blob: 4197abc12e52258914fe500ec1ee7b5acb34bde8 [file] [log] [blame]
/*
* Copyright (C) 2008-2019 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
* Copyright (C) 2012 Igalia, S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "CodeBlock.h"
#include "Instruction.h"
#include "Interpreter.h"
#include "JSAsyncGenerator.h"
#include "JSBigInt.h"
#include "JSGenerator.h"
#include "JSTemplateObjectDescriptor.h"
#include "Label.h"
#include "LabelScope.h"
#include "Nodes.h"
#include "ParserError.h"
#include "ProfileTypeBytecodeFlag.h"
#include "RegisterID.h"
#include "StaticPropertyAnalyzer.h"
#include "SymbolTable.h"
#include "UnlinkedCodeBlock.h"
#include <functional>
#include <wtf/CheckedArithmetic.h>
#include <wtf/HashFunctions.h>
#include <wtf/Optional.h>
#include <wtf/SegmentedVector.h>
#include <wtf/SetForScope.h>
#include <wtf/Vector.h>
namespace JSC {
class JSImmutableButterfly;
class Identifier;
class IndexedForInContext;
class StructureForInContext;
enum ExpectedFunction {
NoExpectedFunction,
ExpectObjectConstructor,
ExpectArrayConstructor
};
enum class EmitAwait { Yes, No };
enum class DebuggableCall { Yes, No };
enum class ThisResolutionType { Local, Scoped };
class CallArguments {
public:
CallArguments(BytecodeGenerator&, ArgumentsNode*, unsigned additionalArguments = 0);
RegisterID* thisRegister() { return m_argv[0].get(); }
RegisterID* argumentRegister(unsigned i) { return m_argv[i + 1].get(); }
unsigned stackOffset() { return -m_argv[0]->index() + CallFrame::headerSizeInRegisters; }
unsigned argumentCountIncludingThis() { return m_argv.size() - m_padding; }
ArgumentsNode* argumentsNode() { return m_argumentsNode; }
private:
ArgumentsNode* m_argumentsNode;
Vector<RefPtr<RegisterID>, 8, UnsafeVectorOverflow> m_argv;
unsigned m_padding;
};
// https://tc39.github.io/ecma262/#sec-completion-record-specification-type
//
// For the Break and Continue cases, instead of using the Break and Continue enum values
// below, we use the unique jumpID of the break and continue statement as the encoding
// for the CompletionType value. emitFinallyCompletion() uses this jumpID value later
// to determine the appropriate jump target to jump to after executing the relevant finally
// blocks. The jumpID is computed as:
// jumpID = bytecodeOffset (of the break/continue node) + CompletionType::NumberOfTypes.
// Hence, there won't be any collision between jumpIDs and CompletionType enums.
enum class CompletionType : int {
Normal,
Throw,
Return,
NumberOfTypes
};
inline CompletionType bytecodeOffsetToJumpID(unsigned offset)
{
int jumpIDAsInt = offset + static_cast<int>(CompletionType::NumberOfTypes);
ASSERT(jumpIDAsInt >= static_cast<int>(CompletionType::NumberOfTypes));
return static_cast<CompletionType>(jumpIDAsInt);
}
struct FinallyJump {
FinallyJump(CompletionType jumpID, int targetLexicalScopeIndex, Label& targetLabel)
: jumpID(jumpID)
, targetLexicalScopeIndex(targetLexicalScopeIndex)
, targetLabel(targetLabel)
{ }
CompletionType jumpID;
int targetLexicalScopeIndex;
Ref<Label> targetLabel;
};
class FinallyContext {
public:
FinallyContext() { }
FinallyContext(BytecodeGenerator&, Label& finallyLabel);
FinallyContext* outerContext() const { return m_outerContext; }
Label* finallyLabel() const { return m_finallyLabel; }
RegisterID* completionTypeRegister() const { return m_completionRecord.typeRegister.get(); }
RegisterID* completionValueRegister() const { return m_completionRecord.valueRegister.get(); }
uint32_t numberOfBreaksOrContinues() const { return m_numberOfBreaksOrContinues.unsafeGet(); }
void incNumberOfBreaksOrContinues() { m_numberOfBreaksOrContinues++; }
bool handlesReturns() const { return m_handlesReturns; }
void setHandlesReturns() { m_handlesReturns = true; }
void registerJump(CompletionType jumpID, int lexicalScopeIndex, Label& targetLabel)
{
m_jumps.append(FinallyJump(jumpID, lexicalScopeIndex, targetLabel));
}
size_t numberOfJumps() const { return m_jumps.size(); }
FinallyJump& jumps(size_t i) { return m_jumps[i]; }
private:
FinallyContext* m_outerContext { nullptr };
Label* m_finallyLabel { nullptr };
Checked<uint32_t, WTF::CrashOnOverflow> m_numberOfBreaksOrContinues;
bool m_handlesReturns { false };
Vector<FinallyJump> m_jumps;
struct {
RefPtr<RegisterID> typeRegister;
RefPtr<RegisterID> valueRegister;
} m_completionRecord;
};
struct ControlFlowScope {
typedef uint8_t Type;
enum {
Label,
Finally
};
ControlFlowScope(Type type, int lexicalScopeIndex, FinallyContext* finallyContext = nullptr)
: type(type)
, lexicalScopeIndex(lexicalScopeIndex)
, finallyContext(finallyContext)
{ }
bool isLabelScope() const { return type == Label; }
bool isFinallyScope() const { return type == Finally; }
Type type;
int lexicalScopeIndex;
FinallyContext* finallyContext;
};
class ForInContext : public RefCounted<ForInContext> {
WTF_MAKE_FAST_ALLOCATED;
WTF_MAKE_NONCOPYABLE(ForInContext);
public:
virtual ~ForInContext() = default;
bool isValid() const { return m_isValid; }
void invalidate() { m_isValid = false; }
enum class Type : uint8_t {
IndexedForIn,
StructureForIn
};
Type type() const { return m_type; }
bool isIndexedForInContext() const { return m_type == Type::IndexedForIn; }
bool isStructureForInContext() const { return m_type == Type::StructureForIn; }
IndexedForInContext& asIndexedForInContext()
{
ASSERT(isIndexedForInContext());
return *reinterpret_cast<IndexedForInContext*>(this);
}
StructureForInContext& asStructureForInContext()
{
ASSERT(isStructureForInContext());
return *reinterpret_cast<StructureForInContext*>(this);
}
RegisterID* local() const { return m_localRegister.get(); }
protected:
ForInContext(RegisterID* localRegister, Type type, unsigned bodyBytecodeStartOffset)
: m_localRegister(localRegister)
, m_type(type)
, m_bodyBytecodeStartOffset(bodyBytecodeStartOffset)
{ }
unsigned bodyBytecodeStartOffset() const { return m_bodyBytecodeStartOffset; }
void finalize(BytecodeGenerator&, UnlinkedCodeBlock*, unsigned bodyBytecodeEndOffset);
private:
RefPtr<RegisterID> m_localRegister;
bool m_isValid { true };
Type m_type;
unsigned m_bodyBytecodeStartOffset;
};
class StructureForInContext : public ForInContext {
using Base = ForInContext;
public:
using GetInst = std::tuple<unsigned, int>;
StructureForInContext(RegisterID* localRegister, RegisterID* indexRegister, RegisterID* propertyRegister, RegisterID* enumeratorRegister, unsigned bodyBytecodeStartOffset)
: ForInContext(localRegister, Type::StructureForIn, bodyBytecodeStartOffset)
, m_indexRegister(indexRegister)
, m_propertyRegister(propertyRegister)
, m_enumeratorRegister(enumeratorRegister)
{
}
RegisterID* index() const { return m_indexRegister.get(); }
RegisterID* property() const { return m_propertyRegister.get(); }
RegisterID* enumerator() const { return m_enumeratorRegister.get(); }
void addGetInst(unsigned instIndex, int propertyRegIndex)
{
m_getInsts.append(GetInst { instIndex, propertyRegIndex });
}
void finalize(BytecodeGenerator&, UnlinkedCodeBlock*, unsigned bodyBytecodeEndOffset);
private:
RefPtr<RegisterID> m_indexRegister;
RefPtr<RegisterID> m_propertyRegister;
RefPtr<RegisterID> m_enumeratorRegister;
Vector<GetInst> m_getInsts;
};
class IndexedForInContext : public ForInContext {
using Base = ForInContext;
public:
IndexedForInContext(RegisterID* localRegister, RegisterID* indexRegister, unsigned bodyBytecodeStartOffset)
: ForInContext(localRegister, Type::IndexedForIn, bodyBytecodeStartOffset)
, m_indexRegister(indexRegister)
{
}
RegisterID* index() const { return m_indexRegister.get(); }
void finalize(BytecodeGenerator&, UnlinkedCodeBlock*, unsigned bodyBytecodeEndOffset);
void addGetInst(unsigned instIndex, int propertyIndex) { m_getInsts.append({ instIndex, propertyIndex }); }
private:
RefPtr<RegisterID> m_indexRegister;
Vector<std::pair<unsigned, int>> m_getInsts;
};
struct TryData {
Ref<Label> target;
HandlerType handlerType;
};
struct TryContext {
Ref<Label> start;
TryData* tryData;
};
class Variable {
public:
enum VariableKind { NormalVariable, SpecialVariable };
Variable()
: m_offset()
, m_local(nullptr)
, m_attributes(0)
, m_kind(NormalVariable)
, m_symbolTableConstantIndex(0) // This is meaningless here for this kind of Variable.
, m_isLexicallyScoped(false)
{
}
Variable(const Identifier& ident)
: m_ident(ident)
, m_local(nullptr)
, m_attributes(0)
, m_kind(NormalVariable) // This is somewhat meaningless here for this kind of Variable.
, m_symbolTableConstantIndex(0) // This is meaningless here for this kind of Variable.
, m_isLexicallyScoped(false)
{
}
Variable(const Identifier& ident, VarOffset offset, RegisterID* local, unsigned attributes, VariableKind kind, int symbolTableConstantIndex, bool isLexicallyScoped)
: m_ident(ident)
, m_offset(offset)
, m_local(local)
, m_attributes(attributes)
, m_kind(kind)
, m_symbolTableConstantIndex(symbolTableConstantIndex)
, m_isLexicallyScoped(isLexicallyScoped)
{
}
// If it's unset, then it is a non-locally-scoped variable. If it is set, then it could be
// a stack variable, a scoped variable in a local scope, or a variable captured in the
// direct arguments object.
bool isResolved() const { return !!m_offset; }
int symbolTableConstantIndex() const { ASSERT(isResolved() && !isSpecial()); return m_symbolTableConstantIndex; }
const Identifier& ident() const { return m_ident; }
VarOffset offset() const { return m_offset; }
bool isLocal() const { return m_offset.isStack(); }
RegisterID* local() const { return m_local; }
bool isReadOnly() const { return m_attributes & PropertyAttribute::ReadOnly; }
bool isSpecial() const { return m_kind != NormalVariable; }
bool isConst() const { return isReadOnly() && m_isLexicallyScoped; }
void setIsReadOnly() { m_attributes |= PropertyAttribute::ReadOnly; }
void dump(PrintStream&) const;
private:
Identifier m_ident;
VarOffset m_offset;
RegisterID* m_local;
unsigned m_attributes;
VariableKind m_kind;
int m_symbolTableConstantIndex;
bool m_isLexicallyScoped;
};
struct TryRange {
Ref<Label> start;
Ref<Label> end;
TryData* tryData;
};
class BytecodeGenerator {
WTF_MAKE_FAST_ALLOCATED;
WTF_MAKE_NONCOPYABLE(BytecodeGenerator);
friend class BoundLabel;
friend class FinallyContext;
friend class Label;
friend class IndexedForInContext;
friend class StructureForInContext;
public:
typedef DeclarationStacks::FunctionStack FunctionStack;
BytecodeGenerator(VM&, ProgramNode*, UnlinkedProgramCodeBlock*, OptionSet<CodeGenerationMode>, const VariableEnvironment*);
BytecodeGenerator(VM&, FunctionNode*, UnlinkedFunctionCodeBlock*, OptionSet<CodeGenerationMode>, const VariableEnvironment*);
BytecodeGenerator(VM&, EvalNode*, UnlinkedEvalCodeBlock*, OptionSet<CodeGenerationMode>, const VariableEnvironment*);
BytecodeGenerator(VM&, ModuleProgramNode*, UnlinkedModuleProgramCodeBlock*, OptionSet<CodeGenerationMode>, const VariableEnvironment*);
~BytecodeGenerator();
VM& vm() const { return m_vm; }
ParserArena& parserArena() const { return m_scopeNode->parserArena(); }
const CommonIdentifiers& propertyNames() const { return *m_vm.propertyNames; }
bool isConstructor() const { return m_codeBlock->isConstructor(); }
DerivedContextType derivedContextType() const { return m_derivedContextType; }
bool usesArrowFunction() const { return m_scopeNode->usesArrowFunction(); }
bool needsToUpdateArrowFunctionContext() const { return m_needsToUpdateArrowFunctionContext; }
bool usesEval() const { return m_scopeNode->usesEval(); }
bool usesThis() const { return m_scopeNode->usesThis(); }
ConstructorKind constructorKind() const { return m_codeBlock->constructorKind(); }
SuperBinding superBinding() const { return m_codeBlock->superBinding(); }
JSParserScriptMode scriptMode() const { return m_codeBlock->scriptMode(); }
template<typename Node, typename UnlinkedCodeBlock>
static ParserError generate(VM& vm, Node* node, const SourceCode& sourceCode, UnlinkedCodeBlock* unlinkedCodeBlock, OptionSet<CodeGenerationMode> codeGenerationMode, const VariableEnvironment* environment)
{
MonotonicTime before;
if (UNLIKELY(Options::reportBytecodeCompileTimes()))
before = MonotonicTime::now();
DeferGC deferGC(vm.heap);
auto bytecodeGenerator = makeUnique<BytecodeGenerator>(vm, node, unlinkedCodeBlock, codeGenerationMode, environment);
auto result = bytecodeGenerator->generate();
if (UNLIKELY(Options::reportBytecodeCompileTimes())) {
MonotonicTime after = MonotonicTime::now();
dataLogLn(result.isValid() ? "Failed to compile #" : "Compiled #", CodeBlockHash(sourceCode, unlinkedCodeBlock->isConstructor() ? CodeForConstruct : CodeForCall), " into bytecode ", bytecodeGenerator->instructions().size(), " instructions in ", (after - before).milliseconds(), " ms.");
}
return result;
}
bool isArgumentNumber(const Identifier&, int);
Variable variable(const Identifier&, ThisResolutionType = ThisResolutionType::Local);
enum ExistingVariableMode { VerifyExisting, IgnoreExisting };
void createVariable(const Identifier&, VarKind, SymbolTable*, ExistingVariableMode = VerifyExisting); // Creates the variable, or asserts that the already-created variable is sufficiently compatible.
// Returns the register storing "this"
RegisterID* thisRegister() { return &m_thisRegister; }
RegisterID* argumentsRegister() { return m_argumentsRegister; }
RegisterID* newTarget()
{
ASSERT(m_newTargetRegister);
return m_newTargetRegister;
}
RegisterID* scopeRegister() { return m_scopeRegister; }
RegisterID* generatorRegister() { return m_generatorRegister; }
RegisterID* promiseRegister() { return m_promiseRegister; }
// Returns the next available temporary register. Registers returned by
// newTemporary require a modified form of reference counting: any
// register with a refcount of 0 is considered "available", meaning that
// the next instruction may overwrite it.
RegisterID* newTemporary();
// The same as newTemporary(), but this function returns "suggestion" if
// "suggestion" is a temporary. This function is helpful in situations
// where you've put "suggestion" in a RefPtr, but you'd like to allow
// the next instruction to overwrite it anyway.
RegisterID* newTemporaryOr(RegisterID* suggestion) { return suggestion->isTemporary() ? suggestion : newTemporary(); }
// Functions for handling of dst register
RegisterID* ignoredResult() { return &m_ignoredResultRegister; }
// This will be allocated in the temporary region of registers, but it will
// not be marked as a temporary. This will ensure that finalDestination() does
// not overwrite a block scope variable that it mistakes as a temporary. These
// registers can be (and are) reclaimed when the lexical scope they belong to
// is no longer on the symbol table stack.
RegisterID* newBlockScopeVariable();
// Returns a place to write intermediate values of an operation
// which reuses dst if it is safe to do so.
RegisterID* tempDestination(RegisterID* dst)
{
return (dst && dst != ignoredResult() && dst->isTemporary()) ? dst : newTemporary();
}
// Returns the place to write the final output of an operation.
RegisterID* finalDestination(RegisterID* originalDst, RegisterID* tempDst = 0)
{
if (originalDst && originalDst != ignoredResult())
return originalDst;
ASSERT(tempDst != ignoredResult());
if (tempDst && tempDst->isTemporary())
return tempDst;
return newTemporary();
}
RegisterID* destinationForAssignResult(RegisterID* dst)
{
if (dst && dst != ignoredResult())
return dst->isTemporary() ? dst : newTemporary();
return 0;
}
// Moves src to dst if dst is not null and is different from src, otherwise just returns src.
RegisterID* move(RegisterID* dst, RegisterID* src)
{
return dst == ignoredResult() ? nullptr : (dst && dst != src) ? emitMove(dst, src) : src;
}
Ref<LabelScope> newLabelScope(LabelScope::Type, const Identifier* = 0);
Ref<Label> newLabel();
Ref<Label> newEmittedLabel();
void emitNode(RegisterID* dst, StatementNode* n)
{
SetForScope<bool> tailPositionPoisoner(m_inTailPosition, false);
return emitNodeInTailPosition(dst, n);
}
void emitNodeInTailPosition(RegisterID* dst, StatementNode* n)
{
// Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
if (UNLIKELY(!m_vm.isSafeToRecurse())) {
emitThrowExpressionTooDeepException();
return;
}
if (UNLIKELY(n->needsDebugHook()))
emitDebugHook(n);
n->emitBytecode(*this, dst);
}
void recordOpcode(OpcodeID);
ALWAYS_INLINE unsigned addMetadataFor(OpcodeID opcodeID)
{
return m_codeBlock->metadata().addEntry(opcodeID);
}
void emitNode(StatementNode* n)
{
emitNode(nullptr, n);
}
void emitNodeInTailPosition(StatementNode* n)
{
emitNodeInTailPosition(nullptr, n);
}
RegisterID* emitNode(RegisterID* dst, ExpressionNode* n)
{
SetForScope<bool> tailPositionPoisoner(m_inTailPosition, false);
return emitNodeInTailPosition(dst, n);
}
RegisterID* emitNodeInTailPosition(RegisterID* dst, ExpressionNode* n)
{
// Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
if (UNLIKELY(!m_vm.isSafeToRecurse()))
return emitThrowExpressionTooDeepException();
if (UNLIKELY(n->needsDebugHook()))
emitDebugHook(n);
return n->emitBytecode(*this, dst);
}
RegisterID* emitNode(ExpressionNode* n)
{
return emitNode(nullptr, n);
}
RegisterID* emitNodeInTailPosition(ExpressionNode* n)
{
return emitNodeInTailPosition(nullptr, n);
}
RegisterID* emitDefineClassElements(PropertyListNode* n, RegisterID* constructor, RegisterID* prototype)
{
ASSERT(constructor->refCount() && prototype->refCount());
if (UNLIKELY(!m_vm.isSafeToRecurse()))
return emitThrowExpressionTooDeepException();
if (UNLIKELY(n->needsDebugHook()))
emitDebugHook(n);
return n->emitBytecode(*this, constructor, prototype);
}
RegisterID* emitNodeForProperty(RegisterID* dst, ExpressionNode* node)
{
if (node->isString()) {
if (Optional<uint32_t> index = parseIndex(static_cast<StringNode*>(node)->value()))
return emitLoad(dst, jsNumber(index.value()));
}
return emitNode(dst, node);
}
RegisterID* emitNodeForProperty(ExpressionNode* n)
{
return emitNodeForProperty(nullptr, n);
}
void emitNodeInConditionContext(ExpressionNode* n, Label& trueTarget, Label& falseTarget, FallThroughMode fallThroughMode)
{
if (UNLIKELY(!m_vm.isSafeToRecurse())) {
emitThrowExpressionTooDeepException();
return;
}
n->emitBytecodeInConditionContext(*this, trueTarget, falseTarget, fallThroughMode);
}
void emitExpressionInfo(const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
ASSERT(divot.offset >= divotStart.offset);
ASSERT(divotEnd.offset >= divot.offset);
int sourceOffset = m_scopeNode->source().startOffset();
unsigned firstLine = m_scopeNode->source().firstLine().oneBasedInt();
int divotOffset = divot.offset - sourceOffset;
int startOffset = divot.offset - divotStart.offset;
int endOffset = divotEnd.offset - divot.offset;
unsigned line = divot.line;
ASSERT(line >= firstLine);
line -= firstLine;
int lineStart = divot.lineStartOffset;
if (lineStart > sourceOffset)
lineStart -= sourceOffset;
else
lineStart = 0;
if (divotOffset < lineStart)
return;
unsigned column = divotOffset - lineStart;
unsigned instructionOffset = instructions().size();
if (!m_isBuiltinFunction)
m_codeBlock->addExpressionInfo(instructionOffset, divotOffset, startOffset, endOffset, line, column);
}
ALWAYS_INLINE bool leftHandSideNeedsCopy(bool rightHasAssignments, bool rightIsPure)
{
return (m_codeType != FunctionCode || rightHasAssignments) && !rightIsPure;
}
ALWAYS_INLINE RefPtr<RegisterID> emitNodeForLeftHandSide(ExpressionNode* n, bool rightHasAssignments, bool rightIsPure)
{
if (leftHandSideNeedsCopy(rightHasAssignments, rightIsPure)) {
RefPtr<RegisterID> dst = newTemporary();
emitNode(dst.get(), n);
return dst;
}
return emitNode(n);
}
ALWAYS_INLINE RefPtr<RegisterID> emitNodeForLeftHandSideForProperty(ExpressionNode* n, bool rightHasAssignments, bool rightIsPure)
{
if (leftHandSideNeedsCopy(rightHasAssignments, rightIsPure)) {
RefPtr<RegisterID> dst = newTemporary();
emitNodeForProperty(dst.get(), n);
return dst;
}
return emitNodeForProperty(n);
}
void hoistSloppyModeFunctionIfNecessary(const Identifier& functionName);
private:
void emitTypeProfilerExpressionInfo(const JSTextPosition& startDivot, const JSTextPosition& endDivot);
public:
// This doesn't emit expression info. If using this, make sure you shouldn't be emitting text offset.
void emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag);
// These variables are associated with variables in a program. They could be Locals, LocalClosureVar, or ClosureVar.
void emitProfileType(RegisterID* registerToProfile, const Variable&, const JSTextPosition& startDivot, const JSTextPosition& endDivot);
void emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag, const JSTextPosition& startDivot, const JSTextPosition& endDivot);
// These are not associated with variables and don't have a global id.
void emitProfileType(RegisterID* registerToProfile, const JSTextPosition& startDivot, const JSTextPosition& endDivot);
void emitProfileControlFlow(int);
RegisterID* emitLoadArrowFunctionLexicalEnvironment(const Identifier&);
RegisterID* ensureThis();
void emitLoadThisFromArrowFunctionLexicalEnvironment();
RegisterID* emitLoadNewTargetFromArrowFunctionLexicalEnvironment();
unsigned addConstantIndex();
RegisterID* emitLoad(RegisterID* dst, bool);
RegisterID* emitLoad(RegisterID* dst, const Identifier&);
RegisterID* emitLoad(RegisterID* dst, JSValue, SourceCodeRepresentation = SourceCodeRepresentation::Other);
RegisterID* emitLoad(RegisterID* dst, IdentifierSet& excludedList);
template<typename UnaryOp, typename = std::enable_if_t<UnaryOp::opcodeID != op_negate>>
RegisterID* emitUnaryOp(RegisterID* dst, RegisterID* src)
{
UnaryOp::emit(this, dst, src);
return dst;
}
RegisterID* emitUnaryOp(OpcodeID, RegisterID* dst, RegisterID* src, OperandTypes);
template<typename BinaryOp>
std::enable_if_t<
BinaryOp::opcodeID != op_add
&& BinaryOp::opcodeID != op_mul
&& BinaryOp::opcodeID != op_sub
&& BinaryOp::opcodeID != op_div,
RegisterID*>
emitBinaryOp(RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes)
{
BinaryOp::emit(this, dst, src1, src2);
return dst;
}
template<typename BinaryOp>
std::enable_if_t<
BinaryOp::opcodeID == op_add
|| BinaryOp::opcodeID == op_mul
|| BinaryOp::opcodeID == op_sub
|| BinaryOp::opcodeID == op_div,
RegisterID*>
emitBinaryOp(RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes types)
{
BinaryOp::emit(this, dst, src1, src2, types);
return dst;
}
RegisterID* emitBinaryOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes);
template<typename EqOp>
RegisterID* emitEqualityOp(RegisterID* dst, RegisterID* src1, RegisterID* src2)
{
if (!emitEqualityOpImpl(dst, src1, src2))
EqOp::emit(this, dst, src1, src2);
return dst;
}
bool emitEqualityOpImpl(RegisterID* dst, RegisterID* src1, RegisterID* src2);
RegisterID* emitCreateThis(RegisterID* dst);
RegisterID* emitCreatePromise(RegisterID* dst, RegisterID* newTarget, bool isInternalPromise);
RegisterID* emitCreateGenerator(RegisterID* dst, RegisterID* newTarget);
RegisterID* emitCreateAsyncGenerator(RegisterID* dst, RegisterID* newTarget);
void emitTDZCheck(RegisterID* target);
bool needsTDZCheck(const Variable&);
void emitTDZCheckIfNecessary(const Variable&, RegisterID* target, RegisterID* scope);
void liftTDZCheckIfPossible(const Variable&);
RegisterID* emitNewObject(RegisterID* dst);
RegisterID* emitNewPromise(RegisterID* dst, bool isInternalPromise);
RegisterID* emitNewGenerator(RegisterID* dst);
RegisterID* emitNewArray(RegisterID* dst, ElementNode*, unsigned length, IndexingType recommendedIndexingType); // stops at first elision
RegisterID* emitNewArrayBuffer(RegisterID* dst, JSImmutableButterfly*, IndexingType recommendedIndexingType);
// FIXME: new_array_with_spread should use an array allocation profile and take a recommendedIndexingType
RegisterID* emitNewArrayWithSpread(RegisterID* dst, ElementNode*);
RegisterID* emitNewArrayWithSize(RegisterID* dst, RegisterID* length);
RegisterID* emitNewFunction(RegisterID* dst, FunctionMetadataNode*);
RegisterID* emitNewFunctionExpression(RegisterID* dst, FuncExprNode*);
RegisterID* emitNewDefaultConstructor(RegisterID* dst, ConstructorKind, const Identifier& name, const Identifier& ecmaName, const SourceCode& classSource);
RegisterID* emitNewArrowFunctionExpression(RegisterID*, ArrowFuncExprNode*);
RegisterID* emitNewMethodDefinition(RegisterID* dst, MethodDefinitionNode*);
RegisterID* emitNewRegExp(RegisterID* dst, RegExp*);
void emitSetFunctionNameIfNeeded(ExpressionNode* valueNode, RegisterID* value, RegisterID* name);
RegisterID* moveLinkTimeConstant(RegisterID* dst, LinkTimeConstant);
RegisterID* moveEmptyValue(RegisterID* dst);
RegisterID* emitToNumber(RegisterID* dst, RegisterID* src);
RegisterID* emitToString(RegisterID* dst, RegisterID* src);
RegisterID* emitToObject(RegisterID* dst, RegisterID* src, const Identifier& message);
RegisterID* emitInc(RegisterID* srcDst);
RegisterID* emitDec(RegisterID* srcDst);
RegisterID* emitOverridesHasInstance(RegisterID* dst, RegisterID* constructor, RegisterID* hasInstanceValue);
RegisterID* emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* basePrototype);
RegisterID* emitInstanceOfCustom(RegisterID* dst, RegisterID* value, RegisterID* constructor, RegisterID* hasInstanceValue);
RegisterID* emitTypeOf(RegisterID* dst, RegisterID* src);
RegisterID* emitInByVal(RegisterID* dst, RegisterID* property, RegisterID* base);
RegisterID* emitInById(RegisterID* dst, RegisterID* base, const Identifier& property);
RegisterID* emitTryGetById(RegisterID* dst, RegisterID* base, const Identifier& property);
RegisterID* emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property);
RegisterID* emitGetById(RegisterID* dst, RegisterID* base, RegisterID* thisVal, const Identifier& property);
RegisterID* emitDirectGetById(RegisterID* dst, RegisterID* base, const Identifier& property);
RegisterID* emitPutById(RegisterID* base, const Identifier& property, RegisterID* value);
RegisterID* emitPutById(RegisterID* base, RegisterID* thisValue, const Identifier& property, RegisterID* value);
RegisterID* emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value, PropertyNode::PutType);
RegisterID* emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier&);
RegisterID* emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* thisValue, RegisterID* property);
RegisterID* emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
RegisterID* emitPutByVal(RegisterID* base, RegisterID* thisValue, RegisterID* property, RegisterID* value);
RegisterID* emitDirectPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
RegisterID* emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitGetInternalField(RegisterID* dst, RegisterID* base, unsigned index);
RegisterID* emitPutInternalField(RegisterID* base, unsigned index, RegisterID* value);
void emitSuperSamplerBegin();
void emitSuperSamplerEnd();
RegisterID* emitIdWithProfile(RegisterID* src, SpeculatedType profile);
void emitUnreachable();
void emitPutGetterById(RegisterID* base, const Identifier& property, unsigned propertyDescriptorOptions, RegisterID* getter);
void emitPutSetterById(RegisterID* base, const Identifier& property, unsigned propertyDescriptorOptions, RegisterID* setter);
void emitPutGetterSetter(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter, RegisterID* setter);
void emitPutGetterByVal(RegisterID* base, RegisterID* property, unsigned propertyDescriptorOptions, RegisterID* getter);
void emitPutSetterByVal(RegisterID* base, RegisterID* property, unsigned propertyDescriptorOptions, RegisterID* setter);
RegisterID* emitGetArgument(RegisterID* dst, int32_t index);
// Initialize object with generator fields (@generatorThis, @generatorNext, @generatorState, @generatorFrame)
void emitPutGeneratorFields(RegisterID* nextFunction);
void emitPutAsyncGeneratorFields(RegisterID* nextFunction);
ExpectedFunction expectedFunctionForIdentifier(const Identifier&);
RegisterID* emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall);
RegisterID* emitCallInTailPosition(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall);
RegisterID* emitCallEval(RegisterID* dst, RegisterID* func, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall);
RegisterID* emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall);
RegisterID* emitCallVarargsInTailPosition(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall);
RegisterID* emitCallForwardArgumentsInTailPosition(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall);
enum PropertyDescriptorOption {
PropertyConfigurable = 1,
PropertyWritable = 1 << 1,
PropertyEnumerable = 1 << 2,
};
void emitCallDefineProperty(RegisterID* newObj, RegisterID* propertyNameRegister,
RegisterID* valueRegister, RegisterID* getterRegister, RegisterID* setterRegister, unsigned options, const JSTextPosition&);
void emitEnumeration(ThrowableExpressionData* enumerationNode, ExpressionNode* subjectNode, const ScopedLambda<void(BytecodeGenerator&, RegisterID*)>& callBack, ForOfNode* = nullptr, RegisterID* forLoopSymbolTable = nullptr);
RegisterID* emitGetTemplateObject(RegisterID* dst, TaggedTemplateNode*);
RegisterID* emitGetGlobalPrivate(RegisterID* dst, const Identifier& property);
enum class ReturnFrom { Normal, Finally };
RegisterID* emitReturn(RegisterID* src, ReturnFrom = ReturnFrom::Normal);
RegisterID* emitEnd(RegisterID* src);
RegisterID* emitConstruct(RegisterID* dst, RegisterID* func, RegisterID* lazyThis, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitStrcat(RegisterID* dst, RegisterID* src, int count);
void emitToPrimitive(RegisterID* dst, RegisterID* src);
ResolveType resolveType();
RegisterID* emitResolveConstantLocal(RegisterID* dst, const Variable&);
RegisterID* emitResolveScope(RegisterID* dst, const Variable&);
RegisterID* emitGetFromScope(RegisterID* dst, RegisterID* scope, const Variable&, ResolveMode);
RegisterID* emitPutToScope(RegisterID* scope, const Variable&, RegisterID* value, ResolveMode, InitializationMode);
RegisterID* emitResolveScopeForHoistingFuncDeclInEval(RegisterID* dst, const Identifier&);
RegisterID* initializeVariable(const Variable&, RegisterID* value);
void emitLabel(Label&);
void emitLoopHint();
void emitJump(Label& target);
void emitJumpIfTrue(RegisterID* cond, Label& target);
void emitJumpIfFalse(RegisterID* cond, Label& target);
void emitJumpIfNotFunctionCall(RegisterID* cond, Label& target);
void emitJumpIfNotFunctionApply(RegisterID* cond, Label& target);
template<typename BinOp, typename JmpOp>
bool fuseCompareAndJump(RegisterID* cond, Label& target, bool swapOperands = false);
template<typename UnaryOp, typename JmpOp>
bool fuseTestAndJmp(RegisterID* cond, Label& target);
void emitEnter();
void emitCheckTraps();
RegisterID* emitHasIndexedProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName);
RegisterID* emitHasStructureProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName, RegisterID* enumerator);
RegisterID* emitHasGenericProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName);
RegisterID* emitGetPropertyEnumerator(RegisterID* dst, RegisterID* base);
RegisterID* emitGetEnumerableLength(RegisterID* dst, RegisterID* base);
RegisterID* emitGetStructurePropertyEnumerator(RegisterID* dst, RegisterID* base, RegisterID* length);
RegisterID* emitGetGenericPropertyEnumerator(RegisterID* dst, RegisterID* base, RegisterID* length, RegisterID* structureEnumerator);
RegisterID* emitEnumeratorStructurePropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index);
RegisterID* emitEnumeratorGenericPropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index);
RegisterID* emitToIndexString(RegisterID* dst, RegisterID* index);
RegisterID* emitIsCellWithType(RegisterID* dst, RegisterID* src, JSType);
RegisterID* emitIsGenerator(RegisterID* dst, RegisterID* src) { return emitIsCellWithType(dst, src, JSGeneratorType); }
RegisterID* emitIsAsyncGenerator(RegisterID* dst, RegisterID* src) { return emitIsCellWithType(dst, src, JSAsyncGeneratorType); }
RegisterID* emitIsJSArray(RegisterID* dst, RegisterID* src) { return emitIsCellWithType(dst, src, ArrayType); }
RegisterID* emitIsPromise(RegisterID* dst, RegisterID* src) { return emitIsCellWithType(dst, src, JSPromiseType); }
RegisterID* emitIsProxyObject(RegisterID* dst, RegisterID* src) { return emitIsCellWithType(dst, src, ProxyObjectType); }
RegisterID* emitIsRegExpObject(RegisterID* dst, RegisterID* src) { return emitIsCellWithType(dst, src, RegExpObjectType); }
RegisterID* emitIsMap(RegisterID* dst, RegisterID* src) { return emitIsCellWithType(dst, src, JSMapType); }
RegisterID* emitIsSet(RegisterID* dst, RegisterID* src) { return emitIsCellWithType(dst, src, JSSetType); }
RegisterID* emitIsObject(RegisterID* dst, RegisterID* src);
RegisterID* emitIsNumber(RegisterID* dst, RegisterID* src);
RegisterID* emitIsUndefined(RegisterID* dst, RegisterID* src);
RegisterID* emitIsUndefinedOrNull(RegisterID* dst, RegisterID* src);
RegisterID* emitIsEmpty(RegisterID* dst, RegisterID* src);
RegisterID* emitIsDerivedArray(RegisterID* dst, RegisterID* src) { return emitIsCellWithType(dst, src, DerivedArrayType); }
void emitRequireObjectCoercible(RegisterID* value, const String& error);
RegisterID* emitIteratorNext(RegisterID* dst, RegisterID* nextMethod, RegisterID* iterator, const ThrowableExpressionData* node, JSC::EmitAwait = JSC::EmitAwait::No);
RegisterID* emitIteratorNextWithValue(RegisterID* dst, RegisterID* nextMethod, RegisterID* iterator, RegisterID* value, const ThrowableExpressionData* node);
void emitIteratorClose(RegisterID* iterator, const ThrowableExpressionData* node, EmitAwait = EmitAwait::No);
RegisterID* emitRestParameter(RegisterID* result, unsigned numParametersToSkip);
bool emitReadOnlyExceptionIfNeeded(const Variable&);
// Start a try block. 'start' must have been emitted.
TryData* pushTry(Label& start, Label& handlerLabel, HandlerType);
// End a try block. 'end' must have been emitted.
void popTry(TryData*, Label& end);
void emitOutOfLineCatchHandler(RegisterID* thrownValueRegister, RegisterID* completionTypeRegister, TryData*);
void emitOutOfLineFinallyHandler(RegisterID* exceptionRegister, RegisterID* completionTypeRegister, TryData*);
private:
static constexpr int CurrentLexicalScopeIndex = -2;
static constexpr int OutermostLexicalScopeIndex = -1;
int currentLexicalScopeIndex() const
{
int size = static_cast<int>(m_lexicalScopeStack.size());
ASSERT(static_cast<size_t>(size) == m_lexicalScopeStack.size());
ASSERT(size >= 0);
if (!size)
return OutermostLexicalScopeIndex;
return size - 1;
}
void emitOutOfLineExceptionHandler(RegisterID* exceptionRegister, RegisterID* thrownValueRegister, RegisterID* completionTypeRegister, TryData*);
public:
void restoreScopeRegister();
void restoreScopeRegister(int lexicalScopeIndex);
int labelScopeDepthToLexicalScopeIndex(int labelScopeDepth);
void emitThrow(RegisterID*);
RegisterID* emitArgumentCount(RegisterID*);
void emitThrowStaticError(ErrorType, RegisterID*);
void emitThrowStaticError(ErrorType, const Identifier& message);
void emitThrowReferenceError(const String& message);
void emitThrowTypeError(const String& message);
void emitThrowTypeError(const Identifier& message);
void emitThrowRangeError(const Identifier& message);
void emitThrowOutOfMemoryError();
void emitPushCatchScope(VariableEnvironment&);
void emitPopCatchScope(VariableEnvironment&);
RegisterID* emitGetIterator(RegisterID*, ThrowableExpressionData*);
RegisterID* emitGetAsyncIterator(RegisterID*, ThrowableExpressionData*);
void emitAwait(RegisterID*);
void emitGetScope();
RegisterID* emitPushWithScope(RegisterID* objectScope);
void emitPopWithScope();
void emitPutThisToArrowFunctionContextScope();
void emitPutNewTargetToArrowFunctionContextScope();
void emitPutDerivedConstructorToArrowFunctionContextScope();
RegisterID* emitLoadDerivedConstructorFromArrowFunctionLexicalEnvironment();
void emitDebugHook(DebugHookType, const JSTextPosition&);
void emitDebugHook(DebugHookType, unsigned line, unsigned charOffset, unsigned lineStart);
void emitDebugHook(StatementNode*);
void emitDebugHook(ExpressionNode*);
void emitWillLeaveCallFrameDebugHook();
void emitLoad(RegisterID* completionTypeRegister, CompletionType type)
{
emitLoad(completionTypeRegister, JSValue(static_cast<int>(type)));
}
template<typename CompareOp>
void emitJumpIf(RegisterID* completionTypeRegister, CompletionType, Label& jumpTarget);
bool emitJumpViaFinallyIfNeeded(int targetLabelScopeDepth, Label& jumpTarget);
bool emitReturnViaFinallyIfNeeded(RegisterID* returnRegister);
void emitFinallyCompletion(FinallyContext&, Label& normalCompletionLabel);
public:
void pushFinallyControlFlowScope(FinallyContext&);
void popFinallyControlFlowScope();
void pushOptionalChainTarget();
void popOptionalChainTarget();
void popOptionalChainTarget(RegisterID* dst, bool isDelete);
void emitOptionalCheck(RegisterID* src);
void pushIndexedForInScope(RegisterID* local, RegisterID* index);
void popIndexedForInScope(RegisterID* local);
void pushStructureForInScope(RegisterID* local, RegisterID* index, RegisterID* property, RegisterID* enumerator);
void popStructureForInScope(RegisterID* local);
LabelScope* breakTarget(const Identifier&);
LabelScope* continueTarget(const Identifier&);
void beginSwitch(RegisterID*, SwitchInfo::SwitchType);
void endSwitch(uint32_t clauseCount, const Vector<Ref<Label>, 8>&, ExpressionNode**, Label& defaultLabel, int32_t min, int32_t range);
void emitYieldPoint(RegisterID*, JSAsyncGenerator::AsyncGeneratorSuspendReason);
void emitGeneratorStateLabel();
void emitGeneratorStateChange(int32_t state);
RegisterID* emitYield(RegisterID* argument, JSAsyncGenerator::AsyncGeneratorSuspendReason = JSAsyncGenerator::AsyncGeneratorSuspendReason::Yield);
RegisterID* emitDelegateYield(RegisterID* argument, ThrowableExpressionData*);
RegisterID* generatorStateRegister() { return &m_parameters[static_cast<int32_t>(JSGenerator::GeneratorArgument::State)]; }
RegisterID* generatorValueRegister() { return &m_parameters[static_cast<int32_t>(JSGenerator::GeneratorArgument::Value)]; }
RegisterID* generatorResumeModeRegister() { return &m_parameters[static_cast<int32_t>(JSGenerator::GeneratorArgument::ResumeMode)]; }
RegisterID* generatorFrameRegister() { return &m_parameters[static_cast<int32_t>(JSGenerator::GeneratorArgument::Frame)]; }
CodeType codeType() const { return m_codeType; }
bool shouldBeConcernedWithCompletionValue() const { return m_codeType != FunctionCode; }
bool shouldEmitDebugHooks() const { return m_codeGenerationMode.contains(CodeGenerationMode::Debugger) && !m_isBuiltinFunction; }
bool shouldEmitTypeProfilerHooks() const { return m_codeGenerationMode.contains(CodeGenerationMode::TypeProfiler); }
bool shouldEmitControlFlowProfilerHooks() const { return m_codeGenerationMode.contains(CodeGenerationMode::ControlFlowProfiler); }
bool isStrictMode() const { return m_codeBlock->isStrictMode(); }
SourceParseMode parseMode() const { return m_codeBlock->parseMode(); }
bool isBuiltinFunction() const { return m_isBuiltinFunction; }
OpcodeID lastOpcodeID() const { return m_lastOpcodeID; }
bool isDerivedConstructorContext() { return m_derivedContextType == DerivedContextType::DerivedConstructorContext; }
bool isDerivedClassContext() { return m_derivedContextType == DerivedContextType::DerivedMethodContext; }
bool isArrowFunction() { return m_codeBlock->isArrowFunction(); }
enum class TDZCheckOptimization { Optimize, DoNotOptimize };
enum class NestedScopeType { IsNested, IsNotNested };
private:
enum class TDZRequirement { UnderTDZ, NotUnderTDZ };
enum class ScopeType { CatchScope, LetConstScope, FunctionNameScope };
enum class ScopeRegisterType { Var, Block };
void pushLexicalScopeInternal(VariableEnvironment&, TDZCheckOptimization, NestedScopeType, RegisterID** constantSymbolTableResult, TDZRequirement, ScopeType, ScopeRegisterType);
void initializeBlockScopedFunctions(VariableEnvironment&, FunctionStack&, RegisterID* constantSymbolTable);
void popLexicalScopeInternal(VariableEnvironment&);
template<typename LookUpVarKindFunctor>
bool instantiateLexicalVariables(const VariableEnvironment&, SymbolTable*, ScopeRegisterType, LookUpVarKindFunctor);
void emitPrefillStackTDZVariables(const VariableEnvironment&, SymbolTable*);
RegisterID* emitGetParentScope(RegisterID* dst, RegisterID* scope);
void emitPushFunctionNameScope(const Identifier& property, RegisterID* value, bool isCaptured);
void emitNewFunctionExpressionCommon(RegisterID*, FunctionMetadataNode*);
bool isNewTargetUsedInInnerArrowFunction();
bool isArgumentsUsedInInnerArrowFunction();
void emitToThis();
RegisterID* emitMove(RegisterID* dst, RegisterID* src);
bool canDoPeepholeOptimization() const { return m_lastOpcodeID != op_end; }
public:
bool isSuperUsedInInnerArrowFunction();
bool isSuperCallUsedInInnerArrowFunction();
bool isThisUsedInInnerArrowFunction();
void pushLexicalScope(VariableEnvironmentNode*, TDZCheckOptimization, NestedScopeType = NestedScopeType::IsNotNested, RegisterID** constantSymbolTableResult = nullptr, bool shouldInitializeBlockScopedFunctions = true);
void popLexicalScope(VariableEnvironmentNode*);
void prepareLexicalScopeForNextForLoopIteration(VariableEnvironmentNode*, RegisterID* loopSymbolTable);
int labelScopeDepth() const;
UnlinkedArrayProfile newArrayProfile();
private:
ParserError generate();
void reclaimFreeRegisters();
Variable variableForLocalEntry(const Identifier&, const SymbolTableEntry&, int symbolTableConstantIndex, bool isLexicallyScoped);
RegisterID* kill(RegisterID* dst)
{
m_staticPropertyAnalyzer.kill(dst);
return dst;
}
void retrieveLastUnaryOp(int& dstIndex, int& srcIndex);
ALWAYS_INLINE void rewind();
void allocateCalleeSaveSpace();
void allocateAndEmitScope();
template<typename JumpOp>
void setTargetForJumpInstruction(InstructionStream::MutableRef&, int target);
using BigIntMapEntry = std::tuple<UniquedStringImpl*, uint8_t, bool>;
using NumberMap = HashMap<double, JSValue>;
using IdentifierStringMap = HashMap<UniquedStringImpl*, JSString*, IdentifierRepHash>;
using IdentifierBigIntMap = HashMap<BigIntMapEntry, JSBigInt*>;
using TemplateObjectDescriptorSet = HashSet<Ref<TemplateObjectDescriptor>>;
using TemplateDescriptorMap = HashMap<uint64_t, JSTemplateObjectDescriptor*, WTF::IntHash<uint64_t>, WTF::UnsignedWithZeroKeyHashTraits<uint64_t>>;
// Helper for emitCall() and emitConstruct(). This works because the set of
// expected functions have identical behavior for both call and construct
// (i.e. "Object()" is identical to "new Object()").
ExpectedFunction emitExpectedFunctionSnippet(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, Label& done);
template<typename CallOp>
RegisterID* emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall);
RegisterID* emitCallIterator(RegisterID* iterator, RegisterID* argument, ThrowableExpressionData*);
RegisterID* newRegister();
// Adds an anonymous local var slot. To give this slot a name, add it to symbolTable().
RegisterID* addVar()
{
++m_codeBlock->m_numVars;
RegisterID* result = newRegister();
ASSERT(VirtualRegister(result->index()).toLocal() == m_codeBlock->m_numVars - 1);
result->ref(); // We should never free this slot.
return result;
}
// Initializes the stack form the parameter; does nothing for the symbol table.
RegisterID* initializeNextParameter();
UniquedStringImpl* visibleNameForParameter(DestructuringPatternNode*);
RegisterID& registerFor(VirtualRegister reg)
{
if (reg.isLocal())
return m_calleeLocals[reg.toLocal()];
if (reg.offset() == CallFrameSlot::callee)
return m_calleeRegister;
ASSERT(m_parameters.size());
return m_parameters[reg.toArgument()];
}
bool hasConstant(const Identifier&) const;
unsigned addConstant(const Identifier&);
RegisterID* addConstantValue(JSValue, SourceCodeRepresentation = SourceCodeRepresentation::Other);
RegisterID* addConstantEmptyValue();
UnlinkedFunctionExecutable* makeFunction(FunctionMetadataNode* metadata)
{
DerivedContextType newDerivedContextType = DerivedContextType::None;
if (SourceParseModeSet(SourceParseMode::ArrowFunctionMode, SourceParseMode::AsyncArrowFunctionMode, SourceParseMode::AsyncArrowFunctionBodyMode).contains(metadata->parseMode())) {
if (constructorKind() == ConstructorKind::Extends || isDerivedConstructorContext())
newDerivedContextType = DerivedContextType::DerivedConstructorContext;
else if (m_codeBlock->isClassContext() || isDerivedClassContext())
newDerivedContextType = DerivedContextType::DerivedMethodContext;
}
Optional<CompactVariableMap::Handle> optionalVariablesUnderTDZ = getVariablesUnderTDZ();
// FIXME: These flags, ParserModes and propagation to XXXCodeBlocks should be reorganized.
// https://bugs.webkit.org/show_bug.cgi?id=151547
SourceParseMode parseMode = metadata->parseMode();
ConstructAbility constructAbility = constructAbilityForParseMode(parseMode);
if (parseMode == SourceParseMode::MethodMode && metadata->constructorKind() != ConstructorKind::None)
constructAbility = ConstructAbility::CanConstruct;
return UnlinkedFunctionExecutable::create(m_vm, m_scopeNode->source(), metadata, isBuiltinFunction() ? UnlinkedBuiltinFunction : UnlinkedNormalFunction, constructAbility, scriptMode(), WTFMove(optionalVariablesUnderTDZ), newDerivedContextType);
}
Optional<CompactVariableMap::Handle> getVariablesUnderTDZ();
RegisterID* emitConstructVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall);
template<typename CallOp>
RegisterID* emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall);
void emitLogShadowChickenPrologueIfNecessary();
void emitLogShadowChickenTailIfNecessary();
void initializeParameters(FunctionParameters&);
void initializeVarLexicalEnvironment(int symbolTableConstantIndex, SymbolTable* functionSymbolTable, bool hasCapturedVariables);
void initializeDefaultParameterValuesAndSetupFunctionScopeStack(FunctionParameters&, bool isSimpleParameterList, FunctionNode*, SymbolTable*, int symbolTableConstantIndex, const ScopedLambda<bool (UniquedStringImpl*)>& captures, bool shouldCreateArgumentsVariableInParameterScope);
void initializeArrowFunctionContextScopeIfNeeded(SymbolTable* functionSymbolTable = nullptr, bool canReuseLexicalEnvironment = false);
bool needsDerivedConstructorInArrowFunctionLexicalEnvironment();
enum class TDZNecessityLevel {
NotNeeded,
Optimize,
DoNotOptimize
};
typedef HashMap<RefPtr<UniquedStringImpl>, TDZNecessityLevel, IdentifierRepHash> TDZMap;
public:
JSString* addStringConstant(const Identifier&);
JSValue addBigIntConstant(const Identifier&, uint8_t radix, bool sign);
RegisterID* addTemplateObjectConstant(Ref<TemplateObjectDescriptor>&&, int);
const InstructionStream& instructions() const { return m_writer; }
RegisterID* emitThrowExpressionTooDeepException();
void write(uint8_t byte) { m_writer.write(byte); }
void write(uint16_t h) { m_writer.write(h); }
void write(uint32_t i) { m_writer.write(i); }
void write(int8_t byte) { m_writer.write(static_cast<uint8_t>(byte)); }
void write(int16_t h) { m_writer.write(static_cast<uint16_t>(h)); }
void write(int32_t i) { m_writer.write(static_cast<uint32_t>(i)); }
void alignWideOpcode16();
void alignWideOpcode32();
class PreservedTDZStack {
private:
Vector<TDZMap> m_preservedTDZStack;
friend class BytecodeGenerator;
};
void preserveTDZStack(PreservedTDZStack&);
void restoreTDZStack(const PreservedTDZStack&);
template<typename Func>
void withWriter(InstructionStreamWriter& writer, const Func& fn)
{
auto prevLastOpcodeID = m_lastOpcodeID;
auto prevLastInstruction = m_lastInstruction;
m_writer.swap(writer);
m_lastOpcodeID = op_end;
m_lastInstruction = m_writer.ref();
fn();
m_writer.swap(writer);
m_lastOpcodeID = prevLastOpcodeID;
m_lastInstruction = prevLastInstruction;
}
private:
InstructionStreamWriter m_writer;
OptionSet<CodeGenerationMode> m_codeGenerationMode;
struct LexicalScopeStackEntry {
SymbolTable* m_symbolTable;
RegisterID* m_scope;
bool m_isWithScope;
int m_symbolTableConstantIndex;
};
Vector<LexicalScopeStackEntry> m_lexicalScopeStack;
Vector<TDZMap> m_TDZStack;
Optional<size_t> m_varScopeLexicalScopeStackIndex;
void pushTDZVariables(const VariableEnvironment&, TDZCheckOptimization, TDZRequirement);
ScopeNode* const m_scopeNode;
Strong<UnlinkedCodeBlock> m_codeBlock;
// Some of these objects keep pointers to one another. They are arranged
// to ensure a sane destruction order that avoids references to freed memory.
HashSet<RefPtr<UniquedStringImpl>, IdentifierRepHash> m_functions;
RegisterID m_ignoredResultRegister;
RegisterID m_thisRegister;
RegisterID m_calleeRegister;
RegisterID* m_scopeRegister { nullptr };
RegisterID* m_topMostScope { nullptr };
RegisterID* m_argumentsRegister { nullptr };
RegisterID* m_lexicalEnvironmentRegister { nullptr };
RegisterID* m_generatorRegister { nullptr };
RegisterID* m_emptyValueRegister { nullptr };
RegisterID* m_newTargetRegister { nullptr };
RegisterID* m_isDerivedConstuctor { nullptr };
RegisterID* m_linkTimeConstantRegisters[LinkTimeConstantCount];
RegisterID* m_arrowFunctionContextLexicalEnvironmentRegister { nullptr };
RegisterID* m_promiseRegister { nullptr };
FinallyContext* m_currentFinallyContext { nullptr };
SegmentedVector<RegisterID*, 16> m_localRegistersForCalleeSaveRegisters;
SegmentedVector<RegisterID, 32> m_constantPoolRegisters;
SegmentedVector<RegisterID, 32> m_calleeLocals;
SegmentedVector<RegisterID, 32> m_parameters;
SegmentedVector<Label, 32> m_labels;
SegmentedVector<LabelScope, 32> m_labelScopes;
unsigned m_finallyDepth { 0 };
unsigned m_localScopeDepth { 0 };
const CodeType m_codeType;
unsigned localScopeDepth() const;
void pushLocalControlFlowScope();
void popLocalControlFlowScope();
// FIXME: Restore overflow checking with UnsafeVectorOverflow once SegmentVector supports it.
// https://bugs.webkit.org/show_bug.cgi?id=165980
SegmentedVector<ControlFlowScope, 16> m_controlFlowScopeStack;
Vector<SwitchInfo> m_switchContextStack;
Vector<Ref<ForInContext>> m_forInContextStack;
Vector<TryContext> m_tryContextStack;
unsigned m_yieldPoints { 0 };
Strong<SymbolTable> m_generatorFrameSymbolTable;
int m_generatorFrameSymbolTableIndex { 0 };
enum FunctionVariableType : uint8_t { NormalFunctionVariable, TopLevelFunctionVariable };
Vector<std::pair<FunctionMetadataNode*, FunctionVariableType>> m_functionsToInitialize;
bool m_needToInitializeArguments { false };
RestParameterNode* m_restParameter { nullptr };
Vector<TryRange> m_tryRanges;
SegmentedVector<TryData, 8> m_tryData;
Vector<Ref<Label>> m_optionalChainTargetStack;
int m_nextConstantOffset { 0 };
typedef HashMap<FunctionMetadataNode*, unsigned> FunctionOffsetMap;
FunctionOffsetMap m_functionOffsets;
// Constant pool
IdentifierMap m_identifierMap;
typedef HashMap<EncodedJSValueWithRepresentation, unsigned, EncodedJSValueWithRepresentationHash, EncodedJSValueWithRepresentationHashTraits> JSValueMap;
JSValueMap m_jsValueMap;
IdentifierStringMap m_stringMap;
IdentifierBigIntMap m_bigIntMap;
TemplateObjectDescriptorSet m_templateObjectDescriptorSet;
TemplateDescriptorMap m_templateDescriptorMap;
StaticPropertyAnalyzer m_staticPropertyAnalyzer;
VM& m_vm;
OpcodeID m_lastOpcodeID = op_end;
InstructionStream::MutableRef m_lastInstruction { m_writer.ref() };
bool m_usesExceptions { false };
bool m_expressionTooDeep { false };
bool m_isBuiltinFunction { false };
bool m_usesNonStrictEval { false };
bool m_inTailPosition { false };
bool m_needsToUpdateArrowFunctionContext;
bool m_hasCachedVariablesUnderTDZ { false };
DerivedContextType m_derivedContextType { DerivedContextType::None };
CompactVariableMap::Handle m_cachedVariablesUnderTDZ;
struct CatchEntry {
TryData* tryData;
VirtualRegister exceptionRegister;
VirtualRegister thrownValueRegister;
VirtualRegister completionTypeRegister;
};
Vector<CatchEntry> m_exceptionHandlersToEmit;
};
} // namespace JSC
namespace WTF {
void printInternal(PrintStream&, JSC::Variable::VariableKind);
} // namespace WTF