| /* |
| * Copyright (C) 2011-2018 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "DFGGraph.h" |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "BytecodeKills.h" |
| #include "BytecodeLivenessAnalysisInlines.h" |
| #include "CodeBlock.h" |
| #include "CodeBlockWithJITType.h" |
| #include "DFGBackwardsCFG.h" |
| #include "DFGBackwardsDominators.h" |
| #include "DFGBlockWorklist.h" |
| #include "DFGCFG.h" |
| #include "DFGClobberSet.h" |
| #include "DFGClobbersExitState.h" |
| #include "DFGControlEquivalenceAnalysis.h" |
| #include "DFGDominators.h" |
| #include "DFGFlowIndexing.h" |
| #include "DFGFlowMap.h" |
| #include "DFGJITCode.h" |
| #include "DFGMayExit.h" |
| #include "DFGNaturalLoops.h" |
| #include "DFGVariableAccessDataDump.h" |
| #include "FullBytecodeLiveness.h" |
| #include "FunctionExecutableDump.h" |
| #include "GetterSetter.h" |
| #include "JIT.h" |
| #include "JSLexicalEnvironment.h" |
| #include "MaxFrameExtentForSlowPathCall.h" |
| #include "OperandsInlines.h" |
| #include "JSCInlines.h" |
| #include "StackAlignment.h" |
| #include <wtf/CommaPrinter.h> |
| #include <wtf/ListDump.h> |
| |
| namespace JSC { namespace DFG { |
| |
| static constexpr bool dumpOSRAvailabilityData = false; |
| |
| // Creates an array of stringized names. |
| static const char* dfgOpNames[] = { |
| #define STRINGIZE_DFG_OP_ENUM(opcode, flags) #opcode , |
| FOR_EACH_DFG_OP(STRINGIZE_DFG_OP_ENUM) |
| #undef STRINGIZE_DFG_OP_ENUM |
| }; |
| |
| Graph::Graph(VM& vm, Plan& plan) |
| : m_vm(vm) |
| , m_plan(plan) |
| , m_codeBlock(m_plan.codeBlock()) |
| , m_profiledBlock(m_codeBlock->alternative()) |
| , m_ssaCFG(std::make_unique<SSACFG>(*this)) |
| , m_nextMachineLocal(0) |
| , m_fixpointState(BeforeFixpoint) |
| , m_structureRegistrationState(HaveNotStartedRegistering) |
| , m_form(LoadStore) |
| , m_unificationState(LocallyUnified) |
| , m_refCountState(EverythingIsLive) |
| { |
| ASSERT(m_profiledBlock); |
| |
| m_hasDebuggerEnabled = m_profiledBlock->wasCompiledWithDebuggingOpcodes() || Options::forceDebuggerBytecodeGeneration(); |
| |
| m_indexingCache = std::make_unique<FlowIndexing>(*this); |
| m_abstractValuesCache = std::make_unique<FlowMap<AbstractValue>>(*this); |
| |
| registerStructure(vm.structureStructure.get()); |
| this->stringStructure = registerStructure(vm.stringStructure.get()); |
| this->symbolStructure = registerStructure(vm.symbolStructure.get()); |
| } |
| |
| Graph::~Graph() |
| { |
| } |
| |
| const char *Graph::opName(NodeType op) |
| { |
| return dfgOpNames[op]; |
| } |
| |
| static void printWhiteSpace(PrintStream& out, unsigned amount) |
| { |
| while (amount-- > 0) |
| out.print(" "); |
| } |
| |
| bool Graph::dumpCodeOrigin(PrintStream& out, const char* prefix, Node*& previousNodeRef, Node* currentNode, DumpContext* context) |
| { |
| if (!currentNode->origin.semantic) |
| return false; |
| |
| Node* previousNode = previousNodeRef; |
| previousNodeRef = currentNode; |
| |
| if (!previousNode) |
| return false; |
| |
| if (previousNode->origin.semantic.inlineCallFrame == currentNode->origin.semantic.inlineCallFrame) |
| return false; |
| |
| Vector<CodeOrigin> previousInlineStack = previousNode->origin.semantic.inlineStack(); |
| Vector<CodeOrigin> currentInlineStack = currentNode->origin.semantic.inlineStack(); |
| unsigned commonSize = std::min(previousInlineStack.size(), currentInlineStack.size()); |
| unsigned indexOfDivergence = commonSize; |
| for (unsigned i = 0; i < commonSize; ++i) { |
| if (previousInlineStack[i].inlineCallFrame != currentInlineStack[i].inlineCallFrame) { |
| indexOfDivergence = i; |
| break; |
| } |
| } |
| |
| bool hasPrinted = false; |
| |
| // Print the pops. |
| for (unsigned i = previousInlineStack.size(); i-- > indexOfDivergence;) { |
| out.print(prefix); |
| printWhiteSpace(out, i * 2); |
| out.print("<-- ", inContext(*previousInlineStack[i].inlineCallFrame, context), "\n"); |
| hasPrinted = true; |
| } |
| |
| // Print the pushes. |
| for (unsigned i = indexOfDivergence; i < currentInlineStack.size(); ++i) { |
| out.print(prefix); |
| printWhiteSpace(out, i * 2); |
| out.print("--> ", inContext(*currentInlineStack[i].inlineCallFrame, context), "\n"); |
| hasPrinted = true; |
| } |
| |
| return hasPrinted; |
| } |
| |
| int Graph::amountOfNodeWhiteSpace(Node* node) |
| { |
| return (node->origin.semantic.inlineDepth() - 1) * 2; |
| } |
| |
| void Graph::printNodeWhiteSpace(PrintStream& out, Node* node) |
| { |
| printWhiteSpace(out, amountOfNodeWhiteSpace(node)); |
| } |
| |
| void Graph::dump(PrintStream& out, const char* prefix, Node* node, DumpContext* context) |
| { |
| NodeType op = node->op(); |
| |
| unsigned refCount = node->refCount(); |
| bool mustGenerate = node->mustGenerate(); |
| if (mustGenerate) |
| --refCount; |
| |
| out.print(prefix); |
| printNodeWhiteSpace(out, node); |
| |
| // Example/explanation of dataflow dump output |
| // |
| // 14: <!2:7> GetByVal(@3, @13) |
| // ^1 ^2 ^3 ^4 ^5 |
| // |
| // (1) The nodeIndex of this operation. |
| // (2) The reference count. The number printed is the 'real' count, |
| // not including the 'mustGenerate' ref. If the node is |
| // 'mustGenerate' then the count it prefixed with '!'. |
| // (3) The virtual register slot assigned to this node. |
| // (4) The name of the operation. |
| // (5) The arguments to the operation. The may be of the form: |
| // @# - a NodeIndex referencing a prior node in the graph. |
| // arg# - an argument number. |
| // id# - the index in the CodeBlock of an identifier { if codeBlock is passed to dump(), the string representation is displayed }. |
| // var# - the index of a var on the global object, used by GetGlobalVar/GetGlobalLexicalVariable/PutGlobalVariable operations. |
| out.printf("% 4d:<%c%u:", (int)node->index(), mustGenerate ? '!' : ' ', refCount); |
| if (node->hasResult() && node->hasVirtualRegister() && node->virtualRegister().isValid()) |
| out.print(node->virtualRegister()); |
| else |
| out.print("-"); |
| out.print(">\t", opName(op), "("); |
| CommaPrinter comma; |
| if (node->flags() & NodeHasVarArgs) { |
| for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); childIdx++) { |
| if (!m_varArgChildren[childIdx]) |
| continue; |
| out.print(comma, m_varArgChildren[childIdx]); |
| } |
| } else { |
| if (!!node->child1() || !!node->child2() || !!node->child3()) |
| out.print(comma, node->child1()); |
| if (!!node->child2() || !!node->child3()) |
| out.print(comma, node->child2()); |
| if (!!node->child3()) |
| out.print(comma, node->child3()); |
| } |
| |
| if (toCString(NodeFlagsDump(node->flags())) != "<empty>") |
| out.print(comma, NodeFlagsDump(node->flags())); |
| if (node->prediction()) |
| out.print(comma, SpeculationDump(node->prediction())); |
| if (node->hasNumberOfArgumentsToSkip()) |
| out.print(comma, "numberOfArgumentsToSkip = ", node->numberOfArgumentsToSkip()); |
| if (node->hasArrayMode()) |
| out.print(comma, node->arrayMode()); |
| if (node->hasArithUnaryType()) |
| out.print(comma, "Type:", node->arithUnaryType()); |
| if (node->hasArithMode()) |
| out.print(comma, node->arithMode()); |
| if (node->hasArithRoundingMode()) |
| out.print(comma, "Rounding:", node->arithRoundingMode()); |
| if (node->hasScopeOffset()) |
| out.print(comma, node->scopeOffset()); |
| if (node->hasDirectArgumentsOffset()) |
| out.print(comma, node->capturedArgumentsOffset()); |
| if (node->hasArgumentIndex()) |
| out.print(comma, node->argumentIndex()); |
| if (node->hasRegisterPointer()) |
| out.print(comma, "global", "(", RawPointer(node->variablePointer()), ")"); |
| if (node->hasIdentifier()) |
| out.print(comma, "id", node->identifierNumber(), "{", identifiers()[node->identifierNumber()], "}"); |
| if (node->hasPromotedLocationDescriptor()) |
| out.print(comma, node->promotedLocationDescriptor()); |
| if (node->hasClassInfo()) |
| out.print(comma, *node->classInfo()); |
| if (node->hasStructureSet()) |
| out.print(comma, inContext(node->structureSet().toStructureSet(), context)); |
| if (node->hasStructure()) |
| out.print(comma, inContext(*node->structure().get(), context)); |
| if (node->op() == CPUIntrinsic) |
| out.print(comma, intrinsicName(node->intrinsic())); |
| if (node->hasTransition()) { |
| out.print(comma, pointerDumpInContext(node->transition(), context)); |
| #if USE(JSVALUE64) |
| out.print(", ID:", node->transition()->next->id()); |
| #else |
| out.print(", ID:", RawPointer(node->transition()->next.get())); |
| #endif |
| } |
| if (node->hasCellOperand()) { |
| if (!node->cellOperand()->value() || !node->cellOperand()->value().isCell()) |
| out.print(comma, "invalid cell operand: ", node->cellOperand()->value()); |
| else { |
| out.print(comma, pointerDump(node->cellOperand()->value().asCell())); |
| if (node->cellOperand()->value().isCell()) { |
| CallVariant variant(node->cellOperand()->value().asCell()); |
| if (ExecutableBase* executable = variant.executable()) { |
| if (executable->isHostFunction()) |
| out.print(comma, "<host function>"); |
| else if (FunctionExecutable* functionExecutable = jsDynamicCast<FunctionExecutable*>(m_vm, executable)) |
| out.print(comma, FunctionExecutableDump(functionExecutable)); |
| else |
| out.print(comma, "<non-function executable>"); |
| } |
| } |
| } |
| } |
| if (node->hasSpeculatedTypeForQuery()) |
| out.print(comma, SpeculationDump(node->speculatedTypeForQuery())); |
| if (node->hasStorageAccessData()) { |
| StorageAccessData& storageAccessData = node->storageAccessData(); |
| out.print(comma, "id", storageAccessData.identifierNumber, "{", identifiers()[storageAccessData.identifierNumber], "}"); |
| out.print(", ", static_cast<ptrdiff_t>(storageAccessData.offset)); |
| out.print(", inferredType = ", inContext(storageAccessData.inferredType, context)); |
| } |
| if (node->hasMultiGetByOffsetData()) { |
| MultiGetByOffsetData& data = node->multiGetByOffsetData(); |
| out.print(comma, "id", data.identifierNumber, "{", identifiers()[data.identifierNumber], "}"); |
| for (unsigned i = 0; i < data.cases.size(); ++i) |
| out.print(comma, inContext(data.cases[i], context)); |
| } |
| if (node->hasMultiPutByOffsetData()) { |
| MultiPutByOffsetData& data = node->multiPutByOffsetData(); |
| out.print(comma, "id", data.identifierNumber, "{", identifiers()[data.identifierNumber], "}"); |
| for (unsigned i = 0; i < data.variants.size(); ++i) |
| out.print(comma, inContext(data.variants[i], context)); |
| } |
| if (node->hasMatchStructureData()) { |
| for (MatchStructureVariant& variant : node->matchStructureData().variants) |
| out.print(comma, inContext(*variant.structure.get(), context), "=>", variant.result); |
| } |
| ASSERT(node->hasVariableAccessData(*this) == node->accessesStack(*this)); |
| if (node->hasVariableAccessData(*this)) { |
| VariableAccessData* variableAccessData = node->tryGetVariableAccessData(); |
| if (variableAccessData) { |
| VirtualRegister operand = variableAccessData->local(); |
| out.print(comma, variableAccessData->local(), "(", VariableAccessDataDump(*this, variableAccessData), ")"); |
| operand = variableAccessData->machineLocal(); |
| if (operand.isValid()) |
| out.print(comma, "machine:", operand); |
| } |
| } |
| if (node->hasStackAccessData()) { |
| StackAccessData* data = node->stackAccessData(); |
| out.print(comma, data->local); |
| if (data->machineLocal.isValid()) |
| out.print(comma, "machine:", data->machineLocal); |
| out.print(comma, data->format); |
| } |
| if (node->hasUnlinkedLocal()) |
| out.print(comma, node->unlinkedLocal()); |
| if (node->hasVectorLengthHint()) |
| out.print(comma, "vectorLengthHint = ", node->vectorLengthHint()); |
| if (node->hasLazyJSValue()) |
| out.print(comma, node->lazyJSValue()); |
| if (node->hasIndexingType()) |
| out.print(comma, IndexingTypeDump(node->indexingMode())); |
| if (node->hasTypedArrayType()) |
| out.print(comma, node->typedArrayType()); |
| if (node->hasPhi()) |
| out.print(comma, "^", node->phi()->index()); |
| if (node->hasExecutionCounter()) |
| out.print(comma, RawPointer(node->executionCounter())); |
| if (node->hasWatchpointSet()) |
| out.print(comma, RawPointer(node->watchpointSet())); |
| if (node->hasStoragePointer()) |
| out.print(comma, RawPointer(node->storagePointer())); |
| if (node->hasObjectMaterializationData()) |
| out.print(comma, node->objectMaterializationData()); |
| if (node->hasCallVarargsData()) |
| out.print(comma, "firstVarArgOffset = ", node->callVarargsData()->firstVarArgOffset); |
| if (node->hasLoadVarargsData()) { |
| LoadVarargsData* data = node->loadVarargsData(); |
| out.print(comma, "start = ", data->start, ", count = ", data->count); |
| if (data->machineStart.isValid()) |
| out.print(", machineStart = ", data->machineStart); |
| if (data->machineCount.isValid()) |
| out.print(", machineCount = ", data->machineCount); |
| out.print(", offset = ", data->offset, ", mandatoryMinimum = ", data->mandatoryMinimum); |
| out.print(", limit = ", data->limit); |
| } |
| if (node->hasCallDOMGetterData()) { |
| CallDOMGetterData* data = node->callDOMGetterData(); |
| out.print(comma, "id", data->identifierNumber, "{", identifiers()[data->identifierNumber], "}"); |
| out.print(", domJIT = ", RawPointer(data->domJIT)); |
| } |
| if (node->hasIgnoreLastIndexIsWritable()) |
| out.print(comma, "ignoreLastIndexIsWritable = ", node->ignoreLastIndexIsWritable()); |
| if (node->isConstant()) |
| out.print(comma, pointerDumpInContext(node->constant(), context)); |
| if (node->hasCallLinkStatus()) |
| out.print(comma, *node->callLinkStatus()); |
| if (node->hasGetByIdStatus()) |
| out.print(comma, *node->getByIdStatus()); |
| if (node->hasInByIdStatus()) |
| out.print(comma, *node->inByIdStatus()); |
| if (node->hasPutByIdStatus()) |
| out.print(comma, *node->putByIdStatus()); |
| if (node->isJump()) |
| out.print(comma, "T:", *node->targetBlock()); |
| if (node->isBranch()) |
| out.print(comma, "T:", node->branchData()->taken, ", F:", node->branchData()->notTaken); |
| if (node->isSwitch()) { |
| SwitchData* data = node->switchData(); |
| out.print(comma, data->kind); |
| for (unsigned i = 0; i < data->cases.size(); ++i) |
| out.print(comma, inContext(data->cases[i].value, context), ":", data->cases[i].target); |
| out.print(comma, "default:", data->fallThrough); |
| } |
| if (node->isEntrySwitch()) { |
| EntrySwitchData* data = node->entrySwitchData(); |
| for (unsigned i = 0; i < data->cases.size(); ++i) |
| out.print(comma, BranchTarget(data->cases[i])); |
| } |
| ClobberSet reads; |
| ClobberSet writes; |
| addReadsAndWrites(*this, node, reads, writes); |
| if (!reads.isEmpty()) |
| out.print(comma, "R:", sortedListDump(reads.direct(), ",")); |
| if (!writes.isEmpty()) |
| out.print(comma, "W:", sortedListDump(writes.direct(), ",")); |
| ExitMode exitMode = mayExit(*this, node); |
| if (exitMode != DoesNotExit) |
| out.print(comma, exitMode); |
| if (clobbersExitState(*this, node)) |
| out.print(comma, "ClobbersExit"); |
| if (node->origin.isSet()) { |
| out.print(comma, "bc#", node->origin.semantic.bytecodeIndex); |
| if (node->origin.semantic != node->origin.forExit && node->origin.forExit.isSet()) |
| out.print(comma, "exit: ", node->origin.forExit); |
| } |
| out.print(comma, node->origin.exitOK ? "ExitValid" : "ExitInvalid"); |
| if (node->origin.wasHoisted) |
| out.print(comma, "WasHoisted"); |
| out.print(")"); |
| |
| if (node->accessesStack(*this) && node->tryGetVariableAccessData()) |
| out.print(" predicting ", SpeculationDump(node->tryGetVariableAccessData()->prediction())); |
| else if (node->hasHeapPrediction()) |
| out.print(" predicting ", SpeculationDump(node->getHeapPrediction())); |
| |
| out.print("\n"); |
| } |
| |
| bool Graph::terminalsAreValid() |
| { |
| for (BasicBlock* block : blocksInNaturalOrder()) { |
| if (!block->terminal()) |
| return false; |
| } |
| return true; |
| } |
| |
| static BasicBlock* unboxLoopNode(const CPSCFG::Node& node) { return node.node(); } |
| static BasicBlock* unboxLoopNode(BasicBlock* block) { return block; } |
| |
| void Graph::dumpBlockHeader(PrintStream& out, const char* prefix, BasicBlock* block, PhiNodeDumpMode phiNodeDumpMode, DumpContext* context) |
| { |
| out.print(prefix, "Block ", *block, " (", inContext(block->at(0)->origin.semantic, context), "):", |
| block->isReachable ? "" : " (skipped)", block->isOSRTarget ? " (OSR target)" : "", block->isCatchEntrypoint ? " (Catch Entrypoint)" : "", "\n"); |
| if (block->executionCount == block->executionCount) |
| out.print(prefix, " Execution count: ", block->executionCount, "\n"); |
| out.print(prefix, " Predecessors:"); |
| for (size_t i = 0; i < block->predecessors.size(); ++i) |
| out.print(" ", *block->predecessors[i]); |
| out.print("\n"); |
| out.print(prefix, " Successors:"); |
| if (block->terminal()) { |
| for (BasicBlock* successor : block->successors()) { |
| out.print(" ", *successor); |
| } |
| } else |
| out.print(" <invalid>"); |
| out.print("\n"); |
| |
| auto printDominators = [&] (auto& dominators) { |
| out.print(prefix, " Dominated by: ", dominators.dominatorsOf(block), "\n"); |
| out.print(prefix, " Dominates: ", dominators.blocksDominatedBy(block), "\n"); |
| out.print(prefix, " Dominance Frontier: ", dominators.dominanceFrontierOf(block), "\n"); |
| out.print(prefix, " Iterated Dominance Frontier: ", |
| dominators.iteratedDominanceFrontierOf(typename std::remove_reference<decltype(dominators)>::type::List { block }), "\n"); |
| }; |
| |
| if (terminalsAreValid()) { |
| if (m_ssaDominators) |
| printDominators(*m_ssaDominators); |
| else if (m_cpsDominators) |
| printDominators(*m_cpsDominators); |
| } |
| |
| if (m_backwardsDominators && terminalsAreValid()) { |
| out.print(prefix, " Backwards dominates by: ", m_backwardsDominators->dominatorsOf(block), "\n"); |
| out.print(prefix, " Backwards dominates: ", m_backwardsDominators->blocksDominatedBy(block), "\n"); |
| } |
| if (m_controlEquivalenceAnalysis && terminalsAreValid()) { |
| out.print(prefix, " Control equivalent to:"); |
| for (BasicBlock* otherBlock : blocksInNaturalOrder()) { |
| if (m_controlEquivalenceAnalysis->areEquivalent(block, otherBlock)) |
| out.print(" ", *otherBlock); |
| } |
| out.print("\n"); |
| } |
| |
| auto printNaturalLoops = [&] (auto& naturalLoops) { |
| if (const auto* loop = naturalLoops->headerOf(block)) { |
| out.print(prefix, " Loop header, contains:"); |
| Vector<BlockIndex> sortedBlockList; |
| for (unsigned i = 0; i < loop->size(); ++i) |
| sortedBlockList.append(unboxLoopNode(loop->at(i))->index); |
| std::sort(sortedBlockList.begin(), sortedBlockList.end()); |
| for (unsigned i = 0; i < sortedBlockList.size(); ++i) |
| out.print(" #", sortedBlockList[i]); |
| out.print("\n"); |
| } |
| |
| auto containingLoops = naturalLoops->loopsOf(block); |
| if (!containingLoops.isEmpty()) { |
| out.print(prefix, " Containing loop headers:"); |
| for (unsigned i = 0; i < containingLoops.size(); ++i) |
| out.print(" ", *unboxLoopNode(containingLoops[i]->header())); |
| out.print("\n"); |
| } |
| }; |
| |
| if (m_ssaNaturalLoops) |
| printNaturalLoops(m_ssaNaturalLoops); |
| else if (m_cpsNaturalLoops) |
| printNaturalLoops(m_cpsNaturalLoops); |
| |
| if (!block->phis.isEmpty()) { |
| out.print(prefix, " Phi Nodes:"); |
| for (size_t i = 0; i < block->phis.size(); ++i) { |
| Node* phiNode = block->phis[i]; |
| if (!phiNode->shouldGenerate() && phiNodeDumpMode == DumpLivePhisOnly) |
| continue; |
| out.print(" @", phiNode->index(), "<", phiNode->local(), ",", phiNode->refCount(), ">->("); |
| if (phiNode->child1()) { |
| out.print("@", phiNode->child1()->index()); |
| if (phiNode->child2()) { |
| out.print(", @", phiNode->child2()->index()); |
| if (phiNode->child3()) |
| out.print(", @", phiNode->child3()->index()); |
| } |
| } |
| out.print(")", i + 1 < block->phis.size() ? "," : ""); |
| } |
| out.print("\n"); |
| } |
| } |
| |
| void Graph::dump(PrintStream& out, DumpContext* context) |
| { |
| DumpContext myContext; |
| myContext.graph = this; |
| if (!context) |
| context = &myContext; |
| |
| out.print("\n"); |
| out.print("DFG for ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT), ":\n"); |
| out.print(" Fixpoint state: ", m_fixpointState, "; Form: ", m_form, "; Unification state: ", m_unificationState, "; Ref count state: ", m_refCountState, "\n"); |
| if (m_form == SSA) { |
| for (unsigned entrypointIndex = 0; entrypointIndex < m_argumentFormats.size(); ++entrypointIndex) |
| out.print(" Argument formats for entrypoint index: ", entrypointIndex, " : ", listDump(m_argumentFormats[entrypointIndex]), "\n"); |
| } |
| else { |
| for (auto pair : m_rootToArguments) |
| out.print(" Arguments for block#", pair.key->index, ": ", listDump(pair.value), "\n"); |
| } |
| out.print("\n"); |
| |
| Node* lastNode = nullptr; |
| for (size_t b = 0; b < m_blocks.size(); ++b) { |
| BasicBlock* block = m_blocks[b].get(); |
| if (!block) |
| continue; |
| dumpBlockHeader(out, "", block, DumpAllPhis, context); |
| out.print(" States: ", block->cfaStructureClobberStateAtHead); |
| if (!block->cfaHasVisited) |
| out.print(", CurrentlyCFAUnreachable"); |
| if (!block->intersectionOfCFAHasVisited) |
| out.print(", CFAUnreachable"); |
| out.print("\n"); |
| switch (m_form) { |
| case LoadStore: |
| case ThreadedCPS: { |
| out.print(" Vars Before: "); |
| if (block->cfaHasVisited) |
| out.print(inContext(block->valuesAtHead, context)); |
| else |
| out.print("<empty>"); |
| out.print("\n"); |
| out.print(" Intersected Vars Before: "); |
| if (block->intersectionOfCFAHasVisited) |
| out.print(inContext(block->intersectionOfPastValuesAtHead, context)); |
| else |
| out.print("<empty>"); |
| out.print("\n"); |
| out.print(" Var Links: ", block->variablesAtHead, "\n"); |
| break; |
| } |
| |
| case SSA: { |
| RELEASE_ASSERT(block->ssa); |
| if (dumpOSRAvailabilityData) |
| out.print(" Availability: ", block->ssa->availabilityAtHead, "\n"); |
| out.print(" Live: ", nodeListDump(block->ssa->liveAtHead), "\n"); |
| out.print(" Values: ", nodeValuePairListDump(block->ssa->valuesAtHead, context), "\n"); |
| break; |
| } } |
| for (size_t i = 0; i < block->size(); ++i) { |
| dumpCodeOrigin(out, "", lastNode, block->at(i), context); |
| dump(out, "", block->at(i), context); |
| } |
| out.print(" States: ", block->cfaBranchDirection, ", ", block->cfaStructureClobberStateAtTail); |
| if (!block->cfaDidFinish) |
| out.print(", CFAInvalidated"); |
| out.print("\n"); |
| switch (m_form) { |
| case LoadStore: |
| case ThreadedCPS: { |
| out.print(" Vars After: "); |
| if (block->cfaHasVisited) |
| out.print(inContext(block->valuesAtTail, context)); |
| else |
| out.print("<empty>"); |
| out.print("\n"); |
| out.print(" Var Links: ", block->variablesAtTail, "\n"); |
| break; |
| } |
| |
| case SSA: { |
| RELEASE_ASSERT(block->ssa); |
| if (dumpOSRAvailabilityData) |
| out.print(" Availability: ", block->ssa->availabilityAtTail, "\n"); |
| out.print(" Live: ", nodeListDump(block->ssa->liveAtTail), "\n"); |
| out.print(" Values: ", nodeValuePairListDump(block->ssa->valuesAtTail, context), "\n"); |
| break; |
| } } |
| out.print("\n"); |
| } |
| |
| out.print("GC Values:\n"); |
| for (FrozenValue* value : m_frozenValues) { |
| if (value->pointsToHeap()) |
| out.print(" ", inContext(*value, &myContext), "\n"); |
| } |
| |
| out.print(inContext(watchpoints(), &myContext)); |
| |
| if (!myContext.isEmpty()) { |
| myContext.dump(out); |
| out.print("\n"); |
| } |
| } |
| |
| void Graph::deleteNode(Node* node) |
| { |
| if (validationEnabled() && m_form == SSA) { |
| for (BasicBlock* block : blocksInNaturalOrder()) { |
| DFG_ASSERT(*this, node, !block->ssa->liveAtHead.contains(node)); |
| DFG_ASSERT(*this, node, !block->ssa->liveAtTail.contains(node)); |
| } |
| } |
| |
| m_nodes.remove(node); |
| } |
| |
| void Graph::packNodeIndices() |
| { |
| m_nodes.packIndices(); |
| } |
| |
| void Graph::dethread() |
| { |
| if (m_form == LoadStore || m_form == SSA) |
| return; |
| |
| if (logCompilationChanges()) |
| dataLog("Dethreading DFG graph.\n"); |
| |
| for (BlockIndex blockIndex = m_blocks.size(); blockIndex--;) { |
| BasicBlock* block = m_blocks[blockIndex].get(); |
| if (!block) |
| continue; |
| for (unsigned phiIndex = block->phis.size(); phiIndex--;) { |
| Node* phi = block->phis[phiIndex]; |
| phi->children.reset(); |
| } |
| } |
| |
| m_form = LoadStore; |
| } |
| |
| void Graph::handleSuccessor(Vector<BasicBlock*, 16>& worklist, BasicBlock* block, BasicBlock* successor) |
| { |
| if (!successor->isReachable) { |
| successor->isReachable = true; |
| worklist.append(successor); |
| } |
| |
| if (!successor->predecessors.contains(block)) |
| successor->predecessors.append(block); |
| } |
| |
| void Graph::determineReachability() |
| { |
| Vector<BasicBlock*, 16> worklist; |
| for (BasicBlock* entrypoint : m_roots) { |
| entrypoint->isReachable = true; |
| worklist.append(entrypoint); |
| } |
| while (!worklist.isEmpty()) { |
| BasicBlock* block = worklist.takeLast(); |
| for (unsigned i = block->numSuccessors(); i--;) |
| handleSuccessor(worklist, block, block->successor(i)); |
| } |
| } |
| |
| void Graph::resetReachability() |
| { |
| for (BlockIndex blockIndex = m_blocks.size(); blockIndex--;) { |
| BasicBlock* block = m_blocks[blockIndex].get(); |
| if (!block) |
| continue; |
| block->isReachable = false; |
| block->predecessors.clear(); |
| } |
| |
| determineReachability(); |
| } |
| |
| namespace { |
| |
| class RefCountCalculator { |
| public: |
| RefCountCalculator(Graph& graph) |
| : m_graph(graph) |
| { |
| } |
| |
| void calculate() |
| { |
| // First reset the counts to 0 for all nodes. |
| for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) { |
| BasicBlock* block = m_graph.block(blockIndex); |
| if (!block) |
| continue; |
| for (unsigned indexInBlock = block->size(); indexInBlock--;) |
| block->at(indexInBlock)->setRefCount(0); |
| for (unsigned phiIndex = block->phis.size(); phiIndex--;) |
| block->phis[phiIndex]->setRefCount(0); |
| } |
| |
| // Now find the roots: |
| // - Nodes that are must-generate. |
| // - Nodes that are reachable from type checks. |
| // Set their ref counts to 1 and put them on the worklist. |
| for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) { |
| BasicBlock* block = m_graph.block(blockIndex); |
| if (!block) |
| continue; |
| for (unsigned indexInBlock = block->size(); indexInBlock--;) { |
| Node* node = block->at(indexInBlock); |
| DFG_NODE_DO_TO_CHILDREN(m_graph, node, findTypeCheckRoot); |
| if (!(node->flags() & NodeMustGenerate)) |
| continue; |
| if (!node->postfixRef()) |
| m_worklist.append(node); |
| } |
| } |
| |
| while (!m_worklist.isEmpty()) { |
| while (!m_worklist.isEmpty()) { |
| Node* node = m_worklist.last(); |
| m_worklist.removeLast(); |
| ASSERT(node->shouldGenerate()); // It should not be on the worklist unless it's ref'ed. |
| DFG_NODE_DO_TO_CHILDREN(m_graph, node, countEdge); |
| } |
| |
| if (m_graph.m_form == SSA) { |
| // Find Phi->Upsilon edges, which are represented as meta-data in the |
| // Upsilon. |
| for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| BasicBlock* block = m_graph.block(blockIndex); |
| if (!block) |
| continue; |
| for (unsigned nodeIndex = block->size(); nodeIndex--;) { |
| Node* node = block->at(nodeIndex); |
| if (node->op() != Upsilon) |
| continue; |
| if (node->shouldGenerate()) |
| continue; |
| if (node->phi()->shouldGenerate()) |
| countNode(node); |
| } |
| } |
| } |
| } |
| } |
| |
| private: |
| void findTypeCheckRoot(Node*, Edge edge) |
| { |
| // We may have an "unproved" untyped use for code that is unreachable. The CFA |
| // will just not have gotten around to it. |
| if (edge.isProved() || edge.willNotHaveCheck()) |
| return; |
| if (!edge->postfixRef()) |
| m_worklist.append(edge.node()); |
| } |
| |
| void countNode(Node* node) |
| { |
| if (node->postfixRef()) |
| return; |
| m_worklist.append(node); |
| } |
| |
| void countEdge(Node*, Edge edge) |
| { |
| // Don't count edges that are already counted for their type checks. |
| if (!(edge.isProved() || edge.willNotHaveCheck())) |
| return; |
| countNode(edge.node()); |
| } |
| |
| Graph& m_graph; |
| Vector<Node*, 128> m_worklist; |
| }; |
| |
| } // anonymous namespace |
| |
| void Graph::computeRefCounts() |
| { |
| RefCountCalculator calculator(*this); |
| calculator.calculate(); |
| } |
| |
| void Graph::killBlockAndItsContents(BasicBlock* block) |
| { |
| if (auto& ssaData = block->ssa) |
| ssaData->invalidate(); |
| for (unsigned phiIndex = block->phis.size(); phiIndex--;) |
| deleteNode(block->phis[phiIndex]); |
| for (Node* node : *block) |
| deleteNode(node); |
| |
| killBlock(block); |
| } |
| |
| void Graph::killUnreachableBlocks() |
| { |
| invalidateNodeLiveness(); |
| |
| for (BlockIndex blockIndex = 0; blockIndex < numBlocks(); ++blockIndex) { |
| BasicBlock* block = this->block(blockIndex); |
| if (!block) |
| continue; |
| if (block->isReachable) |
| continue; |
| |
| dataLogIf(Options::verboseDFGBytecodeParsing(), "Basic block #", blockIndex, " was killed because it was unreachable\n"); |
| killBlockAndItsContents(block); |
| } |
| } |
| |
| void Graph::invalidateCFG() |
| { |
| m_cpsDominators = nullptr; |
| m_ssaDominators = nullptr; |
| m_cpsNaturalLoops = nullptr; |
| m_ssaNaturalLoops = nullptr; |
| m_controlEquivalenceAnalysis = nullptr; |
| m_backwardsDominators = nullptr; |
| m_backwardsCFG = nullptr; |
| m_cpsCFG = nullptr; |
| } |
| |
| void Graph::invalidateNodeLiveness() |
| { |
| if (m_form != SSA) |
| return; |
| |
| for (BasicBlock* block : blocksInNaturalOrder()) |
| block->ssa->invalidate(); |
| } |
| |
| void Graph::substituteGetLocal(BasicBlock& block, unsigned startIndexInBlock, VariableAccessData* variableAccessData, Node* newGetLocal) |
| { |
| for (unsigned indexInBlock = startIndexInBlock; indexInBlock < block.size(); ++indexInBlock) { |
| Node* node = block[indexInBlock]; |
| bool shouldContinue = true; |
| switch (node->op()) { |
| case SetLocal: { |
| if (node->local() == variableAccessData->local()) |
| shouldContinue = false; |
| break; |
| } |
| |
| case GetLocal: { |
| if (node->variableAccessData() != variableAccessData) |
| continue; |
| substitute(block, indexInBlock, node, newGetLocal); |
| Node* oldTailNode = block.variablesAtTail.operand(variableAccessData->local()); |
| if (oldTailNode == node) |
| block.variablesAtTail.operand(variableAccessData->local()) = newGetLocal; |
| shouldContinue = false; |
| break; |
| } |
| |
| default: |
| break; |
| } |
| if (!shouldContinue) |
| break; |
| } |
| } |
| |
| BlockList Graph::blocksInPreOrder() |
| { |
| BlockList result; |
| BlockWorklist worklist; |
| for (BasicBlock* entrypoint : m_roots) |
| worklist.push(entrypoint); |
| while (BasicBlock* block = worklist.pop()) { |
| result.append(block); |
| for (unsigned i = block->numSuccessors(); i--;) |
| worklist.push(block->successor(i)); |
| } |
| |
| if (validationEnabled()) { |
| // When iterating over pre order, we should see dominators |
| // before things they dominate. |
| auto validateResults = [&] (auto& dominators) { |
| for (unsigned i = 0; i < result.size(); ++i) { |
| BasicBlock* a = result[i]; |
| if (!a) |
| continue; |
| for (unsigned j = 0; j < result.size(); ++j) { |
| BasicBlock* b = result[j]; |
| if (!b || a == b) |
| continue; |
| if (dominators.dominates(a, b)) |
| RELEASE_ASSERT(i < j); |
| } |
| } |
| }; |
| |
| if (m_form == SSA || m_isInSSAConversion) |
| validateResults(ensureSSADominators()); |
| else |
| validateResults(ensureCPSDominators()); |
| } |
| return result; |
| } |
| |
| BlockList Graph::blocksInPostOrder(bool isSafeToValidate) |
| { |
| BlockList result; |
| PostOrderBlockWorklist worklist; |
| for (BasicBlock* entrypoint : m_roots) |
| worklist.push(entrypoint); |
| while (BlockWithOrder item = worklist.pop()) { |
| switch (item.order) { |
| case VisitOrder::Pre: |
| worklist.pushPost(item.node); |
| for (unsigned i = item.node->numSuccessors(); i--;) |
| worklist.push(item.node->successor(i)); |
| break; |
| case VisitOrder::Post: |
| result.append(item.node); |
| break; |
| } |
| } |
| |
| if (isSafeToValidate && validationEnabled()) { // There are users of this where we haven't yet built of the CFG enough to be able to run dominators. |
| auto validateResults = [&] (auto& dominators) { |
| // When iterating over reverse post order, we should see dominators |
| // before things they dominate. |
| for (unsigned i = 0; i < result.size(); ++i) { |
| BasicBlock* a = result[i]; |
| if (!a) |
| continue; |
| for (unsigned j = 0; j < result.size(); ++j) { |
| BasicBlock* b = result[j]; |
| if (!b || a == b) |
| continue; |
| if (dominators.dominates(a, b)) |
| RELEASE_ASSERT(i > j); |
| } |
| } |
| }; |
| |
| if (m_form == SSA || m_isInSSAConversion) |
| validateResults(ensureSSADominators()); |
| else |
| validateResults(ensureCPSDominators()); |
| } |
| |
| return result; |
| } |
| |
| void Graph::clearReplacements() |
| { |
| for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { |
| BasicBlock* block = m_blocks[blockIndex].get(); |
| if (!block) |
| continue; |
| for (unsigned phiIndex = block->phis.size(); phiIndex--;) |
| block->phis[phiIndex]->setReplacement(nullptr); |
| for (unsigned nodeIndex = block->size(); nodeIndex--;) |
| block->at(nodeIndex)->setReplacement(nullptr); |
| } |
| } |
| |
| void Graph::clearEpochs() |
| { |
| for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { |
| BasicBlock* block = m_blocks[blockIndex].get(); |
| if (!block) |
| continue; |
| for (unsigned phiIndex = block->phis.size(); phiIndex--;) |
| block->phis[phiIndex]->setEpoch(Epoch()); |
| for (unsigned nodeIndex = block->size(); nodeIndex--;) |
| block->at(nodeIndex)->setEpoch(Epoch()); |
| } |
| } |
| |
| void Graph::initializeNodeOwners() |
| { |
| for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { |
| BasicBlock* block = m_blocks[blockIndex].get(); |
| if (!block) |
| continue; |
| for (unsigned phiIndex = block->phis.size(); phiIndex--;) |
| block->phis[phiIndex]->owner = block; |
| for (unsigned nodeIndex = block->size(); nodeIndex--;) |
| block->at(nodeIndex)->owner = block; |
| } |
| } |
| |
| void Graph::clearFlagsOnAllNodes(NodeFlags flags) |
| { |
| for (BlockIndex blockIndex = numBlocks(); blockIndex--;) { |
| BasicBlock* block = m_blocks[blockIndex].get(); |
| if (!block) |
| continue; |
| for (unsigned phiIndex = block->phis.size(); phiIndex--;) |
| block->phis[phiIndex]->clearFlags(flags); |
| for (unsigned nodeIndex = block->size(); nodeIndex--;) |
| block->at(nodeIndex)->clearFlags(flags); |
| } |
| } |
| |
| bool Graph::watchCondition(const ObjectPropertyCondition& key) |
| { |
| if (!key.isWatchable()) |
| return false; |
| |
| DesiredWeakReferences& weakReferences = m_plan.weakReferences(); |
| weakReferences.addLazily(key.object()); |
| if (key.hasPrototype()) |
| weakReferences.addLazily(key.prototype()); |
| if (key.hasRequiredValue()) |
| weakReferences.addLazily(key.requiredValue()); |
| |
| m_plan.watchpoints().addLazily(key); |
| |
| if (key.kind() == PropertyCondition::Presence) |
| m_safeToLoad.add(std::make_pair(key.object(), key.offset())); |
| |
| return true; |
| } |
| |
| bool Graph::watchConditions(const ObjectPropertyConditionSet& keys) |
| { |
| if (!keys.isValid()) |
| return false; |
| |
| for (const ObjectPropertyCondition& key : keys) { |
| if (!watchCondition(key)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool Graph::isSafeToLoad(JSObject* base, PropertyOffset offset) |
| { |
| return m_safeToLoad.contains(std::make_pair(base, offset)); |
| } |
| |
| InferredType::Descriptor Graph::inferredTypeFor(const PropertyTypeKey& key) |
| { |
| assertIsRegistered(key.structure()); |
| |
| auto iter = m_inferredTypes.find(key); |
| if (iter != m_inferredTypes.end()) |
| return iter->value; |
| |
| InferredType* typeObject = key.structure()->inferredTypeFor(key.uid()); |
| if (!typeObject) { |
| m_inferredTypes.add(key, InferredType::Top); |
| return InferredType::Top; |
| } |
| |
| InferredType::Descriptor typeDescriptor = typeObject->descriptor(); |
| if (typeDescriptor.kind() == InferredType::Top) { |
| m_inferredTypes.add(key, InferredType::Top); |
| return InferredType::Top; |
| } |
| |
| m_inferredTypes.add(key, typeDescriptor); |
| |
| m_plan.weakReferences().addLazily(typeObject); |
| registerInferredType(typeDescriptor); |
| |
| // Note that we may already be watching this desired inferred type, because multiple structures may |
| // point to the same InferredType instance. |
| m_plan.watchpoints().addLazily(DesiredInferredType(typeObject, typeDescriptor)); |
| |
| return typeDescriptor; |
| } |
| |
| FullBytecodeLiveness& Graph::livenessFor(CodeBlock* codeBlock) |
| { |
| HashMap<CodeBlock*, std::unique_ptr<FullBytecodeLiveness>>::iterator iter = m_bytecodeLiveness.find(codeBlock); |
| if (iter != m_bytecodeLiveness.end()) |
| return *iter->value; |
| |
| std::unique_ptr<FullBytecodeLiveness> liveness = std::make_unique<FullBytecodeLiveness>(); |
| codeBlock->livenessAnalysis().computeFullLiveness(codeBlock, *liveness); |
| FullBytecodeLiveness& result = *liveness; |
| m_bytecodeLiveness.add(codeBlock, WTFMove(liveness)); |
| return result; |
| } |
| |
| FullBytecodeLiveness& Graph::livenessFor(InlineCallFrame* inlineCallFrame) |
| { |
| return livenessFor(baselineCodeBlockFor(inlineCallFrame)); |
| } |
| |
| BytecodeKills& Graph::killsFor(CodeBlock* codeBlock) |
| { |
| HashMap<CodeBlock*, std::unique_ptr<BytecodeKills>>::iterator iter = m_bytecodeKills.find(codeBlock); |
| if (iter != m_bytecodeKills.end()) |
| return *iter->value; |
| |
| std::unique_ptr<BytecodeKills> kills = std::make_unique<BytecodeKills>(); |
| codeBlock->livenessAnalysis().computeKills(codeBlock, *kills); |
| BytecodeKills& result = *kills; |
| m_bytecodeKills.add(codeBlock, WTFMove(kills)); |
| return result; |
| } |
| |
| BytecodeKills& Graph::killsFor(InlineCallFrame* inlineCallFrame) |
| { |
| return killsFor(baselineCodeBlockFor(inlineCallFrame)); |
| } |
| |
| bool Graph::isLiveInBytecode(VirtualRegister operand, CodeOrigin codeOrigin) |
| { |
| static const bool verbose = false; |
| |
| if (verbose) |
| dataLog("Checking of operand is live: ", operand, "\n"); |
| CodeOrigin* codeOriginPtr = &codeOrigin; |
| for (;;) { |
| VirtualRegister reg = VirtualRegister( |
| operand.offset() - codeOriginPtr->stackOffset()); |
| |
| if (verbose) |
| dataLog("reg = ", reg, "\n"); |
| |
| if (operand.offset() < codeOriginPtr->stackOffset() + CallFrame::headerSizeInRegisters) { |
| if (reg.isArgument()) { |
| RELEASE_ASSERT(reg.offset() < CallFrame::headerSizeInRegisters); |
| |
| if (codeOriginPtr->inlineCallFrame->isClosureCall |
| && reg.offset() == CallFrameSlot::callee) { |
| if (verbose) |
| dataLog("Looks like a callee.\n"); |
| return true; |
| } |
| |
| if (codeOriginPtr->inlineCallFrame->isVarargs() |
| && reg.offset() == CallFrameSlot::argumentCount) { |
| if (verbose) |
| dataLog("Looks like the argument count.\n"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| if (verbose) |
| dataLog("Asking the bytecode liveness.\n"); |
| return livenessFor(codeOriginPtr->inlineCallFrame).operandIsLive( |
| reg.offset(), codeOriginPtr->bytecodeIndex); |
| } |
| |
| InlineCallFrame* inlineCallFrame = codeOriginPtr->inlineCallFrame; |
| if (!inlineCallFrame) { |
| if (verbose) |
| dataLog("Ran out of stack, returning true.\n"); |
| return true; |
| } |
| |
| // Arguments are always live. This would be redundant if it wasn't for our |
| // op_call_varargs inlining. |
| if (reg.isArgument() |
| && static_cast<size_t>(reg.toArgument()) < inlineCallFrame->argumentsWithFixup.size()) { |
| if (verbose) |
| dataLog("Argument is live.\n"); |
| return true; |
| } |
| |
| codeOriginPtr = inlineCallFrame->getCallerSkippingTailCalls(); |
| |
| // The first inline call frame could be an inline tail call |
| if (!codeOriginPtr) { |
| if (verbose) |
| dataLog("Dead because of tail inlining.\n"); |
| return false; |
| } |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| BitVector Graph::localsLiveInBytecode(CodeOrigin codeOrigin) |
| { |
| BitVector result; |
| result.ensureSize(block(0)->variablesAtHead.numberOfLocals()); |
| forAllLocalsLiveInBytecode( |
| codeOrigin, |
| [&] (VirtualRegister reg) { |
| ASSERT(reg.isLocal()); |
| result.quickSet(reg.toLocal()); |
| }); |
| return result; |
| } |
| |
| unsigned Graph::parameterSlotsForArgCount(unsigned argCount) |
| { |
| size_t frameSize = CallFrame::headerSizeInRegisters + argCount; |
| size_t alignedFrameSize = WTF::roundUpToMultipleOf(stackAlignmentRegisters(), frameSize); |
| return alignedFrameSize - CallerFrameAndPC::sizeInRegisters; |
| } |
| |
| unsigned Graph::frameRegisterCount() |
| { |
| unsigned result = m_nextMachineLocal + std::max(m_parameterSlots, static_cast<unsigned>(maxFrameExtentForSlowPathCallInRegisters)); |
| return roundLocalRegisterCountForFramePointerOffset(result); |
| } |
| |
| unsigned Graph::stackPointerOffset() |
| { |
| return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); |
| } |
| |
| unsigned Graph::requiredRegisterCountForExit() |
| { |
| unsigned count = JIT::frameRegisterCountFor(m_profiledBlock); |
| for (InlineCallFrameSet::iterator iter = m_plan.inlineCallFrames()->begin(); !!iter; ++iter) { |
| InlineCallFrame* inlineCallFrame = *iter; |
| CodeBlock* codeBlock = baselineCodeBlockForInlineCallFrame(inlineCallFrame); |
| unsigned requiredCount = VirtualRegister(inlineCallFrame->stackOffset).toLocal() + 1 + JIT::frameRegisterCountFor(codeBlock); |
| count = std::max(count, requiredCount); |
| } |
| return count; |
| } |
| |
| unsigned Graph::requiredRegisterCountForExecutionAndExit() |
| { |
| // FIXME: We should make sure that frameRegisterCount() and requiredRegisterCountForExit() |
| // never overflows. https://bugs.webkit.org/show_bug.cgi?id=173852 |
| return std::max(frameRegisterCount(), requiredRegisterCountForExit()); |
| } |
| |
| JSValue Graph::tryGetConstantProperty( |
| JSValue base, const RegisteredStructureSet& structureSet, PropertyOffset offset) |
| { |
| if (!base || !base.isObject()) |
| return JSValue(); |
| |
| JSObject* object = asObject(base); |
| |
| for (unsigned i = structureSet.size(); i--;) { |
| RegisteredStructure structure = structureSet[i]; |
| |
| WatchpointSet* set = structure->propertyReplacementWatchpointSet(offset); |
| if (!set || !set->isStillValid()) |
| return JSValue(); |
| |
| ASSERT(structure->isValidOffset(offset)); |
| ASSERT(!structure->isUncacheableDictionary()); |
| |
| watchpoints().addLazily(set); |
| } |
| |
| // What follows may require some extra thought. We need this load to load a valid JSValue. If |
| // our profiling makes sense and we're still on track to generate code that won't be |
| // invalidated, then we have nothing to worry about. We do, however, have to worry about |
| // loading - and then using - an invalid JSValue in the case that unbeknownst to us our code |
| // is doomed. |
| // |
| // One argument in favor of this code is that it should definitely work because the butterfly |
| // is always set before the structure. However, we don't currently have a fence between those |
| // stores. It's not clear if this matters, however. We only shrink the propertyStorage while |
| // holding the Structure's lock. So, for this to fail, you'd need an access on a constant |
| // object pointer such that the inline caches told us that the object had a structure that it |
| // did not *yet* have, and then later,the object transitioned to that structure that the inline |
| // caches had already seen. And then the processor reordered the stores. Seems unlikely and |
| // difficult to test. I believe that this is worth revisiting but it isn't worth losing sleep |
| // over. Filed: |
| // https://bugs.webkit.org/show_bug.cgi?id=134641 |
| // |
| // For now, we just do the minimal thing: defend against the structure right now being |
| // incompatible with the getDirect we're trying to do. The easiest way to do that is to |
| // determine if the structure belongs to the proven set. |
| |
| Structure* structure = object->structure(m_vm); |
| if (!structureSet.toStructureSet().contains(structure)) |
| return JSValue(); |
| |
| return object->getDirectConcurrently(structure, offset); |
| } |
| |
| JSValue Graph::tryGetConstantProperty(JSValue base, Structure* structure, PropertyOffset offset) |
| { |
| return tryGetConstantProperty(base, RegisteredStructureSet(registerStructure(structure)), offset); |
| } |
| |
| JSValue Graph::tryGetConstantProperty( |
| JSValue base, const StructureAbstractValue& structure, PropertyOffset offset) |
| { |
| if (structure.isInfinite()) { |
| // FIXME: If we just converted the offset to a uid, we could do ObjectPropertyCondition |
| // watching to constant-fold the property. |
| // https://bugs.webkit.org/show_bug.cgi?id=147271 |
| return JSValue(); |
| } |
| |
| return tryGetConstantProperty(base, structure.set(), offset); |
| } |
| |
| JSValue Graph::tryGetConstantProperty(const AbstractValue& base, PropertyOffset offset) |
| { |
| return tryGetConstantProperty(base.m_value, base.m_structure, offset); |
| } |
| |
| AbstractValue Graph::inferredValueForProperty( |
| const RegisteredStructureSet& base, UniquedStringImpl* uid, StructureClobberState clobberState) |
| { |
| AbstractValue result; |
| base.forEach( |
| [&] (RegisteredStructure structure) { |
| AbstractValue value; |
| value.set(*this, inferredTypeForProperty(structure.get(), uid)); |
| result.merge(value); |
| }); |
| if (clobberState == StructuresAreClobbered) |
| result.clobberStructures(); |
| return result; |
| } |
| |
| AbstractValue Graph::inferredValueForProperty( |
| const AbstractValue& base, UniquedStringImpl* uid, PropertyOffset offset, |
| StructureClobberState clobberState) |
| { |
| if (JSValue value = tryGetConstantProperty(base, offset)) { |
| AbstractValue result; |
| result.set(*this, *freeze(value), clobberState); |
| return result; |
| } |
| |
| if (base.m_structure.isFinite()) |
| return inferredValueForProperty(base.m_structure.set(), uid, clobberState); |
| |
| return AbstractValue::heapTop(); |
| } |
| |
| JSValue Graph::tryGetConstantClosureVar(JSValue base, ScopeOffset offset) |
| { |
| // This has an awesome concurrency story. See comment for GetGlobalVar in ByteCodeParser. |
| |
| if (!base) |
| return JSValue(); |
| |
| JSLexicalEnvironment* activation = jsDynamicCast<JSLexicalEnvironment*>(m_vm, base); |
| if (!activation) |
| return JSValue(); |
| |
| SymbolTable* symbolTable = activation->symbolTable(); |
| JSValue value; |
| WatchpointSet* set; |
| { |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| |
| SymbolTableEntry* entry = symbolTable->entryFor(locker, offset); |
| if (!entry) |
| return JSValue(); |
| |
| set = entry->watchpointSet(); |
| if (!set) |
| return JSValue(); |
| |
| if (set->state() != IsWatched) |
| return JSValue(); |
| |
| ASSERT(entry->scopeOffset() == offset); |
| value = activation->variableAt(offset).get(); |
| if (!value) |
| return JSValue(); |
| } |
| |
| watchpoints().addLazily(set); |
| |
| return value; |
| } |
| |
| JSValue Graph::tryGetConstantClosureVar(const AbstractValue& value, ScopeOffset offset) |
| { |
| return tryGetConstantClosureVar(value.m_value, offset); |
| } |
| |
| JSValue Graph::tryGetConstantClosureVar(Node* node, ScopeOffset offset) |
| { |
| if (!node->hasConstant()) |
| return JSValue(); |
| return tryGetConstantClosureVar(node->asJSValue(), offset); |
| } |
| |
| JSArrayBufferView* Graph::tryGetFoldableView(JSValue value) |
| { |
| if (!value) |
| return nullptr; |
| JSArrayBufferView* view = jsDynamicCast<JSArrayBufferView*>(m_vm, value); |
| if (!view) |
| return nullptr; |
| if (!view->length()) |
| return nullptr; |
| WTF::loadLoadFence(); |
| watchpoints().addLazily(view); |
| return view; |
| } |
| |
| JSArrayBufferView* Graph::tryGetFoldableView(JSValue value, ArrayMode arrayMode) |
| { |
| if (arrayMode.type() != Array::AnyTypedArray && arrayMode.typedArrayType() == NotTypedArray) |
| return nullptr; |
| return tryGetFoldableView(value); |
| } |
| |
| void Graph::registerFrozenValues() |
| { |
| m_codeBlock->constants().shrink(0); |
| m_codeBlock->constantsSourceCodeRepresentation().resize(0); |
| for (FrozenValue* value : m_frozenValues) { |
| if (!value->pointsToHeap()) |
| continue; |
| |
| ASSERT(value->structure()); |
| ASSERT(m_plan.weakReferences().contains(value->structure())); |
| |
| switch (value->strength()) { |
| case WeakValue: { |
| m_plan.weakReferences().addLazily(value->value().asCell()); |
| break; |
| } |
| case StrongValue: { |
| unsigned constantIndex = m_codeBlock->addConstantLazily(); |
| // We already have a barrier on the code block. |
| m_codeBlock->constants()[constantIndex].setWithoutWriteBarrier(value->value()); |
| break; |
| } } |
| } |
| m_codeBlock->constants().shrinkToFit(); |
| m_codeBlock->constantsSourceCodeRepresentation().shrinkToFit(); |
| } |
| |
| void Graph::visitChildren(SlotVisitor& visitor) |
| { |
| for (FrozenValue* value : m_frozenValues) { |
| visitor.appendUnbarriered(value->value()); |
| visitor.appendUnbarriered(value->structure()); |
| } |
| } |
| |
| FrozenValue* Graph::freeze(JSValue value) |
| { |
| if (UNLIKELY(!value)) |
| return FrozenValue::emptySingleton(); |
| |
| // There are weird relationships in how optimized CodeBlocks |
| // point to other CodeBlocks. We don't want to have them be |
| // part of the weak pointer set. For example, an optimized CodeBlock |
| // having a weak pointer to itself will cause it to get collected. |
| RELEASE_ASSERT(!jsDynamicCast<CodeBlock*>(m_vm, value)); |
| |
| auto result = m_frozenValueMap.add(JSValue::encode(value), nullptr); |
| if (LIKELY(!result.isNewEntry)) |
| return result.iterator->value; |
| |
| if (value.isUInt32()) |
| m_uint32ValuesInUse.append(value.asUInt32()); |
| |
| FrozenValue frozenValue = FrozenValue::freeze(value); |
| if (Structure* structure = frozenValue.structure()) |
| registerStructure(structure); |
| |
| return result.iterator->value = m_frozenValues.add(frozenValue); |
| } |
| |
| FrozenValue* Graph::freezeStrong(JSValue value) |
| { |
| FrozenValue* result = freeze(value); |
| result->strengthenTo(StrongValue); |
| return result; |
| } |
| |
| void Graph::convertToConstant(Node* node, FrozenValue* value) |
| { |
| if (value->structure()) |
| assertIsRegistered(value->structure()); |
| node->convertToConstant(value); |
| } |
| |
| void Graph::convertToConstant(Node* node, JSValue value) |
| { |
| convertToConstant(node, freeze(value)); |
| } |
| |
| void Graph::convertToStrongConstant(Node* node, JSValue value) |
| { |
| convertToConstant(node, freezeStrong(value)); |
| } |
| |
| RegisteredStructure Graph::registerStructure(Structure* structure, StructureRegistrationResult& result) |
| { |
| m_plan.weakReferences().addLazily(structure); |
| if (m_plan.watchpoints().consider(structure)) |
| result = StructureRegisteredAndWatched; |
| else |
| result = StructureRegisteredNormally; |
| return RegisteredStructure::createPrivate(structure); |
| } |
| |
| void Graph::registerAndWatchStructureTransition(Structure* structure) |
| { |
| m_plan.weakReferences().addLazily(structure); |
| m_plan.watchpoints().addLazily(structure->transitionWatchpointSet()); |
| } |
| |
| void Graph::assertIsRegistered(Structure* structure) |
| { |
| // It's convenient to be able to call this with a maybe-null structure. |
| if (!structure) |
| return; |
| |
| DFG_ASSERT(*this, nullptr, m_plan.weakReferences().contains(structure)); |
| |
| if (!structure->dfgShouldWatch()) |
| return; |
| if (watchpoints().isWatched(structure->transitionWatchpointSet())) |
| return; |
| |
| DFG_CRASH(*this, nullptr, toCString("Structure ", pointerDump(structure), " is watchable but isn't being watched.").data()); |
| } |
| |
| static void logDFGAssertionFailure( |
| Graph& graph, const CString& whileText, const char* file, int line, const char* function, |
| const char* assertion) |
| { |
| startCrashing(); |
| dataLog("DFG ASSERTION FAILED: ", assertion, "\n"); |
| dataLog(file, "(", line, ") : ", function, "\n"); |
| dataLog("\n"); |
| dataLog(whileText); |
| dataLog("Graph at time of failure:\n"); |
| graph.dump(); |
| dataLog("\n"); |
| dataLog("DFG ASSERTION FAILED: ", assertion, "\n"); |
| dataLog(file, "(", line, ") : ", function, "\n"); |
| } |
| |
| void Graph::logAssertionFailure( |
| std::nullptr_t, const char* file, int line, const char* function, const char* assertion) |
| { |
| logDFGAssertionFailure(*this, "", file, line, function, assertion); |
| } |
| |
| void Graph::logAssertionFailure( |
| Node* node, const char* file, int line, const char* function, const char* assertion) |
| { |
| logDFGAssertionFailure(*this, toCString("While handling node ", node, "\n\n"), file, line, function, assertion); |
| } |
| |
| void Graph::logAssertionFailure( |
| BasicBlock* block, const char* file, int line, const char* function, const char* assertion) |
| { |
| logDFGAssertionFailure(*this, toCString("While handling block ", pointerDump(block), "\n\n"), file, line, function, assertion); |
| } |
| |
| CPSCFG& Graph::ensureCPSCFG() |
| { |
| RELEASE_ASSERT(m_form != SSA && !m_isInSSAConversion); |
| if (!m_cpsCFG) |
| m_cpsCFG = std::make_unique<CPSCFG>(*this); |
| return *m_cpsCFG; |
| } |
| |
| CPSDominators& Graph::ensureCPSDominators() |
| { |
| RELEASE_ASSERT(m_form != SSA && !m_isInSSAConversion); |
| if (!m_cpsDominators) |
| m_cpsDominators = std::make_unique<CPSDominators>(*this); |
| return *m_cpsDominators; |
| } |
| |
| SSADominators& Graph::ensureSSADominators() |
| { |
| RELEASE_ASSERT(m_form == SSA || m_isInSSAConversion); |
| if (!m_ssaDominators) |
| m_ssaDominators = std::make_unique<SSADominators>(*this); |
| return *m_ssaDominators; |
| } |
| |
| CPSNaturalLoops& Graph::ensureCPSNaturalLoops() |
| { |
| RELEASE_ASSERT(m_form != SSA && !m_isInSSAConversion); |
| ensureCPSDominators(); |
| if (!m_cpsNaturalLoops) |
| m_cpsNaturalLoops = std::make_unique<CPSNaturalLoops>(*this); |
| return *m_cpsNaturalLoops; |
| } |
| |
| SSANaturalLoops& Graph::ensureSSANaturalLoops() |
| { |
| RELEASE_ASSERT(m_form == SSA); |
| ensureSSADominators(); |
| if (!m_ssaNaturalLoops) |
| m_ssaNaturalLoops = std::make_unique<SSANaturalLoops>(*this); |
| return *m_ssaNaturalLoops; |
| } |
| |
| BackwardsCFG& Graph::ensureBackwardsCFG() |
| { |
| // We could easily relax this in the future to work over CPS, but today, it's only used in SSA. |
| RELEASE_ASSERT(m_form == SSA); |
| if (!m_backwardsCFG) |
| m_backwardsCFG = std::make_unique<BackwardsCFG>(*this); |
| return *m_backwardsCFG; |
| } |
| |
| BackwardsDominators& Graph::ensureBackwardsDominators() |
| { |
| RELEASE_ASSERT(m_form == SSA); |
| if (!m_backwardsDominators) |
| m_backwardsDominators = std::make_unique<BackwardsDominators>(*this); |
| return *m_backwardsDominators; |
| } |
| |
| ControlEquivalenceAnalysis& Graph::ensureControlEquivalenceAnalysis() |
| { |
| RELEASE_ASSERT(m_form == SSA); |
| if (!m_controlEquivalenceAnalysis) |
| m_controlEquivalenceAnalysis = std::make_unique<ControlEquivalenceAnalysis>(*this); |
| return *m_controlEquivalenceAnalysis; |
| } |
| |
| MethodOfGettingAValueProfile Graph::methodOfGettingAValueProfileFor(Node* currentNode, Node* operandNode) |
| { |
| // This represents IR like `CurrentNode(@operandNode)`. For example: `GetByVal(..., Int32:@GetLocal)`. |
| |
| for (Node* node = operandNode; node;) { |
| // currentNode is null when we're doing speculation checks for checkArgumentTypes(). |
| if (!currentNode || node->origin.semantic != currentNode->origin.semantic || !currentNode->hasResult()) { |
| CodeBlock* profiledBlock = baselineCodeBlockFor(node->origin.semantic); |
| |
| if (node->accessesStack(*this)) { |
| if (m_form != SSA && node->local().isArgument()) { |
| int argument = node->local().toArgument(); |
| Node* argumentNode = m_rootToArguments.find(block(0))->value[argument]; |
| // FIXME: We should match SetArgument nodes at other entrypoints as well: |
| // https://bugs.webkit.org/show_bug.cgi?id=175841 |
| if (argumentNode && node->variableAccessData() == argumentNode->variableAccessData()) |
| return &profiledBlock->valueProfileForArgument(argument); |
| } |
| |
| if (node->op() == GetLocal) { |
| return MethodOfGettingAValueProfile::fromLazyOperand( |
| profiledBlock, |
| LazyOperandValueProfileKey( |
| node->origin.semantic.bytecodeIndex, node->local())); |
| } |
| } |
| |
| if (node->hasHeapPrediction()) |
| return &profiledBlock->valueProfileForBytecodeOffset(node->origin.semantic.bytecodeIndex); |
| |
| if (profiledBlock->hasBaselineJITProfiling()) { |
| if (ArithProfile* result = profiledBlock->arithProfileForBytecodeOffset(node->origin.semantic.bytecodeIndex)) |
| return result; |
| } |
| } |
| |
| switch (node->op()) { |
| case BooleanToNumber: |
| case Identity: |
| case ValueRep: |
| case DoubleRep: |
| case Int52Rep: |
| node = node->child1().node(); |
| break; |
| default: |
| node = nullptr; |
| } |
| } |
| |
| return MethodOfGettingAValueProfile(); |
| } |
| |
| bool Graph::getRegExpPrototypeProperty(JSObject* regExpPrototype, Structure* regExpPrototypeStructure, UniquedStringImpl* uid, JSValue& returnJSValue) |
| { |
| unsigned attributesUnused; |
| PropertyOffset offset = regExpPrototypeStructure->getConcurrently(uid, attributesUnused); |
| if (!isValidOffset(offset)) |
| return false; |
| |
| JSValue value = tryGetConstantProperty(regExpPrototype, regExpPrototypeStructure, offset); |
| if (!value) |
| return false; |
| |
| // We only care about functions and getters at this point. If you want to access other properties |
| // you'll have to add code for those types. |
| JSFunction* function = jsDynamicCast<JSFunction*>(m_vm, value); |
| if (!function) { |
| GetterSetter* getterSetter = jsDynamicCast<GetterSetter*>(m_vm, value); |
| |
| if (!getterSetter) |
| return false; |
| |
| returnJSValue = JSValue(getterSetter); |
| return true; |
| } |
| |
| returnJSValue = value; |
| return true; |
| } |
| |
| bool Graph::isStringPrototypeMethodSane(JSGlobalObject* globalObject, UniquedStringImpl* uid) |
| { |
| ObjectPropertyConditionSet conditions = generateConditionsForPrototypeEquivalenceConcurrently(m_vm, globalObject, globalObject->stringObjectStructure(), globalObject->stringPrototype(), uid); |
| |
| if (!conditions.isValid()) |
| return false; |
| |
| ObjectPropertyCondition equivalenceCondition = conditions.slotBaseCondition(); |
| RELEASE_ASSERT(equivalenceCondition.hasRequiredValue()); |
| JSFunction* function = jsDynamicCast<JSFunction*>(m_vm, equivalenceCondition.condition().requiredValue()); |
| if (!function) |
| return false; |
| |
| if (function->executable()->intrinsicFor(CodeForCall) != StringPrototypeValueOfIntrinsic) |
| return false; |
| |
| return watchConditions(conditions); |
| } |
| |
| |
| bool Graph::canOptimizeStringObjectAccess(const CodeOrigin& codeOrigin) |
| { |
| if (hasExitSite(codeOrigin, NotStringObject)) |
| return false; |
| |
| JSGlobalObject* globalObject = globalObjectFor(codeOrigin); |
| Structure* stringObjectStructure = globalObjectFor(codeOrigin)->stringObjectStructure(); |
| registerStructure(stringObjectStructure); |
| ASSERT(stringObjectStructure->storedPrototype().isObject()); |
| ASSERT(stringObjectStructure->storedPrototype().asCell()->classInfo(*stringObjectStructure->storedPrototype().asCell()->vm()) == StringPrototype::info()); |
| |
| if (!watchConditions(generateConditionsForPropertyMissConcurrently(m_vm, globalObject, stringObjectStructure, m_vm.propertyNames->toPrimitiveSymbol.impl()))) |
| return false; |
| |
| // We're being conservative here. We want DFG's ToString on StringObject to be |
| // used in both numeric contexts (that would call valueOf()) and string contexts |
| // (that would call toString()). We don't want the DFG to have to distinguish |
| // between the two, just because that seems like it would get confusing. So we |
| // just require both methods to be sane. |
| if (!isStringPrototypeMethodSane(globalObject, m_vm.propertyNames->valueOf.impl())) |
| return false; |
| return isStringPrototypeMethodSane(globalObject, m_vm.propertyNames->toString.impl()); |
| } |
| |
| bool Graph::willCatchExceptionInMachineFrame(CodeOrigin codeOrigin, CodeOrigin& opCatchOriginOut, HandlerInfo*& catchHandlerOut) |
| { |
| if (!m_hasExceptionHandlers) |
| return false; |
| |
| unsigned bytecodeIndexToCheck = codeOrigin.bytecodeIndex; |
| while (1) { |
| InlineCallFrame* inlineCallFrame = codeOrigin.inlineCallFrame; |
| CodeBlock* codeBlock = baselineCodeBlockFor(inlineCallFrame); |
| if (HandlerInfo* handler = codeBlock->handlerForBytecodeOffset(bytecodeIndexToCheck)) { |
| opCatchOriginOut = CodeOrigin(handler->target, inlineCallFrame); |
| catchHandlerOut = handler; |
| return true; |
| } |
| |
| if (!inlineCallFrame) |
| return false; |
| |
| bytecodeIndexToCheck = inlineCallFrame->directCaller.bytecodeIndex; |
| codeOrigin = codeOrigin.inlineCallFrame->directCaller; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| bool Graph::canDoFastSpread(Node* node, const AbstractValue& value) |
| { |
| // The parameter 'value' is the AbstractValue for child1 (the thing being spread). |
| ASSERT(node->op() == Spread); |
| |
| if (node->child1().useKind() != ArrayUse) { |
| // Note: we only speculate on ArrayUse when we've set up the necessary watchpoints |
| // to prove that the iteration protocol is non-observable starting from ArrayPrototype. |
| return false; |
| } |
| |
| // FIXME: We should add profiling of the incoming operand to Spread |
| // so we can speculate in such a way that we guarantee that this |
| // function would return true: |
| // https://bugs.webkit.org/show_bug.cgi?id=171198 |
| |
| if (!value.m_structure.isFinite()) |
| return false; |
| |
| ArrayPrototype* arrayPrototype = globalObjectFor(node->child1()->origin.semantic)->arrayPrototype(); |
| bool allGood = true; |
| value.m_structure.forEach([&] (RegisteredStructure structure) { |
| allGood &= structure->hasMonoProto() |
| && structure->storedPrototype() == arrayPrototype |
| && !structure->isDictionary() |
| && structure->getConcurrently(m_vm.propertyNames->iteratorSymbol.impl()) == invalidOffset |
| && !structure->mayInterceptIndexedAccesses(); |
| }); |
| |
| return allGood; |
| } |
| |
| void Graph::clearCPSCFGData() |
| { |
| m_cpsNaturalLoops = nullptr; |
| m_cpsDominators = nullptr; |
| m_cpsCFG = nullptr; |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif // ENABLE(DFG_JIT) |