blob: 9c094414d7599db936a4a712e29bad7b2640e81e [file] [log] [blame]
/*
* Copyright (C) 2008, 2009, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
* Copyright (C) 2012 Igalia, S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef BytecodeGenerator_h
#define BytecodeGenerator_h
#include "CodeBlock.h"
#include <wtf/HashTraits.h>
#include "Instruction.h"
#include "Label.h"
#include "LabelScope.h"
#include "Interpreter.h"
#include "RegisterID.h"
#include "SymbolTable.h"
#include "Debugger.h"
#include "Nodes.h"
#include <wtf/PassRefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>
namespace JSC {
class Identifier;
class Label;
class ScopeChainNode;
class CallArguments {
public:
CallArguments(BytecodeGenerator& generator, ArgumentsNode* argumentsNode);
RegisterID* thisRegister() { return m_argv[0].get(); }
RegisterID* argumentRegister(unsigned i) { return m_argv[i + 1].get(); }
unsigned registerOffset() { return m_argv.last()->index() + CallFrame::offsetFor(argumentCountIncludingThis()); }
unsigned argumentCountIncludingThis() { return m_argv.size(); }
RegisterID* profileHookRegister() { return m_profileHookRegister.get(); }
ArgumentsNode* argumentsNode() { return m_argumentsNode; }
private:
void newArgument(BytecodeGenerator&);
RefPtr<RegisterID> m_profileHookRegister;
ArgumentsNode* m_argumentsNode;
Vector<RefPtr<RegisterID>, 8> m_argv;
};
struct FinallyContext {
StatementNode* finallyBlock;
unsigned scopeContextStackSize;
unsigned switchContextStackSize;
unsigned forInContextStackSize;
unsigned labelScopesSize;
int finallyDepth;
int dynamicScopeDepth;
};
struct ControlFlowContext {
bool isFinallyBlock;
FinallyContext finallyContext;
};
struct ForInContext {
RefPtr<RegisterID> expectedSubscriptRegister;
RefPtr<RegisterID> iterRegister;
RefPtr<RegisterID> indexRegister;
RefPtr<RegisterID> propertyRegister;
};
class ResolveResult {
public:
enum Flags {
// The property is locally bound, in a register.
RegisterFlag = 0x1,
// We need to traverse the scope chain at runtime, checking for
// non-strict eval and/or `with' nodes.
DynamicFlag = 0x2,
// The property was resolved to a definite location, and the
// identifier is not needed any more.
StaticFlag = 0x4,
// Once we have the base object, the property will be located at a
// known index.
IndexedFlag = 0x8,
// Skip some number of objects in the scope chain, given by "depth".
ScopedFlag = 0x10,
// The resolved binding is immutable.
ReadOnlyFlag = 0x20,
// The base object is the global object.
GlobalFlag = 0x40,
// The property is being watched, so writes should be special.
WatchedFlag = 0x80
};
enum Type {
// The property is local, and stored in a register.
Register = RegisterFlag | StaticFlag,
// A read-only local, created by "const".
ReadOnlyRegister = RegisterFlag | ReadOnlyFlag | StaticFlag,
// The property is statically scoped free variable. Its coordinates
// are in "index" and "depth".
Lexical = IndexedFlag | ScopedFlag | StaticFlag,
// A read-only Lexical, created by "const".
ReadOnlyLexical = IndexedFlag | ScopedFlag | ReadOnlyFlag | StaticFlag,
// The property was not bound lexically, so at runtime we should
// look directly in the global object.
Global = GlobalFlag,
// Like Global, but we could actually resolve the property to a
// DontDelete property in the global object, for instance, any
// binding created with "var" at the top level. At runtime we'll
// just index into the global object.
IndexedGlobal = IndexedFlag | GlobalFlag | StaticFlag,
// Like IndexedGlobal, but the property is being watched.
WatchedIndexedGlobal = IndexedFlag | GlobalFlag | StaticFlag | WatchedFlag,
// Like IndexedGlobal, but the property is also read-only, like NaN,
// Infinity, or undefined.
ReadOnlyIndexedGlobal = IndexedFlag | ReadOnlyFlag | GlobalFlag | StaticFlag,
// The property could not be resolved statically, due to the
// presence of `with' blocks. At runtime we'll have to walk the
// scope chain. ScopedFlag is set to indicate that "depth" will
// hold some number of nodes to skip in the scope chain, before
// beginning the search.
Dynamic = DynamicFlag | ScopedFlag,
// The property was located as a statically scoped free variable,
// but while traversing the scope chain, there was an intermediate
// activation that used non-strict `eval'. At runtime we'll have to
// check for the absence of this property in those intervening
// scopes.
DynamicLexical = DynamicFlag | IndexedFlag | ScopedFlag,
// Like ReadOnlyLexical, but with intervening non-strict `eval'.
DynamicReadOnlyLexical = DynamicFlag | IndexedFlag | ScopedFlag | ReadOnlyFlag,
// Like Global, but with intervening non-strict `eval'. As with
// Dynamic, ScopeFlag is set to indicate that "depth" does indeed
// store a number of frames to skip before doing the dynamic checks.
DynamicGlobal = DynamicFlag | GlobalFlag | ScopedFlag,
// Like IndexedGlobal, but with intervening non-strict `eval'.
DynamicIndexedGlobal = DynamicFlag | IndexedFlag | GlobalFlag | ScopedFlag,
// Like ReadOnlyIndexedGlobal, but with intervening non-strict
// `eval'.
DynamicReadOnlyIndexedGlobal = DynamicFlag | IndexedFlag | ReadOnlyFlag | GlobalFlag | ScopedFlag,
};
static ResolveResult registerResolve(RegisterID *local, unsigned flags)
{
return ResolveResult(Register | flags, local, missingSymbolMarker(), 0, 0);
}
static ResolveResult dynamicResolve(size_t depth)
{
return ResolveResult(Dynamic, 0, missingSymbolMarker(), depth, 0);
}
static ResolveResult lexicalResolve(int index, size_t depth, unsigned flags)
{
unsigned type = (flags & DynamicFlag) ? DynamicLexical : Lexical;
return ResolveResult(type | flags, 0, index, depth, 0);
}
static ResolveResult indexedGlobalResolve(int index, JSObject *globalObject, unsigned flags)
{
return ResolveResult(IndexedGlobal | flags, 0, index, 0, globalObject);
}
static ResolveResult dynamicIndexedGlobalResolve(int index, size_t depth, JSObject *globalObject, unsigned flags)
{
return ResolveResult(DynamicIndexedGlobal | flags, 0, index, depth, globalObject);
}
static ResolveResult globalResolve(JSObject *globalObject)
{
return ResolveResult(Global, 0, missingSymbolMarker(), 0, globalObject);
}
static ResolveResult dynamicGlobalResolve(size_t dynamicDepth, JSObject *globalObject)
{
return ResolveResult(DynamicGlobal, 0, missingSymbolMarker(), dynamicDepth, globalObject);
}
unsigned type() const { return m_type; }
// Returns the register corresponding to a local variable, or 0 if no
// such register exists. Registers returned by ResolveResult::local() do
// not require explicit reference counting.
RegisterID* local() const { return m_local; }
int index() const { ASSERT (isIndexed() || isRegister()); return m_index; }
size_t depth() const { ASSERT(isScoped()); return m_depth; }
JSObject* globalObject() const { ASSERT(isGlobal()); ASSERT(m_globalObject); return m_globalObject; }
WriteBarrier<Unknown>* registerPointer() const;
bool isRegister() const { return m_type & RegisterFlag; }
bool isDynamic() const { return m_type & DynamicFlag; }
bool isStatic() const { return m_type & StaticFlag; }
bool isIndexed() const { return m_type & IndexedFlag; }
bool isScoped() const { return m_type & ScopedFlag; }
bool isReadOnly() const { return (m_type & ReadOnlyFlag) && !isDynamic(); }
bool isGlobal() const { return m_type & GlobalFlag; }
private:
ResolveResult(unsigned type, RegisterID* local, int index, size_t depth, JSObject* globalObject)
: m_type(type)
, m_index(index)
, m_local(local)
, m_depth(depth)
, m_globalObject(globalObject)
{
#ifndef NDEBUG
checkValidity();
#endif
}
#ifndef NDEBUG
void checkValidity();
#endif
unsigned m_type;
int m_index; // Index in scope, if IndexedFlag is set
RegisterID* m_local; // Local register, if RegisterFlag is set
size_t m_depth; // Depth in scope chain, if ScopedFlag is set
JSObject* m_globalObject; // If GlobalFlag is set.
};
class BytecodeGenerator {
WTF_MAKE_FAST_ALLOCATED;
public:
typedef DeclarationStacks::VarStack VarStack;
typedef DeclarationStacks::FunctionStack FunctionStack;
JS_EXPORT_PRIVATE static void setDumpsGeneratedCode(bool dumpsGeneratedCode);
static bool dumpsGeneratedCode();
BytecodeGenerator(ProgramNode*, ScopeChainNode*, SymbolTable*, ProgramCodeBlock*, CompilationKind);
BytecodeGenerator(FunctionBodyNode*, ScopeChainNode*, SymbolTable*, CodeBlock*, CompilationKind);
BytecodeGenerator(EvalNode*, ScopeChainNode*, SymbolTable*, EvalCodeBlock*, CompilationKind);
~BytecodeGenerator();
JSGlobalData* globalData() const { return m_globalData; }
const CommonIdentifiers& propertyNames() const { return *m_globalData->propertyNames; }
bool isConstructor() { return m_codeBlock->m_isConstructor; }
JSObject* generate();
bool isArgumentNumber(const Identifier&, int);
void setIsNumericCompareFunction(bool isNumericCompareFunction);
bool willResolveToArguments(const Identifier&);
RegisterID* uncheckedRegisterForArguments();
// Resolve an identifier, given the current compile-time scope chain.
ResolveResult resolve(const Identifier&);
// Behaves as resolve does, but ignores dynamic scope as
// dynamic scope should not interfere with const initialisation
ResolveResult resolveConstDecl(const Identifier&);
// Returns the register storing "this"
RegisterID* thisRegister() { return &m_thisRegister; }
// Returns the next available temporary register. Registers returned by
// newTemporary require a modified form of reference counting: any
// register with a refcount of 0 is considered "available", meaning that
// the next instruction may overwrite it.
RegisterID* newTemporary();
RegisterID* highestUsedRegister();
// The same as newTemporary(), but this function returns "suggestion" if
// "suggestion" is a temporary. This function is helpful in situations
// where you've put "suggestion" in a RefPtr, but you'd like to allow
// the next instruction to overwrite it anyway.
RegisterID* newTemporaryOr(RegisterID* suggestion) { return suggestion->isTemporary() ? suggestion : newTemporary(); }
// Functions for handling of dst register
RegisterID* ignoredResult() { return &m_ignoredResultRegister; }
// Returns a place to write intermediate values of an operation
// which reuses dst if it is safe to do so.
RegisterID* tempDestination(RegisterID* dst)
{
return (dst && dst != ignoredResult() && dst->isTemporary()) ? dst : newTemporary();
}
// Returns the place to write the final output of an operation.
RegisterID* finalDestination(RegisterID* originalDst, RegisterID* tempDst = 0)
{
if (originalDst && originalDst != ignoredResult())
return originalDst;
ASSERT(tempDst != ignoredResult());
if (tempDst && tempDst->isTemporary())
return tempDst;
return newTemporary();
}
// Returns the place to write the final output of an operation.
RegisterID* finalDestinationOrIgnored(RegisterID* originalDst, RegisterID* tempDst = 0)
{
if (originalDst)
return originalDst;
ASSERT(tempDst != ignoredResult());
if (tempDst && tempDst->isTemporary())
return tempDst;
return newTemporary();
}
RegisterID* destinationForAssignResult(RegisterID* dst)
{
if (dst && dst != ignoredResult() && m_codeBlock->needsFullScopeChain())
return dst->isTemporary() ? dst : newTemporary();
return 0;
}
// Moves src to dst if dst is not null and is different from src, otherwise just returns src.
RegisterID* moveToDestinationIfNeeded(RegisterID* dst, RegisterID* src)
{
return dst == ignoredResult() ? 0 : (dst && dst != src) ? emitMove(dst, src) : src;
}
PassRefPtr<LabelScope> newLabelScope(LabelScope::Type, const Identifier* = 0);
PassRefPtr<Label> newLabel();
// The emitNode functions are just syntactic sugar for calling
// Node::emitCode. These functions accept a 0 for the register,
// meaning that the node should allocate a register, or ignoredResult(),
// meaning that the node need not put the result in a register.
// Other emit functions do not accept 0 or ignoredResult().
RegisterID* emitNode(RegisterID* dst, Node* n)
{
// Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
addLineInfo(n->lineNo());
return m_stack.recursionCheck()
? n->emitBytecode(*this, dst)
: emitThrowExpressionTooDeepException();
}
RegisterID* emitNode(Node* n)
{
return emitNode(0, n);
}
void emitNodeInConditionContext(ExpressionNode* n, Label* trueTarget, Label* falseTarget, bool fallThroughMeansTrue)
{
addLineInfo(n->lineNo());
if (m_stack.recursionCheck())
n->emitBytecodeInConditionContext(*this, trueTarget, falseTarget, fallThroughMeansTrue);
else
emitThrowExpressionTooDeepException();
}
void emitExpressionInfo(unsigned divot, unsigned startOffset, unsigned endOffset)
{
if (!m_shouldEmitRichSourceInfo)
return;
divot -= m_codeBlock->sourceOffset();
if (divot > ExpressionRangeInfo::MaxDivot) {
// Overflow has occurred, we can only give line number info for errors for this region
divot = 0;
startOffset = 0;
endOffset = 0;
} else if (startOffset > ExpressionRangeInfo::MaxOffset) {
// If the start offset is out of bounds we clear both offsets
// so we only get the divot marker. Error message will have to be reduced
// to line and column number.
startOffset = 0;
endOffset = 0;
} else if (endOffset > ExpressionRangeInfo::MaxOffset) {
// The end offset is only used for additional context, and is much more likely
// to overflow (eg. function call arguments) so we are willing to drop it without
// dropping the rest of the range.
endOffset = 0;
}
ExpressionRangeInfo info;
info.instructionOffset = instructions().size();
info.divotPoint = divot;
info.startOffset = startOffset;
info.endOffset = endOffset;
m_codeBlock->addExpressionInfo(info);
}
ALWAYS_INLINE bool leftHandSideNeedsCopy(bool rightHasAssignments, bool rightIsPure)
{
return (m_codeType != FunctionCode || m_codeBlock->needsFullScopeChain() || rightHasAssignments) && !rightIsPure;
}
ALWAYS_INLINE PassRefPtr<RegisterID> emitNodeForLeftHandSide(ExpressionNode* n, bool rightHasAssignments, bool rightIsPure)
{
if (leftHandSideNeedsCopy(rightHasAssignments, rightIsPure)) {
PassRefPtr<RegisterID> dst = newTemporary();
emitNode(dst.get(), n);
return dst;
}
return emitNode(n);
}
RegisterID* emitLoad(RegisterID* dst, bool);
RegisterID* emitLoad(RegisterID* dst, double);
RegisterID* emitLoad(RegisterID* dst, const Identifier&);
RegisterID* emitLoad(RegisterID* dst, JSValue);
RegisterID* emitUnaryOp(OpcodeID, RegisterID* dst, RegisterID* src);
RegisterID* emitBinaryOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes);
RegisterID* emitEqualityOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2);
RegisterID* emitUnaryNoDstOp(OpcodeID, RegisterID* src);
RegisterID* emitNewObject(RegisterID* dst);
RegisterID* emitNewArray(RegisterID* dst, ElementNode*, unsigned length); // stops at first elision
RegisterID* emitNewFunction(RegisterID* dst, FunctionBodyNode* body);
RegisterID* emitLazyNewFunction(RegisterID* dst, FunctionBodyNode* body);
RegisterID* emitNewFunctionInternal(RegisterID* dst, unsigned index, bool shouldNullCheck);
RegisterID* emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func);
RegisterID* emitNewRegExp(RegisterID* dst, RegExp*);
RegisterID* emitMove(RegisterID* dst, RegisterID* src);
RegisterID* emitToJSNumber(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_to_jsnumber, dst, src); }
RegisterID* emitPreInc(RegisterID* srcDst);
RegisterID* emitPreDec(RegisterID* srcDst);
RegisterID* emitPostInc(RegisterID* dst, RegisterID* srcDst);
RegisterID* emitPostDec(RegisterID* dst, RegisterID* srcDst);
void emitCheckHasInstance(RegisterID* base);
RegisterID* emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* base, RegisterID* basePrototype);
RegisterID* emitTypeOf(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_typeof, dst, src); }
RegisterID* emitIn(RegisterID* dst, RegisterID* property, RegisterID* base) { return emitBinaryOp(op_in, dst, property, base, OperandTypes()); }
RegisterID* emitGetStaticVar(RegisterID* dst, const ResolveResult&, const Identifier&);
RegisterID* emitPutStaticVar(const ResolveResult&, const Identifier&, RegisterID* value);
RegisterID* emitResolve(RegisterID* dst, const ResolveResult&, const Identifier& property);
RegisterID* emitResolveBase(RegisterID* dst, const ResolveResult&, const Identifier& property);
RegisterID* emitResolveBaseForPut(RegisterID* dst, const ResolveResult&, const Identifier& property);
RegisterID* emitResolveWithBase(RegisterID* baseDst, RegisterID* propDst, const ResolveResult&, const Identifier& property);
RegisterID* emitResolveWithThis(RegisterID* baseDst, RegisterID* propDst, const ResolveResult&, const Identifier& property);
void emitMethodCheck();
RegisterID* emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property);
RegisterID* emitGetArgumentsLength(RegisterID* dst, RegisterID* base);
RegisterID* emitPutById(RegisterID* base, const Identifier& property, RegisterID* value);
RegisterID* emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value);
RegisterID* emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier&);
RegisterID* emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitGetArgumentByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
RegisterID* emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitPutByIndex(RegisterID* base, unsigned index, RegisterID* value);
void emitPutGetterSetter(RegisterID* base, const Identifier& property, RegisterID* getter, RegisterID* setter);
RegisterID* emitCall(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* emitCallEval(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, RegisterID* profileHookRegister, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* emitLoadVarargs(RegisterID* argCountDst, RegisterID* thisRegister, RegisterID* args);
RegisterID* emitReturn(RegisterID* src);
RegisterID* emitEnd(RegisterID* src) { return emitUnaryNoDstOp(op_end, src); }
RegisterID* emitConstruct(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* emitStrcat(RegisterID* dst, RegisterID* src, int count);
void emitToPrimitive(RegisterID* dst, RegisterID* src);
PassRefPtr<Label> emitLabel(Label*);
void emitLoopHint();
PassRefPtr<Label> emitJump(Label* target);
PassRefPtr<Label> emitJumpIfTrue(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfFalse(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfNotFunctionCall(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfNotFunctionApply(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpScopes(Label* target, int targetScopeDepth);
RegisterID* emitGetPropertyNames(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, Label* breakTarget);
RegisterID* emitNextPropertyName(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, RegisterID* iter, Label* target);
RegisterID* emitCatch(RegisterID*, Label* start, Label* end);
void emitThrow(RegisterID* exc)
{
m_usesExceptions = true;
emitUnaryNoDstOp(op_throw, exc);
}
void emitThrowReferenceError(const UString& message);
void emitPushNewScope(RegisterID* dst, const Identifier& property, RegisterID* value);
RegisterID* emitPushScope(RegisterID* scope);
void emitPopScope();
void emitDebugHook(DebugHookID, int firstLine, int lastLine, int column);
int scopeDepth() { return m_dynamicScopeDepth + m_finallyDepth; }
bool hasFinaliser() { return m_finallyDepth != 0; }
void pushFinallyContext(StatementNode* finallyBlock);
void popFinallyContext();
void pushOptimisedForIn(RegisterID* expectedBase, RegisterID* iter, RegisterID* index, RegisterID* propertyRegister)
{
ForInContext context = { expectedBase, iter, index, propertyRegister };
m_forInContextStack.append(context);
}
void popOptimisedForIn()
{
m_forInContextStack.removeLast();
}
LabelScope* breakTarget(const Identifier&);
LabelScope* continueTarget(const Identifier&);
void beginSwitch(RegisterID*, SwitchInfo::SwitchType);
void endSwitch(uint32_t clauseCount, RefPtr<Label>*, ExpressionNode**, Label* defaultLabel, int32_t min, int32_t range);
CodeType codeType() const { return m_codeType; }
bool shouldEmitProfileHooks() { return m_shouldEmitProfileHooks; }
bool isStrictMode() const { return m_codeBlock->isStrictMode(); }
ScopeChainNode* scopeChain() const { return m_scopeChain.get(); }
private:
friend class Label;
#if ENABLE(BYTECODE_COMMENTS)
// Record a comment in the CodeBlock's comments list for the current
// opcode that is about to be emitted.
void emitComment();
// Register a comment to be associated with the next opcode that will
// be emitted.
void prependComment(const char* string);
#else
ALWAYS_INLINE void emitComment() { }
ALWAYS_INLINE void prependComment(const char*) { }
#endif
void emitOpcode(OpcodeID);
ArrayProfile* newArrayProfile();
ValueProfile* emitProfiledOpcode(OpcodeID);
void retrieveLastBinaryOp(int& dstIndex, int& src1Index, int& src2Index);
void retrieveLastUnaryOp(int& dstIndex, int& srcIndex);
void retrieveLastUnaryOp(WriteBarrier<Unknown>*& dstPointer, int& srcIndex);
ALWAYS_INLINE void rewindBinaryOp();
ALWAYS_INLINE void rewindUnaryOp();
PassRefPtr<Label> emitComplexJumpScopes(Label* target, ControlFlowContext* topScope, ControlFlowContext* bottomScope);
typedef HashMap<double, JSValue> NumberMap;
typedef HashMap<StringImpl*, JSString*, IdentifierRepHash> IdentifierStringMap;
RegisterID* emitCall(OpcodeID, RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* newRegister();
// Adds a var slot and maps it to the name ident in symbolTable().
RegisterID* addVar(const Identifier& ident, bool isConstant)
{
RegisterID* local;
addVar(ident, isConstant, local);
return local;
}
// Ditto. Returns true if a new RegisterID was added, false if a pre-existing RegisterID was re-used.
bool addVar(const Identifier&, bool isConstant, RegisterID*&);
// Adds an anonymous var slot. To give this slot a name, add it to symbolTable().
RegisterID* addVar()
{
++m_codeBlock->m_numVars;
return newRegister();
}
// Returns the index of the added var.
enum ConstantMode { IsConstant, IsVariable };
enum FunctionMode { IsFunctionToSpecialize, NotFunctionOrNotSpecializable };
int addGlobalVar(const Identifier&, ConstantMode, FunctionMode);
void addParameter(const Identifier&, int parameterIndex);
void preserveLastVar();
bool shouldAvoidResolveGlobal();
RegisterID& registerFor(int index)
{
if (index >= 0)
return m_calleeRegisters[index];
ASSERT(m_parameters.size());
return m_parameters[index + m_parameters.size() + RegisterFile::CallFrameHeaderSize];
}
unsigned addConstant(const Identifier&);
RegisterID* addConstantValue(JSValue);
unsigned addRegExp(RegExp*);
unsigned addConstantBuffer(unsigned length);
FunctionExecutable* makeFunction(ExecState* exec, FunctionBodyNode* body)
{
return FunctionExecutable::create(exec, body->ident(), body->inferredName(), body->source(), body->usesArguments(), body->parameters(), body->isStrictMode(), body->lineNo(), body->lastLine());
}
FunctionExecutable* makeFunction(JSGlobalData* globalData, FunctionBodyNode* body)
{
return FunctionExecutable::create(*globalData, body->ident(), body->inferredName(), body->source(), body->usesArguments(), body->parameters(), body->isStrictMode(), body->lineNo(), body->lastLine());
}
JSString* addStringConstant(const Identifier&);
void addLineInfo(unsigned lineNo)
{
m_codeBlock->addLineInfo(instructions().size(), lineNo);
}
RegisterID* emitInitLazyRegister(RegisterID*);
Vector<Instruction>& instructions() { return m_instructions; }
SymbolTable& symbolTable() { return *m_symbolTable; }
#if ENABLE(BYTECODE_COMMENTS)
Vector<Comment>& comments() { return m_comments; }
#endif
bool shouldOptimizeLocals()
{
if (m_dynamicScopeDepth)
return false;
if (m_codeType != FunctionCode)
return false;
return true;
}
bool canOptimizeNonLocals()
{
if (m_dynamicScopeDepth)
return false;
if (m_codeType == EvalCode)
return false;
if (m_codeType == FunctionCode && m_codeBlock->usesEval())
return false;
return true;
}
RegisterID* emitThrowExpressionTooDeepException();
void createArgumentsIfNecessary();
void createActivationIfNecessary();
RegisterID* createLazyRegisterIfNecessary(RegisterID*);
Vector<Instruction> m_instructions;
bool m_shouldEmitDebugHooks;
bool m_shouldEmitProfileHooks;
bool m_shouldEmitRichSourceInfo;
Strong<ScopeChainNode> m_scopeChain;
SymbolTable* m_symbolTable;
#if ENABLE(BYTECODE_COMMENTS)
Vector<Comment> m_comments;
const char *m_currentCommentString;
#endif
ScopeNode* m_scopeNode;
CodeBlock* m_codeBlock;
// Some of these objects keep pointers to one another. They are arranged
// to ensure a sane destruction order that avoids references to freed memory.
HashSet<RefPtr<StringImpl>, IdentifierRepHash> m_functions;
RegisterID m_ignoredResultRegister;
RegisterID m_thisRegister;
RegisterID* m_activationRegister;
SegmentedVector<RegisterID, 32> m_constantPoolRegisters;
SegmentedVector<RegisterID, 32> m_calleeRegisters;
SegmentedVector<RegisterID, 32> m_parameters;
SegmentedVector<Label, 32> m_labels;
SegmentedVector<LabelScope, 8> m_labelScopes;
RefPtr<RegisterID> m_lastVar;
int m_finallyDepth;
int m_dynamicScopeDepth;
int m_baseScopeDepth;
CodeType m_codeType;
Vector<ControlFlowContext> m_scopeContextStack;
Vector<SwitchInfo> m_switchContextStack;
Vector<ForInContext> m_forInContextStack;
int m_firstConstantIndex;
int m_nextConstantOffset;
unsigned m_globalConstantIndex;
int m_globalVarStorageOffset;
bool m_hasCreatedActivation;
int m_firstLazyFunction;
int m_lastLazyFunction;
HashMap<unsigned int, FunctionBodyNode*, WTF::IntHash<unsigned int>, WTF::UnsignedWithZeroKeyHashTraits<unsigned int> > m_lazyFunctions;
typedef HashMap<FunctionBodyNode*, unsigned> FunctionOffsetMap;
FunctionOffsetMap m_functionOffsets;
// Constant pool
IdentifierMap m_identifierMap;
JSValueMap m_jsValueMap;
NumberMap m_numberMap;
IdentifierStringMap m_stringMap;
JSGlobalData* m_globalData;
OpcodeID m_lastOpcodeID;
#ifndef NDEBUG
size_t m_lastOpcodePosition;
#endif
StackBounds m_stack;
bool m_usesExceptions;
bool m_expressionTooDeep;
};
}
#endif // BytecodeGenerator_h