blob: be9c15ff48c3d811b22283dbeec813315ec3c4ee [file] [log] [blame]
/*
* Copyright (C) 1997 Martin Jones (mjones@kde.org)
* (C) 1997 Torben Weis (weis@kde.org)
* (C) 1998 Waldo Bastian (bastian@kde.org)
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2014 Apple Inc. All rights reserved.
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "RenderTable.h"
#include "AutoTableLayout.h"
#include "CollapsedBorderValue.h"
#include "Document.h"
#include "FixedTableLayout.h"
#include "FrameView.h"
#include "HitTestResult.h"
#include "HTMLNames.h"
#include "HTMLTableElement.h"
#include "InlineIteratorInlineBox.h"
#include "LayoutRepainter.h"
#include "RenderBlockFlow.h"
#include "RenderChildIterator.h"
#include "RenderDescendantIterator.h"
#include "RenderIterator.h"
#include "RenderLayer.h"
#include "RenderLayoutState.h"
#include "RenderTableCaption.h"
#include "RenderTableCell.h"
#include "RenderTableCol.h"
#include "RenderTableSection.h"
#include "RenderTreeBuilder.h"
#include "RenderView.h"
#include "StyleInheritedData.h"
#include <wtf/IsoMallocInlines.h>
#include <wtf/SetForScope.h>
#include <wtf/StackStats.h>
namespace WebCore {
using namespace HTMLNames;
WTF_MAKE_ISO_ALLOCATED_IMPL(RenderTable);
RenderTable::RenderTable(Element& element, RenderStyle&& style)
: RenderBlock(element, WTFMove(style), 0)
, m_currentBorder(nullptr)
, m_collapsedBordersValid(false)
, m_collapsedEmptyBorderIsPresent(false)
, m_hasColElements(false)
, m_needsSectionRecalc(false)
, m_columnLogicalWidthChanged(false)
, m_columnRenderersValid(false)
, m_hasCellColspanThatDeterminesTableWidth(false)
, m_borderStart(0)
, m_borderEnd(0)
, m_columnOffsetTop(-1)
, m_columnOffsetHeight(-1)
{
setChildrenInline(false);
m_columnPos.fill(0, 1);
}
RenderTable::RenderTable(Document& document, RenderStyle&& style)
: RenderBlock(document, WTFMove(style), 0)
, m_currentBorder(nullptr)
, m_collapsedBordersValid(false)
, m_collapsedEmptyBorderIsPresent(false)
, m_hasColElements(false)
, m_needsSectionRecalc(false)
, m_columnLogicalWidthChanged(false)
, m_columnRenderersValid(false)
, m_hasCellColspanThatDeterminesTableWidth(false)
, m_borderStart(0)
, m_borderEnd(0)
{
setChildrenInline(false);
m_columnPos.fill(0, 1);
}
RenderTable::~RenderTable() = default;
RenderTableSection* RenderTable::header() const
{
return m_head.get();
}
RenderTableSection* RenderTable::footer() const
{
return m_foot.get();
}
RenderTableSection* RenderTable::firstBody() const
{
return m_firstBody.get();
}
RenderTableSection* RenderTable::topSection() const
{
ASSERT(!needsSectionRecalc());
if (m_head)
return m_head.get();
if (m_firstBody)
return m_firstBody.get();
return m_foot.get();
}
void RenderTable::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBlock::styleDidChange(diff, oldStyle);
propagateStyleToAnonymousChildren(PropagateToAllChildren);
auto oldTableLayout = oldStyle ? oldStyle->tableLayout() : TableLayoutType::Auto;
// In the collapsed border model, there is no cell spacing.
m_hSpacing = collapseBorders() ? 0 : style().horizontalBorderSpacing();
m_vSpacing = collapseBorders() ? 0 : style().verticalBorderSpacing();
m_columnPos[0] = m_hSpacing;
if (!m_tableLayout || style().tableLayout() != oldTableLayout) {
// According to the CSS2 spec, you only use fixed table layout if an
// explicit width is specified on the table. Auto width implies auto table layout.
if (style().tableLayout() == TableLayoutType::Fixed && !style().logicalWidth().isAuto())
m_tableLayout = makeUnique<FixedTableLayout>(this);
else
m_tableLayout = makeUnique<AutoTableLayout>(this);
}
// If border was changed, invalidate collapsed borders cache.
if (oldStyle && oldStyle->border() != style().border())
invalidateCollapsedBorders();
}
static inline void resetSectionPointerIfNotBefore(WeakPtr<RenderTableSection>& section, RenderObject* before)
{
if (!before || !section)
return;
auto* previousSibling = before->previousSibling();
while (previousSibling && previousSibling != section)
previousSibling = previousSibling->previousSibling();
if (!previousSibling)
section.clear();
}
void RenderTable::willInsertTableColumn(RenderTableCol&, RenderObject*)
{
m_hasColElements = true;
}
void RenderTable::willInsertTableSection(RenderTableSection& child, RenderObject* beforeChild)
{
switch (child.style().display()) {
case DisplayType::TableHeaderGroup:
resetSectionPointerIfNotBefore(m_head, beforeChild);
if (!m_head)
m_head = child;
else {
resetSectionPointerIfNotBefore(m_firstBody, beforeChild);
if (!m_firstBody)
m_firstBody = child;
}
break;
case DisplayType::TableFooterGroup:
resetSectionPointerIfNotBefore(m_foot, beforeChild);
if (!m_foot) {
m_foot = child;
break;
}
FALLTHROUGH;
case DisplayType::TableRowGroup:
resetSectionPointerIfNotBefore(m_firstBody, beforeChild);
if (!m_firstBody)
m_firstBody = child;
break;
default:
ASSERT_NOT_REACHED();
}
setNeedsSectionRecalc();
}
void RenderTable::addCaption(RenderTableCaption& caption)
{
ASSERT(m_captions.find(&caption) == notFound);
m_captions.append(caption);
}
void RenderTable::removeCaption(RenderTableCaption& oldCaption)
{
bool removed = m_captions.removeFirst(&oldCaption);
ASSERT_UNUSED(removed, removed);
}
void RenderTable::invalidateCachedColumns()
{
m_columnRenderersValid = false;
m_columnRenderers.shrink(0);
m_effectiveColumnIndexMap.clear();
}
void RenderTable::invalidateCachedColumnOffsets()
{
m_columnOffsetTop = -1;
m_columnOffsetHeight = -1;
}
void RenderTable::addColumn(const RenderTableCol*)
{
invalidateCachedColumns();
}
void RenderTable::removeColumn(const RenderTableCol*)
{
invalidateCachedColumns();
// We don't really need to recompute our sections, but we need to update our
// column count and whether we have a column. Currently, we only have one
// size-fit-all flag but we may have to consider splitting it.
setNeedsSectionRecalc();
}
void RenderTable::updateLogicalWidth()
{
recalcSectionsIfNeeded();
if (isGridItem()) {
// FIXME: Investigate whether the grid layout algorithm provides all the logic
// needed and that we're not skipping anything essential due to the early return here.
RenderBlock::updateLogicalWidth();
return;
}
if (isOutOfFlowPositioned()) {
LogicalExtentComputedValues computedValues;
computePositionedLogicalWidth(computedValues);
setLogicalWidth(computedValues.m_extent);
setLogicalLeft(computedValues.m_position);
setMarginStart(computedValues.m_margins.m_start);
setMarginEnd(computedValues.m_margins.m_end);
}
RenderBlock& cb = *containingBlock();
LayoutUnit availableLogicalWidth = containingBlockLogicalWidthForContent();
bool hasPerpendicularContainingBlock = cb.style().isHorizontalWritingMode() != style().isHorizontalWritingMode();
LayoutUnit containerWidthInInlineDirection = hasPerpendicularContainingBlock ? perpendicularContainingBlockLogicalHeight() : availableLogicalWidth;
Length styleLogicalWidth = style().logicalWidth();
if (hasOverridingLogicalWidth())
setLogicalWidth(overridingLogicalWidth());
else if ((styleLogicalWidth.isSpecified() && styleLogicalWidth.isPositive()) || styleLogicalWidth.isIntrinsic())
setLogicalWidth(convertStyleLogicalWidthToComputedWidth(styleLogicalWidth, containerWidthInInlineDirection));
else {
// Subtract out any fixed margins from our available width for auto width tables.
LayoutUnit marginStart = minimumValueForLength(style().marginStart(), availableLogicalWidth);
LayoutUnit marginEnd = minimumValueForLength(style().marginEnd(), availableLogicalWidth);
LayoutUnit marginTotal = marginStart + marginEnd;
// Subtract out our margins to get the available content width.
LayoutUnit availableContentLogicalWidth = std::max<LayoutUnit>(0, containerWidthInInlineDirection - marginTotal);
if (shrinkToAvoidFloats() && cb.containsFloats() && !hasPerpendicularContainingBlock) {
// FIXME: Work with regions someday.
availableContentLogicalWidth = shrinkLogicalWidthToAvoidFloats(marginStart, marginEnd, cb, 0);
}
// Ensure we aren't bigger than our available width.
setLogicalWidth(std::min(availableContentLogicalWidth, maxPreferredLogicalWidth()));
LayoutUnit maxWidth = maxPreferredLogicalWidth();
// scaledWidthFromPercentColumns depends on m_layoutStruct in TableLayoutAlgorithmAuto, which
// maxPreferredLogicalWidth fills in. So scaledWidthFromPercentColumns has to be called after
// maxPreferredLogicalWidth.
LayoutUnit scaledWidth = m_tableLayout->scaledWidthFromPercentColumns() + bordersPaddingAndSpacingInRowDirection();
maxWidth = std::max(scaledWidth, maxWidth);
setLogicalWidth(std::min(availableContentLogicalWidth, maxWidth));
}
// Ensure we aren't bigger than our max-width style.
Length styleMaxLogicalWidth = style().logicalMaxWidth();
if ((styleMaxLogicalWidth.isSpecified() && !styleMaxLogicalWidth.isNegative()) || styleMaxLogicalWidth.isIntrinsic()) {
LayoutUnit computedMaxLogicalWidth = convertStyleLogicalWidthToComputedWidth(styleMaxLogicalWidth, availableLogicalWidth);
setLogicalWidth(std::min(logicalWidth(), computedMaxLogicalWidth));
}
// Ensure we aren't smaller than our min preferred width.
setLogicalWidth(std::max(logicalWidth(), minPreferredLogicalWidth()));
// Ensure we aren't smaller than our min-width style.
Length styleMinLogicalWidth = style().logicalMinWidth();
if ((styleMinLogicalWidth.isSpecified() && !styleMinLogicalWidth.isNegative()) || styleMinLogicalWidth.isIntrinsic()) {
LayoutUnit computedMinLogicalWidth = convertStyleLogicalWidthToComputedWidth(styleMinLogicalWidth, availableLogicalWidth);
setLogicalWidth(std::max(logicalWidth(), computedMinLogicalWidth));
}
// Finally, with our true width determined, compute our margins for real.
setMarginStart(0);
setMarginEnd(0);
if (!hasPerpendicularContainingBlock) {
LayoutUnit containerLogicalWidthForAutoMargins = availableLogicalWidth;
if (avoidsFloats() && cb.containsFloats())
containerLogicalWidthForAutoMargins = containingBlockAvailableLineWidthInFragment(0); // FIXME: Work with regions someday.
ComputedMarginValues marginValues;
bool hasInvertedDirection = cb.style().isLeftToRightDirection() == style().isLeftToRightDirection();
computeInlineDirectionMargins(cb, containerLogicalWidthForAutoMargins, logicalWidth(),
hasInvertedDirection ? marginValues.m_start : marginValues.m_end,
hasInvertedDirection ? marginValues.m_end : marginValues.m_start);
setMarginStart(marginValues.m_start);
setMarginEnd(marginValues.m_end);
} else {
setMarginStart(minimumValueForLength(style().marginStart(), availableLogicalWidth));
setMarginEnd(minimumValueForLength(style().marginEnd(), availableLogicalWidth));
}
}
// This method takes a RenderStyle's logical width, min-width, or max-width length and computes its actual value.
LayoutUnit RenderTable::convertStyleLogicalWidthToComputedWidth(const Length& styleLogicalWidth, LayoutUnit availableWidth)
{
if (styleLogicalWidth.isIntrinsic())
return computeIntrinsicLogicalWidthUsing(styleLogicalWidth, availableWidth, bordersPaddingAndSpacingInRowDirection());
// HTML tables' width styles already include borders and padding, but CSS tables' width styles do not.
LayoutUnit borders;
bool isCSSTable = !is<HTMLTableElement>(element());
if (isCSSTable && styleLogicalWidth.isSpecified() && styleLogicalWidth.isPositive() && style().boxSizing() == BoxSizing::ContentBox)
borders = borderStart() + borderEnd() + (collapseBorders() ? 0_lu : paddingStart() + paddingEnd());
return minimumValueForLength(styleLogicalWidth, availableWidth) + borders;
}
LayoutUnit RenderTable::convertStyleLogicalHeightToComputedHeight(const Length& styleLogicalHeight)
{
LayoutUnit borderAndPaddingBefore = borderBefore() + (collapseBorders() ? 0_lu : paddingBefore());
LayoutUnit borderAndPaddingAfter = borderAfter() + (collapseBorders() ? 0_lu : paddingAfter());
LayoutUnit borderAndPadding = borderAndPaddingBefore + borderAndPaddingAfter;
if (styleLogicalHeight.isFixed()) {
// HTML tables size as though CSS height includes border/padding, CSS tables do not.
LayoutUnit borders;
// FIXME: We cannot apply box-sizing: content-box on <table> which other browsers allow.
if (is<HTMLTableElement>(element()) || style().boxSizing() == BoxSizing::BorderBox) {
borders = borderAndPadding;
}
return LayoutUnit(styleLogicalHeight.value() - borders);
} else if (styleLogicalHeight.isPercentOrCalculated())
return computePercentageLogicalHeight(styleLogicalHeight).value_or(0);
else if (styleLogicalHeight.isIntrinsic())
return computeIntrinsicLogicalContentHeightUsing(styleLogicalHeight, logicalHeight() - borderAndPadding, borderAndPadding).value_or(0);
else
ASSERT_NOT_REACHED();
return 0_lu;
}
void RenderTable::layoutCaption(RenderTableCaption& caption)
{
LayoutRect captionRect(caption.frameRect());
if (caption.needsLayout()) {
// The margins may not be available but ensure the caption is at least located beneath any previous sibling caption
// so that it does not mistakenly think any floats in the previous caption intrude into it.
caption.setLogicalLocation(LayoutPoint(caption.marginStart(), caption.marginBefore() + logicalHeight()));
// If RenderTableCaption ever gets a layout() function, use it here.
caption.layoutIfNeeded();
}
// Apply the margins to the location now that they are definitely available from layout
caption.setLogicalLocation(LayoutPoint(caption.marginStart(), caption.marginBefore() + logicalHeight()));
if (!selfNeedsLayout() && caption.checkForRepaintDuringLayout())
caption.repaintDuringLayoutIfMoved(captionRect);
setLogicalHeight(logicalHeight() + caption.logicalHeight() + caption.marginBefore() + caption.marginAfter());
}
void RenderTable::layoutCaptions(BottomCaptionLayoutPhase bottomCaptionLayoutPhase)
{
if (m_captions.isEmpty())
return;
// FIXME: Collapse caption margin.
for (unsigned i = 0; i < m_captions.size(); ++i) {
if ((bottomCaptionLayoutPhase == BottomCaptionLayoutPhase::Yes && m_captions[i]->style().captionSide() != CaptionSide::Bottom)
|| (bottomCaptionLayoutPhase == BottomCaptionLayoutPhase::No && m_captions[i]->style().captionSide() == CaptionSide::Bottom))
continue;
layoutCaption(*m_captions[i]);
}
}
void RenderTable::distributeExtraLogicalHeight(LayoutUnit extraLogicalHeight)
{
if (extraLogicalHeight <= 0)
return;
// FIXME: Distribute the extra logical height between all table sections instead of giving it all to the first one.
if (RenderTableSection* section = firstBody())
extraLogicalHeight -= section->distributeExtraLogicalHeightToRows(extraLogicalHeight);
// FIXME: We really would like to enable this ASSERT to ensure that all the extra space has been distributed.
// However our current distribution algorithm does not round properly and thus we can have some remaining height.
// ASSERT(!topSection() || !extraLogicalHeight);
}
void RenderTable::simplifiedNormalFlowLayout()
{
for (RenderTableSection* section = topSection(); section; section = sectionBelow(section)) {
section->layoutIfNeeded();
section->computeOverflowFromCells();
}
}
void RenderTable::layout()
{
StackStats::LayoutCheckPoint layoutCheckPoint;
ASSERT(needsLayout());
if (simplifiedLayout())
return;
recalcSectionsIfNeeded();
// FIXME: We should do this recalc lazily in borderStart/borderEnd so that we don't have to make sure
// to call this before we call borderStart/borderEnd to avoid getting a stale value.
recalcBordersInRowDirection();
bool sectionMoved = false;
LayoutUnit movedSectionLogicalTop;
unsigned sectionCount = 0;
bool shouldCacheIntrinsicContentLogicalHeightForFlexItem = true;
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
{
LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode());
LayoutUnit oldLogicalWidth = logicalWidth();
LayoutUnit oldLogicalHeight = logicalHeight();
resetLogicalHeightBeforeLayoutIfNeeded();
updateLogicalWidth();
if (logicalWidth() != oldLogicalWidth) {
for (unsigned i = 0; i < m_captions.size(); i++)
m_captions[i]->setNeedsLayout(MarkOnlyThis);
}
// FIXME: The optimisation below doesn't work since the internal table
// layout could have changed. We need to add a flag to the table
// layout that tells us if something has changed in the min max
// calculations to do it correctly.
// if ( oldWidth != width() || columns.size() + 1 != columnPos.size() )
m_tableLayout->layout();
LayoutUnit totalSectionLogicalHeight;
LayoutUnit oldTableLogicalTop;
for (unsigned i = 0; i < m_captions.size(); i++) {
if (m_captions[i]->style().captionSide() == CaptionSide::Bottom)
continue;
oldTableLogicalTop += m_captions[i]->logicalHeight() + m_captions[i]->marginBefore() + m_captions[i]->marginAfter();
}
bool collapsing = collapseBorders();
for (auto& child : childrenOfType<RenderElement>(*this)) {
if (is<RenderTableSection>(child)) {
RenderTableSection& section = downcast<RenderTableSection>(child);
if (m_columnLogicalWidthChanged)
section.setChildNeedsLayout(MarkOnlyThis);
section.layoutIfNeeded();
totalSectionLogicalHeight += section.calcRowLogicalHeight();
if (collapsing)
section.recalcOuterBorder();
ASSERT(!section.needsLayout());
} else if (is<RenderTableCol>(child)) {
downcast<RenderTableCol>(child).layoutIfNeeded();
ASSERT(!child.needsLayout());
}
}
// If any table section moved vertically, we will just repaint everything from that
// section down (it is quite unlikely that any of the following sections
// did not shift).
layoutCaptions();
if (!m_captions.isEmpty() && logicalHeight() != oldTableLogicalTop) {
sectionMoved = true;
movedSectionLogicalTop = std::min(logicalHeight(), oldTableLogicalTop);
}
LayoutUnit borderAndPaddingBefore = borderBefore() + (collapsing ? 0_lu : paddingBefore());
LayoutUnit borderAndPaddingAfter = borderAfter() + (collapsing ? 0_lu : paddingAfter());
setLogicalHeight(logicalHeight() + borderAndPaddingBefore);
if (!isOutOfFlowPositioned())
updateLogicalHeight();
LayoutUnit computedLogicalHeight;
Length logicalHeightLength = style().logicalHeight();
if (logicalHeightLength.isIntrinsic() || (logicalHeightLength.isSpecified() && logicalHeightLength.isPositive()))
computedLogicalHeight = convertStyleLogicalHeightToComputedHeight(logicalHeightLength);
if (hasOverridingLogicalHeight()) {
LayoutUnit captionLogicalHeight;
for (auto& caption : m_captions)
captionLogicalHeight += caption->logicalHeight() + caption->marginBefore() + caption->marginAfter();
computedLogicalHeight = std::max(computedLogicalHeight, overridingLogicalHeight() - captionLogicalHeight);
}
Length logicalMaxHeightLength = style().logicalMaxHeight();
if (logicalMaxHeightLength.isIntrinsic() || (logicalMaxHeightLength.isSpecified() && !logicalMaxHeightLength.isNegative())) {
LayoutUnit computedMaxLogicalHeight = convertStyleLogicalHeightToComputedHeight(logicalMaxHeightLength);
computedLogicalHeight = std::min(computedLogicalHeight, computedMaxLogicalHeight);
}
Length logicalMinHeightLength = style().logicalMinHeight();
if (logicalMinHeightLength.isIntrinsic() || (logicalMinHeightLength.isSpecified() && !logicalMinHeightLength.isNegative())) {
LayoutUnit computedMinLogicalHeight = convertStyleLogicalHeightToComputedHeight(logicalMinHeightLength);
computedLogicalHeight = std::max(computedLogicalHeight, computedMinLogicalHeight);
}
distributeExtraLogicalHeight(computedLogicalHeight - totalSectionLogicalHeight);
for (RenderTableSection* section = topSection(); section; section = sectionBelow(section))
section->layoutRows();
if (!topSection() && computedLogicalHeight > totalSectionLogicalHeight && !document().inQuirksMode()) {
// Completely empty tables (with no sections or anything) should at least honor their
// overriding or specified height in strict mode, but this value will not be cached.
shouldCacheIntrinsicContentLogicalHeightForFlexItem = false;
setLogicalHeight(hasOverridingLogicalHeight() ? overridingLogicalHeight() : logicalHeight() + computedLogicalHeight);
}
LayoutUnit sectionLogicalLeft = style().isLeftToRightDirection() ? borderStart() : borderEnd();
if (!collapsing)
sectionLogicalLeft += style().isLeftToRightDirection() ? paddingStart() : paddingEnd();
// position the table sections
RenderTableSection* section = topSection();
while (section) {
sectionCount++;
if (!sectionMoved && section->logicalTop() != logicalHeight()) {
sectionMoved = true;
movedSectionLogicalTop = std::min(logicalHeight(), section->logicalTop()) + (style().isHorizontalWritingMode() ? section->visualOverflowRect().y() : section->visualOverflowRect().x());
}
section->setLogicalLocation(LayoutPoint(sectionLogicalLeft, logicalHeight()));
setLogicalHeight(logicalHeight() + section->logicalHeight());
section = sectionBelow(section);
}
setLogicalHeight(logicalHeight() + borderAndPaddingAfter);
layoutCaptions(BottomCaptionLayoutPhase::Yes);
if (isOutOfFlowPositioned())
updateLogicalHeight();
// table can be containing block of positioned elements.
bool dimensionChanged = oldLogicalWidth != logicalWidth() || oldLogicalHeight != logicalHeight();
layoutPositionedObjects(dimensionChanged);
updateLayerTransform();
// Layout was changed, so probably borders too.
invalidateCollapsedBorders();
// The location or height of one or more sections may have changed.
invalidateCachedColumnOffsets();
computeOverflow(clientLogicalBottom());
}
auto* layoutState = view().frameView().layoutContext().layoutState();
if (layoutState && layoutState->pageLogicalHeight())
setPageLogicalOffset(layoutState->pageLogicalOffset(this, logicalTop()));
bool didFullRepaint = repainter.repaintAfterLayout();
// Repaint with our new bounds if they are different from our old bounds.
if (!didFullRepaint && sectionMoved) {
if (style().isHorizontalWritingMode())
repaintRectangle(LayoutRect(visualOverflowRect().x(), movedSectionLogicalTop, visualOverflowRect().width(), visualOverflowRect().maxY() - movedSectionLogicalTop));
else
repaintRectangle(LayoutRect(movedSectionLogicalTop, visualOverflowRect().y(), visualOverflowRect().maxX() - movedSectionLogicalTop, visualOverflowRect().height()));
}
bool paginated = layoutState && layoutState->isPaginated();
if (sectionMoved && paginated) {
// FIXME: Table layout should always stabilize even when section moves (see webkit.org/b/174412).
if (m_recursiveSectionMovedWithPaginationLevel < sectionCount) {
SetForScope<unsigned> recursiveSectionMovedWithPaginationLevel(m_recursiveSectionMovedWithPaginationLevel, m_recursiveSectionMovedWithPaginationLevel + 1);
markForPaginationRelayoutIfNeeded();
layoutIfNeeded();
} else
ASSERT_NOT_REACHED();
}
// FIXME: This value isn't the intrinsic content logical height, but we need
// to update the value as its used by flexbox layout. crbug.com/367324
if (shouldCacheIntrinsicContentLogicalHeightForFlexItem)
cacheIntrinsicContentLogicalHeightForFlexItem(contentLogicalHeight());
m_columnLogicalWidthChanged = false;
clearNeedsLayout();
}
void RenderTable::invalidateCollapsedBorders(RenderTableCell* cellWithStyleChange)
{
m_collapsedBordersValid = false;
m_collapsedBorders.clear();
for (auto& section : childrenOfType<RenderTableSection>(*this))
section.clearCachedCollapsedBorders();
if (!m_collapsedEmptyBorderIsPresent)
return;
if (cellWithStyleChange) {
// It is enough to invalidate just the surrounding cells when cell border style changes.
cellWithStyleChange->invalidateHasEmptyCollapsedBorders();
if (auto* below = cellBelow(cellWithStyleChange))
below->invalidateHasEmptyCollapsedBorders();
if (auto* above = cellAbove(cellWithStyleChange))
above->invalidateHasEmptyCollapsedBorders();
if (auto* before = cellBefore(cellWithStyleChange))
before->invalidateHasEmptyCollapsedBorders();
if (auto* after = cellAfter(cellWithStyleChange))
after->invalidateHasEmptyCollapsedBorders();
return;
}
for (auto& section : childrenOfType<RenderTableSection>(*this)) {
for (auto* row = section.firstRow(); row; row = row->nextRow()) {
for (auto* cell = row->firstCell(); cell; cell = cell->nextCell()) {
ASSERT(cell->table() == this);
cell->invalidateHasEmptyCollapsedBorders();
}
}
}
m_collapsedEmptyBorderIsPresent = false;
}
// Collect all the unique border values that we want to paint in a sorted list.
void RenderTable::recalcCollapsedBorders()
{
if (m_collapsedBordersValid)
return;
m_collapsedBorders.clear();
for (auto& section : childrenOfType<RenderTableSection>(*this)) {
for (RenderTableRow* row = section.firstRow(); row; row = row->nextRow()) {
for (RenderTableCell* cell = row->firstCell(); cell; cell = cell->nextCell()) {
ASSERT(cell->table() == this);
cell->collectBorderValues(m_collapsedBorders);
}
}
}
RenderTableCell::sortBorderValues(m_collapsedBorders);
m_collapsedBordersValid = true;
}
void RenderTable::addOverflowFromChildren()
{
// Add overflow from borders.
// Technically it's odd that we are incorporating the borders into layout overflow, which is only supposed to be about overflow from our
// descendant objects, but since tables don't support overflow:auto, this works out fine.
if (collapseBorders()) {
LayoutUnit rightBorderOverflow = width() + outerBorderRight() - borderRight();
LayoutUnit leftBorderOverflow = borderLeft() - outerBorderLeft();
LayoutUnit bottomBorderOverflow = height() + outerBorderBottom() - borderBottom();
LayoutUnit topBorderOverflow = borderTop() - outerBorderTop();
LayoutRect borderOverflowRect(leftBorderOverflow, topBorderOverflow, rightBorderOverflow - leftBorderOverflow, bottomBorderOverflow - topBorderOverflow);
if (borderOverflowRect != borderBoxRect()) {
addLayoutOverflow(borderOverflowRect);
addVisualOverflow(borderOverflowRect);
}
}
// Add overflow from our caption.
for (unsigned i = 0; i < m_captions.size(); i++)
addOverflowFromChild(m_captions[i].get());
// Add overflow from our sections.
for (RenderTableSection* section = topSection(); section; section = sectionBelow(section))
addOverflowFromChild(section);
}
void RenderTable::paint(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
LayoutPoint adjustedPaintOffset = paintOffset + location();
PaintPhase paintPhase = paintInfo.phase;
if (!isDocumentElementRenderer()) {
LayoutRect overflowBox = visualOverflowRect();
flipForWritingMode(overflowBox);
overflowBox.moveBy(adjustedPaintOffset);
if (!overflowBox.intersects(paintInfo.rect))
return;
}
bool pushedClip = pushContentsClip(paintInfo, adjustedPaintOffset);
paintObject(paintInfo, adjustedPaintOffset);
if (pushedClip)
popContentsClip(paintInfo, paintPhase, adjustedPaintOffset);
}
void RenderTable::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
PaintPhase paintPhase = paintInfo.phase;
if ((paintPhase == PaintPhase::BlockBackground || paintPhase == PaintPhase::ChildBlockBackground) && hasVisibleBoxDecorations() && style().visibility() == Visibility::Visible)
paintBoxDecorations(paintInfo, paintOffset);
if (paintPhase == PaintPhase::Mask) {
paintMask(paintInfo, paintOffset);
return;
}
// We're done. We don't bother painting any children.
if (paintPhase == PaintPhase::BlockBackground)
return;
// We don't paint our own background, but we do let the kids paint their backgrounds.
if (paintPhase == PaintPhase::ChildBlockBackgrounds)
paintPhase = PaintPhase::ChildBlockBackground;
PaintInfo info(paintInfo);
info.phase = paintPhase;
info.updateSubtreePaintRootForChildren(this);
for (auto& box : childrenOfType<RenderBox>(*this)) {
if (!box.hasSelfPaintingLayer() && (box.isTableSection() || box.isTableCaption())) {
LayoutPoint childPoint = flipForWritingModeForChild(&box, paintOffset);
box.paint(info, childPoint);
}
}
if (collapseBorders() && paintPhase == PaintPhase::ChildBlockBackground && style().visibility() == Visibility::Visible) {
recalcCollapsedBorders();
// Using our cached sorted styles, we then do individual passes,
// painting each style of border from lowest precedence to highest precedence.
info.phase = PaintPhase::CollapsedTableBorders;
size_t count = m_collapsedBorders.size();
for (size_t i = 0; i < count; ++i) {
m_currentBorder = &m_collapsedBorders[i];
for (RenderTableSection* section = bottomSection(); section; section = sectionAbove(section)) {
LayoutPoint childPoint = flipForWritingModeForChild(section, paintOffset);
section->paint(info, childPoint);
}
}
m_currentBorder = 0;
}
// Paint outline.
if ((paintPhase == PaintPhase::Outline || paintPhase == PaintPhase::SelfOutline) && hasOutline() && style().visibility() == Visibility::Visible)
paintOutline(paintInfo, LayoutRect(paintOffset, size()));
}
void RenderTable::adjustBorderBoxRectForPainting(LayoutRect& rect)
{
for (unsigned i = 0; i < m_captions.size(); i++) {
LayoutUnit captionLogicalHeight = m_captions[i]->logicalHeight() + m_captions[i]->marginBefore() + m_captions[i]->marginAfter();
bool captionIsBefore = (m_captions[i]->style().captionSide() != CaptionSide::Bottom) ^ style().isFlippedBlocksWritingMode();
if (style().isHorizontalWritingMode()) {
rect.setHeight(rect.height() - captionLogicalHeight);
if (captionIsBefore)
rect.move(0_lu, captionLogicalHeight);
} else {
rect.setWidth(rect.width() - captionLogicalHeight);
if (captionIsBefore)
rect.move(captionLogicalHeight, 0_lu);
}
}
RenderBlock::adjustBorderBoxRectForPainting(rect);
}
void RenderTable::paintBoxDecorations(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (!paintInfo.shouldPaintWithinRoot(*this))
return;
LayoutRect rect(paintOffset, size());
adjustBorderBoxRectForPainting(rect);
BackgroundBleedAvoidance bleedAvoidance = determineBackgroundBleedAvoidance(paintInfo.context());
if (!boxShadowShouldBeAppliedToBackground(rect.location(), bleedAvoidance, { }))
paintBoxShadow(paintInfo, rect, style(), ShadowStyle::Normal);
paintBackground(paintInfo, rect, bleedAvoidance);
paintBoxShadow(paintInfo, rect, style(), ShadowStyle::Inset);
if (style().hasVisibleBorderDecoration() && !collapseBorders())
paintBorder(paintInfo, rect, style());
}
void RenderTable::paintMask(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (style().visibility() != Visibility::Visible || paintInfo.phase != PaintPhase::Mask)
return;
LayoutRect rect(paintOffset, size());
adjustBorderBoxRectForPainting(rect);
paintMaskImages(paintInfo, rect);
}
void RenderTable::computeIntrinsicLogicalWidths(LayoutUnit& minWidth, LayoutUnit& maxWidth, TableIntrinsics intrinsics) const
{
recalcSectionsIfNeeded();
// FIXME: Do the recalc in borderStart/borderEnd and make those const_cast this call.
// Then m_borderStart/m_borderEnd will be transparent a cache and it removes the possibility
// of reading out stale values.
const_cast<RenderTable*>(this)->recalcBordersInRowDirection();
// FIXME: Restructure the table layout code so that we can make this method const.
const_cast<RenderTable*>(this)->m_tableLayout->computeIntrinsicLogicalWidths(minWidth, maxWidth, intrinsics);
// FIXME: We should include captions widths here like we do in computePreferredLogicalWidths.
}
void RenderTable::computeIntrinsicLogicalWidths(LayoutUnit& minWidth, LayoutUnit& maxWidth) const
{
computeIntrinsicLogicalWidths(minWidth, maxWidth, TableIntrinsics::ForLayout);
}
void RenderTable::computeIntrinsicKeywordLogicalWidths(LayoutUnit& minWidth, LayoutUnit& maxWidth) const
{
computeIntrinsicLogicalWidths(minWidth, maxWidth, TableIntrinsics::ForKeyword);
}
void RenderTable::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
LayoutUnit bordersPaddingAndSpacing = bordersPaddingAndSpacingInRowDirection();
m_minPreferredLogicalWidth += bordersPaddingAndSpacing;
m_maxPreferredLogicalWidth += bordersPaddingAndSpacing;
m_tableLayout->applyPreferredLogicalWidthQuirks(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
for (unsigned i = 0; i < m_captions.size(); i++)
m_minPreferredLogicalWidth = std::max(m_minPreferredLogicalWidth, m_captions[i]->minPreferredLogicalWidth());
if (hasOverridingLogicalWidth()) {
m_minPreferredLogicalWidth = std::max(m_minPreferredLogicalWidth, overridingLogicalWidth());
m_maxPreferredLogicalWidth = std::max(m_maxPreferredLogicalWidth, overridingLogicalWidth());
}
auto& styleToUse = style();
// FIXME: This should probably be checking for isSpecified since you should be able to use percentage or calc values for min-width.
if (styleToUse.logicalMinWidth().isFixed() && styleToUse.logicalMinWidth().value() > 0) {
m_maxPreferredLogicalWidth = std::max(m_maxPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMinWidth()));
m_minPreferredLogicalWidth = std::max(m_minPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMinWidth()));
}
// FIXME: This should probably be checking for isSpecified since you should be able to use percentage or calc values for maxWidth.
if (styleToUse.logicalMaxWidth().isFixed()) {
m_maxPreferredLogicalWidth = std::min(m_maxPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMaxWidth()));
m_maxPreferredLogicalWidth = std::max(m_maxPreferredLogicalWidth, m_minPreferredLogicalWidth);
}
// FIXME: We should be adding borderAndPaddingLogicalWidth here, but m_tableLayout->computePreferredLogicalWidths already does,
// so a bunch of tests break doing this naively.
setPreferredLogicalWidthsDirty(false);
}
RenderTableSection* RenderTable::topNonEmptySection() const
{
RenderTableSection* section = topSection();
if (section && !section->numRows())
section = sectionBelow(section, SkipEmptySections);
return section;
}
void RenderTable::splitColumn(unsigned position, unsigned firstSpan)
{
// We split the column at "position", taking "firstSpan" cells from the span.
ASSERT(m_columns[position].span > firstSpan);
m_columns.insert(position, ColumnStruct(firstSpan));
m_columns[position + 1].span -= firstSpan;
// Propagate the change in our columns representation to the sections that don't need
// cell recalc. If they do, they will be synced up directly with m_columns later.
for (auto& section : childrenOfType<RenderTableSection>(*this)) {
if (section.needsCellRecalc())
continue;
section.splitColumn(position, firstSpan);
}
m_columnPos.grow(numEffCols() + 1);
}
void RenderTable::appendColumn(unsigned span)
{
unsigned newColumnIndex = m_columns.size();
m_columns.append(ColumnStruct(span));
// Unless the table has cell(s) with colspan that exceed the number of columns afforded
// by the other rows in the table we can use the fast path when mapping columns to effective columns.
m_hasCellColspanThatDeterminesTableWidth = m_hasCellColspanThatDeterminesTableWidth || span > 1;
// Propagate the change in our columns representation to the sections that don't need
// cell recalc. If they do, they will be synced up directly with m_columns later.
for (auto& section : childrenOfType<RenderTableSection>(*this)) {
if (section.needsCellRecalc())
continue;
section.appendColumn(newColumnIndex);
}
m_columnPos.grow(numEffCols() + 1);
}
RenderTableCol* RenderTable::firstColumn() const
{
for (auto& child : childrenOfType<RenderObject>(*this)) {
if (is<RenderTableCol>(child))
return &const_cast<RenderTableCol&>(downcast<RenderTableCol>(child));
// We allow only table-captions before columns or column-groups.
if (!is<RenderTableCaption>(child))
return nullptr;
}
return nullptr;
}
void RenderTable::updateColumnCache() const
{
ASSERT(m_hasColElements);
ASSERT(m_columnRenderers.isEmpty());
ASSERT(m_effectiveColumnIndexMap.isEmpty());
ASSERT(!m_columnRenderersValid);
unsigned columnIndex = 0;
for (RenderTableCol* columnRenderer = firstColumn(); columnRenderer; columnRenderer = columnRenderer->nextColumn()) {
if (columnRenderer->isTableColumnGroupWithColumnChildren())
continue;
m_columnRenderers.append(columnRenderer);
// FIXME: We should look to compute the effective column index successively from previous values instead of
// calling colToEffCol(), which is in O(numEffCols()). Although it's unlikely that this is a hot function.
m_effectiveColumnIndexMap.add(columnRenderer, colToEffCol(columnIndex));
columnIndex += columnRenderer->span();
}
m_columnRenderersValid = true;
}
unsigned RenderTable::effectiveIndexOfColumn(const RenderTableCol& column) const
{
if (!m_columnRenderersValid)
updateColumnCache();
const RenderTableCol* columnToUse = &column;
if (columnToUse->isTableColumnGroupWithColumnChildren())
columnToUse = columnToUse->nextColumn(); // First column in column-group
auto it = m_effectiveColumnIndexMap.find(columnToUse);
ASSERT(it != m_effectiveColumnIndexMap.end());
if (it == m_effectiveColumnIndexMap.end())
return std::numeric_limits<unsigned>::max();
return it->value;
}
LayoutUnit RenderTable::offsetTopForColumn(const RenderTableCol& column) const
{
if (effectiveIndexOfColumn(column) >= numEffCols())
return 0;
if (m_columnOffsetTop >= 0) {
ASSERT(!needsLayout());
return m_columnOffsetTop;
}
RenderTableSection* section = topNonEmptySection();
return m_columnOffsetTop = section ? section->offsetTop() : 0_lu;
}
LayoutUnit RenderTable::offsetLeftForColumn(const RenderTableCol& column) const
{
unsigned columnIndex = effectiveIndexOfColumn(column);
if (columnIndex >= numEffCols())
return 0;
return m_columnPos[columnIndex] + m_hSpacing + borderLeft();
}
LayoutUnit RenderTable::offsetWidthForColumn(const RenderTableCol& column) const
{
const RenderTableCol* currentColumn = &column;
bool hasColumnChildren;
if ((hasColumnChildren = currentColumn->isTableColumnGroupWithColumnChildren()))
currentColumn = currentColumn->nextColumn(); // First column in column-group
unsigned numberOfEffectiveColumns = numEffCols();
ASSERT_WITH_SECURITY_IMPLICATION(m_columnPos.size() >= numberOfEffectiveColumns + 1);
LayoutUnit width;
LayoutUnit spacing = m_hSpacing;
while (currentColumn) {
unsigned columnIndex = effectiveIndexOfColumn(*currentColumn);
unsigned span = currentColumn->span();
while (span && columnIndex < numberOfEffectiveColumns) {
width += m_columnPos[columnIndex + 1] - m_columnPos[columnIndex] - spacing;
span -= m_columns[columnIndex].span;
++columnIndex;
if (span)
width += spacing;
}
if (!hasColumnChildren)
break;
currentColumn = currentColumn->nextColumn();
if (!currentColumn || currentColumn->isTableColumnGroup())
break;
width += spacing;
}
return width;
}
LayoutUnit RenderTable::offsetHeightForColumn(const RenderTableCol& column) const
{
if (effectiveIndexOfColumn(column) >= numEffCols())
return 0;
if (m_columnOffsetHeight >= 0) {
ASSERT(!needsLayout());
return m_columnOffsetHeight;
}
LayoutUnit height;
for (RenderTableSection* section = topSection(); section; section = sectionBelow(section))
height += section->offsetHeight();
m_columnOffsetHeight = height;
return m_columnOffsetHeight;
}
RenderTableCol* RenderTable::slowColElement(unsigned col, bool* startEdge, bool* endEdge) const
{
ASSERT(m_hasColElements);
if (!m_columnRenderersValid)
updateColumnCache();
unsigned columnCount = 0;
for (auto& columnRenderer : m_columnRenderers) {
if (!columnRenderer)
continue;
unsigned span = columnRenderer->span();
unsigned startCol = columnCount;
ASSERT(span >= 1);
unsigned endCol = columnCount + span - 1;
columnCount += span;
if (columnCount > col) {
if (startEdge)
*startEdge = startCol == col;
if (endEdge)
*endEdge = endCol == col;
return columnRenderer.get();
}
}
return nullptr;
}
void RenderTable::recalcSections() const
{
ASSERT(m_needsSectionRecalc);
m_head.clear();
m_foot.clear();
m_firstBody.clear();
m_hasColElements = false;
m_hasCellColspanThatDeterminesTableWidth = hasCellColspanThatDeterminesTableWidth();
// We need to get valid pointers to caption, head, foot and first body again
RenderObject* nextSibling;
for (RenderObject* child = firstChild(); child; child = nextSibling) {
nextSibling = child->nextSibling();
switch (child->style().display()) {
case DisplayType::TableColumn:
case DisplayType::TableColumnGroup:
m_hasColElements = true;
break;
case DisplayType::TableHeaderGroup:
if (is<RenderTableSection>(*child)) {
RenderTableSection& section = downcast<RenderTableSection>(*child);
if (!m_head)
m_head = section;
else if (!m_firstBody)
m_firstBody = section;
section.recalcCellsIfNeeded();
}
break;
case DisplayType::TableFooterGroup:
if (is<RenderTableSection>(*child)) {
RenderTableSection& section = downcast<RenderTableSection>(*child);
if (!m_foot)
m_foot = section;
else if (!m_firstBody)
m_firstBody = section;
section.recalcCellsIfNeeded();
}
break;
case DisplayType::TableRowGroup:
if (is<RenderTableSection>(*child)) {
RenderTableSection& section = downcast<RenderTableSection>(*child);
if (!m_firstBody)
m_firstBody = section;
section.recalcCellsIfNeeded();
}
break;
default:
break;
}
}
// repair column count (addChild can grow it too much, because it always adds elements to the last row of a section)
unsigned maxCols = 0;
for (auto& section : childrenOfType<RenderTableSection>(*this)) {
unsigned sectionCols = section.numColumns();
if (sectionCols > maxCols)
maxCols = sectionCols;
}
m_columns.resize(maxCols);
m_columnPos.resize(maxCols + 1);
// Now that we know the number of maximum number of columns, let's shrink the sections grids if needed.
for (auto& section : childrenOfType<RenderTableSection>(const_cast<RenderTable&>(*this)))
section.removeRedundantColumns();
ASSERT(selfNeedsLayout());
m_needsSectionRecalc = false;
}
LayoutUnit RenderTable::calcBorderStart() const
{
if (!collapseBorders())
return RenderBlock::borderStart();
// Determined by the first cell of the first row. See the CSS 2.1 spec, section 17.6.2.
if (!numEffCols())
return 0;
float borderWidth = 0;
const BorderValue& tableStartBorder = style().borderStart();
if (tableStartBorder.style() == BorderStyle::Hidden)
return 0;
if (tableStartBorder.style() > BorderStyle::Hidden)
borderWidth = tableStartBorder.width();
if (RenderTableCol* column = colElement(0)) {
// FIXME: We don't account for direction on columns and column groups.
const BorderValue& columnAdjoiningBorder = column->style().borderStart();
if (columnAdjoiningBorder.style() == BorderStyle::Hidden)
return 0;
if (columnAdjoiningBorder.style() > BorderStyle::Hidden)
borderWidth = std::max(borderWidth, columnAdjoiningBorder.width());
// FIXME: This logic doesn't properly account for the first column in the first column-group case.
}
if (const RenderTableSection* topNonEmptySection = this->topNonEmptySection()) {
const BorderValue& sectionAdjoiningBorder = topNonEmptySection->borderAdjoiningTableStart();
if (sectionAdjoiningBorder.style() == BorderStyle::Hidden)
return 0;
if (sectionAdjoiningBorder.style() > BorderStyle::Hidden)
borderWidth = std::max(borderWidth, sectionAdjoiningBorder.width());
if (const RenderTableCell* adjoiningStartCell = topNonEmptySection->firstRowCellAdjoiningTableStart()) {
// FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& startCellAdjoiningBorder = adjoiningStartCell->borderAdjoiningTableStart();
if (startCellAdjoiningBorder.style() == BorderStyle::Hidden)
return 0;
const BorderValue& firstRowAdjoiningBorder = adjoiningStartCell->row()->borderAdjoiningTableStart();
if (firstRowAdjoiningBorder.style() == BorderStyle::Hidden)
return 0;
if (startCellAdjoiningBorder.style() > BorderStyle::Hidden)
borderWidth = std::max(borderWidth, startCellAdjoiningBorder.width());
if (firstRowAdjoiningBorder.style() > BorderStyle::Hidden)
borderWidth = std::max(borderWidth, firstRowAdjoiningBorder.width());
}
}
return CollapsedBorderValue::adjustedCollapsedBorderWidth(borderWidth, document().deviceScaleFactor(), !style().isLeftToRightDirection());
}
LayoutUnit RenderTable::calcBorderEnd() const
{
if (!collapseBorders())
return RenderBlock::borderEnd();
// Determined by the last cell of the first row. See the CSS 2.1 spec, section 17.6.2.
if (!numEffCols())
return 0;
float borderWidth = 0;
const BorderValue& tableEndBorder = style().borderEnd();
if (tableEndBorder.style() == BorderStyle::Hidden)
return 0;
if (tableEndBorder.style() > BorderStyle::Hidden)
borderWidth = tableEndBorder.width();
unsigned endColumn = numEffCols() - 1;
if (RenderTableCol* column = colElement(endColumn)) {
// FIXME: We don't account for direction on columns and column groups.
const BorderValue& columnAdjoiningBorder = column->style().borderEnd();
if (columnAdjoiningBorder.style() == BorderStyle::Hidden)
return 0;
if (columnAdjoiningBorder.style() > BorderStyle::Hidden)
borderWidth = std::max(borderWidth, columnAdjoiningBorder.width());
// FIXME: This logic doesn't properly account for the last column in the last column-group case.
}
if (const RenderTableSection* topNonEmptySection = this->topNonEmptySection()) {
const BorderValue& sectionAdjoiningBorder = topNonEmptySection->borderAdjoiningTableEnd();
if (sectionAdjoiningBorder.style() == BorderStyle::Hidden)
return 0;
if (sectionAdjoiningBorder.style() > BorderStyle::Hidden)
borderWidth = std::max(borderWidth, sectionAdjoiningBorder.width());
if (const RenderTableCell* adjoiningEndCell = topNonEmptySection->firstRowCellAdjoiningTableEnd()) {
// FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& endCellAdjoiningBorder = adjoiningEndCell->borderAdjoiningTableEnd();
if (endCellAdjoiningBorder.style() == BorderStyle::Hidden)
return 0;
const BorderValue& firstRowAdjoiningBorder = adjoiningEndCell->row()->borderAdjoiningTableEnd();
if (firstRowAdjoiningBorder.style() == BorderStyle::Hidden)
return 0;
if (endCellAdjoiningBorder.style() > BorderStyle::Hidden)
borderWidth = std::max(borderWidth, endCellAdjoiningBorder.width());
if (firstRowAdjoiningBorder.style() > BorderStyle::Hidden)
borderWidth = std::max(borderWidth, firstRowAdjoiningBorder.width());
}
}
return CollapsedBorderValue::adjustedCollapsedBorderWidth(borderWidth, document().deviceScaleFactor(), style().isLeftToRightDirection());
}
void RenderTable::recalcBordersInRowDirection()
{
// FIXME: We need to compute the collapsed before / after borders in the same fashion.
m_borderStart = calcBorderStart();
m_borderEnd = calcBorderEnd();
}
LayoutUnit RenderTable::borderBefore() const
{
if (collapseBorders()) {
recalcSectionsIfNeeded();
return outerBorderBefore();
}
return RenderBlock::borderBefore();
}
LayoutUnit RenderTable::borderAfter() const
{
if (collapseBorders()) {
recalcSectionsIfNeeded();
return outerBorderAfter();
}
return RenderBlock::borderAfter();
}
LayoutUnit RenderTable::outerBorderBefore() const
{
if (!collapseBorders())
return 0;
LayoutUnit borderWidth;
if (RenderTableSection* topSection = this->topSection()) {
borderWidth = topSection->outerBorderBefore();
if (borderWidth < 0)
return 0; // Overridden by hidden
}
const BorderValue& tb = style().borderBefore();
if (tb.style() == BorderStyle::Hidden)
return 0;
if (tb.style() > BorderStyle::Hidden) {
LayoutUnit collapsedBorderWidth = std::max(borderWidth, LayoutUnit(tb.width() / 2));
borderWidth = floorToDevicePixel(collapsedBorderWidth, document().deviceScaleFactor());
}
return borderWidth;
}
LayoutUnit RenderTable::outerBorderAfter() const
{
if (!collapseBorders())
return 0;
LayoutUnit borderWidth;
if (RenderTableSection* section = bottomSection()) {
borderWidth = section->outerBorderAfter();
if (borderWidth < 0)
return 0; // Overridden by hidden
}
const BorderValue& tb = style().borderAfter();
if (tb.style() == BorderStyle::Hidden)
return 0;
if (tb.style() > BorderStyle::Hidden) {
float deviceScaleFactor = document().deviceScaleFactor();
LayoutUnit collapsedBorderWidth = std::max(borderWidth, LayoutUnit((tb.width() + (1 / deviceScaleFactor)) / 2));
borderWidth = floorToDevicePixel(collapsedBorderWidth, deviceScaleFactor);
}
return borderWidth;
}
LayoutUnit RenderTable::outerBorderStart() const
{
if (!collapseBorders())
return 0;
LayoutUnit borderWidth;
const BorderValue& tb = style().borderStart();
if (tb.style() == BorderStyle::Hidden)
return 0;
if (tb.style() > BorderStyle::Hidden)
return CollapsedBorderValue::adjustedCollapsedBorderWidth(tb.width(), document().deviceScaleFactor(), !style().isLeftToRightDirection());
bool allHidden = true;
for (RenderTableSection* section = topSection(); section; section = sectionBelow(section)) {
LayoutUnit sw = section->outerBorderStart();
if (sw < 0)
continue;
allHidden = false;
borderWidth = std::max(borderWidth, sw);
}
if (allHidden)
return 0;
return borderWidth;
}
LayoutUnit RenderTable::outerBorderEnd() const
{
if (!collapseBorders())
return 0;
LayoutUnit borderWidth;
const BorderValue& tb = style().borderEnd();
if (tb.style() == BorderStyle::Hidden)
return 0;
if (tb.style() > BorderStyle::Hidden)
return CollapsedBorderValue::adjustedCollapsedBorderWidth(tb.width(), document().deviceScaleFactor(), style().isLeftToRightDirection());
bool allHidden = true;
for (RenderTableSection* section = topSection(); section; section = sectionBelow(section)) {
LayoutUnit sw = section->outerBorderEnd();
if (sw < 0)
continue;
allHidden = false;
borderWidth = std::max(borderWidth, sw);
}
if (allHidden)
return 0;
return borderWidth;
}
RenderTableSection* RenderTable::sectionAbove(const RenderTableSection* section, SkipEmptySectionsValue skipEmptySections) const
{
recalcSectionsIfNeeded();
if (section == m_head)
return nullptr;
RenderObject* prevSection = section == m_foot ? lastChild() : section->previousSibling();
while (prevSection) {
if (is<RenderTableSection>(*prevSection) && prevSection != m_head && prevSection != m_foot && (skipEmptySections == DoNotSkipEmptySections || downcast<RenderTableSection>(*prevSection).numRows()))
break;
prevSection = prevSection->previousSibling();
}
if (!prevSection && m_head && (skipEmptySections == DoNotSkipEmptySections || m_head->numRows()))
prevSection = m_head.get();
return downcast<RenderTableSection>(prevSection);
}
RenderTableSection* RenderTable::sectionBelow(const RenderTableSection* section, SkipEmptySectionsValue skipEmptySections) const
{
recalcSectionsIfNeeded();
if (section == m_foot)
return nullptr;
RenderObject* nextSection = section == m_head ? firstChild() : section->nextSibling();
while (nextSection) {
if (is<RenderTableSection>(*nextSection) && nextSection != m_head && nextSection != m_foot && (skipEmptySections == DoNotSkipEmptySections || downcast<RenderTableSection>(*nextSection).numRows()))
break;
nextSection = nextSection->nextSibling();
}
if (!nextSection && m_foot && (skipEmptySections == DoNotSkipEmptySections || m_foot->numRows()))
nextSection = m_foot.get();
return downcast<RenderTableSection>(nextSection);
}
RenderTableSection* RenderTable::bottomSection() const
{
recalcSectionsIfNeeded();
if (m_foot)
return m_foot.get();
for (RenderObject* child = lastChild(); child; child = child->previousSibling()) {
if (is<RenderTableSection>(*child))
return downcast<RenderTableSection>(child);
}
return nullptr;
}
RenderTableCell* RenderTable::cellAbove(const RenderTableCell* cell) const
{
recalcSectionsIfNeeded();
// Find the section and row to look in
unsigned r = cell->rowIndex();
RenderTableSection* section = nullptr;
unsigned rAbove = 0;
if (r > 0) {
// cell is not in the first row, so use the above row in its own section
section = cell->section();
rAbove = r - 1;
} else {
section = sectionAbove(cell->section(), SkipEmptySections);
if (section) {
ASSERT(section->numRows());
rAbove = section->numRows() - 1;
}
}
// Look up the cell in the section's grid, which requires effective col index
if (section) {
unsigned effCol = colToEffCol(cell->col());
RenderTableSection::CellStruct& aboveCell = section->cellAt(rAbove, effCol);
return aboveCell.primaryCell();
} else
return nullptr;
}
RenderTableCell* RenderTable::cellBelow(const RenderTableCell* cell) const
{
recalcSectionsIfNeeded();
// Find the section and row to look in
unsigned r = cell->rowIndex() + cell->rowSpan() - 1;
RenderTableSection* section = nullptr;
unsigned rBelow = 0;
if (r < cell->section()->numRows() - 1) {
// The cell is not in the last row, so use the next row in the section.
section = cell->section();
rBelow = r + 1;
} else {
section = sectionBelow(cell->section(), SkipEmptySections);
if (section)
rBelow = 0;
}
// Look up the cell in the section's grid, which requires effective col index
if (section) {
unsigned effCol = colToEffCol(cell->col());
RenderTableSection::CellStruct& belowCell = section->cellAt(rBelow, effCol);
return belowCell.primaryCell();
} else
return nullptr;
}
RenderTableCell* RenderTable::cellBefore(const RenderTableCell* cell) const
{
recalcSectionsIfNeeded();
RenderTableSection* section = cell->section();
unsigned effCol = colToEffCol(cell->col());
if (!effCol)
return nullptr;
// If we hit a colspan back up to a real cell.
RenderTableSection::CellStruct& prevCell = section->cellAt(cell->rowIndex(), effCol - 1);
return prevCell.primaryCell();
}
RenderTableCell* RenderTable::cellAfter(const RenderTableCell* cell) const
{
recalcSectionsIfNeeded();
unsigned effCol = colToEffCol(cell->col() + cell->colSpan());
if (effCol >= numEffCols())
return nullptr;
return cell->section()->primaryCellAt(cell->rowIndex(), effCol);
}
RenderBlock* RenderTable::firstLineBlock() const
{
return nullptr;
}
LayoutUnit RenderTable::baselinePosition(FontBaseline baselineType, bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const
{
return valueOrCompute(firstLineBaseline(), [&] {
return RenderBox::baselinePosition(baselineType, firstLine, direction, linePositionMode);
});
}
std::optional<LayoutUnit> RenderTable::inlineBlockBaseline(LineDirectionMode) const
{
// Tables are skipped when computing an inline-block's baseline.
return std::optional<LayoutUnit>();
}
std::optional<LayoutUnit> RenderTable::firstLineBaseline() const
{
// The baseline of a 'table' is the same as the 'inline-table' baseline per CSS 3 Flexbox (CSS 2.1
// doesn't define the baseline of a 'table' only an 'inline-table').
// This is also needed to properly determine the baseline of a cell if it has a table child.
if (isWritingModeRoot() || shouldApplyLayoutContainment(*this))
return std::optional<LayoutUnit>();
recalcSectionsIfNeeded();
const RenderTableSection* topNonEmptySection = this->topNonEmptySection();
if (!topNonEmptySection)
return std::optional<LayoutUnit>();
if (auto baseline = topNonEmptySection->firstLineBaseline())
return std::optional<LayoutUnit>(topNonEmptySection->logicalTop() + baseline.value());
// FIXME: A table row always has a baseline per CSS 2.1. Will this return the right value?
return std::optional<LayoutUnit>();
}
LayoutRect RenderTable::overflowClipRect(const LayoutPoint& location, RenderFragmentContainer* fragment, OverlayScrollbarSizeRelevancy relevancy, PaintPhase phase) const
{
LayoutRect rect;
// Don't clip out the table's side of the collapsed borders if we're in the paint phase that will ask the sections to paint them.
// Likewise, if we're self-painting we avoid clipping them out as the clip rect that will be passed down to child layers from RenderLayer will do that instead.
if (phase == PaintPhase::ChildBlockBackgrounds || layer()->isSelfPaintingLayer()) {
rect = borderBoxRectInFragment(fragment);
rect.setLocation(location + rect.location());
} else
rect = RenderBox::overflowClipRect(location, fragment, relevancy);
// If we have a caption, expand the clip to include the caption.
// FIXME: Technically this is wrong, but it's virtually impossible to fix this
// for real until captions have been re-written.
// FIXME: This code assumes (like all our other caption code) that only top/bottom are
// supported. When we actually support left/right and stop mapping them to top/bottom,
// we might have to hack this code first (depending on what order we do these bug fixes in).
if (!m_captions.isEmpty()) {
if (style().isHorizontalWritingMode()) {
rect.setHeight(height());
rect.setY(location.y());
} else {
rect.setWidth(width());
rect.setX(location.x());
}
}
return rect;
}
bool RenderTable::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction action)
{
LayoutPoint adjustedLocation = accumulatedOffset + location();
// Check kids first.
if (!hasNonVisibleOverflow() || locationInContainer.intersects(overflowClipRect(adjustedLocation, nullptr))) {
for (RenderObject* child = lastChild(); child; child = child->previousSibling()) {
if (is<RenderBox>(*child) && !downcast<RenderBox>(*child).hasSelfPaintingLayer() && (child->isTableSection() || child->isTableCaption())) {
LayoutPoint childPoint = flipForWritingModeForChild(downcast<RenderBox>(child), adjustedLocation);
if (child->nodeAtPoint(request, result, locationInContainer, childPoint, action)) {
updateHitTestResult(result, toLayoutPoint(locationInContainer.point() - childPoint));
return true;
}
}
}
}
// Check our bounds next.
LayoutRect boundsRect(adjustedLocation, size());
if (visibleToHitTesting(request) && (action == HitTestBlockBackground || action == HitTestChildBlockBackground) && locationInContainer.intersects(boundsRect)) {
updateHitTestResult(result, flipForWritingMode(locationInContainer.point() - toLayoutSize(adjustedLocation)));
if (result.addNodeToListBasedTestResult(nodeForHitTest(), request, locationInContainer, boundsRect) == HitTestProgress::Stop)
return true;
}
return false;
}
RenderPtr<RenderTable> RenderTable::createTableWithStyle(Document& document, const RenderStyle& style)
{
auto table = createRenderer<RenderTable>(document, RenderStyle::createAnonymousStyleWithDisplay(style, style.display() == DisplayType::Inline ? DisplayType::InlineTable : DisplayType::Table));
table->initializeStyle();
return table;
}
RenderPtr<RenderTable> RenderTable::createAnonymousWithParentRenderer(const RenderElement& parent)
{
return RenderTable::createTableWithStyle(parent.document(), parent.style());
}
const BorderValue& RenderTable::tableStartBorderAdjoiningCell(const RenderTableCell& cell) const
{
ASSERT(cell.isFirstOrLastCellInRow());
if (isDirectionSame(this, cell.row()))
return style().borderStart();
return style().borderEnd();
}
const BorderValue& RenderTable::tableEndBorderAdjoiningCell(const RenderTableCell& cell) const
{
ASSERT(cell.isFirstOrLastCellInRow());
if (isDirectionSame(this, cell.row()))
return style().borderEnd();
return style().borderStart();
}
void RenderTable::markForPaginationRelayoutIfNeeded()
{
auto* layoutState = view().frameView().layoutContext().layoutState();
if (!layoutState || !layoutState->isPaginated() || (!layoutState->pageLogicalHeightChanged() && (!layoutState->pageLogicalHeight() || layoutState->pageLogicalOffset(this, logicalTop()) == pageLogicalOffset())))
return;
// When a table moves, we have to dirty all of the sections too.
if (!needsLayout())
setChildNeedsLayout(MarkOnlyThis);
for (auto& child : childrenOfType<RenderTableSection>(*this)) {
if (!child.needsLayout())
child.setChildNeedsLayout(MarkOnlyThis);
}
}
}