| /* |
| * Copyright (C) 2008 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "JIT.h" |
| |
| #if ENABLE(JIT) |
| |
| #include "CodeBlock.h" |
| #include "JITInlineMethods.h" |
| #include "JITStubCall.h" |
| #include "JSArray.h" |
| #include "JSFunction.h" |
| #include "Interpreter.h" |
| #include "ResultType.h" |
| #include "SamplingTool.h" |
| |
| #ifndef NDEBUG |
| #include <stdio.h> |
| #endif |
| |
| using namespace std; |
| |
| namespace JSC { |
| |
| #if USE(JSVALUE32_64) |
| |
| void JIT::emit_op_negate(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned src = currentInstruction[2].u.operand; |
| |
| emitLoad(src, regT1, regT0); |
| |
| Jump srcNotInt = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); |
| addSlowCase(branch32(Equal, regT0, Imm32(0))); |
| |
| neg32(regT0); |
| emitStoreInt32(dst, regT0, (dst == src)); |
| |
| Jump end = jump(); |
| |
| srcNotInt.link(this); |
| addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); |
| |
| xor32(Imm32(1 << 31), regT1); |
| store32(regT1, tagFor(dst)); |
| if (dst != src) |
| store32(regT0, payloadFor(dst)); |
| |
| end.link(this); |
| } |
| |
| void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| |
| linkSlowCase(iter); // 0 check |
| linkSlowCase(iter); // double check |
| |
| JITStubCall stubCall(this, cti_op_negate); |
| stubCall.addArgument(regT1, regT0); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emit_op_jnless(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| JumpList notInt32Op1; |
| JumpList notInt32Op2; |
| |
| // Int32 less. |
| if (isOperandConstantImmediateInt(op1)) { |
| emitLoad(op2, regT3, regT2); |
| notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target + 3); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitLoad(op1, regT1, regT0); |
| notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3); |
| } else { |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| addJump(branch32(GreaterThanOrEqual, regT0, regT2), target + 3); |
| } |
| |
| if (!supportsFloatingPoint()) { |
| addSlowCase(notInt32Op1); |
| addSlowCase(notInt32Op2); |
| return; |
| } |
| Jump end = jump(); |
| |
| // Double less. |
| emitBinaryDoubleOp(op_jnless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); |
| end.link(this); |
| } |
| |
| void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| if (!supportsFloatingPoint()) { |
| if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| } else { |
| if (!isOperandConstantImmediateInt(op1)) { |
| linkSlowCase(iter); // double check |
| linkSlowCase(iter); // int32 check |
| } |
| if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) |
| linkSlowCase(iter); // double check |
| } |
| |
| JITStubCall stubCall(this, cti_op_jless); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| } |
| |
| void JIT::emit_op_jnlesseq(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| JumpList notInt32Op1; |
| JumpList notInt32Op2; |
| |
| // Int32 less. |
| if (isOperandConstantImmediateInt(op1)) { |
| emitLoad(op2, regT3, regT2); |
| notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| addJump(branch32(LessThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target + 3); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitLoad(op1, regT1, regT0); |
| notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3); |
| } else { |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| addJump(branch32(GreaterThan, regT0, regT2), target + 3); |
| } |
| |
| if (!supportsFloatingPoint()) { |
| addSlowCase(notInt32Op1); |
| addSlowCase(notInt32Op2); |
| return; |
| } |
| Jump end = jump(); |
| |
| // Double less. |
| emitBinaryDoubleOp(op_jnlesseq, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); |
| end.link(this); |
| } |
| |
| void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| if (!supportsFloatingPoint()) { |
| if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| } else { |
| if (!isOperandConstantImmediateInt(op1)) { |
| linkSlowCase(iter); // double check |
| linkSlowCase(iter); // int32 check |
| } |
| if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) |
| linkSlowCase(iter); // double check |
| } |
| |
| JITStubCall stubCall(this, cti_op_jlesseq); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| } |
| |
| // LeftShift (<<) |
| |
| void JIT::emit_op_lshift(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| emitLoad(op1, regT1, regT0); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0); |
| emitStoreInt32(dst, regT0, dst == op1); |
| return; |
| } |
| |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| if (!isOperandConstantImmediateInt(op1)) |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| lshift32(regT2, regT0); |
| emitStoreInt32(dst, regT0, dst == op1 || dst == op2); |
| } |
| |
| void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| |
| JITStubCall stubCall(this, cti_op_lshift); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| // RightShift (>>) |
| |
| void JIT::emit_op_rshift(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| emitLoad(op1, regT1, regT0); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| rshift32(Imm32(getConstantOperand(op2).asInt32()), regT0); |
| emitStoreInt32(dst, regT0, dst == op1); |
| return; |
| } |
| |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| if (!isOperandConstantImmediateInt(op1)) |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| rshift32(regT2, regT0); |
| emitStoreInt32(dst, regT0, dst == op1 || dst == op2); |
| } |
| |
| void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| |
| JITStubCall stubCall(this, cti_op_rshift); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| // BitAnd (&) |
| |
| void JIT::emit_op_bitand(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| unsigned op; |
| int32_t constant; |
| if (getOperandConstantImmediateInt(op1, op2, op, constant)) { |
| emitLoad(op, regT1, regT0); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| and32(Imm32(constant), regT0); |
| emitStoreInt32(dst, regT0, (op == dst)); |
| return; |
| } |
| |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| and32(regT2, regT0); |
| emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); |
| } |
| |
| void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| |
| JITStubCall stubCall(this, cti_op_bitand); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| // BitOr (|) |
| |
| void JIT::emit_op_bitor(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| unsigned op; |
| int32_t constant; |
| if (getOperandConstantImmediateInt(op1, op2, op, constant)) { |
| emitLoad(op, regT1, regT0); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| or32(Imm32(constant), regT0); |
| emitStoreInt32(dst, regT0, (op == dst)); |
| return; |
| } |
| |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| or32(regT2, regT0); |
| emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); |
| } |
| |
| void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| |
| JITStubCall stubCall(this, cti_op_bitor); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| // BitXor (^) |
| |
| void JIT::emit_op_bitxor(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| unsigned op; |
| int32_t constant; |
| if (getOperandConstantImmediateInt(op1, op2, op, constant)) { |
| emitLoad(op, regT1, regT0); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| xor32(Imm32(constant), regT0); |
| emitStoreInt32(dst, regT0, (op == dst)); |
| return; |
| } |
| |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| xor32(regT2, regT0); |
| emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); |
| } |
| |
| void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| |
| JITStubCall stubCall(this, cti_op_bitxor); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| // BitNot (~) |
| |
| void JIT::emit_op_bitnot(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned src = currentInstruction[2].u.operand; |
| |
| emitLoad(src, regT1, regT0); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| |
| not32(regT0); |
| emitStoreInt32(dst, regT0, (dst == src)); |
| } |
| |
| void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| |
| linkSlowCase(iter); // int32 check |
| |
| JITStubCall stubCall(this, cti_op_bitnot); |
| stubCall.addArgument(regT1, regT0); |
| stubCall.call(dst); |
| } |
| |
| // PostInc (i++) |
| |
| void JIT::emit_op_post_inc(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| emitLoad(srcDst, regT1, regT0); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| |
| if (dst == srcDst) // x = x++ is a noop for ints. |
| return; |
| |
| emitStoreInt32(dst, regT0); |
| |
| addSlowCase(branchAdd32(Overflow, Imm32(1), regT0)); |
| emitStoreInt32(srcDst, regT0, true); |
| } |
| |
| void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| linkSlowCase(iter); // int32 check |
| if (dst != srcDst) |
| linkSlowCase(iter); // overflow check |
| |
| JITStubCall stubCall(this, cti_op_post_inc); |
| stubCall.addArgument(srcDst); |
| stubCall.addArgument(Imm32(srcDst)); |
| stubCall.call(dst); |
| } |
| |
| // PostDec (i--) |
| |
| void JIT::emit_op_post_dec(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| emitLoad(srcDst, regT1, regT0); |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| |
| if (dst == srcDst) // x = x-- is a noop for ints. |
| return; |
| |
| emitStoreInt32(dst, regT0); |
| |
| addSlowCase(branchSub32(Overflow, Imm32(1), regT0)); |
| emitStoreInt32(srcDst, regT0, true); |
| } |
| |
| void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| linkSlowCase(iter); // int32 check |
| if (dst != srcDst) |
| linkSlowCase(iter); // overflow check |
| |
| JITStubCall stubCall(this, cti_op_post_dec); |
| stubCall.addArgument(srcDst); |
| stubCall.addArgument(Imm32(srcDst)); |
| stubCall.call(dst); |
| } |
| |
| // PreInc (++i) |
| |
| void JIT::emit_op_pre_inc(Instruction* currentInstruction) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| emitLoad(srcDst, regT1, regT0); |
| |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| addSlowCase(branchAdd32(Overflow, Imm32(1), regT0)); |
| emitStoreInt32(srcDst, regT0, true); |
| } |
| |
| void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // overflow check |
| |
| JITStubCall stubCall(this, cti_op_pre_inc); |
| stubCall.addArgument(srcDst); |
| stubCall.call(srcDst); |
| } |
| |
| // PreDec (--i) |
| |
| void JIT::emit_op_pre_dec(Instruction* currentInstruction) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| emitLoad(srcDst, regT1, regT0); |
| |
| addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| addSlowCase(branchSub32(Overflow, Imm32(1), regT0)); |
| emitStoreInt32(srcDst, regT0, true); |
| } |
| |
| void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // overflow check |
| |
| JITStubCall stubCall(this, cti_op_pre_dec); |
| stubCall.addArgument(srcDst); |
| stubCall.call(srcDst); |
| } |
| |
| // Addition (+) |
| |
| void JIT::emit_op_add(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { |
| JITStubCall stubCall(this, cti_op_add); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| return; |
| } |
| |
| JumpList notInt32Op1; |
| JumpList notInt32Op2; |
| |
| unsigned op; |
| int32_t constant; |
| if (getOperandConstantImmediateInt(op1, op2, op, constant)) { |
| emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second()); |
| return; |
| } |
| |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| |
| // Int32 case. |
| addSlowCase(branchAdd32(Overflow, regT2, regT0)); |
| emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); |
| |
| if (!supportsFloatingPoint()) { |
| addSlowCase(notInt32Op1); |
| addSlowCase(notInt32Op2); |
| return; |
| } |
| Jump end = jump(); |
| |
| // Double case. |
| emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2); |
| end.link(this); |
| } |
| |
| void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType) |
| { |
| // Int32 case. |
| emitLoad(op, regT1, regT0); |
| Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); |
| addSlowCase(branchAdd32(Overflow, Imm32(constant), regT0)); |
| emitStoreInt32(dst, regT0, (op == dst)); |
| |
| // Double case. |
| if (!supportsFloatingPoint()) { |
| addSlowCase(notInt32); |
| return; |
| } |
| Jump end = jump(); |
| |
| notInt32.link(this); |
| if (!opType.definitelyIsNumber()) |
| addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); |
| move(Imm32(constant), regT2); |
| convertInt32ToDouble(regT2, fpRegT0); |
| emitLoadDouble(op, fpRegT1); |
| addDouble(fpRegT1, fpRegT0); |
| emitStoreDouble(dst, fpRegT0); |
| |
| end.link(this); |
| } |
| |
| void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) |
| return; |
| |
| unsigned op; |
| int32_t constant; |
| if (getOperandConstantImmediateInt(op1, op2, op, constant)) { |
| linkSlowCase(iter); // overflow check |
| |
| if (!supportsFloatingPoint()) |
| linkSlowCase(iter); // non-sse case |
| else { |
| ResultType opType = op == op1 ? types.first() : types.second(); |
| if (!opType.definitelyIsNumber()) |
| linkSlowCase(iter); // double check |
| } |
| } else { |
| linkSlowCase(iter); // overflow check |
| |
| if (!supportsFloatingPoint()) { |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| } else { |
| if (!types.first().definitelyIsNumber()) |
| linkSlowCase(iter); // double check |
| |
| if (!types.second().definitelyIsNumber()) { |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // double check |
| } |
| } |
| } |
| |
| JITStubCall stubCall(this, cti_op_add); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| // Subtraction (-) |
| |
| void JIT::emit_op_sub(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| JumpList notInt32Op1; |
| JumpList notInt32Op2; |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first()); |
| return; |
| } |
| |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| |
| // Int32 case. |
| addSlowCase(branchSub32(Overflow, regT2, regT0)); |
| emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); |
| |
| if (!supportsFloatingPoint()) { |
| addSlowCase(notInt32Op1); |
| addSlowCase(notInt32Op2); |
| return; |
| } |
| Jump end = jump(); |
| |
| // Double case. |
| emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2); |
| end.link(this); |
| } |
| |
| void JIT::emitSub32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType) |
| { |
| // Int32 case. |
| emitLoad(op, regT1, regT0); |
| Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); |
| addSlowCase(branchSub32(Overflow, Imm32(constant), regT0)); |
| emitStoreInt32(dst, regT0, (op == dst)); |
| |
| // Double case. |
| if (!supportsFloatingPoint()) { |
| addSlowCase(notInt32); |
| return; |
| } |
| Jump end = jump(); |
| |
| notInt32.link(this); |
| if (!opType.definitelyIsNumber()) |
| addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); |
| move(Imm32(constant), regT2); |
| convertInt32ToDouble(regT2, fpRegT0); |
| emitLoadDouble(op, fpRegT1); |
| subDouble(fpRegT0, fpRegT1); |
| emitStoreDouble(dst, fpRegT1); |
| |
| end.link(this); |
| } |
| |
| void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); // overflow check |
| |
| if (!supportsFloatingPoint() || !types.first().definitelyIsNumber()) |
| linkSlowCase(iter); // int32 or double check |
| } else { |
| linkSlowCase(iter); // overflow check |
| |
| if (!supportsFloatingPoint()) { |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| } else { |
| if (!types.first().definitelyIsNumber()) |
| linkSlowCase(iter); // double check |
| |
| if (!types.second().definitelyIsNumber()) { |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // double check |
| } |
| } |
| } |
| |
| JITStubCall stubCall(this, cti_op_sub); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsigned op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters) |
| { |
| JumpList end; |
| |
| if (!notInt32Op1.empty()) { |
| // Double case 1: Op1 is not int32; Op2 is unknown. |
| notInt32Op1.link(this); |
| |
| ASSERT(op1IsInRegisters); |
| |
| // Verify Op1 is double. |
| if (!types.first().definitelyIsNumber()) |
| addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); |
| |
| if (!op2IsInRegisters) |
| emitLoad(op2, regT3, regT2); |
| |
| Jump doubleOp2 = branch32(Below, regT3, Imm32(JSValue::LowestTag)); |
| |
| if (!types.second().definitelyIsNumber()) |
| addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| |
| convertInt32ToDouble(regT2, fpRegT0); |
| Jump doTheMath = jump(); |
| |
| // Load Op2 as double into double register. |
| doubleOp2.link(this); |
| emitLoadDouble(op2, fpRegT0); |
| |
| // Do the math. |
| doTheMath.link(this); |
| switch (opcodeID) { |
| case op_mul: |
| emitLoadDouble(op1, fpRegT2); |
| mulDouble(fpRegT2, fpRegT0); |
| emitStoreDouble(dst, fpRegT0); |
| break; |
| case op_add: |
| emitLoadDouble(op1, fpRegT2); |
| addDouble(fpRegT2, fpRegT0); |
| emitStoreDouble(dst, fpRegT0); |
| break; |
| case op_sub: |
| emitLoadDouble(op1, fpRegT1); |
| subDouble(fpRegT0, fpRegT1); |
| emitStoreDouble(dst, fpRegT1); |
| break; |
| case op_div: |
| emitLoadDouble(op1, fpRegT1); |
| divDouble(fpRegT0, fpRegT1); |
| emitStoreDouble(dst, fpRegT1); |
| break; |
| case op_jnless: |
| emitLoadDouble(op1, fpRegT2); |
| addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT2), dst + 3); |
| break; |
| case op_jnlesseq: |
| emitLoadDouble(op1, fpRegT2); |
| addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT2), dst + 3); |
| break; |
| default: |
| ASSERT_NOT_REACHED(); |
| } |
| |
| if (!notInt32Op2.empty()) |
| end.append(jump()); |
| } |
| |
| if (!notInt32Op2.empty()) { |
| // Double case 2: Op1 is int32; Op2 is not int32. |
| notInt32Op2.link(this); |
| |
| ASSERT(op2IsInRegisters); |
| |
| if (!op1IsInRegisters) |
| emitLoadPayload(op1, regT0); |
| |
| convertInt32ToDouble(regT0, fpRegT0); |
| |
| // Verify op2 is double. |
| if (!types.second().definitelyIsNumber()) |
| addSlowCase(branch32(Above, regT3, Imm32(JSValue::LowestTag))); |
| |
| // Do the math. |
| switch (opcodeID) { |
| case op_mul: |
| emitLoadDouble(op2, fpRegT2); |
| mulDouble(fpRegT2, fpRegT0); |
| emitStoreDouble(dst, fpRegT0); |
| break; |
| case op_add: |
| emitLoadDouble(op2, fpRegT2); |
| addDouble(fpRegT2, fpRegT0); |
| emitStoreDouble(dst, fpRegT0); |
| break; |
| case op_sub: |
| emitLoadDouble(op2, fpRegT2); |
| subDouble(fpRegT2, fpRegT0); |
| emitStoreDouble(dst, fpRegT0); |
| break; |
| case op_div: |
| emitLoadDouble(op2, fpRegT2); |
| divDouble(fpRegT2, fpRegT0); |
| emitStoreDouble(dst, fpRegT0); |
| break; |
| case op_jnless: |
| emitLoadDouble(op2, fpRegT1); |
| addJump(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), dst + 3); |
| break; |
| case op_jnlesseq: |
| emitLoadDouble(op2, fpRegT1); |
| addJump(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), dst + 3); |
| break; |
| default: |
| ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| end.link(this); |
| } |
| |
| // Multiplication (*) |
| |
| void JIT::emit_op_mul(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| JumpList notInt32Op1; |
| JumpList notInt32Op2; |
| |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| |
| // Int32 case. |
| move(regT0, regT3); |
| addSlowCase(branchMul32(Overflow, regT2, regT0)); |
| addSlowCase(branchTest32(Zero, regT0)); |
| emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); |
| |
| if (!supportsFloatingPoint()) { |
| addSlowCase(notInt32Op1); |
| addSlowCase(notInt32Op2); |
| return; |
| } |
| Jump end = jump(); |
| |
| // Double case. |
| emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2); |
| end.link(this); |
| } |
| |
| void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| Jump overflow = getSlowCase(iter); // overflow check |
| linkSlowCase(iter); // zero result check |
| |
| Jump negZero = branchOr32(Signed, regT2, regT3); |
| emitStoreInt32(dst, Imm32(0), (op1 == dst || op2 == dst)); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul)); |
| |
| negZero.link(this); |
| overflow.link(this); |
| |
| if (!supportsFloatingPoint()) { |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| } |
| |
| if (supportsFloatingPoint()) { |
| if (!types.first().definitelyIsNumber()) |
| linkSlowCase(iter); // double check |
| |
| if (!types.second().definitelyIsNumber()) { |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // double check |
| } |
| } |
| |
| Label jitStubCall(this); |
| JITStubCall stubCall(this, cti_op_mul); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| // Division (/) |
| |
| void JIT::emit_op_div(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (!supportsFloatingPoint()) { |
| addSlowCase(jump()); |
| return; |
| } |
| |
| // Int32 divide. |
| JumpList notInt32Op1; |
| JumpList notInt32Op2; |
| |
| JumpList end; |
| |
| emitLoad2(op1, regT1, regT0, op2, regT3, regT2); |
| |
| notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); |
| notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); |
| |
| convertInt32ToDouble(regT0, fpRegT0); |
| convertInt32ToDouble(regT2, fpRegT1); |
| divDouble(fpRegT1, fpRegT0); |
| |
| JumpList doubleResult; |
| if (!isOperandConstantImmediateInt(op1) || getConstantOperand(op1).asInt32() > 1) { |
| m_assembler.cvttsd2si_rr(fpRegT0, regT0); |
| convertInt32ToDouble(regT0, fpRegT1); |
| m_assembler.ucomisd_rr(fpRegT1, fpRegT0); |
| |
| doubleResult.append(m_assembler.jne()); |
| doubleResult.append(m_assembler.jp()); |
| |
| doubleResult.append(branchTest32(Zero, regT0)); |
| |
| // Int32 result. |
| emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); |
| end.append(jump()); |
| } |
| |
| // Double result. |
| doubleResult.link(this); |
| emitStoreDouble(dst, fpRegT0); |
| end.append(jump()); |
| |
| // Double divide. |
| emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2); |
| end.link(this); |
| } |
| |
| void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (!supportsFloatingPoint()) |
| linkSlowCase(iter); |
| else { |
| if (!types.first().definitelyIsNumber()) |
| linkSlowCase(iter); // double check |
| |
| if (!types.second().definitelyIsNumber()) { |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // double check |
| } |
| } |
| |
| JITStubCall stubCall(this, cti_op_div); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| // Mod (%) |
| |
| /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ |
| |
| #if PLATFORM(X86) || PLATFORM(X86_64) |
| |
| void JIT::emit_op_mod(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) { |
| emitLoad(op1, X86Registers::edx, X86Registers::eax); |
| move(Imm32(getConstantOperand(op2).asInt32()), X86Registers::ecx); |
| addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag))); |
| if (getConstantOperand(op2).asInt32() == -1) |
| addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC |
| } else { |
| emitLoad2(op1, X86Registers::edx, X86Registers::eax, op2, X86Registers::ebx, X86Registers::ecx); |
| addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag))); |
| addSlowCase(branch32(NotEqual, X86Registers::ebx, Imm32(JSValue::Int32Tag))); |
| |
| addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC |
| addSlowCase(branch32(Equal, X86Registers::ecx, Imm32(0))); // divide by 0 |
| } |
| |
| move(X86Registers::eax, X86Registers::ebx); // Save dividend payload, in case of 0. |
| m_assembler.cdq(); |
| m_assembler.idivl_r(X86Registers::ecx); |
| |
| // If the remainder is zero and the dividend is negative, the result is -0. |
| Jump storeResult1 = branchTest32(NonZero, X86Registers::edx); |
| Jump storeResult2 = branchTest32(Zero, X86Registers::ebx, Imm32(0x80000000)); // not negative |
| emitStore(dst, jsNumber(m_globalData, -0.0)); |
| Jump end = jump(); |
| |
| storeResult1.link(this); |
| storeResult2.link(this); |
| emitStoreInt32(dst, X86Registers::edx, (op1 == dst || op2 == dst)); |
| end.link(this); |
| } |
| |
| void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) { |
| linkSlowCase(iter); // int32 check |
| if (getConstantOperand(op2).asInt32() == -1) |
| linkSlowCase(iter); // 0x80000000 check |
| } else { |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // int32 check |
| linkSlowCase(iter); // 0 check |
| linkSlowCase(iter); // 0x80000000 check |
| } |
| |
| JITStubCall stubCall(this, cti_op_mod); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| #else // PLATFORM(X86) || PLATFORM(X86_64) |
| |
| void JIT::emit_op_mod(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, cti_op_mod); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&) |
| { |
| } |
| |
| #endif // PLATFORM(X86) || PLATFORM(X86_64) |
| |
| /* ------------------------------ END: OP_MOD ------------------------------ */ |
| |
| #else // USE(JSVALUE32_64) |
| |
| void JIT::emit_op_lshift(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| emitGetVirtualRegisters(op1, regT0, op2, regT2); |
| // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| emitFastArithImmToInt(regT0); |
| emitFastArithImmToInt(regT2); |
| #if !PLATFORM(X86) |
| // Mask with 0x1f as per ecma-262 11.7.2 step 7. |
| // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction. |
| and32(Imm32(0x1f), regT2); |
| #endif |
| lshift32(regT2, regT0); |
| #if !USE(JSVALUE64) |
| addSlowCase(branchAdd32(Overflow, regT0, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| #endif |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| #if USE(JSVALUE64) |
| UNUSED_PARAM(op1); |
| UNUSED_PARAM(op2); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| #else |
| // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded. |
| Jump notImm1 = getSlowCase(iter); |
| Jump notImm2 = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitGetVirtualRegisters(op1, regT0, op2, regT2); |
| notImm1.link(this); |
| notImm2.link(this); |
| #endif |
| JITStubCall stubCall(this, cti_op_lshift); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_rshift(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| // isOperandConstantImmediateInt(op2) => 1 SlowCase |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| // Mask with 0x1f as per ecma-262 11.7.2 step 7. |
| #if USE(JSVALUE64) |
| rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); |
| #else |
| rshiftPtr(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); |
| #endif |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT2); |
| if (supportsFloatingPointTruncate()) { |
| Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases |
| addSlowCase(emitJumpIfNotImmediateNumber(regT0)); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT0); |
| addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); |
| #else |
| // supportsFloatingPoint() && !USE(JSVALUE64) => 5 SlowCases (of which 1 IfNotJSCell) |
| emitJumpSlowCaseIfNotJSCell(regT0, op1); |
| addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get())); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); |
| addSlowCase(branchAdd32(Overflow, regT0, regT0)); |
| #endif |
| lhsIsInt.link(this); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| } else { |
| // !supportsFloatingPoint() => 2 SlowCases |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| } |
| emitFastArithImmToInt(regT2); |
| #if !PLATFORM(X86) |
| // Mask with 0x1f as per ecma-262 11.7.2 step 7. |
| // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction. |
| and32(Imm32(0x1f), regT2); |
| #endif |
| #if USE(JSVALUE64) |
| rshift32(regT2, regT0); |
| #else |
| rshiftPtr(regT2, regT0); |
| #endif |
| } |
| #if USE(JSVALUE64) |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| orPtr(Imm32(JSImmediate::TagTypeNumber), regT0); |
| #endif |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, cti_op_rshift); |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| } else { |
| if (supportsFloatingPointTruncate()) { |
| #if USE(JSVALUE64) |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| #else |
| linkSlowCaseIfNotJSCell(iter, op1); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| #endif |
| // We're reloading op1 to regT0 as we can no longer guarantee that |
| // we have not munged the operand. It may have already been shifted |
| // correctly, but it still will not have been tagged. |
| stubCall.addArgument(op1, regT0); |
| stubCall.addArgument(regT2); |
| } else { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT2); |
| } |
| } |
| |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_jnless(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| // We generate inline code for the following cases in the fast path: |
| // - int immediate to constant int immediate |
| // - constant int immediate to int immediate |
| // - int immediate to int immediate |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| int32_t op2imm = getConstantOperandImmediateInt(op2); |
| #else |
| int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2))); |
| #endif |
| addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target + 3); |
| } else if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| #if USE(JSVALUE64) |
| int32_t op1imm = getConstantOperandImmediateInt(op1); |
| #else |
| int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1))); |
| #endif |
| addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target + 3); |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| |
| addJump(branch32(GreaterThanOrEqual, regT0, regT1), target + 3); |
| } |
| } |
| |
| void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| // We generate inline code for the following cases in the slow path: |
| // - floating-point number to constant int immediate |
| // - constant int immediate to floating-point number |
| // - floating-point number to floating-point number. |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(JSVALUE64) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT0); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1 = emitJumpIfNotJSCell(regT0); |
| |
| Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| #endif |
| |
| int32_t op2imm = getConstantOperand(op2).asInt32();; |
| |
| move(Imm32(op2imm), regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); |
| |
| #if USE(JSVALUE64) |
| fail1.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1.link(this); |
| fail2.link(this); |
| #endif |
| } |
| |
| JITStubCall stubCall(this, cti_op_jless); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| |
| } else if (isOperandConstantImmediateInt(op1)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(JSVALUE64) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT1); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT1, fpRegT1); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail1 = emitJumpIfNotJSCell(regT1); |
| |
| Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| #endif |
| |
| int32_t op1imm = getConstantOperand(op1).asInt32();; |
| |
| move(Imm32(op1imm), regT0); |
| convertInt32ToDouble(regT0, fpRegT0); |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); |
| |
| #if USE(JSVALUE64) |
| fail1.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail1.link(this); |
| fail2.link(this); |
| #endif |
| } |
| |
| JITStubCall stubCall(this, cti_op_jless); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| |
| } else { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(JSVALUE64) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| Jump fail2 = emitJumpIfNotImmediateNumber(regT1); |
| Jump fail3 = emitJumpIfImmediateInteger(regT1); |
| addPtr(tagTypeNumberRegister, regT0); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT0, fpRegT0); |
| movePtrToDouble(regT1, fpRegT1); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1 = emitJumpIfNotJSCell(regT0); |
| |
| Jump fail2; |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail2 = emitJumpIfNotJSCell(regT1); |
| |
| Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get()); |
| Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| #endif |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); |
| |
| #if USE(JSVALUE64) |
| fail1.link(this); |
| fail2.link(this); |
| fail3.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1.link(this); |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail2.link(this); |
| fail3.link(this); |
| fail4.link(this); |
| #endif |
| } |
| |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_jless); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| } |
| } |
| |
| void JIT::emit_op_jnlesseq(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| // We generate inline code for the following cases in the fast path: |
| // - int immediate to constant int immediate |
| // - constant int immediate to int immediate |
| // - int immediate to int immediate |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| int32_t op2imm = getConstantOperandImmediateInt(op2); |
| #else |
| int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2))); |
| #endif |
| addJump(branch32(GreaterThan, regT0, Imm32(op2imm)), target + 3); |
| } else if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| #if USE(JSVALUE64) |
| int32_t op1imm = getConstantOperandImmediateInt(op1); |
| #else |
| int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1))); |
| #endif |
| addJump(branch32(LessThan, regT1, Imm32(op1imm)), target + 3); |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| |
| addJump(branch32(GreaterThan, regT0, regT1), target + 3); |
| } |
| } |
| |
| void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| // We generate inline code for the following cases in the slow path: |
| // - floating-point number to constant int immediate |
| // - constant int immediate to floating-point number |
| // - floating-point number to floating-point number. |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(JSVALUE64) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT0); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1 = emitJumpIfNotJSCell(regT0); |
| |
| Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| #endif |
| |
| int32_t op2imm = getConstantOperand(op2).asInt32();; |
| |
| move(Imm32(op2imm), regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); |
| |
| #if USE(JSVALUE64) |
| fail1.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1.link(this); |
| fail2.link(this); |
| #endif |
| } |
| |
| JITStubCall stubCall(this, cti_op_jlesseq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| |
| } else if (isOperandConstantImmediateInt(op1)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(JSVALUE64) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT1); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT1, fpRegT1); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail1 = emitJumpIfNotJSCell(regT1); |
| |
| Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| #endif |
| |
| int32_t op1imm = getConstantOperand(op1).asInt32();; |
| |
| move(Imm32(op1imm), regT0); |
| convertInt32ToDouble(regT0, fpRegT0); |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); |
| |
| #if USE(JSVALUE64) |
| fail1.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail1.link(this); |
| fail2.link(this); |
| #endif |
| } |
| |
| JITStubCall stubCall(this, cti_op_jlesseq); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| |
| } else { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(JSVALUE64) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| Jump fail2 = emitJumpIfNotImmediateNumber(regT1); |
| Jump fail3 = emitJumpIfImmediateInteger(regT1); |
| addPtr(tagTypeNumberRegister, regT0); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT0, fpRegT0); |
| movePtrToDouble(regT1, fpRegT1); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1 = emitJumpIfNotJSCell(regT0); |
| |
| Jump fail2; |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail2 = emitJumpIfNotJSCell(regT1); |
| |
| Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get()); |
| Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| #endif |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); |
| |
| #if USE(JSVALUE64) |
| fail1.link(this); |
| fail2.link(this); |
| fail3.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1.link(this); |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail2.link(this); |
| fail3.link(this); |
| fail4.link(this); |
| #endif |
| } |
| |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_jlesseq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| } |
| } |
| |
| void JIT::emit_op_bitand(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| int32_t imm = getConstantOperandImmediateInt(op1); |
| andPtr(Imm32(imm), regT0); |
| if (imm >= 0) |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)))), regT0); |
| #endif |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| int32_t imm = getConstantOperandImmediateInt(op2); |
| andPtr(Imm32(imm), regT0); |
| if (imm >= 0) |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)))), regT0); |
| #endif |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| andPtr(regT1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| } |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| linkSlowCase(iter); |
| if (isOperandConstantImmediateInt(op1)) { |
| JITStubCall stubCall(this, cti_op_bitand); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT0); |
| stubCall.call(result); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| JITStubCall stubCall(this, cti_op_bitand); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } else { |
| JITStubCall stubCall(this, cti_op_bitand); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT1); |
| stubCall.call(result); |
| } |
| } |
| |
| void JIT::emit_op_post_inc(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| move(regT0, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| addSlowCase(branchAdd32(Overflow, Imm32(1), regT1)); |
| emitFastArithIntToImmNoCheck(regT1, regT1); |
| #else |
| addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1)); |
| signExtend32ToPtr(regT1, regT1); |
| #endif |
| emitPutVirtualRegister(srcDst, regT1); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_post_inc); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(Imm32(srcDst)); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_post_dec(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| move(regT0, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| addSlowCase(branchSub32(Zero, Imm32(1), regT1)); |
| emitFastArithIntToImmNoCheck(regT1, regT1); |
| #else |
| addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1)); |
| signExtend32ToPtr(regT1, regT1); |
| #endif |
| emitPutVirtualRegister(srcDst, regT1); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_post_dec); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(Imm32(srcDst)); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_pre_inc(Instruction* currentInstruction) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| addSlowCase(branchAdd32(Overflow, Imm32(1), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| #endif |
| emitPutVirtualRegister(srcDst); |
| } |
| |
| void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitGetVirtualRegister(srcDst, regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, cti_op_pre_inc); |
| stubCall.addArgument(regT0); |
| stubCall.call(srcDst); |
| } |
| |
| void JIT::emit_op_pre_dec(Instruction* currentInstruction) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| addSlowCase(branchSub32(Zero, Imm32(1), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| #endif |
| emitPutVirtualRegister(srcDst); |
| } |
| |
| void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitGetVirtualRegister(srcDst, regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, cti_op_pre_dec); |
| stubCall.addArgument(regT0); |
| stubCall.call(srcDst); |
| } |
| |
| /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ |
| |
| #if PLATFORM(X86) || PLATFORM(X86_64) |
| |
| void JIT::emit_op_mod(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| emitGetVirtualRegisters(op1, X86Registers::eax, op2, X86Registers::ecx); |
| emitJumpSlowCaseIfNotImmediateInteger(X86Registers::eax); |
| emitJumpSlowCaseIfNotImmediateInteger(X86Registers::ecx); |
| #if USE(JSVALUE64) |
| addSlowCase(branchPtr(Equal, X86Registers::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0))))); |
| m_assembler.cdq(); |
| m_assembler.idivl_r(X86Registers::ecx); |
| #else |
| emitFastArithDeTagImmediate(X86Registers::eax); |
| addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86Registers::ecx)); |
| m_assembler.cdq(); |
| m_assembler.idivl_r(X86Registers::ecx); |
| signExtend32ToPtr(X86Registers::edx, X86Registers::edx); |
| #endif |
| emitFastArithReTagImmediate(X86Registers::edx, X86Registers::eax); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| |
| #if USE(JSVALUE64) |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| #else |
| Jump notImm1 = getSlowCase(iter); |
| Jump notImm2 = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitFastArithReTagImmediate(X86Registers::eax, X86Registers::eax); |
| emitFastArithReTagImmediate(X86Registers::ecx, X86Registers::ecx); |
| notImm1.link(this); |
| notImm2.link(this); |
| #endif |
| JITStubCall stubCall(this, cti_op_mod); |
| stubCall.addArgument(X86Registers::eax); |
| stubCall.addArgument(X86Registers::ecx); |
| stubCall.call(result); |
| } |
| |
| #else // PLATFORM(X86) || PLATFORM(X86_64) |
| |
| void JIT::emit_op_mod(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, cti_op_mod); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&) |
| { |
| ASSERT_NOT_REACHED(); |
| } |
| |
| #endif // PLATFORM(X86) || PLATFORM(X86_64) |
| |
| /* ------------------------------ END: OP_MOD ------------------------------ */ |
| |
| #if USE(JSVALUE64) |
| |
| /* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ |
| |
| void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes) |
| { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| if (opcodeID == op_add) |
| addSlowCase(branchAdd32(Overflow, regT1, regT0)); |
| else if (opcodeID == op_sub) |
| addSlowCase(branchSub32(Overflow, regT1, regT0)); |
| else { |
| ASSERT(opcodeID == op_mul); |
| addSlowCase(branchMul32(Overflow, regT1, regT0)); |
| addSlowCase(branchTest32(Zero, regT0)); |
| } |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| } |
| |
| void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase) |
| { |
| // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. |
| COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); |
| |
| Jump notImm1; |
| Jump notImm2; |
| if (op1HasImmediateIntFastCase) { |
| notImm2 = getSlowCase(iter); |
| } else if (op2HasImmediateIntFastCase) { |
| notImm1 = getSlowCase(iter); |
| } else { |
| notImm1 = getSlowCase(iter); |
| notImm2 = getSlowCase(iter); |
| } |
| |
| linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. |
| if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number. |
| linkSlowCase(iter); |
| emitGetVirtualRegister(op1, regT0); |
| |
| Label stubFunctionCall(this); |
| JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul); |
| if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) { |
| emitGetVirtualRegister(op1, regT0); |
| emitGetVirtualRegister(op2, regT1); |
| } |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(result); |
| Jump end = jump(); |
| |
| if (op1HasImmediateIntFastCase) { |
| notImm2.link(this); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); |
| emitGetVirtualRegister(op1, regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT2); |
| } else if (op2HasImmediateIntFastCase) { |
| notImm1.link(this); |
| if (!types.first().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); |
| emitGetVirtualRegister(op2, regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT2); |
| } else { |
| // if we get here, eax is not an int32, edx not yet checked. |
| notImm1.link(this); |
| if (!types.first().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT1); |
| Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1); |
| convertInt32ToDouble(regT1, fpRegT2); |
| Jump op2wasInteger = jump(); |
| |
| // if we get here, eax IS an int32, edx is not. |
| notImm2.link(this); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); |
| convertInt32ToDouble(regT0, fpRegT1); |
| op2isDouble.link(this); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT1, fpRegT2); |
| op2wasInteger.link(this); |
| } |
| |
| if (opcodeID == op_add) |
| addDouble(fpRegT2, fpRegT1); |
| else if (opcodeID == op_sub) |
| subDouble(fpRegT2, fpRegT1); |
| else if (opcodeID == op_mul) |
| mulDouble(fpRegT2, fpRegT1); |
| else { |
| ASSERT(opcodeID == op_div); |
| divDouble(fpRegT2, fpRegT1); |
| } |
| moveDoubleToPtr(fpRegT1, regT0); |
| subPtr(tagTypeNumberRegister, regT0); |
| emitPutVirtualRegister(result, regT0); |
| |
| end.link(this); |
| } |
| |
| void JIT::emit_op_add(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { |
| JITStubCall stubCall(this, cti_op_add); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| return; |
| } |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| } else |
| compileBinaryArithOp(op_add, result, op1, op2, types); |
| |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) |
| return; |
| |
| bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1); |
| bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2); |
| compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); |
| } |
| |
| void JIT::emit_op_mul(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| // For now, only plant a fast int case if the constant operand is greater than zero. |
| int32_t value; |
| if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); |
| emitFastArithReTagImmediate(regT0, regT0); |
| } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); |
| emitFastArithReTagImmediate(regT0, regT0); |
| } else |
| compileBinaryArithOp(op_mul, result, op1, op2, types); |
| |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0; |
| bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0; |
| compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); |
| } |
| |
| void JIT::emit_op_div(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (isOperandConstantImmediateDouble(op1)) { |
| emitGetVirtualRegister(op1, regT0); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT0); |
| } else if (isOperandConstantImmediateInt(op1)) { |
| emitLoadInt32ToDouble(op1, fpRegT0); |
| } else { |
| emitGetVirtualRegister(op1, regT0); |
| if (!types.first().definitelyIsNumber()) |
| emitJumpSlowCaseIfNotImmediateNumber(regT0); |
| Jump notInt = emitJumpIfNotImmediateInteger(regT0); |
| convertInt32ToDouble(regT0, fpRegT0); |
| Jump skipDoubleLoad = jump(); |
| notInt.link(this); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT0); |
| skipDoubleLoad.link(this); |
| } |
| |
| if (isOperandConstantImmediateDouble(op2)) { |
| emitGetVirtualRegister(op2, regT1); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT1, fpRegT1); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitLoadInt32ToDouble(op2, fpRegT1); |
| } else { |
| emitGetVirtualRegister(op2, regT1); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpSlowCaseIfNotImmediateNumber(regT1); |
| Jump notInt = emitJumpIfNotImmediateInteger(regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| Jump skipDoubleLoad = jump(); |
| notInt.link(this); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT1, fpRegT1); |
| skipDoubleLoad.link(this); |
| } |
| divDouble(fpRegT1, fpRegT0); |
| |
| JumpList doubleResult; |
| Jump end; |
| bool attemptIntConversion = (!isOperandConstantImmediateInt(op1) || getConstantOperand(op1).asInt32() > 1) && isOperandConstantImmediateInt(op2); |
| if (attemptIntConversion) { |
| m_assembler.cvttsd2si_rr(fpRegT0, regT0); |
| doubleResult.append(branchTest32(Zero, regT0)); |
| m_assembler.ucomisd_rr(fpRegT1, fpRegT0); |
| |
| doubleResult.append(m_assembler.jne()); |
| doubleResult.append(m_assembler.jp()); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| end = jump(); |
| } |
| |
| // Double result. |
| doubleResult.link(this); |
| moveDoubleToPtr(fpRegT0, regT0); |
| subPtr(tagTypeNumberRegister, regT0); |
| |
| if (attemptIntConversion) |
| end.link(this); |
| emitPutVirtualRegister(dst, regT0); |
| } |
| |
| void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) { |
| #ifndef NDEBUG |
| breakpoint(); |
| #endif |
| return; |
| } |
| if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) { |
| if (!types.first().definitelyIsNumber()) |
| linkSlowCase(iter); |
| } |
| if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) { |
| if (!types.second().definitelyIsNumber()) |
| linkSlowCase(iter); |
| } |
| // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. |
| JITStubCall stubCall(this, cti_op_div); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_sub(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| compileBinaryArithOp(op_sub, result, op1, op2, types); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false); |
| } |
| |
| #else // USE(JSVALUE64) |
| |
| /* ------------------------------ BEGIN: !USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ |
| |
| void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) |
| { |
| Structure* numberStructure = m_globalData->numberStructure.get(); |
| Jump wasJSNumberCell1; |
| Jump wasJSNumberCell2; |
| |
| emitGetVirtualRegisters(src1, regT0, src2, regT1); |
| |
| if (types.second().isReusable() && supportsFloatingPoint()) { |
| ASSERT(types.second().mightBeNumber()); |
| |
| // Check op2 is a number |
| Jump op2imm = emitJumpIfImmediateInteger(regT1); |
| if (!types.second().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(regT1, src2); |
| addSlowCase(checkStructure(regT1, numberStructure)); |
| } |
| |
| // (1) In this case src2 is a reusable number cell. |
| // Slow case if src1 is not a number type. |
| Jump op1imm = emitJumpIfImmediateInteger(regT0); |
| if (!types.first().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(regT0, src1); |
| addSlowCase(checkStructure(regT0, numberStructure)); |
| } |
| |
| // (1a) if we get here, src1 is also a number cell |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| Jump loadedDouble = jump(); |
| // (1b) if we get here, src1 is an immediate |
| op1imm.link(this); |
| emitFastArithImmToInt(regT0); |
| convertInt32ToDouble(regT0, fpRegT0); |
| // (1c) |
| loadedDouble.link(this); |
| if (opcodeID == op_add) |
| addDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| else if (opcodeID == op_sub) |
| subDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| else { |
| ASSERT(opcodeID == op_mul); |
| mulDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| } |
| |
| // Store the result to the JSNumberCell and jump. |
| storeDouble(fpRegT0, Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value))); |
| move(regT1, regT0); |
| emitPutVirtualRegister(dst); |
| wasJSNumberCell2 = jump(); |
| |
| // (2) This handles cases where src2 is an immediate number. |
| // Two slow cases - either src1 isn't an immediate, or the subtract overflows. |
| op2imm.link(this); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| } else if (types.first().isReusable() && supportsFloatingPoint()) { |
| ASSERT(types.first().mightBeNumber()); |
| |
| // Check op1 is a number |
| Jump op1imm = emitJumpIfImmediateInteger(regT0); |
| if (!types.first().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(regT0, src1); |
| addSlowCase(checkStructure(regT0, numberStructure)); |
| } |
| |
| // (1) In this case src1 is a reusable number cell. |
| // Slow case if src2 is not a number type. |
| Jump op2imm = emitJumpIfImmediateInteger(regT1); |
| if (!types.second().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(regT1, src2); |
| addSlowCase(checkStructure(regT1, numberStructure)); |
| } |
| |
| // (1a) if we get here, src2 is also a number cell |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| Jump loadedDouble = jump(); |
| // (1b) if we get here, src2 is an immediate |
| op2imm.link(this); |
| emitFastArithImmToInt(regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| // (1c) |
| loadedDouble.link(this); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| if (opcodeID == op_add) |
| addDouble(fpRegT1, fpRegT0); |
| else if (opcodeID == op_sub) |
| subDouble(fpRegT1, fpRegT0); |
| else { |
| ASSERT(opcodeID == op_mul); |
| mulDouble(fpRegT1, fpRegT0); |
| } |
| storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value))); |
| emitPutVirtualRegister(dst); |
| |
| // Store the result to the JSNumberCell and jump. |
| storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value))); |
| emitPutVirtualRegister(dst); |
| wasJSNumberCell1 = jump(); |
| |
| // (2) This handles cases where src1 is an immediate number. |
| // Two slow cases - either src2 isn't an immediate, or the subtract overflows. |
| op1imm.link(this); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| } else |
| emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); |
| |
| if (opcodeID == op_add) { |
| emitFastArithDeTagImmediate(regT0); |
| addSlowCase(branchAdd32(Overflow, regT1, regT0)); |
| } else if (opcodeID == op_sub) { |
| addSlowCase(branchSub32(Overflow, regT1, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| } else { |
| ASSERT(opcodeID == op_mul); |
| // convert eax & edx from JSImmediates to ints, and check if either are zero |
| emitFastArithImmToInt(regT1); |
| Jump op1Zero = emitFastArithDeTagImmediateJumpIfZero(regT0); |
| Jump op2NonZero = branchTest32(NonZero, regT1); |
| op1Zero.link(this); |
| // if either input is zero, add the two together, and check if the result is < 0. |
| // If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate. |
| move(regT0, regT2); |
| addSlowCase(branchAdd32(Signed, regT1, regT2)); |
| // Skip the above check if neither input is zero |
| op2NonZero.link(this); |
| addSlowCase(branchMul32(Overflow, regT1, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| } |
| emitPutVirtualRegister(dst); |
| |
| if (types.second().isReusable() && supportsFloatingPoint()) |
| wasJSNumberCell2.link(this); |
| else if (types.first().isReusable() && supportsFloatingPoint()) |
| wasJSNumberCell1.link(this); |
| } |
| |
| void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) |
| { |
| linkSlowCase(iter); |
| if (types.second().isReusable() && supportsFloatingPoint()) { |
| if (!types.first().definitelyIsNumber()) { |
| linkSlowCaseIfNotJSCell(iter, src1); |
| linkSlowCase(iter); |
| } |
| if (!types.second().definitelyIsNumber()) { |
| linkSlowCaseIfNotJSCell(iter, src2); |
| linkSlowCase(iter); |
| } |
| } else if (types.first().isReusable() && supportsFloatingPoint()) { |
| if (!types.first().definitelyIsNumber()) { |
| linkSlowCaseIfNotJSCell(iter, src1); |
| linkSlowCase(iter); |
| } |
| if (!types.second().definitelyIsNumber()) { |
| linkSlowCaseIfNotJSCell(iter, src2); |
| linkSlowCase(iter); |
| } |
| } |
| linkSlowCase(iter); |
| |
| // additional entry point to handle -0 cases. |
| if (opcodeID == op_mul) |
| linkSlowCase(iter); |
| |
| JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul); |
| stubCall.addArgument(src1, regT2); |
| stubCall.addArgument(src2, regT2); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emit_op_add(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { |
| JITStubCall stubCall(this, cti_op_add); |
| stubCall.addArgument(op1); |
| stubCall.addArgument(op2); |
| stubCall.call(dst); |
| return; |
| } |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } else { |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| if (types.first().mightBeNumber() && types.second().mightBeNumber()) |
| compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| else { |
| JITStubCall stubCall(this, cti_op_add); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| } |
| } |
| |
| void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) |
| return; |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, cti_op_add); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT0); |
| stubCall.call(result); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, cti_op_add); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } else { |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber()); |
| compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types); |
| } |
| } |
| |
| void JIT::emit_op_mul(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| // For now, only plant a fast int case if the constant operand is greater than zero. |
| int32_t value; |
| if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitFastArithDeTagImmediate(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitFastArithDeTagImmediate(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } else |
| compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| } |
| |
| void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0)) |
| || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. |
| JITStubCall stubCall(this, cti_op_mul); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } else |
| compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| } |
| |
| void JIT::emit_op_sub(Instruction* currentInstruction) |
| { |
| compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| } |
| |
| void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| } |
| |
| #endif // USE(JSVALUE64) |
| |
| /* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */ |
| |
| #endif // USE(JSVALUE32_64) |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(JIT) |