| /* |
| * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) |
| * Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved. |
| * Copyright (C) 2003 Peter Kelly (pmk@post.com) |
| * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com) |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| */ |
| |
| #include "config.h" |
| #include "JSArray.h" |
| |
| #include "ArrayPrototype.h" |
| #include "CachedCall.h" |
| #include "PropertyNameArray.h" |
| #include <wtf/AVLTree.h> |
| #include <wtf/Assertions.h> |
| #include <wtf/OwnPtr.h> |
| #include <Operations.h> |
| |
| #define CHECK_ARRAY_CONSISTENCY 0 |
| |
| using namespace std; |
| using namespace WTF; |
| |
| namespace JSC { |
| |
| ASSERT_CLASS_FITS_IN_CELL(JSArray); |
| |
| // Overview of JSArray |
| // |
| // Properties of JSArray objects may be stored in one of three locations: |
| // * The regular JSObject property map. |
| // * A storage vector. |
| // * A sparse map of array entries. |
| // |
| // Properties with non-numeric identifiers, with identifiers that are not representable |
| // as an unsigned integer, or where the value is greater than MAX_ARRAY_INDEX |
| // (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit |
| // integer) are not considered array indices and will be stored in the JSObject property map. |
| // |
| // All properties with a numeric identifer, representable as an unsigned integer i, |
| // where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the |
| // storage vector or the sparse map. An array index i will be handled in the following |
| // fashion: |
| // |
| // * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector. |
| // * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either |
| // be stored in the storage vector or in the sparse array, depending on the density of |
| // data that would be stored in the vector (a vector being used where at least |
| // (1 / minDensityMultiplier) of the entries would be populated). |
| // * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored |
| // in the sparse array. |
| |
| // The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize |
| // function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage |
| // size calculation cannot overflow. (sizeof(ArrayStorage) - sizeof(JSValuePtr)) + |
| // (vectorLength * sizeof(JSValuePtr)) must be <= 0xFFFFFFFFU (which is maximum value of size_t). |
| #define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValuePtr))) / sizeof(JSValuePtr)) |
| |
| // These values have to be macros to be used in max() and min() without introducing |
| // a PIC branch in Mach-O binaries, see <rdar://problem/5971391>. |
| #define MIN_SPARSE_ARRAY_INDEX 10000U |
| #define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1) |
| // 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer. |
| #define MAX_ARRAY_INDEX 0xFFFFFFFEU |
| |
| // Our policy for when to use a vector and when to use a sparse map. |
| // For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector. |
| // When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector |
| // as long as it is 1/8 full. If more sparse than that, we use a map. |
| static const unsigned minDensityMultiplier = 8; |
| |
| const ClassInfo JSArray::info = {"Array", 0, 0, 0}; |
| |
| static inline size_t storageSize(unsigned vectorLength) |
| { |
| ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH); |
| |
| // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH) |
| // - as asserted above - the following calculation cannot overflow. |
| size_t size = (sizeof(ArrayStorage) - sizeof(JSValuePtr)) + (vectorLength * sizeof(JSValuePtr)); |
| // Assertion to detect integer overflow in previous calculation (should not be possible, provided that |
| // MAX_STORAGE_VECTOR_LENGTH is correctly defined). |
| ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValuePtr))) / sizeof(JSValuePtr) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValuePtr)))); |
| |
| return size; |
| } |
| |
| static inline unsigned increasedVectorLength(unsigned newLength) |
| { |
| ASSERT(newLength <= MAX_STORAGE_VECTOR_LENGTH); |
| |
| // Mathematically equivalent to: |
| // increasedLength = (newLength * 3 + 1) / 2; |
| // or: |
| // increasedLength = (unsigned)ceil(newLength * 1.5)); |
| // This form is not prone to internal overflow. |
| unsigned increasedLength = newLength + (newLength >> 1) + (newLength & 1); |
| ASSERT(increasedLength >= newLength); |
| |
| return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH); |
| } |
| |
| static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues) |
| { |
| return length / minDensityMultiplier <= numValues; |
| } |
| |
| #if !CHECK_ARRAY_CONSISTENCY |
| |
| inline void JSArray::checkConsistency(ConsistencyCheckType) |
| { |
| } |
| |
| #endif |
| |
| JSArray::JSArray(PassRefPtr<Structure> structure) |
| : JSObject(structure) |
| { |
| unsigned initialCapacity = 0; |
| |
| m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity))); |
| m_fastAccessCutoff = 0; |
| m_storage->m_vectorLength = initialCapacity; |
| m_storage->m_length = 0; |
| |
| checkConsistency(); |
| } |
| |
| JSArray::JSArray(PassRefPtr<Structure> structure, unsigned initialLength) |
| : JSObject(structure) |
| { |
| unsigned initialCapacity = min(initialLength, MIN_SPARSE_ARRAY_INDEX); |
| |
| m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity))); |
| m_fastAccessCutoff = 0; |
| m_storage->m_vectorLength = initialCapacity; |
| m_storage->m_length = initialLength; |
| |
| Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValuePtr)); |
| |
| checkConsistency(); |
| } |
| |
| JSArray::JSArray(ExecState* exec, PassRefPtr<Structure> structure, const ArgList& list) |
| : JSObject(structure) |
| { |
| unsigned length = list.size(); |
| |
| m_fastAccessCutoff = length; |
| |
| ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(length))); |
| |
| storage->m_vectorLength = length; |
| storage->m_numValuesInVector = length; |
| storage->m_sparseValueMap = 0; |
| storage->m_length = length; |
| |
| size_t i = 0; |
| ArgList::const_iterator end = list.end(); |
| for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i) |
| storage->m_vector[i] = (*it).jsValue(exec); |
| |
| m_storage = storage; |
| |
| Heap::heap(this)->reportExtraMemoryCost(storageSize(length)); |
| |
| checkConsistency(); |
| } |
| |
| JSArray::~JSArray() |
| { |
| checkConsistency(DestructorConsistencyCheck); |
| |
| delete m_storage->m_sparseValueMap; |
| fastFree(m_storage); |
| } |
| |
| bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot) |
| { |
| ArrayStorage* storage = m_storage; |
| |
| if (i >= storage->m_length) { |
| if (i > MAX_ARRAY_INDEX) |
| return getOwnPropertySlot(exec, Identifier::from(exec, i), slot); |
| return false; |
| } |
| |
| if (i < storage->m_vectorLength) { |
| JSValuePtr& valueSlot = storage->m_vector[i]; |
| if (valueSlot) { |
| slot.setValueSlot(&valueSlot); |
| return true; |
| } |
| } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| if (i >= MIN_SPARSE_ARRAY_INDEX) { |
| SparseArrayValueMap::iterator it = map->find(i); |
| if (it != map->end()) { |
| slot.setValueSlot(&it->second); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot) |
| { |
| if (propertyName == exec->propertyNames().length) { |
| slot.setValue(jsNumber(exec, length())); |
| return true; |
| } |
| |
| bool isArrayIndex; |
| unsigned i = propertyName.toArrayIndex(&isArrayIndex); |
| if (isArrayIndex) |
| return JSArray::getOwnPropertySlot(exec, i, slot); |
| |
| return JSObject::getOwnPropertySlot(exec, propertyName, slot); |
| } |
| |
| // ECMA 15.4.5.1 |
| void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValuePtr value, PutPropertySlot& slot) |
| { |
| bool isArrayIndex; |
| unsigned i = propertyName.toArrayIndex(&isArrayIndex); |
| if (isArrayIndex) { |
| put(exec, i, value); |
| return; |
| } |
| |
| if (propertyName == exec->propertyNames().length) { |
| unsigned newLength = value.toUInt32(exec); |
| if (value.toNumber(exec) != static_cast<double>(newLength)) { |
| throwError(exec, RangeError, "Invalid array length."); |
| return; |
| } |
| setLength(newLength); |
| return; |
| } |
| |
| JSObject::put(exec, propertyName, value, slot); |
| } |
| |
| void JSArray::put(ExecState* exec, unsigned i, JSValuePtr value) |
| { |
| checkConsistency(); |
| |
| unsigned length = m_storage->m_length; |
| if (i >= length && i <= MAX_ARRAY_INDEX) { |
| length = i + 1; |
| m_storage->m_length = length; |
| } |
| |
| if (i < m_storage->m_vectorLength) { |
| JSValuePtr& valueSlot = m_storage->m_vector[i]; |
| if (valueSlot) { |
| valueSlot = value; |
| checkConsistency(); |
| return; |
| } |
| valueSlot = value; |
| if (++m_storage->m_numValuesInVector == m_storage->m_length) |
| m_fastAccessCutoff = m_storage->m_length; |
| checkConsistency(); |
| return; |
| } |
| |
| putSlowCase(exec, i, value); |
| } |
| |
| NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValuePtr value) |
| { |
| ArrayStorage* storage = m_storage; |
| SparseArrayValueMap* map = storage->m_sparseValueMap; |
| |
| if (i >= MIN_SPARSE_ARRAY_INDEX) { |
| if (i > MAX_ARRAY_INDEX) { |
| PutPropertySlot slot; |
| put(exec, Identifier::from(exec, i), value, slot); |
| return; |
| } |
| |
| // We miss some cases where we could compact the storage, such as a large array that is being filled from the end |
| // (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster. |
| if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) { |
| if (!map) { |
| map = new SparseArrayValueMap; |
| storage->m_sparseValueMap = map; |
| } |
| map->set(i, value); |
| return; |
| } |
| } |
| |
| // We have decided that we'll put the new item into the vector. |
| // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it. |
| if (!map || map->isEmpty()) { |
| if (increaseVectorLength(i + 1)) { |
| storage = m_storage; |
| storage->m_vector[i] = value; |
| if (++storage->m_numValuesInVector == storage->m_length) |
| m_fastAccessCutoff = storage->m_length; |
| checkConsistency(); |
| } else |
| throwOutOfMemoryError(exec); |
| return; |
| } |
| |
| // Decide how many values it would be best to move from the map. |
| unsigned newNumValuesInVector = storage->m_numValuesInVector + 1; |
| unsigned newVectorLength = increasedVectorLength(i + 1); |
| for (unsigned j = max(storage->m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j) |
| newNumValuesInVector += map->contains(j); |
| if (i >= MIN_SPARSE_ARRAY_INDEX) |
| newNumValuesInVector -= map->contains(i); |
| if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) { |
| unsigned proposedNewNumValuesInVector = newNumValuesInVector; |
| // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further. |
| while (newVectorLength < MAX_STORAGE_VECTOR_LENGTH) { |
| unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1); |
| for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j) |
| proposedNewNumValuesInVector += map->contains(j); |
| if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector)) |
| break; |
| newVectorLength = proposedNewVectorLength; |
| newNumValuesInVector = proposedNewNumValuesInVector; |
| } |
| } |
| |
| storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength))); |
| if (!storage) { |
| throwOutOfMemoryError(exec); |
| return; |
| } |
| |
| unsigned vectorLength = storage->m_vectorLength; |
| |
| Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength)); |
| |
| if (newNumValuesInVector == storage->m_numValuesInVector + 1) { |
| for (unsigned j = vectorLength; j < newVectorLength; ++j) |
| storage->m_vector[j] = noValue(); |
| if (i > MIN_SPARSE_ARRAY_INDEX) |
| map->remove(i); |
| } else { |
| for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j) |
| storage->m_vector[j] = noValue(); |
| for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j) |
| storage->m_vector[j] = map->take(j); |
| } |
| |
| storage->m_vector[i] = value; |
| |
| storage->m_vectorLength = newVectorLength; |
| storage->m_numValuesInVector = newNumValuesInVector; |
| |
| m_storage = storage; |
| |
| checkConsistency(); |
| } |
| |
| bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName) |
| { |
| bool isArrayIndex; |
| unsigned i = propertyName.toArrayIndex(&isArrayIndex); |
| if (isArrayIndex) |
| return deleteProperty(exec, i); |
| |
| if (propertyName == exec->propertyNames().length) |
| return false; |
| |
| return JSObject::deleteProperty(exec, propertyName); |
| } |
| |
| bool JSArray::deleteProperty(ExecState* exec, unsigned i) |
| { |
| checkConsistency(); |
| |
| ArrayStorage* storage = m_storage; |
| |
| if (i < storage->m_vectorLength) { |
| JSValuePtr& valueSlot = storage->m_vector[i]; |
| if (!valueSlot) { |
| checkConsistency(); |
| return false; |
| } |
| valueSlot = noValue(); |
| --storage->m_numValuesInVector; |
| if (m_fastAccessCutoff > i) |
| m_fastAccessCutoff = i; |
| checkConsistency(); |
| return true; |
| } |
| |
| if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| if (i >= MIN_SPARSE_ARRAY_INDEX) { |
| SparseArrayValueMap::iterator it = map->find(i); |
| if (it != map->end()) { |
| map->remove(it); |
| checkConsistency(); |
| return true; |
| } |
| } |
| } |
| |
| checkConsistency(); |
| |
| if (i > MAX_ARRAY_INDEX) |
| return deleteProperty(exec, Identifier::from(exec, i)); |
| |
| return false; |
| } |
| |
| void JSArray::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames) |
| { |
| // FIXME: Filling PropertyNameArray with an identifier for every integer |
| // is incredibly inefficient for large arrays. We need a different approach, |
| // which almost certainly means a different structure for PropertyNameArray. |
| |
| ArrayStorage* storage = m_storage; |
| |
| unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength); |
| for (unsigned i = 0; i < usedVectorLength; ++i) { |
| if (storage->m_vector[i]) |
| propertyNames.add(Identifier::from(exec, i)); |
| } |
| |
| if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| SparseArrayValueMap::iterator end = map->end(); |
| for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) |
| propertyNames.add(Identifier::from(exec, it->first)); |
| } |
| |
| JSObject::getPropertyNames(exec, propertyNames); |
| } |
| |
| bool JSArray::increaseVectorLength(unsigned newLength) |
| { |
| // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map |
| // to the vector. Callers have to account for that, because they can do it more efficiently. |
| |
| ArrayStorage* storage = m_storage; |
| |
| unsigned vectorLength = storage->m_vectorLength; |
| ASSERT(newLength > vectorLength); |
| ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX); |
| unsigned newVectorLength = increasedVectorLength(newLength); |
| |
| storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength))); |
| if (!storage) |
| return false; |
| |
| Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength)); |
| storage->m_vectorLength = newVectorLength; |
| |
| for (unsigned i = vectorLength; i < newVectorLength; ++i) |
| storage->m_vector[i] = noValue(); |
| |
| m_storage = storage; |
| return true; |
| } |
| |
| void JSArray::setLength(unsigned newLength) |
| { |
| checkConsistency(); |
| |
| ArrayStorage* storage = m_storage; |
| |
| unsigned length = m_storage->m_length; |
| |
| if (newLength < length) { |
| if (m_fastAccessCutoff > newLength) |
| m_fastAccessCutoff = newLength; |
| |
| unsigned usedVectorLength = min(length, storage->m_vectorLength); |
| for (unsigned i = newLength; i < usedVectorLength; ++i) { |
| JSValuePtr& valueSlot = storage->m_vector[i]; |
| bool hadValue = valueSlot; |
| valueSlot = noValue(); |
| storage->m_numValuesInVector -= hadValue; |
| } |
| |
| if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| SparseArrayValueMap copy = *map; |
| SparseArrayValueMap::iterator end = copy.end(); |
| for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) { |
| if (it->first >= newLength) |
| map->remove(it->first); |
| } |
| if (map->isEmpty()) { |
| delete map; |
| storage->m_sparseValueMap = 0; |
| } |
| } |
| } |
| |
| m_storage->m_length = newLength; |
| |
| checkConsistency(); |
| } |
| |
| JSValuePtr JSArray::pop() |
| { |
| checkConsistency(); |
| |
| unsigned length = m_storage->m_length; |
| if (!length) |
| return jsUndefined(); |
| |
| --length; |
| |
| JSValuePtr result; |
| |
| if (m_fastAccessCutoff > length) { |
| JSValuePtr& valueSlot = m_storage->m_vector[length]; |
| result = valueSlot; |
| ASSERT(result); |
| valueSlot = noValue(); |
| --m_storage->m_numValuesInVector; |
| m_fastAccessCutoff = length; |
| } else if (length < m_storage->m_vectorLength) { |
| JSValuePtr& valueSlot = m_storage->m_vector[length]; |
| result = valueSlot; |
| valueSlot = noValue(); |
| if (result) |
| --m_storage->m_numValuesInVector; |
| else |
| result = jsUndefined(); |
| } else { |
| result = jsUndefined(); |
| if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) { |
| SparseArrayValueMap::iterator it = map->find(length); |
| if (it != map->end()) { |
| result = it->second; |
| map->remove(it); |
| if (map->isEmpty()) { |
| delete map; |
| m_storage->m_sparseValueMap = 0; |
| } |
| } |
| } |
| } |
| |
| m_storage->m_length = length; |
| |
| checkConsistency(); |
| |
| return result; |
| } |
| |
| void JSArray::push(ExecState* exec, JSValuePtr value) |
| { |
| checkConsistency(); |
| |
| if (m_storage->m_length < m_storage->m_vectorLength) { |
| ASSERT(!m_storage->m_vector[m_storage->m_length]); |
| m_storage->m_vector[m_storage->m_length] = value; |
| if (++m_storage->m_numValuesInVector == ++m_storage->m_length) |
| m_fastAccessCutoff = m_storage->m_length; |
| checkConsistency(); |
| return; |
| } |
| |
| if (m_storage->m_length < MIN_SPARSE_ARRAY_INDEX) { |
| SparseArrayValueMap* map = m_storage->m_sparseValueMap; |
| if (!map || map->isEmpty()) { |
| if (increaseVectorLength(m_storage->m_length + 1)) { |
| m_storage->m_vector[m_storage->m_length] = value; |
| if (++m_storage->m_numValuesInVector == ++m_storage->m_length) |
| m_fastAccessCutoff = m_storage->m_length; |
| checkConsistency(); |
| return; |
| } |
| checkConsistency(); |
| throwOutOfMemoryError(exec); |
| return; |
| } |
| } |
| |
| putSlowCase(exec, m_storage->m_length++, value); |
| } |
| |
| void JSArray::mark() |
| { |
| JSObject::mark(); |
| |
| ArrayStorage* storage = m_storage; |
| |
| unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength); |
| for (unsigned i = 0; i < usedVectorLength; ++i) { |
| JSValuePtr value = storage->m_vector[i]; |
| if (value && !value.marked()) |
| value.mark(); |
| } |
| |
| if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| SparseArrayValueMap::iterator end = map->end(); |
| for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) { |
| JSValuePtr value = it->second; |
| if (!value.marked()) |
| value.mark(); |
| } |
| } |
| } |
| |
| static int compareNumbersForQSort(const void* a, const void* b) |
| { |
| double da = static_cast<const JSValuePtr*>(a)->uncheckedGetNumber(); |
| double db = static_cast<const JSValuePtr*>(b)->uncheckedGetNumber(); |
| return (da > db) - (da < db); |
| } |
| |
| typedef std::pair<JSValuePtr, UString> ValueStringPair; |
| |
| static int compareByStringPairForQSort(const void* a, const void* b) |
| { |
| const ValueStringPair* va = static_cast<const ValueStringPair*>(a); |
| const ValueStringPair* vb = static_cast<const ValueStringPair*>(b); |
| return compare(va->second, vb->second); |
| } |
| |
| void JSArray::sortNumeric(ExecState* exec, JSValuePtr compareFunction, CallType callType, const CallData& callData) |
| { |
| unsigned lengthNotIncludingUndefined = compactForSorting(); |
| if (m_storage->m_sparseValueMap) { |
| throwOutOfMemoryError(exec); |
| return; |
| } |
| |
| if (!lengthNotIncludingUndefined) |
| return; |
| |
| bool allValuesAreNumbers = true; |
| size_t size = m_storage->m_numValuesInVector; |
| for (size_t i = 0; i < size; ++i) { |
| if (!m_storage->m_vector[i].isNumber()) { |
| allValuesAreNumbers = false; |
| break; |
| } |
| } |
| |
| if (!allValuesAreNumbers) |
| return sort(exec, compareFunction, callType, callData); |
| |
| // For numeric comparison, which is fast, qsort is faster than mergesort. We |
| // also don't require mergesort's stability, since there's no user visible |
| // side-effect from swapping the order of equal primitive values. |
| qsort(m_storage->m_vector, size, sizeof(JSValuePtr), compareNumbersForQSort); |
| |
| checkConsistency(SortConsistencyCheck); |
| } |
| |
| void JSArray::sort(ExecState* exec) |
| { |
| unsigned lengthNotIncludingUndefined = compactForSorting(); |
| if (m_storage->m_sparseValueMap) { |
| throwOutOfMemoryError(exec); |
| return; |
| } |
| |
| if (!lengthNotIncludingUndefined) |
| return; |
| |
| // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that. |
| // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary |
| // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return |
| // random or otherwise changing results, effectively making compare function inconsistent. |
| |
| Vector<ValueStringPair> values(lengthNotIncludingUndefined); |
| if (!values.begin()) { |
| throwOutOfMemoryError(exec); |
| return; |
| } |
| |
| for (size_t i = 0; i < lengthNotIncludingUndefined; i++) { |
| JSValuePtr value = m_storage->m_vector[i]; |
| ASSERT(!value.isUndefined()); |
| values[i].first = value; |
| } |
| |
| // FIXME: While calling these toString functions, the array could be mutated. |
| // In that case, objects pointed to by values in this vector might get garbage-collected! |
| |
| // FIXME: The following loop continues to call toString on subsequent values even after |
| // a toString call raises an exception. |
| |
| for (size_t i = 0; i < lengthNotIncludingUndefined; i++) |
| values[i].second = values[i].first.toString(exec); |
| |
| if (exec->hadException()) |
| return; |
| |
| // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather |
| // than O(N log N). |
| |
| #if HAVE(MERGESORT) |
| mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort); |
| #else |
| // FIXME: The qsort library function is likely to not be a stable sort. |
| // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort. |
| qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort); |
| #endif |
| |
| // FIXME: If the toString function changed the length of the array, this might be |
| // modifying the vector incorrectly. |
| |
| for (size_t i = 0; i < lengthNotIncludingUndefined; i++) |
| m_storage->m_vector[i] = values[i].first; |
| |
| checkConsistency(SortConsistencyCheck); |
| } |
| |
| struct AVLTreeNodeForArrayCompare { |
| JSValuePtr value; |
| |
| // Child pointers. The high bit of gt is robbed and used as the |
| // balance factor sign. The high bit of lt is robbed and used as |
| // the magnitude of the balance factor. |
| int32_t gt; |
| int32_t lt; |
| }; |
| |
| struct AVLTreeAbstractorForArrayCompare { |
| typedef int32_t handle; // Handle is an index into m_nodes vector. |
| typedef JSValuePtr key; |
| typedef int32_t size; |
| |
| Vector<AVLTreeNodeForArrayCompare> m_nodes; |
| ExecState* m_exec; |
| JSValuePtr m_compareFunction; |
| CallType m_compareCallType; |
| const CallData* m_compareCallData; |
| JSValuePtr m_globalThisValue; |
| OwnPtr<CachedCall> m_cachedCall; |
| |
| handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; } |
| void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; } |
| handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; } |
| void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; } |
| |
| int get_balance_factor(handle h) |
| { |
| if (m_nodes[h].gt & 0x80000000) |
| return -1; |
| return static_cast<unsigned>(m_nodes[h].lt) >> 31; |
| } |
| |
| void set_balance_factor(handle h, int bf) |
| { |
| if (bf == 0) { |
| m_nodes[h].lt &= 0x7FFFFFFF; |
| m_nodes[h].gt &= 0x7FFFFFFF; |
| } else { |
| m_nodes[h].lt |= 0x80000000; |
| if (bf < 0) |
| m_nodes[h].gt |= 0x80000000; |
| else |
| m_nodes[h].gt &= 0x7FFFFFFF; |
| } |
| } |
| |
| int compare_key_key(key va, key vb) |
| { |
| ASSERT(!va.isUndefined()); |
| ASSERT(!vb.isUndefined()); |
| |
| if (m_exec->hadException()) |
| return 1; |
| |
| double compareResult; |
| if (m_cachedCall) { |
| m_cachedCall->setThis(m_globalThisValue); |
| m_cachedCall->setArgument(0, va); |
| m_cachedCall->setArgument(1, vb); |
| compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame()); |
| } else { |
| ArgList arguments; |
| arguments.append(va); |
| arguments.append(vb); |
| compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec); |
| } |
| return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent. |
| } |
| |
| int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); } |
| int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); } |
| |
| static handle null() { return 0x7FFFFFFF; } |
| }; |
| |
| void JSArray::sort(ExecState* exec, JSValuePtr compareFunction, CallType callType, const CallData& callData) |
| { |
| checkConsistency(); |
| |
| // FIXME: This ignores exceptions raised in the compare function or in toNumber. |
| |
| // The maximum tree depth is compiled in - but the caller is clearly up to no good |
| // if a larger array is passed. |
| ASSERT(m_storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max())); |
| if (m_storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max())) |
| return; |
| |
| if (!m_storage->m_length) |
| return; |
| |
| unsigned usedVectorLength = min(m_storage->m_length, m_storage->m_vectorLength); |
| |
| AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items |
| tree.abstractor().m_exec = exec; |
| tree.abstractor().m_compareFunction = compareFunction; |
| tree.abstractor().m_compareCallType = callType; |
| tree.abstractor().m_compareCallData = &callData; |
| tree.abstractor().m_globalThisValue = exec->globalThisValue(); |
| tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0)); |
| |
| if (callType == CallTypeJS) |
| tree.abstractor().m_cachedCall.set(new CachedCall(exec, asFunction(compareFunction), 2, exec->exceptionSlot())); |
| |
| if (!tree.abstractor().m_nodes.begin()) { |
| throwOutOfMemoryError(exec); |
| return; |
| } |
| |
| // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified |
| // right out from under us while we're building the tree here. |
| |
| unsigned numDefined = 0; |
| unsigned numUndefined = 0; |
| |
| // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree. |
| for (; numDefined < usedVectorLength; ++numDefined) { |
| JSValuePtr v = m_storage->m_vector[numDefined]; |
| if (!v || v.isUndefined()) |
| break; |
| tree.abstractor().m_nodes[numDefined].value = v; |
| tree.insert(numDefined); |
| } |
| for (unsigned i = numDefined; i < usedVectorLength; ++i) { |
| JSValuePtr v = m_storage->m_vector[i]; |
| if (v) { |
| if (v.isUndefined()) |
| ++numUndefined; |
| else { |
| tree.abstractor().m_nodes[numDefined].value = v; |
| tree.insert(numDefined); |
| ++numDefined; |
| } |
| } |
| } |
| |
| unsigned newUsedVectorLength = numDefined + numUndefined; |
| |
| if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) { |
| newUsedVectorLength += map->size(); |
| if (newUsedVectorLength > m_storage->m_vectorLength) { |
| // Check that it is possible to allocate an array large enough to hold all the entries. |
| if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) { |
| throwOutOfMemoryError(exec); |
| return; |
| } |
| } |
| |
| SparseArrayValueMap::iterator end = map->end(); |
| for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) { |
| tree.abstractor().m_nodes[numDefined].value = it->second; |
| tree.insert(numDefined); |
| ++numDefined; |
| } |
| |
| delete map; |
| m_storage->m_sparseValueMap = 0; |
| } |
| |
| ASSERT(tree.abstractor().m_nodes.size() >= numDefined); |
| |
| // FIXME: If the compare function changed the length of the array, the following might be |
| // modifying the vector incorrectly. |
| |
| // Copy the values back into m_storage. |
| AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter; |
| iter.start_iter_least(tree); |
| for (unsigned i = 0; i < numDefined; ++i) { |
| m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value; |
| ++iter; |
| } |
| |
| // Put undefined values back in. |
| for (unsigned i = numDefined; i < newUsedVectorLength; ++i) |
| m_storage->m_vector[i] = jsUndefined(); |
| |
| // Ensure that unused values in the vector are zeroed out. |
| for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i) |
| m_storage->m_vector[i] = noValue(); |
| |
| m_fastAccessCutoff = newUsedVectorLength; |
| m_storage->m_numValuesInVector = newUsedVectorLength; |
| |
| checkConsistency(SortConsistencyCheck); |
| } |
| |
| void JSArray::fillArgList(ExecState* exec, ArgList& args) |
| { |
| unsigned fastAccessLength = min(m_storage->m_length, m_fastAccessCutoff); |
| unsigned i = 0; |
| for (; i < fastAccessLength; ++i) |
| args.append(getIndex(i)); |
| for (; i < m_storage->m_length; ++i) |
| args.append(get(exec, i)); |
| } |
| |
| void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize) |
| { |
| ASSERT(m_storage->m_length == maxSize); |
| UNUSED_PARAM(maxSize); |
| unsigned fastAccessLength = min(m_storage->m_length, m_fastAccessCutoff); |
| unsigned i = 0; |
| for (; i < fastAccessLength; ++i) |
| buffer[i] = getIndex(i); |
| uint32_t size = m_storage->m_length; |
| for (; i < size; ++i) |
| buffer[i] = get(exec, i); |
| } |
| |
| unsigned JSArray::compactForSorting() |
| { |
| checkConsistency(); |
| |
| ArrayStorage* storage = m_storage; |
| |
| unsigned usedVectorLength = min(m_storage->m_length, storage->m_vectorLength); |
| |
| unsigned numDefined = 0; |
| unsigned numUndefined = 0; |
| |
| for (; numDefined < usedVectorLength; ++numDefined) { |
| JSValuePtr v = storage->m_vector[numDefined]; |
| if (!v || v.isUndefined()) |
| break; |
| } |
| for (unsigned i = numDefined; i < usedVectorLength; ++i) { |
| JSValuePtr v = storage->m_vector[i]; |
| if (v) { |
| if (v.isUndefined()) |
| ++numUndefined; |
| else |
| storage->m_vector[numDefined++] = v; |
| } |
| } |
| |
| unsigned newUsedVectorLength = numDefined + numUndefined; |
| |
| if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| newUsedVectorLength += map->size(); |
| if (newUsedVectorLength > storage->m_vectorLength) { |
| // Check that it is possible to allocate an array large enough to hold all the entries - if not, |
| // exception is thrown by caller. |
| if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) |
| return 0; |
| storage = m_storage; |
| } |
| |
| SparseArrayValueMap::iterator end = map->end(); |
| for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) |
| storage->m_vector[numDefined++] = it->second; |
| |
| delete map; |
| storage->m_sparseValueMap = 0; |
| } |
| |
| for (unsigned i = numDefined; i < newUsedVectorLength; ++i) |
| storage->m_vector[i] = jsUndefined(); |
| for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i) |
| storage->m_vector[i] = noValue(); |
| |
| m_fastAccessCutoff = newUsedVectorLength; |
| storage->m_numValuesInVector = newUsedVectorLength; |
| |
| checkConsistency(SortConsistencyCheck); |
| |
| return numDefined; |
| } |
| |
| void* JSArray::lazyCreationData() |
| { |
| return m_storage->lazyCreationData; |
| } |
| |
| void JSArray::setLazyCreationData(void* d) |
| { |
| m_storage->lazyCreationData = d; |
| } |
| |
| #if CHECK_ARRAY_CONSISTENCY |
| |
| void JSArray::checkConsistency(ConsistencyCheckType type) |
| { |
| ASSERT(m_storage); |
| if (type == SortConsistencyCheck) |
| ASSERT(!m_storage->m_sparseValueMap); |
| |
| ASSERT(m_fastAccessCutoff <= m_storage->m_length); |
| ASSERT(m_fastAccessCutoff <= m_storage->m_numValuesInVector); |
| |
| unsigned numValuesInVector = 0; |
| for (unsigned i = 0; i < m_storage->m_vectorLength; ++i) { |
| if (JSValuePtr value = m_storage->m_vector[i]) { |
| ASSERT(i < m_storage->m_length); |
| if (type != DestructorConsistencyCheck) |
| value->type(); // Likely to crash if the object was deallocated. |
| ++numValuesInVector; |
| } else { |
| ASSERT(i >= m_fastAccessCutoff); |
| if (type == SortConsistencyCheck) |
| ASSERT(i >= m_storage->m_numValuesInVector); |
| } |
| } |
| ASSERT(numValuesInVector == m_storage->m_numValuesInVector); |
| |
| if (m_storage->m_sparseValueMap) { |
| SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end(); |
| for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) { |
| unsigned index = it->first; |
| ASSERT(index < m_storage->m_length); |
| ASSERT(index >= m_storage->m_vectorLength); |
| ASSERT(index <= MAX_ARRAY_INDEX); |
| ASSERT(it->second); |
| if (type != DestructorConsistencyCheck) |
| it->second->type(); // Likely to crash if the object was deallocated. |
| } |
| } |
| } |
| |
| #endif |
| |
| JSArray* constructEmptyArray(ExecState* exec) |
| { |
| return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure()); |
| } |
| |
| JSArray* constructEmptyArray(ExecState* exec, unsigned initialLength) |
| { |
| return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure(), initialLength); |
| } |
| |
| JSArray* constructArray(ExecState* exec, JSValuePtr singleItemValue) |
| { |
| ArgList values; |
| values.append(singleItemValue); |
| return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values); |
| } |
| |
| JSArray* constructArray(ExecState* exec, const ArgList& values) |
| { |
| return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values); |
| } |
| |
| } // namespace JSC |