; |
| int32_t offset; |
| }; |
| |
| // BaseIndex: |
| // |
| // Describes a complex addressing mode. |
| struct BaseIndex { |
| BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) |
| : base(base) |
| , index(index) |
| , scale(scale) |
| , offset(offset) |
| { |
| } |
| |
| RegisterID base; |
| RegisterID index; |
| Scale scale; |
| int32_t offset; |
| |
| BaseIndex withOffset(int32_t additionalOffset) |
| { |
| return BaseIndex(base, index, scale, offset + additionalOffset); |
| } |
| }; |
| |
| // AbsoluteAddress: |
| // |
| // Describes an memory operand given by a pointer. For regular load & store |
| // operations an unwrapped void* will be used, rather than using this. |
| struct AbsoluteAddress { |
| explicit AbsoluteAddress(const void* ptr) |
| : m_ptr(ptr) |
| { |
| } |
| |
| const void* m_ptr; |
| }; |
| |
| // TrustedImmPtr: |
| // |
| // A pointer sized immediate operand to an instruction - this is wrapped |
| // in a class requiring explicit construction in order to differentiate |
| // from pointers used as absolute addresses to memory operations |
| struct TrustedImmPtr { |
| TrustedImmPtr() { } |
| |
| explicit TrustedImmPtr(const void* value) |
| : m_value(value) |
| { |
| } |
| |
| // This is only here so that TrustedImmPtr(0) does not confuse the C++ |
| // overload handling rules. |
| explicit TrustedImmPtr(int value) |
| : m_value(0) |
| { |
| ASSERT_UNUSED(value, !value); |
| } |
| |
| explicit TrustedImmPtr(size_t value) |
| : m_value(reinterpret_cast<void*>(value)) |
| { |
| } |
| |
| intptr_t asIntptr() |
| { |
| return reinterpret_cast<intptr_t>(m_value); |
| } |
| |
| const void* m_value; |
| }; |
| |
| struct ImmPtr : private TrustedImmPtr |
| { |
| explicit ImmPtr(const void* value) |
| : TrustedImmPtr(value) |
| { |
| } |
| |
| TrustedImmPtr asTrustedImmPtr() { return *this; } |
| }; |
| |
| // TrustedImm32: |
| // |
| // A 32bit immediate operand to an instruction - this is wrapped in a |
| // class requiring explicit construction in order to prevent RegisterIDs |
| // (which are implemented as an enum) from accidentally being passed as |
| // immediate values. |
| struct TrustedImm32 { |
| TrustedImm32() { } |
| |
| explicit TrustedImm32(int32_t value) |
| : m_value(value) |
| { |
| } |
| |
| #if !CPU(X86_64) |
| explicit TrustedImm32(TrustedImmPtr ptr) |
| : m_value(ptr.asIntptr()) |
| { |
| } |
| #endif |
| |
| int32_t m_value; |
| }; |
| |
| |
| struct Imm32 : private TrustedImm32 { |
| explicit Imm32(int32_t value) |
| : TrustedImm32(value) |
| { |
| } |
| #if !CPU(X86_64) |
| explicit Imm32(TrustedImmPtr ptr) |
| : TrustedImm32(ptr) |
| { |
| } |
| #endif |
| const TrustedImm32& asTrustedImm32() const { return *this; } |
| |
| }; |
| |
| // TrustedImm64: |
| // |
| // A 64bit immediate operand to an instruction - this is wrapped in a |
| // class requiring explicit construction in order to prevent RegisterIDs |
| // (which are implemented as an enum) from accidentally being passed as |
| // immediate values. |
| struct TrustedImm64 { |
| TrustedImm64() { } |
| |
| explicit TrustedImm64(int64_t value) |
| : m_value(value) |
| { |
| } |
| |
| #if CPU(X86_64) || CPU(ARM64) |
| explicit TrustedImm64(TrustedImmPtr ptr) |
| : m_value(ptr.asIntptr()) |
| { |
| } |
| #endif |
| |
| int64_t m_value; |
| }; |
| |
| struct Imm64 : private TrustedImm64 |
| { |
| explicit Imm64(int64_t value) |
| : TrustedImm64(value) |
| { |
| } |
| #if CPU(X86_64) || CPU(ARM64) |
| explicit Imm64(TrustedImmPtr ptr) |
| : TrustedImm64(ptr) |
| { |
| } |
| #endif |
| const TrustedImm64& asTrustedImm64() const { return *this; } |
| }; |
| |
| // Section 2: MacroAssembler code buffer handles |
| // |
| // The following types are used to reference items in the code buffer |
| // during JIT code generation. For example, the type Jump is used to |
| // track the location of a jump instruction so that it may later be |
| // linked to a label marking its destination. |
| |
| |
| // Label: |
| // |
| // A Label records a point in the generated instruction stream, typically such that |
| // it may be used as a destination for a jump. |
| class Label { |
| template<class TemplateAssemblerType, class TemplateMacroAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend struct DFG::OSRExit; |
| friend class Jump; |
| friend class MacroAssemblerCodeRef; |
| friend class LinkBuffer; |
| friend class Watchpoint; |
| |
| public: |
| Label() |
| { |
| } |
| |
| Label(AbstractMacroAssemblerType* masm) |
| : m_label(masm->m_assembler.label()) |
| { |
| masm->invalidateAllTempRegisters(); |
| } |
| |
| bool isSet() const { return m_label.isSet(); } |
| private: |
| AssemblerLabel m_label; |
| }; |
| |
| // ConvertibleLoadLabel: |
| // |
| // A ConvertibleLoadLabel records a loadPtr instruction that can be patched to an addPtr |
| // so that: |
| // |
| // loadPtr(Address(a, i), b) |
| // |
| // becomes: |
| // |
| // addPtr(TrustedImmPtr(i), a, b) |
| class ConvertibleLoadLabel { |
| template<class TemplateAssemblerType, class TemplateMacroAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class LinkBuffer; |
| |
| public: |
| ConvertibleLoadLabel() |
| { |
| } |
| |
| ConvertibleLoadLabel(AbstractMacroAssemblerType* masm) |
| : m_label(masm->m_assembler.labelIgnoringWatchpoints()) |
| { |
| } |
| |
| bool isSet() const { return m_label.isSet(); } |
| private: |
| AssemblerLabel m_label; |
| }; |
| |
| // DataLabelPtr: |
| // |
| // A DataLabelPtr is used to refer to a location in the code containing a pointer to be |
| // patched after the code has been generated. |
| class DataLabelPtr { |
| template<class TemplateAssemblerType, class TemplateMacroAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class LinkBuffer; |
| public: |
| DataLabelPtr() |
| { |
| } |
| |
| DataLabelPtr(AbstractMacroAssemblerType* masm) |
| : m_label(masm->m_assembler.label()) |
| { |
| } |
| |
| bool isSet() const { return m_label.isSet(); } |
| |
| private: |
| AssemblerLabel m_label; |
| }; |
| |
| // DataLabel32: |
| // |
| // A DataLabel32 is used to refer to a location in the code containing a 32-bit constant to be |
| // patched after the code has been generated. |
| class DataLabel32 { |
| template<class TemplateAssemblerType, class TemplateMacroAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class LinkBuffer; |
| public: |
| DataLabel32() |
| { |
| } |
| |
| DataLabel32(AbstractMacroAssemblerType* masm) |
| : m_label(masm->m_assembler.label()) |
| { |
| } |
| |
| AssemblerLabel label() const { return m_label; } |
| |
| private: |
| AssemblerLabel m_label; |
| }; |
| |
| // DataLabelCompact: |
| // |
| // A DataLabelCompact is used to refer to a location in the code containing a |
| // compact immediate to be patched after the code has been generated. |
| class DataLabelCompact { |
| template<class TemplateAssemblerType, class TemplateMacroAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class LinkBuffer; |
| public: |
| DataLabelCompact() |
| { |
| } |
| |
| DataLabelCompact(AbstractMacroAssemblerType* masm) |
| : m_label(masm->m_assembler.label()) |
| { |
| } |
| |
| DataLabelCompact(AssemblerLabel label) |
| : m_label(label) |
| { |
| } |
| |
| AssemblerLabel label() const { return m_label; } |
| |
| private: |
| AssemblerLabel m_label; |
| }; |
| |
| // Call: |
| // |
| // A Call object is a reference to a call instruction that has been planted |
| // into the code buffer - it is typically used to link the call, setting the |
| // relative offset such that when executed it will call to the desired |
| // destination. |
| class Call { |
| template<class TemplateAssemblerType, class TemplateMacroAssemblerType> |
| friend class AbstractMacroAssembler; |
| |
| public: |
| enum Flags { |
| None = 0x0, |
| Linkable = 0x1, |
| Near = 0x2, |
| LinkableNear = 0x3, |
| }; |
| |
| Call() |
| : m_flags(None) |
| { |
| } |
| |
| Call(AssemblerLabel jmp, Flags flags) |
| : m_label(jmp) |
| , m_flags(flags) |
| { |
| } |
| |
| bool isFlagSet(Flags flag) |
| { |
| return m_flags & flag; |
| } |
| |
| static Call fromTailJump(Jump jump) |
| { |
| return Call(jump.m_label, Linkable); |
| } |
| |
| AssemblerLabel m_label; |
| private: |
| Flags m_flags; |
| }; |
| |
| // Jump: |
| // |
| // A jump object is a reference to a jump instruction that has been planted |
| // into the code buffer - it is typically used to link the jump, setting the |
| // relative offset such that when executed it will jump to the desired |
| // destination. |
| class Jump { |
| template<class TemplateAssemblerType, class TemplateMacroAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class Call; |
| friend struct DFG::OSRExit; |
| friend class LinkBuffer; |
| public: |
| Jump() |
| { |
| } |
| |
| #if CPU(ARM_THUMB2) |
| // Fixme: this information should be stored in the instruction stream, not in the Jump object. |
| Jump(AssemblerLabel jmp, ARMv7Assembler::JumpType type = ARMv7Assembler::JumpNoCondition, ARMv7Assembler::Condition condition = ARMv7Assembler::ConditionInvalid) |
| : m_label(jmp) |
| , m_type(type) |
| , m_condition(condition) |
| { |
| } |
| #elif CPU(ARM64) |
| Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type = ARM64Assembler::JumpNoCondition, ARM64Assembler::Condition condition = ARM64Assembler::ConditionInvalid) |
| : m_label(jmp) |
| , m_type(type) |
| , m_condition(condition) |
| { |
| } |
| |
| Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, bool is64Bit, ARM64Assembler::RegisterID compareRegister) |
| : m_label(jmp) |
| , m_type(type) |
| , m_condition(condition) |
| , m_is64Bit(is64Bit) |
| , m_compareRegister(compareRegister) |
| { |
| ASSERT((type == ARM64Assembler::JumpCompareAndBranch) || (type == ARM64Assembler::JumpCompareAndBranchFixedSize)); |
| } |
| |
| Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, unsigned bitNumber, ARM64Assembler::RegisterID compareRegister) |
| : m_label(jmp) |
| , m_type(type) |
| , m_condition(condition) |
| , m_bitNumber(bitNumber) |
| , m_compareRegister(compareRegister) |
| { |
| ASSERT((type == ARM64Assembler::JumpTestBit) || (type == ARM64Assembler::JumpTestBitFixedSize)); |
| } |
| #elif CPU(SH4) |
| Jump(AssemblerLabel jmp, SH4Assembler::JumpType type = SH4Assembler::JumpFar) |
| : m_label(jmp) |
| , m_type(type) |
| { |
| } |
| #else |
| Jump(AssemblerLabel jmp) |
| : m_label(jmp) |
| { |
| } |
| #endif |
| |
| Label label() const |
| { |
| Label result; |
| result.m_label = m_label; |
| return result; |
| } |
| |
| void link(AbstractMacroAssemblerType* masm) const |
| { |
| masm->invalidateAllTempRegisters(); |
| |
| #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| masm->checkRegisterAllocationAgainstBranchRange(m_label.m_offset, masm->debugOffset()); |
| #endif |
| |
| #if CPU(ARM_THUMB2) |
| masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); |
| #elif CPU(ARM64) |
| if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) |
| masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_is64Bit, m_compareRegister); |
| else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) |
| masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_bitNumber, m_compareRegister); |
| else |
| masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); |
| #elif CPU(SH4) |
| masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type); |
| #else |
| masm->m_assembler.linkJump(m_label, masm->m_assembler.label()); |
| #endif |
| } |
| |
| void linkTo(Label label, AbstractMacroAssemblerType* masm) const |
| { |
| #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset); |
| #endif |
| |
| #if CPU(ARM_THUMB2) |
| masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); |
| #elif CPU(ARM64) |
| if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) |
| masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_is64Bit, m_compareRegister); |
| else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) |
| masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_bitNumber, m_compareRegister); |
| else |
| masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); |
| #else |
| masm->m_assembler.linkJump(m_label, label.m_label); |
| #endif |
| } |
| |
| bool isSet() const { return m_label.isSet(); } |
| |
| private: |
| AssemblerLabel m_label; |
| #if CPU(ARM_THUMB2) |
| ARMv7Assembler::JumpType m_type; |
| ARMv7Assembler::Condition m_condition; |
| #elif CPU(ARM64) |
| ARM64Assembler::JumpType m_type; |
| ARM64Assembler::Condition m_condition; |
| bool m_is64Bit; |
| unsigned m_bitNumber; |
| ARM64Assembler::RegisterID m_compareRegister; |
| #endif |
| #if CPU(SH4) |
| SH4Assembler::JumpType m_type; |
| #endif |
| }; |
| |
| struct PatchableJump { |
| PatchableJump() |
| { |
| } |
| |
| explicit PatchableJump(Jump jump) |
| : m_jump(jump) |
| { |
| } |
| |
| operator Jump&() { return m_jump; } |
| |
| Jump m_jump; |
| }; |
| |
| // JumpList: |
| // |
| // A JumpList is a set of Jump objects. |
| // All jumps in the set will be linked to the same destination. |
| class JumpList { |
| friend class LinkBuffer; |
| |
| public: |
| typedef Vector<Jump, 2> JumpVector; |
| |
| JumpList() { } |
| |
| JumpList(Jump jump) |
| { |
| if (jump.isSet()) |
| append(jump); |
| } |
| |
| void link(AbstractMacroAssemblerType* masm) |
| { |
| size_t size = m_jumps.size(); |
| for (size_t i = 0; i < size; ++i) |
| m_jumps[i].link(masm); |
| m_jumps.clear(); |
| } |
| |
| void linkTo(Label label, AbstractMacroAssemblerType* masm) |
| { |
| size_t size = m_jumps.size(); |
| for (size_t i = 0; i < size; ++i) |
| m_jumps[i].linkTo(label, masm); |
| m_jumps.clear(); |
| } |
| |
| void append(Jump jump) |
| { |
| m_jumps.append(jump); |
| } |
| |
| void append(const JumpList& other) |
| { |
| m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); |
| } |
| |
| bool empty() |
| { |
| return !m_jumps.size(); |
| } |
| |
| void clear() |
| { |
| m_jumps.clear(); |
| } |
| |
| const JumpVector& jumps() const { return m_jumps; } |
| |
| private: |
| JumpVector m_jumps; |
| }; |
| |
| |
| // Section 3: Misc admin methods |
| #if ENABLE(DFG_JIT) |
| Label labelIgnoringWatchpoints() |
| { |
| Label result; |
| result.m_label = m_assembler.labelIgnoringWatchpoints(); |
| return result; |
| } |
| #else |
| Label labelIgnoringWatchpoints() |
| { |
| return label(); |
| } |
| #endif |
| |
| Label label() |
| { |
| return Label(this); |
| } |
| |
| void padBeforePatch() |
| { |
| // Rely on the fact that asking for a label already does the padding. |
| (void)label(); |
| } |
| |
| Label watchpointLabel() |
| { |
| Label result; |
| result.m_label = m_assembler.labelForWatchpoint(); |
| return result; |
| } |
| |
| Label align() |
| { |
| m_assembler.align(16); |
| return Label(this); |
| } |
| |
| #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| class RegisterAllocationOffset { |
| public: |
| RegisterAllocationOffset(unsigned offset) |
| : m_offset(offset) |
| { |
| } |
| |
| void checkOffsets(unsigned low, unsigned high) |
| { |
| RELEASE_ASSERT_WITH_MESSAGE(!(low <= m_offset && m_offset <= high), "Unsafe branch over register allocation at instruction offset %u in jump offset range %u..%u", m_offset, low, high); |
| } |
| |
| private: |
| unsigned m_offset; |
| }; |
| |
| void addRegisterAllocationAtOffset(unsigned offset) |
| { |
| m_registerAllocationForOffsets.append(RegisterAllocationOffset(offset)); |
| } |
| |
| void clearRegisterAllocationOffsets() |
| { |
| m_registerAllocationForOffsets.clear(); |
| } |
| |
| void checkRegisterAllocationAgainstBranchRange(unsigned offset1, unsigned offset2) |
| { |
| if (offset1 > offset2) |
| std::swap(offset1, offset2); |
| |
| size_t size = m_registerAllocationForOffsets.size(); |
| for (size_t i = 0; i < size; ++i) |
| m_registerAllocationForOffsets[i].checkOffsets(offset1, offset2); |
| } |
| #endif |
| |
| template<typename T, typename U> |
| static ptrdiff_t differenceBetween(T from, U to) |
| { |
| return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| } |
| |
| static ptrdiff_t differenceBetweenCodePtr(const MacroAssemblerCodePtr& a, const MacroAssemblerCodePtr& b) |
| { |
| return reinterpret_cast<ptrdiff_t>(b.executableAddress()) - reinterpret_cast<ptrdiff_t>(a.executableAddress()); |
| } |
| |
| unsigned debugOffset() { return m_assembler.debugOffset(); } |
| |
| ALWAYS_INLINE static void cacheFlush(void* code, size_t size) |
| { |
| AssemblerType::cacheFlush(code, size); |
| } |
| |
| #if ENABLE(MASM_PROBE) |
| |
| struct CPUState { |
| #define DECLARE_REGISTER(_type, _regName) \ |
| _type _regName; |
| FOR_EACH_CPU_REGISTER(DECLARE_REGISTER) |
| #undef DECLARE_REGISTER |
| |
| static const char* registerName(RegisterID regID) |
| { |
| switch (regID) { |
| #define DECLARE_REGISTER(_type, _regName) \ |
| case RegisterID::_regName: \ |
| return #_regName; |
| FOR_EACH_CPU_GPREGISTER(DECLARE_REGISTER) |
| #undef DECLARE_REGISTER |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| static const char* registerName(FPRegisterID regID) |
| { |
| switch (regID) { |
| #define DECLARE_REGISTER(_type, _regName) \ |
| case FPRegisterID::_regName: \ |
| return #_regName; |
| FOR_EACH_CPU_FPREGISTER(DECLARE_REGISTER) |
| #undef DECLARE_REGISTER |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| void* registerValue(RegisterID regID) |
| { |
| switch (regID) { |
| #define DECLARE_REGISTER(_type, _regName) \ |
| case RegisterID::_regName: \ |
| return _regName; |
| FOR_EACH_CPU_GPREGISTER(DECLARE_REGISTER) |
| #undef DECLARE_REGISTER |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| double registerValue(FPRegisterID regID) |
| { |
| switch (regID) { |
| #define DECLARE_REGISTER(_type, _regName) \ |
| case FPRegisterID::_regName: \ |
| return _regName; |
| FOR_EACH_CPU_FPREGISTER(DECLARE_REGISTER) |
| #undef DECLARE_REGISTER |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| }; |
| |
| struct ProbeContext; |
| typedef void (*ProbeFunction)(struct ProbeContext*); |
| |
| struct ProbeContext { |
| ProbeFunction probeFunction; |
| void* arg1; |
| void* arg2; |
| CPUState cpu; |
| }; |
| |
| // This function emits code to preserve the CPUState (e.g. registers), |
| // call a user supplied probe function, and restore the CPUState before |
| // continuing with other JIT generated code. |
| // |
| // The user supplied probe function will be called with a single pointer to |
| // a ProbeContext struct (defined above) which contains, among other things, |
| // the preserved CPUState. This allows the user probe function to inspect |
| // the CPUState at that point in the JIT generated code. |
| // |
| // If the user probe function alters the register values in the ProbeContext, |
| // the altered values will be loaded into the CPU registers when the probe |
| // returns. |
| // |
| // The ProbeContext is stack allocated and is only valid for the duration |
| // of the call to the user probe function. |
| // |
| // Note: probe() should be implemented by the target specific MacroAssembler. |
| // This prototype is only provided here to document the interface. |
| |
| void probe(ProbeFunction, void* arg1 = 0, void* arg2 = 0); |
| |
| #endif // ENABLE(MASM_PROBE) |
| |
| AssemblerType m_assembler; |
| |
| static void linkJump(void* code, Jump jump, CodeLocationLabel target) |
| { |
| AssemblerType::linkJump(code, jump.m_label, target.dataLocation()); |
| } |
| |
| static void linkPointer(void* code, AssemblerLabel label, void* value) |
| { |
| AssemblerType::linkPointer(code, label, value); |
| } |
| |
| static void* getLinkerAddress(void* code, AssemblerLabel label) |
| { |
| return AssemblerType::getRelocatedAddress(code, label); |
| } |
| |
| static unsigned getLinkerCallReturnOffset(Call call) |
| { |
| return AssemblerType::getCallReturnOffset(call.m_label); |
| } |
| |
| static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination) |
| { |
| AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); |
| } |
| |
| static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination) |
| { |
| AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); |
| } |
| |
| static void repatchCompact(CodeLocationDataLabelCompact dataLabelCompact, int32_t value) |
| { |
| AssemblerType::repatchCompact(dataLabelCompact.dataLocation(), value); |
| } |
| |
| static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value) |
| { |
| AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); |
| } |
| |
| static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value) |
| { |
| AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); |
| } |
| |
| static void* readPointer(CodeLocationDataLabelPtr dataLabelPtr) |
| { |
| return AssemblerType::readPointer(dataLabelPtr.dataLocation()); |
| } |
| |
| static void replaceWithLoad(CodeLocationConvertibleLoad label) |
| { |
| AssemblerType::replaceWithLoad(label.dataLocation()); |
| } |
| |
| static void replaceWithAddressComputation(CodeLocationConvertibleLoad label) |
| { |
| AssemblerType::replaceWithAddressComputation(label.dataLocation()); |
| } |
| |
| protected: |
| AbstractMacroAssembler() |
| : m_randomSource(cryptographicallyRandomNumber()) |
| { |
| invalidateAllTempRegisters(); |
| } |
| |
| uint32_t random() |
| { |
| return m_randomSource.getUint32(); |
| } |
| |
| WeakRandom m_randomSource; |
| |
| #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| Vector<RegisterAllocationOffset, 10> m_registerAllocationForOffsets; |
| #endif |
| |
| static bool haveScratchRegisterForBlinding() |
| { |
| return false; |
| } |
| static RegisterID scratchRegisterForBlinding() |
| { |
| UNREACHABLE_FOR_PLATFORM(); |
| return firstRegister(); |
| } |
| static bool canBlind() { return false; } |
| static bool shouldBlindForSpecificArch(uint32_t) { return false; } |
| static bool shouldBlindForSpecificArch(uint64_t) { return false; } |
| |
| class CachedTempRegister { |
| friend class DataLabelPtr; |
| friend class DataLabel32; |
| friend class DataLabelCompact; |
| friend class Jump; |
| friend class Label; |
| |
| public: |
| CachedTempRegister(AbstractMacroAssemblerType* masm, RegisterID registerID) |
| : m_masm(masm) |
| , m_registerID(registerID) |
| , m_value(0) |
| , m_validBit(1 << static_cast<unsigned>(registerID)) |
| { |
| ASSERT(static_cast<unsigned>(registerID) < (sizeof(unsigned) * 8)); |
| } |
| |
| ALWAYS_INLINE RegisterID registerIDInvalidate() { invalidate(); return m_registerID; } |
| |
| ALWAYS_INLINE RegisterID registerIDNoInvalidate() { return m_registerID; } |
| |
| bool value(intptr_t& value) |
| { |
| value = m_value; |
| return m_masm->isTempRegisterValid(m_validBit); |
| } |
| |
| void setValue(intptr_t value) |
| { |
| m_value = value; |
| m_masm->setTempRegisterValid(m_validBit); |
| } |
| |
| ALWAYS_INLINE void invalidate() { m_masm->clearTempRegisterValid(m_validBit); } |
| |
| private: |
| AbstractMacroAssemblerType* m_masm; |
| RegisterID m_registerID; |
| intptr_t m_value; |
| unsigned m_validBit; |
| }; |
| |
| ALWAYS_INLINE void invalidateAllTempRegisters() |
| { |
| m_tempRegistersValidBits = 0; |
| } |
| |
| ALWAYS_INLINE bool isTempRegisterValid(unsigned registerMask) |
| { |
| return (m_tempRegistersValidBits & registerMask); |
| } |
| |
| ALWAYS_INLINE void clearTempRegisterValid(unsigned registerMask) |
| { |
| m_tempRegistersValidBits &= ~registerMask; |
| } |
| |
| ALWAYS_INLINE void setTempRegisterValid(unsigned registerMask) |
| { |
| m_tempRegistersValidBits |= registerMask; |
| } |
| |
| unsigned m_tempRegistersValidBits; |
| |
| friend class LinkBuffer; |
| |
| private: |
| |
| }; // class AbstractMacroAssembler |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(ASSEMBLER) |
| |
| #endif // AbstractMacroAssembler_h |