| /* |
| * Copyright (C) 2008-2010, 2012-2015 Apple Inc. All rights reserved. |
| * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "CodeBlock.h" |
| |
| #include "BasicBlockLocation.h" |
| #include "BytecodeGenerator.h" |
| #include "BytecodeUseDef.h" |
| #include "CallLinkStatus.h" |
| #include "DFGCapabilities.h" |
| #include "DFGCommon.h" |
| #include "DFGDriver.h" |
| #include "DFGJITCode.h" |
| #include "DFGWorklist.h" |
| #include "Debugger.h" |
| #include "FunctionExecutableDump.h" |
| #include "Interpreter.h" |
| #include "JIT.h" |
| #include "JITStubs.h" |
| #include "JSCJSValue.h" |
| #include "JSFunction.h" |
| #include "JSLexicalEnvironment.h" |
| #include "JSNameScope.h" |
| #include "LLIntEntrypoint.h" |
| #include "LowLevelInterpreter.h" |
| #include "JSCInlines.h" |
| #include "PolymorphicGetByIdList.h" |
| #include "PolymorphicPutByIdList.h" |
| #include "ProfilerDatabase.h" |
| #include "ReduceWhitespace.h" |
| #include "Repatch.h" |
| #include "RepatchBuffer.h" |
| #include "SlotVisitorInlines.h" |
| #include "StackVisitor.h" |
| #include "TypeLocationCache.h" |
| #include "TypeProfiler.h" |
| #include "UnlinkedInstructionStream.h" |
| #include <wtf/BagToHashMap.h> |
| #include <wtf/CommaPrinter.h> |
| #include <wtf/StringExtras.h> |
| #include <wtf/StringPrintStream.h> |
| #include <wtf/text/UniquedStringImpl.h> |
| |
| #if ENABLE(DFG_JIT) |
| #include "DFGOperations.h" |
| #endif |
| |
| #if ENABLE(FTL_JIT) |
| #include "FTLJITCode.h" |
| #endif |
| |
| namespace JSC { |
| |
| CString CodeBlock::inferredName() const |
| { |
| switch (codeType()) { |
| case GlobalCode: |
| return "<global>"; |
| case EvalCode: |
| return "<eval>"; |
| case FunctionCode: |
| return jsCast<FunctionExecutable*>(ownerExecutable())->inferredName().utf8(); |
| default: |
| CRASH(); |
| return CString("", 0); |
| } |
| } |
| |
| bool CodeBlock::hasHash() const |
| { |
| return !!m_hash; |
| } |
| |
| bool CodeBlock::isSafeToComputeHash() const |
| { |
| return !isCompilationThread(); |
| } |
| |
| CodeBlockHash CodeBlock::hash() const |
| { |
| if (!m_hash) { |
| RELEASE_ASSERT(isSafeToComputeHash()); |
| m_hash = CodeBlockHash(ownerExecutable()->source(), specializationKind()); |
| } |
| return m_hash; |
| } |
| |
| CString CodeBlock::sourceCodeForTools() const |
| { |
| if (codeType() != FunctionCode) |
| return ownerExecutable()->source().toUTF8(); |
| |
| SourceProvider* provider = source(); |
| FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable()); |
| UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); |
| unsigned unlinkedStartOffset = unlinked->startOffset(); |
| unsigned linkedStartOffset = executable->source().startOffset(); |
| int delta = linkedStartOffset - unlinkedStartOffset; |
| unsigned rangeStart = delta + unlinked->unlinkedFunctionNameStart(); |
| unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength(); |
| return toCString( |
| "function ", |
| provider->source().impl()->utf8ForRange(rangeStart, rangeEnd - rangeStart)); |
| } |
| |
| CString CodeBlock::sourceCodeOnOneLine() const |
| { |
| return reduceWhitespace(sourceCodeForTools()); |
| } |
| |
| CString CodeBlock::hashAsStringIfPossible() const |
| { |
| if (hasHash() || isSafeToComputeHash()) |
| return toCString(hash()); |
| return "<no-hash>"; |
| } |
| |
| void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const |
| { |
| out.print(inferredName(), "#", hashAsStringIfPossible()); |
| out.print(":[", RawPointer(this), "->"); |
| if (!!m_alternative) |
| out.print(RawPointer(m_alternative.get()), "->"); |
| out.print(RawPointer(ownerExecutable()), ", ", jitType, codeType()); |
| |
| if (codeType() == FunctionCode) |
| out.print(specializationKind()); |
| out.print(", ", instructionCount()); |
| if (this->jitType() == JITCode::BaselineJIT && m_shouldAlwaysBeInlined) |
| out.print(" (ShouldAlwaysBeInlined)"); |
| if (ownerExecutable()->neverInline()) |
| out.print(" (NeverInline)"); |
| if (ownerExecutable()->didTryToEnterInLoop()) |
| out.print(" (DidTryToEnterInLoop)"); |
| if (ownerExecutable()->isStrictMode()) |
| out.print(" (StrictMode)"); |
| if (this->jitType() == JITCode::BaselineJIT && m_didFailFTLCompilation) |
| out.print(" (FTLFail)"); |
| if (this->jitType() == JITCode::BaselineJIT && m_hasBeenCompiledWithFTL) |
| out.print(" (HadFTLReplacement)"); |
| out.print("]"); |
| } |
| |
| void CodeBlock::dump(PrintStream& out) const |
| { |
| dumpAssumingJITType(out, jitType()); |
| } |
| |
| static CString idName(int id0, const Identifier& ident) |
| { |
| return toCString(ident.impl(), "(@id", id0, ")"); |
| } |
| |
| CString CodeBlock::registerName(int r) const |
| { |
| if (isConstantRegisterIndex(r)) |
| return constantName(r); |
| |
| return toCString(VirtualRegister(r)); |
| } |
| |
| CString CodeBlock::constantName(int index) const |
| { |
| JSValue value = getConstant(index); |
| return toCString(value, "(", VirtualRegister(index), ")"); |
| } |
| |
| static CString regexpToSourceString(RegExp* regExp) |
| { |
| char postfix[5] = { '/', 0, 0, 0, 0 }; |
| int index = 1; |
| if (regExp->global()) |
| postfix[index++] = 'g'; |
| if (regExp->ignoreCase()) |
| postfix[index++] = 'i'; |
| if (regExp->multiline()) |
| postfix[index] = 'm'; |
| |
| return toCString("/", regExp->pattern().impl(), postfix); |
| } |
| |
| static CString regexpName(int re, RegExp* regexp) |
| { |
| return toCString(regexpToSourceString(regexp), "(@re", re, ")"); |
| } |
| |
| NEVER_INLINE static const char* debugHookName(int debugHookID) |
| { |
| switch (static_cast<DebugHookID>(debugHookID)) { |
| case DidEnterCallFrame: |
| return "didEnterCallFrame"; |
| case WillLeaveCallFrame: |
| return "willLeaveCallFrame"; |
| case WillExecuteStatement: |
| return "willExecuteStatement"; |
| case WillExecuteProgram: |
| return "willExecuteProgram"; |
| case DidExecuteProgram: |
| return "didExecuteProgram"; |
| case DidReachBreakpoint: |
| return "didReachBreakpoint"; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return ""; |
| } |
| |
| void CodeBlock::printUnaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) |
| { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| |
| printLocationAndOp(out, exec, location, it, op); |
| out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); |
| } |
| |
| void CodeBlock::printBinaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) |
| { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, op); |
| out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| } |
| |
| void CodeBlock::printConditionalJump(PrintStream& out, ExecState* exec, const Instruction*, const Instruction*& it, int location, const char* op) |
| { |
| int r0 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, op); |
| out.printf("%s, %d(->%d)", registerName(r0).data(), offset, location + offset); |
| } |
| |
| void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it) |
| { |
| const char* op; |
| switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { |
| case op_get_by_id: |
| op = "get_by_id"; |
| break; |
| case op_get_by_id_out_of_line: |
| op = "get_by_id_out_of_line"; |
| break; |
| case op_get_array_length: |
| op = "array_length"; |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| #if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE) |
| op = 0; |
| #endif |
| } |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, op); |
| out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); |
| it += 4; // Increment up to the value profiler. |
| } |
| |
| static void dumpStructure(PrintStream& out, const char* name, Structure* structure, const Identifier& ident) |
| { |
| if (!structure) |
| return; |
| |
| out.printf("%s = %p", name, structure); |
| |
| PropertyOffset offset = structure->getConcurrently(ident.impl()); |
| if (offset != invalidOffset) |
| out.printf(" (offset = %d)", offset); |
| } |
| |
| static void dumpChain(PrintStream& out, StructureChain* chain, const Identifier& ident) |
| { |
| out.printf("chain = %p: [", chain); |
| bool first = true; |
| for (WriteBarrier<Structure>* currentStructure = chain->head(); |
| *currentStructure; |
| ++currentStructure) { |
| if (first) |
| first = false; |
| else |
| out.printf(", "); |
| dumpStructure(out, "struct", currentStructure->get(), ident); |
| } |
| out.printf("]"); |
| } |
| |
| void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location, const StubInfoMap& map) |
| { |
| Instruction* instruction = instructions().begin() + location; |
| |
| const Identifier& ident = identifier(instruction[3].u.operand); |
| |
| UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. |
| |
| if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length) |
| out.printf(" llint(array_length)"); |
| else if (Structure* structure = instruction[4].u.structure.get()) { |
| out.printf(" llint("); |
| dumpStructure(out, "struct", structure, ident); |
| out.printf(")"); |
| } |
| |
| #if ENABLE(JIT) |
| if (StructureStubInfo* stubPtr = map.get(CodeOrigin(location))) { |
| StructureStubInfo& stubInfo = *stubPtr; |
| if (stubInfo.resetByGC) |
| out.print(" (Reset By GC)"); |
| |
| if (stubInfo.seen) { |
| out.printf(" jit("); |
| |
| Structure* baseStructure = 0; |
| Structure* prototypeStructure = 0; |
| PolymorphicGetByIdList* list = 0; |
| |
| switch (stubInfo.accessType) { |
| case access_get_by_id_self: |
| out.printf("self"); |
| baseStructure = stubInfo.u.getByIdSelf.baseObjectStructure.get(); |
| break; |
| case access_get_by_id_list: |
| out.printf("list"); |
| list = stubInfo.u.getByIdList.list; |
| break; |
| case access_unset: |
| out.printf("unset"); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| if (baseStructure) { |
| out.printf(", "); |
| dumpStructure(out, "struct", baseStructure, ident); |
| } |
| |
| if (prototypeStructure) { |
| out.printf(", "); |
| dumpStructure(out, "prototypeStruct", baseStructure, ident); |
| } |
| |
| if (list) { |
| out.printf(", list = %p: [", list); |
| for (unsigned i = 0; i < list->size(); ++i) { |
| if (i) |
| out.printf(", "); |
| out.printf("("); |
| dumpStructure(out, "base", list->at(i).structure(), ident); |
| if (!list->at(i).conditionSet().isEmpty()) { |
| out.printf(", "); |
| out.print(list->at(i).conditionSet()); |
| } |
| out.printf(")"); |
| } |
| out.printf("]"); |
| } |
| out.printf(")"); |
| } |
| } |
| #else |
| UNUSED_PARAM(map); |
| #endif |
| } |
| |
| void CodeBlock::printPutByIdCacheStatus(PrintStream& out, ExecState* exec, int location, const StubInfoMap& map) |
| { |
| Instruction* instruction = instructions().begin() + location; |
| |
| const Identifier& ident = identifier(instruction[2].u.operand); |
| |
| UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. |
| |
| if (Structure* structure = instruction[4].u.structure.get()) { |
| switch (exec->interpreter()->getOpcodeID(instruction[0].u.opcode)) { |
| case op_put_by_id: |
| case op_put_by_id_out_of_line: |
| out.print(" llint("); |
| dumpStructure(out, "struct", structure, ident); |
| out.print(")"); |
| break; |
| |
| case op_put_by_id_transition_direct: |
| case op_put_by_id_transition_normal: |
| case op_put_by_id_transition_direct_out_of_line: |
| case op_put_by_id_transition_normal_out_of_line: |
| out.print(" llint("); |
| dumpStructure(out, "prev", structure, ident); |
| out.print(", "); |
| dumpStructure(out, "next", instruction[6].u.structure.get(), ident); |
| if (StructureChain* chain = instruction[7].u.structureChain.get()) { |
| out.print(", "); |
| dumpChain(out, chain, ident); |
| } |
| out.print(")"); |
| break; |
| |
| default: |
| out.print(" llint(unknown)"); |
| break; |
| } |
| } |
| |
| #if ENABLE(JIT) |
| if (StructureStubInfo* stubPtr = map.get(CodeOrigin(location))) { |
| StructureStubInfo& stubInfo = *stubPtr; |
| if (stubInfo.resetByGC) |
| out.print(" (Reset By GC)"); |
| |
| if (stubInfo.seen) { |
| out.printf(" jit("); |
| |
| switch (stubInfo.accessType) { |
| case access_put_by_id_replace: |
| out.print("replace, "); |
| dumpStructure(out, "struct", stubInfo.u.putByIdReplace.baseObjectStructure.get(), ident); |
| break; |
| case access_put_by_id_transition_normal: |
| case access_put_by_id_transition_direct: |
| out.print("transition, "); |
| dumpStructure(out, "prev", stubInfo.u.putByIdTransition.previousStructure.get(), ident); |
| out.print(", "); |
| dumpStructure(out, "next", stubInfo.u.putByIdTransition.structure.get(), ident); |
| if (stubInfo.u.putByIdTransition.rawConditionSet) |
| out.print(", ", ObjectPropertyConditionSet::fromRawPointer(stubInfo.u.putByIdTransition.rawConditionSet)); |
| break; |
| case access_put_by_id_list: { |
| out.printf("list = ["); |
| PolymorphicPutByIdList* list = stubInfo.u.putByIdList.list; |
| CommaPrinter comma; |
| for (unsigned i = 0; i < list->size(); ++i) { |
| out.print(comma, "("); |
| const PutByIdAccess& access = list->at(i); |
| |
| if (access.isReplace()) { |
| out.print("replace, "); |
| dumpStructure(out, "struct", access.oldStructure(), ident); |
| } else if (access.isSetter()) { |
| out.print("setter, "); |
| dumpStructure(out, "struct", access.oldStructure(), ident); |
| } else if (access.isCustom()) { |
| out.print("custom, "); |
| dumpStructure(out, "struct", access.oldStructure(), ident); |
| } else if (access.isTransition()) { |
| out.print("transition, "); |
| dumpStructure(out, "prev", access.oldStructure(), ident); |
| out.print(", "); |
| dumpStructure(out, "next", access.newStructure(), ident); |
| if (!access.conditionSet().isEmpty()) |
| out.print(", ", access.conditionSet()); |
| } else |
| out.print("unknown"); |
| |
| out.print(")"); |
| } |
| out.print("]"); |
| break; |
| } |
| case access_unset: |
| out.printf("unset"); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| out.printf(")"); |
| } |
| } |
| #else |
| UNUSED_PARAM(map); |
| #endif |
| } |
| |
| void CodeBlock::printCallOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode, bool& hasPrintedProfiling, const CallLinkInfoMap& map) |
| { |
| int dst = (++it)->u.operand; |
| int func = (++it)->u.operand; |
| int argCount = (++it)->u.operand; |
| int registerOffset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, op); |
| out.printf("%s, %s, %d, %d", registerName(dst).data(), registerName(func).data(), argCount, registerOffset); |
| if (cacheDumpMode == DumpCaches) { |
| LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo; |
| if (callLinkInfo->lastSeenCallee) { |
| out.printf( |
| " llint(%p, exec %p)", |
| callLinkInfo->lastSeenCallee.get(), |
| callLinkInfo->lastSeenCallee->executable()); |
| } |
| #if ENABLE(JIT) |
| if (CallLinkInfo* info = map.get(CodeOrigin(location))) { |
| JSFunction* target = info->lastSeenCallee(); |
| if (target) |
| out.printf(" jit(%p, exec %p)", target, target->executable()); |
| } |
| |
| if (jitType() != JITCode::FTLJIT) |
| out.print(" status(", CallLinkStatus::computeFor(this, location, map), ")"); |
| #else |
| UNUSED_PARAM(map); |
| #endif |
| } |
| ++it; |
| ++it; |
| dumpArrayProfiling(out, it, hasPrintedProfiling); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| } |
| |
| void CodeBlock::printPutByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) |
| { |
| int r0 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, op); |
| out.printf("%s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data()); |
| it += 5; |
| } |
| |
| void CodeBlock::dumpSource() |
| { |
| dumpSource(WTF::dataFile()); |
| } |
| |
| void CodeBlock::dumpSource(PrintStream& out) |
| { |
| ScriptExecutable* executable = ownerExecutable(); |
| if (executable->isFunctionExecutable()) { |
| FunctionExecutable* functionExecutable = reinterpret_cast<FunctionExecutable*>(executable); |
| String source = functionExecutable->source().provider()->getRange( |
| functionExecutable->parametersStartOffset(), |
| functionExecutable->typeProfilingEndOffset() + 1); // Type profiling end offset is the character before the '}'. |
| |
| out.print("function ", inferredName(), source); |
| return; |
| } |
| out.print(executable->source().toString()); |
| } |
| |
| void CodeBlock::dumpBytecode() |
| { |
| dumpBytecode(WTF::dataFile()); |
| } |
| |
| void CodeBlock::dumpBytecode(PrintStream& out) |
| { |
| // We only use the ExecState* for things that don't actually lead to JS execution, |
| // like converting a JSString to a String. Hence the globalExec is appropriate. |
| ExecState* exec = m_globalObject->globalExec(); |
| |
| size_t instructionCount = 0; |
| |
| for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)]) |
| ++instructionCount; |
| |
| out.print(*this); |
| out.printf( |
| ": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)", |
| static_cast<unsigned long>(instructions().size()), |
| static_cast<unsigned long>(instructions().size() * sizeof(Instruction)), |
| m_numParameters, m_numCalleeRegisters, m_numVars); |
| if (needsActivation() && codeType() == FunctionCode) |
| out.printf("; lexical environment in r%d", activationRegister().offset()); |
| out.printf("\n"); |
| |
| StubInfoMap stubInfos; |
| CallLinkInfoMap callLinkInfos; |
| getStubInfoMap(stubInfos); |
| getCallLinkInfoMap(callLinkInfos); |
| |
| const Instruction* begin = instructions().begin(); |
| const Instruction* end = instructions().end(); |
| for (const Instruction* it = begin; it != end; ++it) |
| dumpBytecode(out, exec, begin, it, stubInfos, callLinkInfos); |
| |
| if (numberOfIdentifiers()) { |
| out.printf("\nIdentifiers:\n"); |
| size_t i = 0; |
| do { |
| out.printf(" id%u = %s\n", static_cast<unsigned>(i), identifier(i).string().utf8().data()); |
| ++i; |
| } while (i != numberOfIdentifiers()); |
| } |
| |
| if (!m_constantRegisters.isEmpty()) { |
| out.printf("\nConstants:\n"); |
| size_t i = 0; |
| do { |
| const char* sourceCodeRepresentationDescription = nullptr; |
| switch (m_constantsSourceCodeRepresentation[i]) { |
| case SourceCodeRepresentation::Double: |
| sourceCodeRepresentationDescription = ": in source as double"; |
| break; |
| case SourceCodeRepresentation::Integer: |
| sourceCodeRepresentationDescription = ": in source as integer"; |
| break; |
| case SourceCodeRepresentation::Other: |
| sourceCodeRepresentationDescription = ""; |
| break; |
| } |
| out.printf(" k%u = %s%s\n", static_cast<unsigned>(i), toCString(m_constantRegisters[i].get()).data(), sourceCodeRepresentationDescription); |
| ++i; |
| } while (i < m_constantRegisters.size()); |
| } |
| |
| if (size_t count = m_unlinkedCode->numberOfRegExps()) { |
| out.printf("\nm_regexps:\n"); |
| size_t i = 0; |
| do { |
| out.printf(" re%u = %s\n", static_cast<unsigned>(i), regexpToSourceString(m_unlinkedCode->regexp(i)).data()); |
| ++i; |
| } while (i < count); |
| } |
| |
| if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) { |
| out.printf("\nException Handlers:\n"); |
| unsigned i = 0; |
| do { |
| HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; |
| out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] depth: [%4d] } %s\n", |
| i + 1, handler.start, handler.end, handler.target, handler.scopeDepth, handler.typeName()); |
| ++i; |
| } while (i < m_rareData->m_exceptionHandlers.size()); |
| } |
| |
| if (m_rareData && !m_rareData->m_switchJumpTables.isEmpty()) { |
| out.printf("Switch Jump Tables:\n"); |
| unsigned i = 0; |
| do { |
| out.printf(" %1d = {\n", i); |
| int entry = 0; |
| Vector<int32_t>::const_iterator end = m_rareData->m_switchJumpTables[i].branchOffsets.end(); |
| for (Vector<int32_t>::const_iterator iter = m_rareData->m_switchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { |
| if (!*iter) |
| continue; |
| out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_switchJumpTables[i].min, *iter); |
| } |
| out.printf(" }\n"); |
| ++i; |
| } while (i < m_rareData->m_switchJumpTables.size()); |
| } |
| |
| if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) { |
| out.printf("\nString Switch Jump Tables:\n"); |
| unsigned i = 0; |
| do { |
| out.printf(" %1d = {\n", i); |
| StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end(); |
| for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter) |
| out.printf("\t\t\"%s\" => %04d\n", iter->key->utf8().data(), iter->value.branchOffset); |
| out.printf(" }\n"); |
| ++i; |
| } while (i < m_rareData->m_stringSwitchJumpTables.size()); |
| } |
| |
| out.printf("\n"); |
| } |
| |
| void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling) |
| { |
| if (hasPrintedProfiling) { |
| out.print("; "); |
| return; |
| } |
| |
| out.print(" "); |
| hasPrintedProfiling = true; |
| } |
| |
| void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) |
| { |
| ConcurrentJITLocker locker(m_lock); |
| |
| ++it; |
| CString description = it->u.profile->briefDescription(locker); |
| if (!description.length()) |
| return; |
| beginDumpProfiling(out, hasPrintedProfiling); |
| out.print(description); |
| } |
| |
| void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) |
| { |
| ConcurrentJITLocker locker(m_lock); |
| |
| ++it; |
| if (!it->u.arrayProfile) |
| return; |
| CString description = it->u.arrayProfile->briefDescription(locker, this); |
| if (!description.length()) |
| return; |
| beginDumpProfiling(out, hasPrintedProfiling); |
| out.print(description); |
| } |
| |
| void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling) |
| { |
| if (!profile || !profile->m_counter) |
| return; |
| |
| beginDumpProfiling(out, hasPrintedProfiling); |
| out.print(name, profile->m_counter); |
| } |
| |
| void CodeBlock::printLocationAndOp(PrintStream& out, ExecState*, int location, const Instruction*&, const char* op) |
| { |
| out.printf("[%4d] %-17s ", location, op); |
| } |
| |
| void CodeBlock::printLocationOpAndRegisterOperand(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, int operand) |
| { |
| printLocationAndOp(out, exec, location, it, op); |
| out.printf("%s", registerName(operand).data()); |
| } |
| |
| void CodeBlock::dumpBytecode( |
| PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it, |
| const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) |
| { |
| int location = it - begin; |
| bool hasPrintedProfiling = false; |
| OpcodeID opcode = exec->interpreter()->getOpcodeID(it->u.opcode); |
| switch (opcode) { |
| case op_enter: { |
| printLocationAndOp(out, exec, location, it, "enter"); |
| break; |
| } |
| case op_get_scope: { |
| int r0 = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "get_scope", r0); |
| break; |
| } |
| case op_create_direct_arguments: { |
| int r0 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "create_direct_arguments"); |
| out.printf("%s", registerName(r0).data()); |
| break; |
| } |
| case op_create_scoped_arguments: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "create_scoped_arguments"); |
| out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); |
| break; |
| } |
| case op_create_out_of_band_arguments: { |
| int r0 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "create_out_of_band_arguments"); |
| out.printf("%s", registerName(r0).data()); |
| break; |
| } |
| case op_create_this: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| unsigned inferredInlineCapacity = (++it)->u.operand; |
| unsigned cachedFunction = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "create_this"); |
| out.printf("%s, %s, %u, %u", registerName(r0).data(), registerName(r1).data(), inferredInlineCapacity, cachedFunction); |
| break; |
| } |
| case op_to_this: { |
| int r0 = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "to_this", r0); |
| Structure* structure = (++it)->u.structure.get(); |
| if (structure) |
| out.print(", cache(struct = ", RawPointer(structure), ")"); |
| out.print(", ", (++it)->u.toThisStatus); |
| break; |
| } |
| case op_check_tdz: { |
| int r0 = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "op_check_tdz", r0); |
| break; |
| } |
| case op_new_object: { |
| int r0 = (++it)->u.operand; |
| unsigned inferredInlineCapacity = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "new_object"); |
| out.printf("%s, %u", registerName(r0).data(), inferredInlineCapacity); |
| ++it; // Skip object allocation profile. |
| break; |
| } |
| case op_new_array: { |
| int dst = (++it)->u.operand; |
| int argv = (++it)->u.operand; |
| int argc = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "new_array"); |
| out.printf("%s, %s, %d", registerName(dst).data(), registerName(argv).data(), argc); |
| ++it; // Skip array allocation profile. |
| break; |
| } |
| case op_new_array_with_size: { |
| int dst = (++it)->u.operand; |
| int length = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "new_array_with_size"); |
| out.printf("%s, %s", registerName(dst).data(), registerName(length).data()); |
| ++it; // Skip array allocation profile. |
| break; |
| } |
| case op_new_array_buffer: { |
| int dst = (++it)->u.operand; |
| int argv = (++it)->u.operand; |
| int argc = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "new_array_buffer"); |
| out.printf("%s, %d, %d", registerName(dst).data(), argv, argc); |
| ++it; // Skip array allocation profile. |
| break; |
| } |
| case op_new_regexp: { |
| int r0 = (++it)->u.operand; |
| int re0 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "new_regexp"); |
| out.printf("%s, ", registerName(r0).data()); |
| if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps()) |
| out.printf("%s", regexpName(re0, regexp(re0)).data()); |
| else |
| out.printf("bad_regexp(%d)", re0); |
| break; |
| } |
| case op_mov: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "mov"); |
| out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); |
| break; |
| } |
| case op_profile_type: { |
| int r0 = (++it)->u.operand; |
| ++it; |
| ++it; |
| ++it; |
| ++it; |
| printLocationAndOp(out, exec, location, it, "op_profile_type"); |
| out.printf("%s", registerName(r0).data()); |
| break; |
| } |
| case op_profile_control_flow: { |
| BasicBlockLocation* basicBlockLocation = (++it)->u.basicBlockLocation; |
| printLocationAndOp(out, exec, location, it, "profile_control_flow"); |
| out.printf("[%d, %d]", basicBlockLocation->startOffset(), basicBlockLocation->endOffset()); |
| break; |
| } |
| case op_not: { |
| printUnaryOp(out, exec, location, it, "not"); |
| break; |
| } |
| case op_eq: { |
| printBinaryOp(out, exec, location, it, "eq"); |
| break; |
| } |
| case op_eq_null: { |
| printUnaryOp(out, exec, location, it, "eq_null"); |
| break; |
| } |
| case op_neq: { |
| printBinaryOp(out, exec, location, it, "neq"); |
| break; |
| } |
| case op_neq_null: { |
| printUnaryOp(out, exec, location, it, "neq_null"); |
| break; |
| } |
| case op_stricteq: { |
| printBinaryOp(out, exec, location, it, "stricteq"); |
| break; |
| } |
| case op_nstricteq: { |
| printBinaryOp(out, exec, location, it, "nstricteq"); |
| break; |
| } |
| case op_less: { |
| printBinaryOp(out, exec, location, it, "less"); |
| break; |
| } |
| case op_lesseq: { |
| printBinaryOp(out, exec, location, it, "lesseq"); |
| break; |
| } |
| case op_greater: { |
| printBinaryOp(out, exec, location, it, "greater"); |
| break; |
| } |
| case op_greatereq: { |
| printBinaryOp(out, exec, location, it, "greatereq"); |
| break; |
| } |
| case op_inc: { |
| int r0 = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "inc", r0); |
| break; |
| } |
| case op_dec: { |
| int r0 = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "dec", r0); |
| break; |
| } |
| case op_to_number: { |
| printUnaryOp(out, exec, location, it, "to_number"); |
| break; |
| } |
| case op_to_string: { |
| printUnaryOp(out, exec, location, it, "to_string"); |
| break; |
| } |
| case op_negate: { |
| printUnaryOp(out, exec, location, it, "negate"); |
| break; |
| } |
| case op_add: { |
| printBinaryOp(out, exec, location, it, "add"); |
| ++it; |
| break; |
| } |
| case op_mul: { |
| printBinaryOp(out, exec, location, it, "mul"); |
| ++it; |
| break; |
| } |
| case op_div: { |
| printBinaryOp(out, exec, location, it, "div"); |
| ++it; |
| break; |
| } |
| case op_mod: { |
| printBinaryOp(out, exec, location, it, "mod"); |
| break; |
| } |
| case op_sub: { |
| printBinaryOp(out, exec, location, it, "sub"); |
| ++it; |
| break; |
| } |
| case op_lshift: { |
| printBinaryOp(out, exec, location, it, "lshift"); |
| break; |
| } |
| case op_rshift: { |
| printBinaryOp(out, exec, location, it, "rshift"); |
| break; |
| } |
| case op_urshift: { |
| printBinaryOp(out, exec, location, it, "urshift"); |
| break; |
| } |
| case op_bitand: { |
| printBinaryOp(out, exec, location, it, "bitand"); |
| ++it; |
| break; |
| } |
| case op_bitxor: { |
| printBinaryOp(out, exec, location, it, "bitxor"); |
| ++it; |
| break; |
| } |
| case op_bitor: { |
| printBinaryOp(out, exec, location, it, "bitor"); |
| ++it; |
| break; |
| } |
| case op_check_has_instance: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "check_has_instance"); |
| out.printf("%s, %s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), offset, location + offset); |
| break; |
| } |
| case op_instanceof: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "instanceof"); |
| out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| break; |
| } |
| case op_unsigned: { |
| printUnaryOp(out, exec, location, it, "unsigned"); |
| break; |
| } |
| case op_typeof: { |
| printUnaryOp(out, exec, location, it, "typeof"); |
| break; |
| } |
| case op_is_undefined: { |
| printUnaryOp(out, exec, location, it, "is_undefined"); |
| break; |
| } |
| case op_is_boolean: { |
| printUnaryOp(out, exec, location, it, "is_boolean"); |
| break; |
| } |
| case op_is_number: { |
| printUnaryOp(out, exec, location, it, "is_number"); |
| break; |
| } |
| case op_is_string: { |
| printUnaryOp(out, exec, location, it, "is_string"); |
| break; |
| } |
| case op_is_object: { |
| printUnaryOp(out, exec, location, it, "is_object"); |
| break; |
| } |
| case op_is_object_or_null: { |
| printUnaryOp(out, exec, location, it, "is_object_or_null"); |
| break; |
| } |
| case op_is_function: { |
| printUnaryOp(out, exec, location, it, "is_function"); |
| break; |
| } |
| case op_in: { |
| printBinaryOp(out, exec, location, it, "in"); |
| break; |
| } |
| case op_get_by_id: |
| case op_get_by_id_out_of_line: |
| case op_get_array_length: { |
| printGetByIdOp(out, exec, location, it); |
| printGetByIdCacheStatus(out, exec, location, stubInfos); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_put_by_id: { |
| printPutByIdOp(out, exec, location, it, "put_by_id"); |
| printPutByIdCacheStatus(out, exec, location, stubInfos); |
| break; |
| } |
| case op_put_by_id_out_of_line: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_out_of_line"); |
| printPutByIdCacheStatus(out, exec, location, stubInfos); |
| break; |
| } |
| case op_put_by_id_transition_direct: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct"); |
| printPutByIdCacheStatus(out, exec, location, stubInfos); |
| break; |
| } |
| case op_put_by_id_transition_direct_out_of_line: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct_out_of_line"); |
| printPutByIdCacheStatus(out, exec, location, stubInfos); |
| break; |
| } |
| case op_put_by_id_transition_normal: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal"); |
| printPutByIdCacheStatus(out, exec, location, stubInfos); |
| break; |
| } |
| case op_put_by_id_transition_normal_out_of_line: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal_out_of_line"); |
| printPutByIdCacheStatus(out, exec, location, stubInfos); |
| break; |
| } |
| case op_put_getter_by_id: { |
| int r0 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "put_getter_by_id"); |
| out.printf("%s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data()); |
| break; |
| } |
| case op_put_setter_by_id: { |
| int r0 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "put_setter_by_id"); |
| out.printf("%s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data()); |
| break; |
| } |
| case op_put_getter_setter: { |
| int r0 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "put_getter_setter"); |
| out.printf("%s, %s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data(), registerName(r2).data()); |
| break; |
| } |
| case op_del_by_id: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "del_by_id"); |
| out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); |
| break; |
| } |
| case op_get_by_val: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "get_by_val"); |
| out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| dumpArrayProfiling(out, it, hasPrintedProfiling); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_put_by_val: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "put_by_val"); |
| out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| dumpArrayProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_put_by_val_direct: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "put_by_val_direct"); |
| out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| dumpArrayProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_del_by_val: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "del_by_val"); |
| out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| break; |
| } |
| case op_put_by_index: { |
| int r0 = (++it)->u.operand; |
| unsigned n0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "put_by_index"); |
| out.printf("%s, %u, %s", registerName(r0).data(), n0, registerName(r1).data()); |
| break; |
| } |
| case op_jmp: { |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jmp"); |
| out.printf("%d(->%d)", offset, location + offset); |
| break; |
| } |
| case op_jtrue: { |
| printConditionalJump(out, exec, begin, it, location, "jtrue"); |
| break; |
| } |
| case op_jfalse: { |
| printConditionalJump(out, exec, begin, it, location, "jfalse"); |
| break; |
| } |
| case op_jeq_null: { |
| printConditionalJump(out, exec, begin, it, location, "jeq_null"); |
| break; |
| } |
| case op_jneq_null: { |
| printConditionalJump(out, exec, begin, it, location, "jneq_null"); |
| break; |
| } |
| case op_jneq_ptr: { |
| int r0 = (++it)->u.operand; |
| Special::Pointer pointer = (++it)->u.specialPointer; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jneq_ptr"); |
| out.printf("%s, %d (%p), %d(->%d)", registerName(r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset); |
| break; |
| } |
| case op_jless: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jless"); |
| out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jlesseq: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jlesseq"); |
| out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jgreater: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jgreater"); |
| out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jgreatereq: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jgreatereq"); |
| out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jnless: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jnless"); |
| out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jnlesseq: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jnlesseq"); |
| out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jngreater: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jngreater"); |
| out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jngreatereq: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "jngreatereq"); |
| out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_loop_hint: { |
| printLocationAndOp(out, exec, location, it, "loop_hint"); |
| break; |
| } |
| case op_switch_imm: { |
| int tableIndex = (++it)->u.operand; |
| int defaultTarget = (++it)->u.operand; |
| int scrutineeRegister = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "switch_imm"); |
| out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); |
| break; |
| } |
| case op_switch_char: { |
| int tableIndex = (++it)->u.operand; |
| int defaultTarget = (++it)->u.operand; |
| int scrutineeRegister = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "switch_char"); |
| out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); |
| break; |
| } |
| case op_switch_string: { |
| int tableIndex = (++it)->u.operand; |
| int defaultTarget = (++it)->u.operand; |
| int scrutineeRegister = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "switch_string"); |
| out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); |
| break; |
| } |
| case op_new_func: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int f0 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "new_func"); |
| out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0); |
| break; |
| } |
| case op_new_func_exp: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int f0 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "new_func_exp"); |
| out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0); |
| break; |
| } |
| case op_call: { |
| printCallOp(out, exec, location, it, "call", DumpCaches, hasPrintedProfiling, callLinkInfos); |
| break; |
| } |
| case op_call_eval: { |
| printCallOp(out, exec, location, it, "call_eval", DontDumpCaches, hasPrintedProfiling, callLinkInfos); |
| break; |
| } |
| |
| case op_construct_varargs: |
| case op_call_varargs: { |
| int result = (++it)->u.operand; |
| int callee = (++it)->u.operand; |
| int thisValue = (++it)->u.operand; |
| int arguments = (++it)->u.operand; |
| int firstFreeRegister = (++it)->u.operand; |
| int varArgOffset = (++it)->u.operand; |
| ++it; |
| printLocationAndOp(out, exec, location, it, opcode == op_call_varargs ? "call_varargs" : "construct_varargs"); |
| out.printf("%s, %s, %s, %s, %d, %d", registerName(result).data(), registerName(callee).data(), registerName(thisValue).data(), registerName(arguments).data(), firstFreeRegister, varArgOffset); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| |
| case op_ret: { |
| int r0 = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "ret", r0); |
| break; |
| } |
| case op_construct: { |
| printCallOp(out, exec, location, it, "construct", DumpCaches, hasPrintedProfiling, callLinkInfos); |
| break; |
| } |
| case op_strcat: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int count = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "strcat"); |
| out.printf("%s, %s, %d", registerName(r0).data(), registerName(r1).data(), count); |
| break; |
| } |
| case op_to_primitive: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "to_primitive"); |
| out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); |
| break; |
| } |
| case op_get_enumerable_length: { |
| int dst = it[1].u.operand; |
| int base = it[2].u.operand; |
| printLocationAndOp(out, exec, location, it, "op_get_enumerable_length"); |
| out.printf("%s, %s", registerName(dst).data(), registerName(base).data()); |
| it += OPCODE_LENGTH(op_get_enumerable_length) - 1; |
| break; |
| } |
| case op_has_indexed_property: { |
| int dst = it[1].u.operand; |
| int base = it[2].u.operand; |
| int propertyName = it[3].u.operand; |
| ArrayProfile* arrayProfile = it[4].u.arrayProfile; |
| printLocationAndOp(out, exec, location, it, "op_has_indexed_property"); |
| out.printf("%s, %s, %s, %p", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), arrayProfile); |
| it += OPCODE_LENGTH(op_has_indexed_property) - 1; |
| break; |
| } |
| case op_has_structure_property: { |
| int dst = it[1].u.operand; |
| int base = it[2].u.operand; |
| int propertyName = it[3].u.operand; |
| int enumerator = it[4].u.operand; |
| printLocationAndOp(out, exec, location, it, "op_has_structure_property"); |
| out.printf("%s, %s, %s, %s", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), registerName(enumerator).data()); |
| it += OPCODE_LENGTH(op_has_structure_property) - 1; |
| break; |
| } |
| case op_has_generic_property: { |
| int dst = it[1].u.operand; |
| int base = it[2].u.operand; |
| int propertyName = it[3].u.operand; |
| printLocationAndOp(out, exec, location, it, "op_has_generic_property"); |
| out.printf("%s, %s, %s", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data()); |
| it += OPCODE_LENGTH(op_has_generic_property) - 1; |
| break; |
| } |
| case op_get_direct_pname: { |
| int dst = it[1].u.operand; |
| int base = it[2].u.operand; |
| int propertyName = it[3].u.operand; |
| int index = it[4].u.operand; |
| int enumerator = it[5].u.operand; |
| ValueProfile* profile = it[6].u.profile; |
| printLocationAndOp(out, exec, location, it, "op_get_direct_pname"); |
| out.printf("%s, %s, %s, %s, %s, %p", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), registerName(index).data(), registerName(enumerator).data(), profile); |
| it += OPCODE_LENGTH(op_get_direct_pname) - 1; |
| break; |
| |
| } |
| case op_get_property_enumerator: { |
| int dst = it[1].u.operand; |
| int base = it[2].u.operand; |
| printLocationAndOp(out, exec, location, it, "op_get_property_enumerator"); |
| out.printf("%s, %s", registerName(dst).data(), registerName(base).data()); |
| it += OPCODE_LENGTH(op_get_property_enumerator) - 1; |
| break; |
| } |
| case op_enumerator_structure_pname: { |
| int dst = it[1].u.operand; |
| int enumerator = it[2].u.operand; |
| int index = it[3].u.operand; |
| printLocationAndOp(out, exec, location, it, "op_enumerator_structure_pname"); |
| out.printf("%s, %s, %s", registerName(dst).data(), registerName(enumerator).data(), registerName(index).data()); |
| it += OPCODE_LENGTH(op_enumerator_structure_pname) - 1; |
| break; |
| } |
| case op_enumerator_generic_pname: { |
| int dst = it[1].u.operand; |
| int enumerator = it[2].u.operand; |
| int index = it[3].u.operand; |
| printLocationAndOp(out, exec, location, it, "op_enumerator_generic_pname"); |
| out.printf("%s, %s, %s", registerName(dst).data(), registerName(enumerator).data(), registerName(index).data()); |
| it += OPCODE_LENGTH(op_enumerator_generic_pname) - 1; |
| break; |
| } |
| case op_to_index_string: { |
| int dst = it[1].u.operand; |
| int index = it[2].u.operand; |
| printLocationAndOp(out, exec, location, it, "op_to_index_string"); |
| out.printf("%s, %s", registerName(dst).data(), registerName(index).data()); |
| it += OPCODE_LENGTH(op_to_index_string) - 1; |
| break; |
| } |
| case op_push_with_scope: { |
| int dst = (++it)->u.operand; |
| int newScope = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "push_with_scope"); |
| out.printf("%s, %s", registerName(dst).data(), registerName(newScope).data()); |
| break; |
| } |
| case op_get_parent_scope: { |
| int dst = (++it)->u.operand; |
| int parentScope = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "get_parent_scope"); |
| out.printf("%s, %s", registerName(dst).data(), registerName(parentScope).data()); |
| break; |
| } |
| case op_push_name_scope: { |
| int dst = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int k0 = (++it)->u.operand; |
| JSNameScope::Type scopeType = (JSNameScope::Type)(++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "push_name_scope"); |
| out.printf("%s, %s, %s, %s", registerName(dst).data(), registerName(r1).data(), constantName(k0).data(), (scopeType == JSNameScope::FunctionNameScope) ? "functionScope" : "unknownScopeType"); |
| break; |
| } |
| case op_create_lexical_environment: { |
| int dst = (++it)->u.operand; |
| int scope = (++it)->u.operand; |
| int symbolTable = (++it)->u.operand; |
| int initialValue = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "create_lexical_environment"); |
| out.printf("%s, %s, %s, %s", |
| registerName(dst).data(), registerName(scope).data(), registerName(symbolTable).data(), registerName(initialValue).data()); |
| break; |
| } |
| case op_catch: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "catch"); |
| out.printf("%s, %s", registerName(r0).data(), registerName(r1).data()); |
| break; |
| } |
| case op_throw: { |
| int r0 = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "throw", r0); |
| break; |
| } |
| case op_throw_static_error: { |
| int k0 = (++it)->u.operand; |
| int k1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "throw_static_error"); |
| out.printf("%s, %s", constantName(k0).data(), k1 ? "true" : "false"); |
| break; |
| } |
| case op_debug: { |
| int debugHookID = (++it)->u.operand; |
| int hasBreakpointFlag = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "debug"); |
| out.printf("%s %d", debugHookName(debugHookID), hasBreakpointFlag); |
| break; |
| } |
| case op_profile_will_call: { |
| int function = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "profile_will_call", function); |
| break; |
| } |
| case op_profile_did_call: { |
| int function = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "profile_did_call", function); |
| break; |
| } |
| case op_end: { |
| int r0 = (++it)->u.operand; |
| printLocationOpAndRegisterOperand(out, exec, location, it, "end", r0); |
| break; |
| } |
| case op_resolve_scope: { |
| int r0 = (++it)->u.operand; |
| int scope = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| ResolveModeAndType modeAndType = ResolveModeAndType((++it)->u.operand); |
| int depth = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "resolve_scope"); |
| out.printf("%s, %s, %s, %u<%s|%s>, %d", registerName(r0).data(), registerName(scope).data(), idName(id0, identifier(id0)).data(), |
| modeAndType.operand(), resolveModeName(modeAndType.mode()), resolveTypeName(modeAndType.type()), |
| depth); |
| ++it; |
| break; |
| } |
| case op_get_from_scope: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| ResolveModeAndType modeAndType = ResolveModeAndType((++it)->u.operand); |
| ++it; // Structure |
| int operand = (++it)->u.operand; // Operand |
| printLocationAndOp(out, exec, location, it, "get_from_scope"); |
| out.print(registerName(r0), ", ", registerName(r1)); |
| if (static_cast<unsigned>(id0) == UINT_MAX) |
| out.print(", anonymous"); |
| else |
| out.print(", ", idName(id0, identifier(id0))); |
| out.print(", ", modeAndType.operand(), "<", resolveModeName(modeAndType.mode()), "|", resolveTypeName(modeAndType.type()), ">, ", operand); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_put_to_scope: { |
| int r0 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| ResolveModeAndType modeAndType = ResolveModeAndType((++it)->u.operand); |
| ++it; // Structure |
| int operand = (++it)->u.operand; // Operand |
| printLocationAndOp(out, exec, location, it, "put_to_scope"); |
| out.print(registerName(r0)); |
| if (static_cast<unsigned>(id0) == UINT_MAX) |
| out.print(", anonymous"); |
| else |
| out.print(", ", idName(id0, identifier(id0))); |
| out.print(", ", registerName(r1), ", ", modeAndType.operand(), "<", resolveModeName(modeAndType.mode()), "|", resolveTypeName(modeAndType.type()), ">, <structure>, ", operand); |
| break; |
| } |
| case op_get_from_arguments: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "get_from_arguments"); |
| out.printf("%s, %s, %d", registerName(r0).data(), registerName(r1).data(), offset); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_put_to_arguments: { |
| int r0 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| printLocationAndOp(out, exec, location, it, "put_to_arguments"); |
| out.printf("%s, %d, %s", registerName(r0).data(), offset, registerName(r1).data()); |
| break; |
| } |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling); |
| dumpRareCaseProfile(out, "special fast case: ", specialFastCaseProfileForBytecodeOffset(location), hasPrintedProfiling); |
| |
| #if ENABLE(DFG_JIT) |
| Vector<DFG::FrequentExitSite> exitSites = exitProfile().exitSitesFor(location); |
| if (!exitSites.isEmpty()) { |
| out.print(" !! frequent exits: "); |
| CommaPrinter comma; |
| for (unsigned i = 0; i < exitSites.size(); ++i) |
| out.print(comma, exitSites[i].kind(), " ", exitSites[i].jitType()); |
| } |
| #else // ENABLE(DFG_JIT) |
| UNUSED_PARAM(location); |
| #endif // ENABLE(DFG_JIT) |
| out.print("\n"); |
| } |
| |
| void CodeBlock::dumpBytecode( |
| PrintStream& out, unsigned bytecodeOffset, |
| const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) |
| { |
| ExecState* exec = m_globalObject->globalExec(); |
| const Instruction* it = instructions().begin() + bytecodeOffset; |
| dumpBytecode(out, exec, instructions().begin(), it, stubInfos, callLinkInfos); |
| } |
| |
| #define FOR_EACH_MEMBER_VECTOR(macro) \ |
| macro(instructions) \ |
| macro(callLinkInfos) \ |
| macro(linkedCallerList) \ |
| macro(identifiers) \ |
| macro(functionExpressions) \ |
| macro(constantRegisters) |
| |
| #define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \ |
| macro(regexps) \ |
| macro(functions) \ |
| macro(exceptionHandlers) \ |
| macro(switchJumpTables) \ |
| macro(stringSwitchJumpTables) \ |
| macro(evalCodeCache) \ |
| macro(expressionInfo) \ |
| macro(lineInfo) \ |
| macro(callReturnIndexVector) |
| |
| template<typename T> |
| static size_t sizeInBytes(const Vector<T>& vector) |
| { |
| return vector.capacity() * sizeof(T); |
| } |
| |
| namespace { |
| |
| class PutToScopeFireDetail : public FireDetail { |
| public: |
| PutToScopeFireDetail(CodeBlock* codeBlock, const Identifier& ident) |
| : m_codeBlock(codeBlock) |
| , m_ident(ident) |
| { |
| } |
| |
| virtual void dump(PrintStream& out) const override |
| { |
| out.print("Linking put_to_scope in ", FunctionExecutableDump(jsCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())), " for ", m_ident); |
| } |
| |
| private: |
| CodeBlock* m_codeBlock; |
| const Identifier& m_ident; |
| }; |
| |
| } // anonymous namespace |
| |
| CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other) |
| : m_globalObject(other.m_globalObject) |
| , m_heap(other.m_heap) |
| , m_numCalleeRegisters(other.m_numCalleeRegisters) |
| , m_numVars(other.m_numVars) |
| , m_isConstructor(other.m_isConstructor) |
| , m_shouldAlwaysBeInlined(true) |
| , m_didFailFTLCompilation(false) |
| , m_hasBeenCompiledWithFTL(false) |
| , m_unlinkedCode(*other.m_vm, other.m_ownerExecutable.get(), other.m_unlinkedCode.get()) |
| , m_hasDebuggerStatement(false) |
| , m_steppingMode(SteppingModeDisabled) |
| , m_numBreakpoints(0) |
| , m_ownerExecutable(*other.m_vm, other.m_ownerExecutable.get(), other.m_ownerExecutable.get()) |
| , m_vm(other.m_vm) |
| , m_instructions(other.m_instructions) |
| , m_thisRegister(other.m_thisRegister) |
| , m_scopeRegister(other.m_scopeRegister) |
| , m_lexicalEnvironmentRegister(other.m_lexicalEnvironmentRegister) |
| , m_isStrictMode(other.m_isStrictMode) |
| , m_needsActivation(other.m_needsActivation) |
| , m_mayBeExecuting(false) |
| , m_source(other.m_source) |
| , m_sourceOffset(other.m_sourceOffset) |
| , m_firstLineColumnOffset(other.m_firstLineColumnOffset) |
| , m_codeType(other.m_codeType) |
| , m_constantRegisters(other.m_constantRegisters) |
| , m_constantsSourceCodeRepresentation(other.m_constantsSourceCodeRepresentation) |
| , m_functionDecls(other.m_functionDecls) |
| , m_functionExprs(other.m_functionExprs) |
| , m_osrExitCounter(0) |
| , m_optimizationDelayCounter(0) |
| , m_reoptimizationRetryCounter(0) |
| , m_hash(other.m_hash) |
| #if ENABLE(JIT) |
| , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| #endif |
| { |
| m_visitAggregateHasBeenCalled.store(false, std::memory_order_relaxed); |
| |
| ASSERT(m_heap->isDeferred()); |
| ASSERT(m_scopeRegister.isLocal()); |
| |
| setNumParameters(other.numParameters()); |
| optimizeAfterWarmUp(); |
| jitAfterWarmUp(); |
| |
| if (other.m_rareData) { |
| createRareDataIfNecessary(); |
| |
| m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; |
| m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers; |
| m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables; |
| m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; |
| } |
| |
| m_heap->m_codeBlocks.add(this); |
| m_heap->reportExtraMemoryAllocated(sizeof(CodeBlock)); |
| } |
| |
| CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset) |
| : m_globalObject(scope->globalObject()->vm(), ownerExecutable, scope->globalObject()) |
| , m_heap(&m_globalObject->vm().heap) |
| , m_numCalleeRegisters(unlinkedCodeBlock->m_numCalleeRegisters) |
| , m_numVars(unlinkedCodeBlock->m_numVars) |
| , m_isConstructor(unlinkedCodeBlock->isConstructor()) |
| , m_shouldAlwaysBeInlined(true) |
| , m_didFailFTLCompilation(false) |
| , m_hasBeenCompiledWithFTL(false) |
| , m_unlinkedCode(m_globalObject->vm(), ownerExecutable, unlinkedCodeBlock) |
| , m_hasDebuggerStatement(false) |
| , m_steppingMode(SteppingModeDisabled) |
| , m_numBreakpoints(0) |
| , m_ownerExecutable(m_globalObject->vm(), ownerExecutable, ownerExecutable) |
| , m_vm(unlinkedCodeBlock->vm()) |
| , m_thisRegister(unlinkedCodeBlock->thisRegister()) |
| , m_scopeRegister(unlinkedCodeBlock->scopeRegister()) |
| , m_lexicalEnvironmentRegister(unlinkedCodeBlock->activationRegister()) |
| , m_isStrictMode(unlinkedCodeBlock->isStrictMode()) |
| , m_needsActivation(unlinkedCodeBlock->hasActivationRegister() && unlinkedCodeBlock->codeType() == FunctionCode) |
| , m_mayBeExecuting(false) |
| , m_source(sourceProvider) |
| , m_sourceOffset(sourceOffset) |
| , m_firstLineColumnOffset(firstLineColumnOffset) |
| , m_codeType(unlinkedCodeBlock->codeType()) |
| , m_osrExitCounter(0) |
| , m_optimizationDelayCounter(0) |
| , m_reoptimizationRetryCounter(0) |
| #if ENABLE(JIT) |
| , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| #endif |
| { |
| m_visitAggregateHasBeenCalled.store(false, std::memory_order_relaxed); |
| |
| ASSERT(m_heap->isDeferred()); |
| ASSERT(m_scopeRegister.isLocal()); |
| |
| ASSERT(m_source); |
| setNumParameters(unlinkedCodeBlock->numParameters()); |
| |
| if (vm()->typeProfiler() || vm()->controlFlowProfiler()) |
| vm()->functionHasExecutedCache()->removeUnexecutedRange(m_ownerExecutable->sourceID(), m_ownerExecutable->typeProfilingStartOffset(), m_ownerExecutable->typeProfilingEndOffset()); |
| |
| setConstantRegisters(unlinkedCodeBlock->constantRegisters(), unlinkedCodeBlock->constantsSourceCodeRepresentation()); |
| if (unlinkedCodeBlock->usesGlobalObject()) |
| m_constantRegisters[unlinkedCodeBlock->globalObjectRegister().toConstantIndex()].set(*m_vm, ownerExecutable, m_globalObject.get()); |
| |
| for (unsigned i = 0; i < LinkTimeConstantCount; i++) { |
| LinkTimeConstant type = static_cast<LinkTimeConstant>(i); |
| if (unsigned registerIndex = unlinkedCodeBlock->registerIndexForLinkTimeConstant(type)) |
| m_constantRegisters[registerIndex].set(*m_vm, ownerExecutable, m_globalObject->jsCellForLinkTimeConstant(type)); |
| } |
| |
| HashSet<int, WTF::IntHash<int>, WTF::UnsignedWithZeroKeyHashTraits<int>> clonedConstantSymbolTables; |
| { |
| HashSet<SymbolTable*> clonedSymbolTables; |
| for (unsigned i = 0; i < m_constantRegisters.size(); i++) { |
| if (m_constantRegisters[i].get().isEmpty()) |
| continue; |
| if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(m_constantRegisters[i].get())) { |
| RELEASE_ASSERT(clonedSymbolTables.add(symbolTable).isNewEntry); |
| if (m_vm->typeProfiler()) { |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| symbolTable->prepareForTypeProfiling(locker); |
| } |
| m_constantRegisters[i].set(*m_vm, ownerExecutable, symbolTable->cloneScopePart(*m_vm)); |
| clonedConstantSymbolTables.add(i + FirstConstantRegisterIndex); |
| } |
| } |
| } |
| |
| m_functionDecls.resizeToFit(unlinkedCodeBlock->numberOfFunctionDecls()); |
| for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { |
| UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); |
| if (vm()->typeProfiler() || vm()->controlFlowProfiler()) |
| vm()->functionHasExecutedCache()->insertUnexecutedRange(m_ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); |
| m_functionDecls[i].set(*m_vm, ownerExecutable, unlinkedExecutable->link(*m_vm, ownerExecutable->source())); |
| } |
| |
| m_functionExprs.resizeToFit(unlinkedCodeBlock->numberOfFunctionExprs()); |
| for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { |
| UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); |
| if (vm()->typeProfiler() || vm()->controlFlowProfiler()) |
| vm()->functionHasExecutedCache()->insertUnexecutedRange(m_ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); |
| m_functionExprs[i].set(*m_vm, ownerExecutable, unlinkedExecutable->link(*m_vm, ownerExecutable->source())); |
| } |
| |
| if (unlinkedCodeBlock->hasRareData()) { |
| createRareDataIfNecessary(); |
| if (size_t count = unlinkedCodeBlock->constantBufferCount()) { |
| m_rareData->m_constantBuffers.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i); |
| m_rareData->m_constantBuffers[i] = buffer; |
| } |
| } |
| if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { |
| m_rareData->m_exceptionHandlers.resizeToFit(count); |
| size_t nonLocalScopeDepth = scope->depth(); |
| for (size_t i = 0; i < count; i++) { |
| const UnlinkedHandlerInfo& unlinkedHandler = unlinkedCodeBlock->exceptionHandler(i); |
| HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; |
| #if ENABLE(JIT) |
| handler.initialize(unlinkedHandler, nonLocalScopeDepth, |
| CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(op_catch)))); |
| #else |
| handler.initialize(unlinkedHandler, nonLocalScopeDepth); |
| #endif |
| } |
| } |
| |
| if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { |
| m_rareData->m_stringSwitchJumpTables.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); |
| UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); |
| for (; ptr != end; ++ptr) { |
| OffsetLocation offset; |
| offset.branchOffset = ptr->value; |
| m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); |
| } |
| } |
| } |
| |
| if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) { |
| m_rareData->m_switchJumpTables.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i); |
| SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i]; |
| destTable.branchOffsets = sourceTable.branchOffsets; |
| destTable.min = sourceTable.min; |
| } |
| } |
| } |
| |
| // Allocate metadata buffers for the bytecode |
| if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos()) |
| m_llintCallLinkInfos.resizeToFit(size); |
| if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles()) |
| m_arrayProfiles.grow(size); |
| if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles()) |
| m_arrayAllocationProfiles.resizeToFit(size); |
| if (size_t size = unlinkedCodeBlock->numberOfValueProfiles()) |
| m_valueProfiles.resizeToFit(size); |
| if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles()) |
| m_objectAllocationProfiles.resizeToFit(size); |
| |
| // Copy and translate the UnlinkedInstructions |
| unsigned instructionCount = unlinkedCodeBlock->instructions().count(); |
| UnlinkedInstructionStream::Reader instructionReader(unlinkedCodeBlock->instructions()); |
| |
| Vector<Instruction, 0, UnsafeVectorOverflow> instructions(instructionCount); |
| |
| for (unsigned i = 0; !instructionReader.atEnd(); ) { |
| const UnlinkedInstruction* pc = instructionReader.next(); |
| |
| unsigned opLength = opcodeLength(pc[0].u.opcode); |
| |
| instructions[i] = vm()->interpreter->getOpcode(pc[0].u.opcode); |
| for (size_t j = 1; j < opLength; ++j) { |
| if (sizeof(int32_t) != sizeof(intptr_t)) |
| instructions[i + j].u.pointer = 0; |
| instructions[i + j].u.operand = pc[j].u.operand; |
| } |
| switch (pc[0].u.opcode) { |
| case op_has_indexed_property: { |
| int arrayProfileIndex = pc[opLength - 1].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| |
| instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; |
| break; |
| } |
| case op_call_varargs: |
| case op_construct_varargs: |
| case op_get_by_val: { |
| int arrayProfileIndex = pc[opLength - 2].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| |
| instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; |
| FALLTHROUGH; |
| } |
| case op_get_direct_pname: |
| case op_get_by_id: |
| case op_get_from_arguments: { |
| ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; |
| ASSERT(profile->m_bytecodeOffset == -1); |
| profile->m_bytecodeOffset = i; |
| instructions[i + opLength - 1] = profile; |
| break; |
| } |
| case op_put_by_val: { |
| int arrayProfileIndex = pc[opLength - 1].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; |
| break; |
| } |
| case op_put_by_val_direct: { |
| int arrayProfileIndex = pc[opLength - 1].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; |
| break; |
| } |
| |
| case op_new_array: |
| case op_new_array_buffer: |
| case op_new_array_with_size: { |
| int arrayAllocationProfileIndex = pc[opLength - 1].u.operand; |
| instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex]; |
| break; |
| } |
| case op_new_object: { |
| int objectAllocationProfileIndex = pc[opLength - 1].u.operand; |
| ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex]; |
| int inferredInlineCapacity = pc[opLength - 2].u.operand; |
| |
| instructions[i + opLength - 1] = objectAllocationProfile; |
| objectAllocationProfile->initialize(*vm(), |
| m_ownerExecutable.get(), m_globalObject->objectPrototype(), inferredInlineCapacity); |
| break; |
| } |
| |
| case op_call: |
| case op_call_eval: { |
| ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; |
| ASSERT(profile->m_bytecodeOffset == -1); |
| profile->m_bytecodeOffset = i; |
| instructions[i + opLength - 1] = profile; |
| int arrayProfileIndex = pc[opLength - 2].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; |
| instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; |
| break; |
| } |
| case op_construct: { |
| instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; |
| ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; |
| ASSERT(profile->m_bytecodeOffset == -1); |
| profile->m_bytecodeOffset = i; |
| instructions[i + opLength - 1] = profile; |
| break; |
| } |
| case op_get_by_id_out_of_line: |
| case op_get_array_length: |
| CRASH(); |
| |
| case op_create_lexical_environment: { |
| int symbolTableIndex = pc[3].u.operand; |
| RELEASE_ASSERT(clonedConstantSymbolTables.contains(symbolTableIndex)); |
| break; |
| } |
| |
| case op_resolve_scope: { |
| const Identifier& ident = identifier(pc[3].u.operand); |
| ResolveType type = static_cast<ResolveType>(pc[4].u.operand); |
| RELEASE_ASSERT(type != LocalClosureVar); |
| int localScopeDepth = pc[5].u.operand; |
| |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type); |
| instructions[i + 4].u.operand = op.type; |
| instructions[i + 5].u.operand = op.depth; |
| if (op.lexicalEnvironment) |
| instructions[i + 6].u.symbolTable.set(*vm(), ownerExecutable, op.lexicalEnvironment->symbolTable()); |
| else |
| instructions[i + 6].u.pointer = nullptr; |
| break; |
| } |
| |
| case op_get_from_scope: { |
| ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand]; |
| ASSERT(profile->m_bytecodeOffset == -1); |
| profile->m_bytecodeOffset = i; |
| instructions[i + opLength - 1] = profile; |
| |
| // get_from_scope dst, scope, id, ResolveModeAndType, Structure, Operand |
| |
| int localScopeDepth = pc[5].u.operand; |
| instructions[i + 5].u.pointer = nullptr; |
| |
| ResolveModeAndType modeAndType = ResolveModeAndType(pc[4].u.operand); |
| if (modeAndType.type() == LocalClosureVar) { |
| instructions[i + 4] = ResolveModeAndType(modeAndType.mode(), ClosureVar).operand(); |
| break; |
| } |
| |
| const Identifier& ident = identifier(pc[3].u.operand); |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, modeAndType.type()); |
| |
| instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand(); |
| if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks) |
| instructions[i + 5].u.watchpointSet = op.watchpointSet; |
| else if (op.structure) |
| instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure); |
| instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand); |
| break; |
| } |
| |
| case op_put_to_scope: { |
| // put_to_scope scope, id, value, ResolveModeAndType, Structure, Operand |
| ResolveModeAndType modeAndType = ResolveModeAndType(pc[4].u.operand); |
| if (modeAndType.type() == LocalClosureVar) { |
| // Only do watching if the property we're putting to is not anonymous. |
| if (static_cast<unsigned>(pc[2].u.operand) != UINT_MAX) { |
| int symbolTableIndex = pc[5].u.operand; |
| RELEASE_ASSERT(clonedConstantSymbolTables.contains(symbolTableIndex)); |
| SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(symbolTableIndex)); |
| const Identifier& ident = identifier(pc[2].u.operand); |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| auto iter = symbolTable->find(locker, ident.impl()); |
| RELEASE_ASSERT(iter != symbolTable->end(locker)); |
| iter->value.prepareToWatch(); |
| instructions[i + 5].u.watchpointSet = iter->value.watchpointSet(); |
| } else |
| instructions[i + 5].u.watchpointSet = nullptr; |
| break; |
| } |
| |
| const Identifier& ident = identifier(pc[2].u.operand); |
| int localScopeDepth = pc[5].u.operand; |
| instructions[i + 5].u.pointer = nullptr; |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Put, modeAndType.type()); |
| |
| instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand(); |
| if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks) |
| instructions[i + 5].u.watchpointSet = op.watchpointSet; |
| else if (op.type == ClosureVar || op.type == ClosureVarWithVarInjectionChecks) { |
| if (op.watchpointSet) |
| op.watchpointSet->invalidate(PutToScopeFireDetail(this, ident)); |
| } else if (op.structure) |
| instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure); |
| instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand); |
| |
| break; |
| } |
| |
| case op_profile_type: { |
| RELEASE_ASSERT(vm()->typeProfiler()); |
| // The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType? |
| size_t instructionOffset = i + opLength - 1; |
| unsigned divotStart, divotEnd; |
| GlobalVariableID globalVariableID = 0; |
| RefPtr<TypeSet> globalTypeSet; |
| bool shouldAnalyze = m_unlinkedCode->typeProfilerExpressionInfoForBytecodeOffset(instructionOffset, divotStart, divotEnd); |
| VirtualRegister profileRegister(pc[1].u.operand); |
| ProfileTypeBytecodeFlag flag = static_cast<ProfileTypeBytecodeFlag>(pc[3].u.operand); |
| SymbolTable* symbolTable = nullptr; |
| |
| switch (flag) { |
| case ProfileTypeBytecodeClosureVar: { |
| const Identifier& ident = identifier(pc[4].u.operand); |
| int localScopeDepth = pc[2].u.operand; |
| ResolveType type = static_cast<ResolveType>(pc[5].u.operand); |
| // Even though type profiling may be profiling either a Get or a Put, we can always claim a Get because |
| // we're abstractly "read"ing from a JSScope. |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type); |
| |
| if (op.type == ClosureVar) |
| symbolTable = op.lexicalEnvironment->symbolTable(); |
| else if (op.type == GlobalVar) |
| symbolTable = m_globalObject.get()->symbolTable(); |
| |
| if (symbolTable) { |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. |
| symbolTable->prepareForTypeProfiling(locker); |
| globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), *vm()); |
| globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), *vm()); |
| } else |
| globalVariableID = TypeProfilerNoGlobalIDExists; |
| |
| break; |
| } |
| case ProfileTypeBytecodeLocallyResolved: { |
| int symbolTableIndex = pc[2].u.operand; |
| RELEASE_ASSERT(clonedConstantSymbolTables.contains(symbolTableIndex)); |
| SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(symbolTableIndex)); |
| const Identifier& ident = identifier(pc[4].u.operand); |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. |
| globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), *vm()); |
| globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), *vm()); |
| |
| break; |
| } |
| case ProfileTypeBytecodeDoesNotHaveGlobalID: |
| case ProfileTypeBytecodeFunctionArgument: { |
| globalVariableID = TypeProfilerNoGlobalIDExists; |
| break; |
| } |
| case ProfileTypeBytecodeFunctionReturnStatement: { |
| RELEASE_ASSERT(ownerExecutable->isFunctionExecutable()); |
| globalTypeSet = jsCast<FunctionExecutable*>(ownerExecutable)->returnStatementTypeSet(); |
| globalVariableID = TypeProfilerReturnStatement; |
| if (!shouldAnalyze) { |
| // Because a return statement can be added implicitly to return undefined at the end of a function, |
| // and these nodes don't emit expression ranges because they aren't in the actual source text of |
| // the user's program, give the type profiler some range to identify these return statements. |
| // Currently, the text offset that is used as identification is on the open brace of the function |
| // and is stored on TypeLocation's m_divotForFunctionOffsetIfReturnStatement member variable. |
| divotStart = divotEnd = m_sourceOffset; |
| shouldAnalyze = true; |
| } |
| break; |
| } |
| } |
| |
| std::pair<TypeLocation*, bool> locationPair = vm()->typeProfiler()->typeLocationCache()->getTypeLocation(globalVariableID, |
| m_ownerExecutable->sourceID(), divotStart, divotEnd, globalTypeSet, vm()); |
| TypeLocation* location = locationPair.first; |
| bool isNewLocation = locationPair.second; |
| |
| if (flag == ProfileTypeBytecodeFunctionReturnStatement) |
| location->m_divotForFunctionOffsetIfReturnStatement = m_sourceOffset; |
| |
| if (shouldAnalyze && isNewLocation) |
| vm()->typeProfiler()->insertNewLocation(location); |
| |
| instructions[i + 2].u.location = location; |
| break; |
| } |
| |
| case op_debug: { |
| if (pc[1].u.index == DidReachBreakpoint) |
| m_hasDebuggerStatement = true; |
| break; |
| } |
| |
| default: |
| break; |
| } |
| i += opLength; |
| } |
| |
| if (vm()->controlFlowProfiler()) |
| insertBasicBlockBoundariesForControlFlowProfiler(instructions); |
| |
| m_instructions = WTF::RefCountedArray<Instruction>(instructions); |
| |
| // Set optimization thresholds only after m_instructions is initialized, since these |
| // rely on the instruction count (and are in theory permitted to also inspect the |
| // instruction stream to more accurate assess the cost of tier-up). |
| optimizeAfterWarmUp(); |
| jitAfterWarmUp(); |
| |
| // If the concurrent thread will want the code block's hash, then compute it here |
| // synchronously. |
| if (Options::alwaysComputeHash()) |
| hash(); |
| |
| if (Options::dumpGeneratedBytecodes()) |
| dumpBytecode(); |
| |
| m_heap->m_codeBlocks.add(this); |
| m_heap->reportExtraMemoryAllocated(sizeof(CodeBlock) + m_instructions.size() * sizeof(Instruction)); |
| } |
| |
| CodeBlock::~CodeBlock() |
| { |
| if (m_vm->m_perBytecodeProfiler) |
| m_vm->m_perBytecodeProfiler->notifyDestruction(this); |
| |
| #if ENABLE(VERBOSE_VALUE_PROFILE) |
| dumpValueProfiles(); |
| #endif |
| while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) |
| m_incomingLLIntCalls.begin()->remove(); |
| #if ENABLE(JIT) |
| // We may be destroyed before any CodeBlocks that refer to us are destroyed. |
| // Consider that two CodeBlocks become unreachable at the same time. There |
| // is no guarantee about the order in which the CodeBlocks are destroyed. |
| // So, if we don't remove incoming calls, and get destroyed before the |
| // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's |
| // destructor will try to remove nodes from our (no longer valid) linked list. |
| while (m_incomingCalls.begin() != m_incomingCalls.end()) |
| m_incomingCalls.begin()->remove(); |
| while (m_incomingPolymorphicCalls.begin() != m_incomingPolymorphicCalls.end()) |
| m_incomingPolymorphicCalls.begin()->remove(); |
| |
| // Note that our outgoing calls will be removed from other CodeBlocks' |
| // m_incomingCalls linked lists through the execution of the ~CallLinkInfo |
| // destructors. |
| |
| for (Bag<StructureStubInfo>::iterator iter = m_stubInfos.begin(); !!iter; ++iter) |
| (*iter)->deref(); |
| #endif // ENABLE(JIT) |
| } |
| |
| void CodeBlock::setNumParameters(int newValue) |
| { |
| m_numParameters = newValue; |
| |
| m_argumentValueProfiles.resizeToFit(newValue); |
| } |
| |
| void EvalCodeCache::visitAggregate(SlotVisitor& visitor) |
| { |
| EvalCacheMap::iterator end = m_cacheMap.end(); |
| for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) |
| visitor.append(&ptr->value); |
| } |
| |
| CodeBlock* CodeBlock::specialOSREntryBlockOrNull() |
| { |
| #if ENABLE(FTL_JIT) |
| if (jitType() != JITCode::DFGJIT) |
| return 0; |
| DFG::JITCode* jitCode = m_jitCode->dfg(); |
| return jitCode->osrEntryBlock.get(); |
| #else // ENABLE(FTL_JIT) |
| return 0; |
| #endif // ENABLE(FTL_JIT) |
| } |
| |
| void CodeBlock::visitAggregate(SlotVisitor& visitor) |
| { |
| #if ENABLE(PARALLEL_GC) |
| // I may be asked to scan myself more than once, and it may even happen concurrently. |
| // To this end, use an atomic operation to check (and set) if I've been called already. |
| // Only one thread may proceed past this point - whichever one wins the atomic set race. |
| bool setByMe = m_visitAggregateHasBeenCalled.compareExchangeStrong(false, true); |
| if (!setByMe) |
| return; |
| #endif // ENABLE(PARALLEL_GC) |
| |
| if (!!m_alternative) |
| m_alternative->visitAggregate(visitor); |
| |
| if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) |
| otherBlock->visitAggregate(visitor); |
| |
| visitor.reportExtraMemoryVisited(ownerExecutable(), sizeof(CodeBlock)); |
| if (m_jitCode) |
| visitor.reportExtraMemoryVisited(ownerExecutable(), m_jitCode->size()); |
| if (m_instructions.size()) { |
| // Divide by refCount() because m_instructions points to something that is shared |
| // by multiple CodeBlocks, and we only want to count it towards the heap size once. |
| // Having each CodeBlock report only its proportional share of the size is one way |
| // of accomplishing this. |
| visitor.reportExtraMemoryVisited(ownerExecutable(), m_instructions.size() * sizeof(Instruction) / m_instructions.refCount()); |
| } |
| |
| visitor.append(&m_unlinkedCode); |
| |
| // There are three things that may use unconditional finalizers: lazy bytecode freeing, |
| // inline cache clearing, and jettisoning. The probability of us wanting to do at |
| // least one of those things is probably quite close to 1. So we add one no matter what |
| // and when it runs, it figures out whether it has any work to do. |
| visitor.addUnconditionalFinalizer(this); |
| |
| m_allTransitionsHaveBeenMarked = false; |
| |
| if (shouldImmediatelyAssumeLivenessDuringScan()) { |
| // This code block is live, so scan all references strongly and return. |
| stronglyVisitStrongReferences(visitor); |
| stronglyVisitWeakReferences(visitor); |
| propagateTransitions(visitor); |
| return; |
| } |
| |
| // There are two things that we use weak reference harvesters for: DFG fixpoint for |
| // jettisoning, and trying to find structures that would be live based on some |
| // inline cache. So it makes sense to register them regardless. |
| visitor.addWeakReferenceHarvester(this); |
| |
| #if ENABLE(DFG_JIT) |
| // We get here if we're live in the sense that our owner executable is live, |
| // but we're not yet live for sure in another sense: we may yet decide that this |
| // code block should be jettisoned based on its outgoing weak references being |
| // stale. Set a flag to indicate that we're still assuming that we're dead, and |
| // perform one round of determining if we're live. The GC may determine, based on |
| // either us marking additional objects, or by other objects being marked for |
| // other reasons, that this iteration should run again; it will notify us of this |
| // decision by calling harvestWeakReferences(). |
| |
| m_jitCode->dfgCommon()->livenessHasBeenProved = false; |
| |
| propagateTransitions(visitor); |
| determineLiveness(visitor); |
| #else // ENABLE(DFG_JIT) |
| RELEASE_ASSERT_NOT_REACHED(); |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| bool CodeBlock::shouldImmediatelyAssumeLivenessDuringScan() |
| { |
| #if ENABLE(DFG_JIT) |
| // Interpreter and Baseline JIT CodeBlocks don't need to be jettisoned when |
| // their weak references go stale. So if a basline JIT CodeBlock gets |
| // scanned, we can assume that this means that it's live. |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return true; |
| |
| // For simplicity, we don't attempt to jettison code blocks during GC if |
| // they are executing. Instead we strongly mark their weak references to |
| // allow them to continue to execute soundly. |
| if (m_mayBeExecuting) |
| return true; |
| |
| if (Options::forceDFGCodeBlockLiveness()) |
| return true; |
| |
| return false; |
| #else |
| return true; |
| #endif |
| } |
| |
| bool CodeBlock::isKnownToBeLiveDuringGC() |
| { |
| #if ENABLE(DFG_JIT) |
| // This should return true for: |
| // - Code blocks that behave like normal objects - i.e. if they are referenced then they |
| // are live. |
| // - Code blocks that were running on the stack. |
| // - Code blocks that survived the last GC if the current GC is an Eden GC. This is |
| // because either livenessHasBeenProved would have survived as true or m_mayBeExecuting |
| // would survive as true. |
| // - Code blocks that don't have any dead weak references. |
| |
| return shouldImmediatelyAssumeLivenessDuringScan() |
| || m_jitCode->dfgCommon()->livenessHasBeenProved; |
| #else |
| return true; |
| #endif |
| } |
| |
| #if ENABLE(DFG_JIT) |
| static bool shouldMarkTransition(DFG::WeakReferenceTransition& transition) |
| { |
| if (transition.m_codeOrigin && !Heap::isMarked(transition.m_codeOrigin.get())) |
| return false; |
| |
| if (!Heap::isMarked(transition.m_from.get())) |
| return false; |
| |
| return true; |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| void CodeBlock::propagateTransitions(SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| if (m_allTransitionsHaveBeenMarked) |
| return; |
| |
| bool allAreMarkedSoFar = true; |
| |
| Interpreter* interpreter = m_vm->interpreter; |
| if (jitType() == JITCode::InterpreterThunk) { |
| const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); |
| for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) { |
| Instruction* instruction = &instructions()[propertyAccessInstructions[i]]; |
| switch (interpreter->getOpcodeID(instruction[0].u.opcode)) { |
| case op_put_by_id_transition_direct: |
| case op_put_by_id_transition_normal: |
| case op_put_by_id_transition_direct_out_of_line: |
| case op_put_by_id_transition_normal_out_of_line: { |
| if (Heap::isMarked(instruction[4].u.structure.get())) |
| visitor.append(&instruction[6].u.structure); |
| else |
| allAreMarkedSoFar = false; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| } |
| |
| #if ENABLE(JIT) |
| if (JITCode::isJIT(jitType())) { |
| for (Bag<StructureStubInfo>::iterator iter = m_stubInfos.begin(); !!iter; ++iter) { |
| StructureStubInfo& stubInfo = **iter; |
| switch (stubInfo.accessType) { |
| case access_put_by_id_transition_normal: |
| case access_put_by_id_transition_direct: { |
| JSCell* origin = stubInfo.codeOrigin.codeOriginOwner(); |
| if ((!origin || Heap::isMarked(origin)) |
| && Heap::isMarked(stubInfo.u.putByIdTransition.previousStructure.get())) |
| visitor.append(&stubInfo.u.putByIdTransition.structure); |
| else |
| allAreMarkedSoFar = false; |
| break; |
| } |
| |
| case access_put_by_id_list: { |
| PolymorphicPutByIdList* list = stubInfo.u.putByIdList.list; |
| JSCell* origin = stubInfo.codeOrigin.codeOriginOwner(); |
| if (origin && !Heap::isMarked(origin)) { |
| allAreMarkedSoFar = false; |
| break; |
| } |
| for (unsigned j = list->size(); j--;) { |
| PutByIdAccess& access = list->m_list[j]; |
| if (!access.isTransition()) |
| continue; |
| if (Heap::isMarked(access.oldStructure())) |
| visitor.append(&access.m_newStructure); |
| else |
| allAreMarkedSoFar = false; |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| } |
| #endif // ENABLE(JIT) |
| |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) { |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| |
| for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { |
| if (shouldMarkTransition(dfgCommon->transitions[i])) { |
| // If the following three things are live, then the target of the |
| // transition is also live: |
| // |
| // - This code block. We know it's live already because otherwise |
| // we wouldn't be scanning ourselves. |
| // |
| // - The code origin of the transition. Transitions may arise from |
| // code that was inlined. They are not relevant if the user's |
| // object that is required for the inlinee to run is no longer |
| // live. |
| // |
| // - The source of the transition. The transition checks if some |
| // heap location holds the source, and if so, stores the target. |
| // Hence the source must be live for the transition to be live. |
| // |
| // We also short-circuit the liveness if the structure is harmless |
| // to mark (i.e. its global object and prototype are both already |
| // live). |
| |
| visitor.append(&dfgCommon->transitions[i].m_to); |
| } else |
| allAreMarkedSoFar = false; |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| if (allAreMarkedSoFar) |
| m_allTransitionsHaveBeenMarked = true; |
| } |
| |
| void CodeBlock::determineLiveness(SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| if (shouldImmediatelyAssumeLivenessDuringScan()) |
| return; |
| |
| #if ENABLE(DFG_JIT) |
| // Check if we have any remaining work to do. |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| if (dfgCommon->livenessHasBeenProved) |
| return; |
| |
| // Now check all of our weak references. If all of them are live, then we |
| // have proved liveness and so we scan our strong references. If at end of |
| // GC we still have not proved liveness, then this code block is toast. |
| bool allAreLiveSoFar = true; |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| if (!Heap::isMarked(dfgCommon->weakReferences[i].get())) { |
| allAreLiveSoFar = false; |
| break; |
| } |
| } |
| if (allAreLiveSoFar) { |
| for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) { |
| if (!Heap::isMarked(dfgCommon->weakStructureReferences[i].get())) { |
| allAreLiveSoFar = false; |
| break; |
| } |
| } |
| } |
| |
| // If some weak references are dead, then this fixpoint iteration was |
| // unsuccessful. |
| if (!allAreLiveSoFar) |
| return; |
| |
| // All weak references are live. Record this information so we don't |
| // come back here again, and scan the strong references. |
| dfgCommon->livenessHasBeenProved = true; |
| stronglyVisitStrongReferences(visitor); |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| void CodeBlock::visitWeakReferences(SlotVisitor& visitor) |
| { |
| propagateTransitions(visitor); |
| determineLiveness(visitor); |
| } |
| |
| void CodeBlock::finalizeUnconditionally() |
| { |
| Interpreter* interpreter = m_vm->interpreter; |
| if (JITCode::couldBeInterpreted(jitType())) { |
| const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); |
| for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) { |
| Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]]; |
| switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) { |
| case op_get_by_id: |
| case op_get_by_id_out_of_line: |
| case op_put_by_id: |
| case op_put_by_id_out_of_line: |
| if (!curInstruction[4].u.structure || Heap::isMarked(curInstruction[4].u.structure.get())) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt property access with structure %p.\n", curInstruction[4].u.structure.get()); |
| curInstruction[4].u.structure.clear(); |
| curInstruction[5].u.operand = 0; |
| break; |
| case op_put_by_id_transition_direct: |
| case op_put_by_id_transition_normal: |
| case op_put_by_id_transition_direct_out_of_line: |
| case op_put_by_id_transition_normal_out_of_line: |
| if (Heap::isMarked(curInstruction[4].u.structure.get()) |
| && Heap::isMarked(curInstruction[6].u.structure.get()) |
| && Heap::isMarked(curInstruction[7].u.structureChain.get())) |
| break; |
| if (Options::verboseOSR()) { |
| dataLogF("Clearing LLInt put transition with structures %p -> %p, chain %p.\n", |
| curInstruction[4].u.structure.get(), |
| curInstruction[6].u.structure.get(), |
| curInstruction[7].u.structureChain.get()); |
| } |
| curInstruction[4].u.structure.clear(); |
| curInstruction[6].u.structure.clear(); |
| curInstruction[7].u.structureChain.clear(); |
| curInstruction[0].u.opcode = interpreter->getOpcode(op_put_by_id); |
| break; |
| case op_get_array_length: |
| break; |
| case op_to_this: |
| if (!curInstruction[2].u.structure || Heap::isMarked(curInstruction[2].u.structure.get())) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt to_this with structure %p.\n", curInstruction[2].u.structure.get()); |
| curInstruction[2].u.structure.clear(); |
| curInstruction[3].u.toThisStatus = merge( |
| curInstruction[3].u.toThisStatus, ToThisClearedByGC); |
| break; |
| case op_create_this: { |
| auto& cacheWriteBarrier = curInstruction[4].u.jsCell; |
| if (!cacheWriteBarrier || cacheWriteBarrier.unvalidatedGet() == JSCell::seenMultipleCalleeObjects()) |
| break; |
| JSCell* cachedFunction = cacheWriteBarrier.get(); |
| if (Heap::isMarked(cachedFunction)) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt create_this with cached callee %p.\n", cachedFunction); |
| cacheWriteBarrier.clear(); |
| break; |
| } |
| case op_resolve_scope: { |
| // Right now this isn't strictly necessary. Any symbol tables that this will refer to |
| // are for outer functions, and we refer to those functions strongly, and they refer |
| // to the symbol table strongly. But it's nice to be on the safe side. |
| WriteBarrierBase<SymbolTable>& symbolTable = curInstruction[6].u.symbolTable; |
| if (!symbolTable || Heap::isMarked(symbolTable.get())) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing dead symbolTable %p.\n", symbolTable.get()); |
| symbolTable.clear(); |
| break; |
| } |
| case op_get_from_scope: |
| case op_put_to_scope: { |
| ResolveModeAndType modeAndType = |
| ResolveModeAndType(curInstruction[4].u.operand); |
| if (modeAndType.type() == GlobalVar || modeAndType.type() == GlobalVarWithVarInjectionChecks || modeAndType.type() == LocalClosureVar) |
| continue; |
| WriteBarrierBase<Structure>& structure = curInstruction[5].u.structure; |
| if (!structure || Heap::isMarked(structure.get())) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing scope access with structure %p.\n", structure.get()); |
| structure.clear(); |
| break; |
| } |
| default: |
| OpcodeID opcodeID = interpreter->getOpcodeID(curInstruction[0].u.opcode); |
| ASSERT_WITH_MESSAGE_UNUSED(opcodeID, false, "Unhandled opcode in CodeBlock::finalizeUnconditionally, %s(%d) at bc %u", opcodeNames[opcodeID], opcodeID, propertyAccessInstructions[i]); |
| } |
| } |
| |
| for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) { |
| if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) { |
| if (Options::verboseOSR()) |
| dataLog("Clearing LLInt call from ", *this, "\n"); |
| m_llintCallLinkInfos[i].unlink(); |
| } |
| if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get())) |
| m_llintCallLinkInfos[i].lastSeenCallee.clear(); |
| } |
| } |
| |
| #if ENABLE(DFG_JIT) |
| // Check if we're not live. If we are, then jettison. |
| if (!isKnownToBeLiveDuringGC()) { |
| if (Options::verboseOSR()) |
| dataLog(*this, " has dead weak references, jettisoning during GC.\n"); |
| |
| if (DFG::shouldShowDisassembly()) { |
| dataLog(*this, " will be jettisoned because of the following dead references:\n"); |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { |
| DFG::WeakReferenceTransition& transition = dfgCommon->transitions[i]; |
| JSCell* origin = transition.m_codeOrigin.get(); |
| JSCell* from = transition.m_from.get(); |
| JSCell* to = transition.m_to.get(); |
| if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from)) |
| continue; |
| dataLog(" Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n"); |
| } |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| JSCell* weak = dfgCommon->weakReferences[i].get(); |
| if (Heap::isMarked(weak)) |
| continue; |
| dataLog(" Weak reference ", RawPointer(weak), ".\n"); |
| } |
| } |
| |
| jettison(Profiler::JettisonDueToWeakReference); |
| return; |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| #if ENABLE(JIT) |
| // Handle inline caches. |
| if (!!jitCode()) { |
| RepatchBuffer repatchBuffer(this); |
| |
| for (auto iter = callLinkInfosBegin(); !!iter; ++iter) |
| (*iter)->visitWeak(repatchBuffer); |
| |
| for (Bag<StructureStubInfo>::iterator iter = m_stubInfos.begin(); !!iter; ++iter) { |
| StructureStubInfo& stubInfo = **iter; |
| |
| if (stubInfo.visitWeakReferences(repatchBuffer)) |
| continue; |
| |
| resetStubDuringGCInternal(repatchBuffer, stubInfo); |
| } |
| } |
| #endif |
| } |
| |
| void CodeBlock::getStubInfoMap(const ConcurrentJITLocker&, StubInfoMap& result) |
| { |
| #if ENABLE(JIT) |
| toHashMap(m_stubInfos, getStructureStubInfoCodeOrigin, result); |
| #else |
| UNUSED_PARAM(result); |
| #endif |
| } |
| |
| void CodeBlock::getStubInfoMap(StubInfoMap& result) |
| { |
| ConcurrentJITLocker locker(m_lock); |
| getStubInfoMap(locker, result); |
| } |
| |
| void CodeBlock::getCallLinkInfoMap(const ConcurrentJITLocker&, CallLinkInfoMap& result) |
| { |
| #if ENABLE(JIT) |
| toHashMap(m_callLinkInfos, getCallLinkInfoCodeOrigin, result); |
| #else |
| UNUSED_PARAM(result); |
| #endif |
| } |
| |
| void CodeBlock::getCallLinkInfoMap(CallLinkInfoMap& result) |
| { |
| ConcurrentJITLocker locker(m_lock); |
| getCallLinkInfoMap(locker, result); |
| } |
| |
| #if ENABLE(JIT) |
| StructureStubInfo* CodeBlock::addStubInfo() |
| { |
| ConcurrentJITLocker locker(m_lock); |
| return m_stubInfos.add(); |
| } |
| |
| StructureStubInfo* CodeBlock::findStubInfo(CodeOrigin codeOrigin) |
| { |
| for (StructureStubInfo* stubInfo : m_stubInfos) { |
| if (stubInfo->codeOrigin == codeOrigin) |
| return stubInfo; |
| } |
| return nullptr; |
| } |
| |
| CallLinkInfo* CodeBlock::addCallLinkInfo() |
| { |
| ConcurrentJITLocker locker(m_lock); |
| return m_callLinkInfos.add(); |
| } |
| |
| void CodeBlock::resetStub(StructureStubInfo& stubInfo) |
| { |
| if (stubInfo.accessType == access_unset) |
| return; |
| |
| ConcurrentJITLocker locker(m_lock); |
| |
| RepatchBuffer repatchBuffer(this); |
| resetStubInternal(repatchBuffer, stubInfo); |
| } |
| |
| void CodeBlock::resetStubInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) |
| { |
| AccessType accessType = static_cast<AccessType>(stubInfo.accessType); |
| |
| if (Options::verboseOSR()) { |
| // This can be called from GC destructor calls, so we don't try to do a full dump |
| // of the CodeBlock. |
| dataLog("Clearing structure cache (kind ", static_cast<int>(stubInfo.accessType), ") in ", RawPointer(this), ".\n"); |
| } |
| |
| RELEASE_ASSERT(JITCode::isJIT(jitType())); |
| |
| if (isGetByIdAccess(accessType)) |
| resetGetByID(repatchBuffer, stubInfo); |
| else if (isPutByIdAccess(accessType)) |
| resetPutByID(repatchBuffer, stubInfo); |
| else { |
| RELEASE_ASSERT(isInAccess(accessType)); |
| resetIn(repatchBuffer, stubInfo); |
| } |
| |
| stubInfo.reset(); |
| } |
| |
| void CodeBlock::resetStubDuringGCInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) |
| { |
| resetStubInternal(repatchBuffer, stubInfo); |
| stubInfo.resetByGC = true; |
| } |
| |
| CallLinkInfo* CodeBlock::getCallLinkInfoForBytecodeIndex(unsigned index) |
| { |
| for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) { |
| if ((*iter)->codeOrigin() == CodeOrigin(index)) |
| return *iter; |
| } |
| return nullptr; |
| } |
| #endif |
| |
| void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor) |
| { |
| visitor.append(&m_globalObject); |
| visitor.append(&m_ownerExecutable); |
| visitor.append(&m_unlinkedCode); |
| if (m_rareData) |
| m_rareData->m_evalCodeCache.visitAggregate(visitor); |
| visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); |
| for (size_t i = 0; i < m_functionExprs.size(); ++i) |
| visitor.append(&m_functionExprs[i]); |
| for (size_t i = 0; i < m_functionDecls.size(); ++i) |
| visitor.append(&m_functionDecls[i]); |
| for (unsigned i = 0; i < m_objectAllocationProfiles.size(); ++i) |
| m_objectAllocationProfiles[i].visitAggregate(visitor); |
| |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) { |
| // FIXME: This is an antipattern for two reasons. References introduced by the DFG |
| // that aren't in the original CodeBlock being compiled should be weakly referenced. |
| // Inline call frames aren't in the original CodeBlock, so they qualify as weak. Also, |
| // those weak references should already be tracked in the DFG as weak FrozenValues. So, |
| // there is probably no need for this. We already have assertions that this should be |
| // unnecessary. |
| // https://bugs.webkit.org/show_bug.cgi?id=146613 |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| if (dfgCommon->inlineCallFrames.get()) |
| dfgCommon->inlineCallFrames->visitAggregate(visitor); |
| } |
| #endif |
| |
| updateAllPredictions(); |
| } |
| |
| void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| #if ENABLE(DFG_JIT) |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return; |
| |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| |
| for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { |
| if (!!dfgCommon->transitions[i].m_codeOrigin) |
| visitor.append(&dfgCommon->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. |
| visitor.append(&dfgCommon->transitions[i].m_from); |
| visitor.append(&dfgCommon->transitions[i].m_to); |
| } |
| |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) |
| visitor.append(&dfgCommon->weakReferences[i]); |
| |
| for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) |
| visitor.append(&dfgCommon->weakStructureReferences[i]); |
| #endif |
| } |
| |
| CodeBlock* CodeBlock::baselineAlternative() |
| { |
| #if ENABLE(JIT) |
| CodeBlock* result = this; |
| while (result->alternative()) |
| result = result->alternative(); |
| RELEASE_ASSERT(result); |
| RELEASE_ASSERT(JITCode::isBaselineCode(result->jitType()) || result->jitType() == JITCode::None); |
| return result; |
| #else |
| return this; |
| #endif |
| } |
| |
| CodeBlock* CodeBlock::baselineVersion() |
| { |
| #if ENABLE(JIT) |
| if (JITCode::isBaselineCode(jitType())) |
| return this; |
| CodeBlock* result = replacement(); |
| if (!result) { |
| // This can happen if we're creating the original CodeBlock for an executable. |
| // Assume that we're the baseline CodeBlock. |
| RELEASE_ASSERT(jitType() == JITCode::None); |
| return this; |
| } |
| result = result->baselineAlternative(); |
| return result; |
| #else |
| return this; |
| #endif |
| } |
| |
| #if ENABLE(JIT) |
| bool CodeBlock::hasOptimizedReplacement(JITCode::JITType typeToReplace) |
| { |
| return JITCode::isHigherTier(replacement()->jitType(), typeToReplace); |
| } |
| |
| bool CodeBlock::hasOptimizedReplacement() |
| { |
| return hasOptimizedReplacement(jitType()); |
| } |
| #endif |
| |
| HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler requiredHandler) |
| { |
| RELEASE_ASSERT(bytecodeOffset < instructions().size()); |
| |
| if (!m_rareData) |
| return 0; |
| |
| Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers; |
| for (size_t i = 0; i < exceptionHandlers.size(); ++i) { |
| HandlerInfo& handler = exceptionHandlers[i]; |
| if ((requiredHandler == RequiredHandler::CatchHandler) && !handler.isCatchHandler()) |
| continue; |
| |
| // Handlers are ordered innermost first, so the first handler we encounter |
| // that contains the source address is the correct handler to use. |
| if (handler.start <= bytecodeOffset && handler.end > bytecodeOffset) |
| return &handler; |
| } |
| |
| return 0; |
| } |
| |
| unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) |
| { |
| RELEASE_ASSERT(bytecodeOffset < instructions().size()); |
| return m_ownerExecutable->firstLine() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset); |
| } |
| |
| unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset) |
| { |
| int divot; |
| int startOffset; |
| int endOffset; |
| unsigned line; |
| unsigned column; |
| expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); |
| return column; |
| } |
| |
| void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) |
| { |
| m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); |
| divot += m_sourceOffset; |
| column += line ? 1 : firstLineColumnOffset(); |
| line += m_ownerExecutable->firstLine(); |
| } |
| |
| bool CodeBlock::hasOpDebugForLineAndColumn(unsigned line, unsigned column) |
| { |
| Interpreter* interpreter = vm()->interpreter; |
| const Instruction* begin = instructions().begin(); |
| const Instruction* end = instructions().end(); |
| for (const Instruction* it = begin; it != end;) { |
| OpcodeID opcodeID = interpreter->getOpcodeID(it->u.opcode); |
| if (opcodeID == op_debug) { |
| unsigned bytecodeOffset = it - begin; |
| int unused; |
| unsigned opDebugLine; |
| unsigned opDebugColumn; |
| expressionRangeForBytecodeOffset(bytecodeOffset, unused, unused, unused, opDebugLine, opDebugColumn); |
| if (line == opDebugLine && (column == Breakpoint::unspecifiedColumn || column == opDebugColumn)) |
| return true; |
| } |
| it += opcodeLengths[opcodeID]; |
| } |
| return false; |
| } |
| |
| void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) |
| { |
| m_rareCaseProfiles.shrinkToFit(); |
| m_specialFastCaseProfiles.shrinkToFit(); |
| |
| if (shrinkMode == EarlyShrink) { |
| m_constantRegisters.shrinkToFit(); |
| m_constantsSourceCodeRepresentation.shrinkToFit(); |
| |
| if (m_rareData) { |
| m_rareData->m_switchJumpTables.shrinkToFit(); |
| m_rareData->m_stringSwitchJumpTables.shrinkToFit(); |
| } |
| } // else don't shrink these, because we would have already pointed pointers into these tables. |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::unlinkCalls() |
| { |
| if (!!m_alternative) |
| m_alternative->unlinkCalls(); |
| for (size_t i = 0; i < m_llintCallLinkInfos.size(); ++i) { |
| if (m_llintCallLinkInfos[i].isLinked()) |
| m_llintCallLinkInfos[i].unlink(); |
| } |
| if (m_callLinkInfos.isEmpty()) |
| return; |
| if (!m_vm->canUseJIT()) |
| return; |
| RepatchBuffer repatchBuffer(this); |
| for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) { |
| CallLinkInfo& info = **iter; |
| if (!info.isLinked()) |
| continue; |
| info.unlink(repatchBuffer); |
| } |
| } |
| |
| void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| m_incomingCalls.push(incoming); |
| } |
| |
| void CodeBlock::linkIncomingPolymorphicCall(ExecState* callerFrame, PolymorphicCallNode* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| m_incomingPolymorphicCalls.push(incoming); |
| } |
| #endif // ENABLE(JIT) |
| |
| void CodeBlock::unlinkIncomingCalls() |
| { |
| while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) |
| m_incomingLLIntCalls.begin()->unlink(); |
| #if ENABLE(JIT) |
| if (m_incomingCalls.isEmpty() && m_incomingPolymorphicCalls.isEmpty()) |
| return; |
| RepatchBuffer repatchBuffer(this); |
| while (m_incomingCalls.begin() != m_incomingCalls.end()) |
| m_incomingCalls.begin()->unlink(repatchBuffer); |
| while (m_incomingPolymorphicCalls.begin() != m_incomingPolymorphicCalls.end()) |
| m_incomingPolymorphicCalls.begin()->unlink(repatchBuffer); |
| #endif // ENABLE(JIT) |
| } |
| |
| void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| m_incomingLLIntCalls.push(incoming); |
| } |
| |
| void CodeBlock::clearEvalCache() |
| { |
| if (!!m_alternative) |
| m_alternative->clearEvalCache(); |
| if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) |
| otherBlock->clearEvalCache(); |
| if (!m_rareData) |
| return; |
| m_rareData->m_evalCodeCache.clear(); |
| } |
| |
| void CodeBlock::install() |
| { |
| ownerExecutable()->installCode(this); |
| } |
| |
| PassRefPtr<CodeBlock> CodeBlock::newReplacement() |
| { |
| return ownerExecutable()->newReplacementCodeBlockFor(specializationKind()); |
| } |
| |
| #if ENABLE(JIT) |
| CodeBlock* ProgramCodeBlock::replacement() |
| { |
| return jsCast<ProgramExecutable*>(ownerExecutable())->codeBlock(); |
| } |
| |
| CodeBlock* EvalCodeBlock::replacement() |
| { |
| return jsCast<EvalExecutable*>(ownerExecutable())->codeBlock(); |
| } |
| |
| CodeBlock* FunctionCodeBlock::replacement() |
| { |
| return jsCast<FunctionExecutable*>(ownerExecutable())->codeBlockFor(m_isConstructor ? CodeForConstruct : CodeForCall); |
| } |
| |
| DFG::CapabilityLevel ProgramCodeBlock::capabilityLevelInternal() |
| { |
| return DFG::programCapabilityLevel(this); |
| } |
| |
| DFG::CapabilityLevel EvalCodeBlock::capabilityLevelInternal() |
| { |
| return DFG::evalCapabilityLevel(this); |
| } |
| |
| DFG::CapabilityLevel FunctionCodeBlock::capabilityLevelInternal() |
| { |
| if (m_isConstructor) |
| return DFG::functionForConstructCapabilityLevel(this); |
| return DFG::functionForCallCapabilityLevel(this); |
| } |
| #endif |
| |
| void CodeBlock::jettison(Profiler::JettisonReason reason, ReoptimizationMode mode, const FireDetail* detail) |
| { |
| RELEASE_ASSERT(reason != Profiler::NotJettisoned); |
| |
| #if ENABLE(DFG_JIT) |
| if (DFG::shouldShowDisassembly()) { |
| dataLog("Jettisoning ", *this); |
| if (mode == CountReoptimization) |
| dataLog(" and counting reoptimization"); |
| dataLog(" due to ", reason); |
| if (detail) |
| dataLog(", ", *detail); |
| dataLog(".\n"); |
| } |
| |
| DeferGCForAWhile deferGC(*m_heap); |
| RELEASE_ASSERT(JITCode::isOptimizingJIT(jitType())); |
| |
| if (Profiler::Compilation* compilation = jitCode()->dfgCommon()->compilation.get()) |
| compilation->setJettisonReason(reason, detail); |
| |
| // We want to accomplish two things here: |
| // 1) Make sure that if this CodeBlock is on the stack right now, then if we return to it |
| // we should OSR exit at the top of the next bytecode instruction after the return. |
| // 2) Make sure that if we call the owner executable, then we shouldn't call this CodeBlock. |
| |
| // This accomplishes the OSR-exit-on-return part, and does its own book-keeping about |
| // whether the invalidation has already happened. |
| if (!jitCode()->dfgCommon()->invalidate()) { |
| // Nothing to do since we've already been invalidated. That means that we cannot be |
| // the optimized replacement. |
| RELEASE_ASSERT(this != replacement()); |
| return; |
| } |
| |
| if (DFG::shouldShowDisassembly()) |
| dataLog(" Did invalidate ", *this, "\n"); |
| |
| // Count the reoptimization if that's what the user wanted. |
| if (mode == CountReoptimization) { |
| // FIXME: Maybe this should call alternative(). |
| // https://bugs.webkit.org/show_bug.cgi?id=123677 |
| baselineAlternative()->countReoptimization(); |
| if (DFG::shouldShowDisassembly()) |
| dataLog(" Did count reoptimization for ", *this, "\n"); |
| } |
| |
| // Now take care of the entrypoint. |
| if (this != replacement()) { |
| // This means that we were never the entrypoint. This can happen for OSR entry code |
| // blocks. |
| return; |
| } |
| alternative()->optimizeAfterWarmUp(); |
| tallyFrequentExitSites(); |
| alternative()->install(); |
| if (DFG::shouldShowDisassembly()) |
| dataLog(" Did install baseline version of ", *this, "\n"); |
| #else // ENABLE(DFG_JIT) |
| UNUSED_PARAM(mode); |
| UNUSED_PARAM(detail); |
| UNREACHABLE_FOR_PLATFORM(); |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) |
| { |
| if (!codeOrigin.inlineCallFrame) |
| return globalObject(); |
| return jsCast<FunctionExecutable*>(codeOrigin.inlineCallFrame->executable.get())->eitherCodeBlock()->globalObject(); |
| } |
| |
| class RecursionCheckFunctor { |
| public: |
| RecursionCheckFunctor(CallFrame* startCallFrame, CodeBlock* codeBlock, unsigned depthToCheck) |
| : m_startCallFrame(startCallFrame) |
| , m_codeBlock(codeBlock) |
| , m_depthToCheck(depthToCheck) |
| , m_foundStartCallFrame(false) |
| , m_didRecurse(false) |
| { } |
| |
| StackVisitor::Status operator()(StackVisitor& visitor) |
| { |
| CallFrame* currentCallFrame = visitor->callFrame(); |
| |
| if (currentCallFrame == m_startCallFrame) |
| m_foundStartCallFrame = true; |
| |
| if (m_foundStartCallFrame) { |
| if (visitor->callFrame()->codeBlock() == m_codeBlock) { |
| m_didRecurse = true; |
| return StackVisitor::Done; |
| } |
| |
| if (!m_depthToCheck--) |
| return StackVisitor::Done; |
| } |
| |
| return StackVisitor::Continue; |
| } |
| |
| bool didRecurse() const { return m_didRecurse; } |
| |
| private: |
| CallFrame* m_startCallFrame; |
| CodeBlock* m_codeBlock; |
| unsigned m_depthToCheck; |
| bool m_foundStartCallFrame; |
| bool m_didRecurse; |
| }; |
| |
| void CodeBlock::noticeIncomingCall(ExecState* callerFrame) |
| { |
| CodeBlock* callerCodeBlock = callerFrame->codeBlock(); |
| |
| if (Options::verboseCallLink()) |
| dataLog("Noticing call link from ", pointerDump(callerCodeBlock), " to ", *this, "\n"); |
| |
| #if ENABLE(DFG_JIT) |
| if (!m_shouldAlwaysBeInlined) |
| return; |
| |
| if (!callerCodeBlock) { |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because caller is native.\n"); |
| return; |
| } |
| |
| if (!hasBaselineJITProfiling()) |
| return; |
| |
| if (!DFG::mightInlineFunction(this)) |
| return; |
| |
| if (!canInline(m_capabilityLevelState)) |
| return; |
| |
| if (!DFG::isSmallEnoughToInlineCodeInto(callerCodeBlock)) { |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because caller is too large.\n"); |
| return; |
| } |
| |
| if (callerCodeBlock->jitType() == JITCode::InterpreterThunk) { |
| // If the caller is still in the interpreter, then we can't expect inlining to |
| // happen anytime soon. Assume it's profitable to optimize it separately. This |
| // ensures that a function is SABI only if it is called no more frequently than |
| // any of its callers. |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because caller is in LLInt.\n"); |
| return; |
| } |
| |
| if (JITCode::isOptimizingJIT(callerCodeBlock->jitType())) { |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI bcause caller was already optimized.\n"); |
| return; |
| } |
| |
| if (callerCodeBlock->codeType() != FunctionCode) { |
| // If the caller is either eval or global code, assume that that won't be |
| // optimized anytime soon. For eval code this is particularly true since we |
| // delay eval optimization by a *lot*. |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because caller is not a function.\n"); |
| return; |
| } |
| |
| // Recursive calls won't be inlined. |
| RecursionCheckFunctor functor(callerFrame, this, Options::maximumInliningDepth()); |
| vm()->topCallFrame->iterate(functor); |
| |
| if (functor.didRecurse()) { |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because recursion was detected.\n"); |
| m_shouldAlwaysBeInlined = false; |
| return; |
| } |
| |
| if (callerCodeBlock->m_capabilityLevelState == DFG::CapabilityLevelNotSet) { |
| dataLog("In call from ", *callerCodeBlock, " ", callerFrame->codeOrigin(), " to ", *this, ": caller's DFG capability level is not set.\n"); |
| CRASH(); |
| } |
| |
| if (canCompile(callerCodeBlock->m_capabilityLevelState)) |
| return; |
| |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because the caller is not a DFG candidate.\n"); |
| |
| m_shouldAlwaysBeInlined = false; |
| #endif |
| } |
| |
| unsigned CodeBlock::reoptimizationRetryCounter() const |
| { |
| #if ENABLE(JIT) |
| ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); |
| return m_reoptimizationRetryCounter; |
| #else |
| return 0; |
| #endif // ENABLE(JIT) |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::countReoptimization() |
| { |
| m_reoptimizationRetryCounter++; |
| if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) |
| m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); |
| } |
| |
| unsigned CodeBlock::numberOfDFGCompiles() |
| { |
| ASSERT(JITCode::isBaselineCode(jitType())); |
| if (Options::testTheFTL()) { |
| if (m_didFailFTLCompilation) |
| return 1000000; |
| return (m_hasBeenCompiledWithFTL ? 1 : 0) + m_reoptimizationRetryCounter; |
| } |
| return (JITCode::isOptimizingJIT(replacement()->jitType()) ? 1 : 0) + m_reoptimizationRetryCounter; |
| } |
| |
| int32_t CodeBlock::codeTypeThresholdMultiplier() const |
| { |
| if (codeType() == EvalCode) |
| return Options::evalThresholdMultiplier(); |
| |
| return 1; |
| } |
| |
| double CodeBlock::optimizationThresholdScalingFactor() |
| { |
| // This expression arises from doing a least-squares fit of |
| // |
| // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d |
| // |
| // against the data points: |
| // |
| // x F[x_] |
| // 10 0.9 (smallest reasonable code block) |
| // 200 1.0 (typical small-ish code block) |
| // 320 1.2 (something I saw in 3d-cube that I wanted to optimize) |
| // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize) |
| // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort) |
| // 10000 6.0 (similar to above) |
| // |
| // I achieve the minimization using the following Mathematica code: |
| // |
| // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d |
| // |
| // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} |
| // |
| // solution = |
| // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), |
| // {a, b, c, d}][[2]] |
| // |
| // And the code below (to initialize a, b, c, d) is generated by: |
| // |
| // Print["const double " <> ToString[#[[1]]] <> " = " <> |
| // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution |
| // |
| // We've long known the following to be true: |
| // - Small code blocks are cheap to optimize and so we should do it sooner rather |
| // than later. |
| // - Large code blocks are expensive to optimize and so we should postpone doing so, |
| // and sometimes have a large enough threshold that we never optimize them. |
| // - The difference in cost is not totally linear because (a) just invoking the |
| // DFG incurs some base cost and (b) for large code blocks there is enough slop |
| // in the correlation between instruction count and the actual compilation cost |
| // that for those large blocks, the instruction count should not have a strong |
| // influence on our threshold. |
| // |
| // I knew the goals but I didn't know how to achieve them; so I picked an interesting |
| // example where the heuristics were right (code block in 3d-cube with instruction |
| // count 320, which got compiled early as it should have been) and one where they were |
| // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive |
| // to compile and didn't run often enough to warrant compilation in my opinion), and |
| // then threw in additional data points that represented my own guess of what our |
| // heuristics should do for some round-numbered examples. |
| // |
| // The expression to which I decided to fit the data arose because I started with an |
| // affine function, and then did two things: put the linear part in an Abs to ensure |
| // that the fit didn't end up choosing a negative value of c (which would result in |
| // the function turning over and going negative for large x) and I threw in a Sqrt |
| // term because Sqrt represents my intution that the function should be more sensitive |
| // to small changes in small values of x, but less sensitive when x gets large. |
| |
| // Note that the current fit essentially eliminates the linear portion of the |
| // expression (c == 0.0). |
| const double a = 0.061504; |
| const double b = 1.02406; |
| const double c = 0.0; |
| const double d = 0.825914; |
| |
| double instructionCount = this->instructionCount(); |
| |
| ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. |
| |
| double result = d + a * sqrt(instructionCount + b) + c * instructionCount; |
| |
| result *= codeTypeThresholdMultiplier(); |
| |
| if (Options::verboseOSR()) { |
| dataLog( |
| *this, ": instruction count is ", instructionCount, |
| ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(), |
| "\n"); |
| } |
| return result; |
| } |
| |
| static int32_t clipThreshold(double threshold) |
| { |
| if (threshold < 1.0) |
| return 1; |
| |
| if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max())) |
| return std::numeric_limits<int32_t>::max(); |
| |
| return static_cast<int32_t>(threshold); |
| } |
| |
| int32_t CodeBlock::adjustedCounterValue(int32_t desiredThreshold) |
| { |
| return clipThreshold( |
| static_cast<double>(desiredThreshold) * |
| optimizationThresholdScalingFactor() * |
| (1 << reoptimizationRetryCounter())); |
| } |
| |
| bool CodeBlock::checkIfOptimizationThresholdReached() |
| { |
| #if ENABLE(DFG_JIT) |
| if (DFG::Worklist* worklist = DFG::existingGlobalDFGWorklistOrNull()) { |
| if (worklist->compilationState(DFG::CompilationKey(this, DFG::DFGMode)) |
| == DFG::Worklist::Compiled) { |
| optimizeNextInvocation(); |
| return true; |
| } |
| } |
| #endif |
| |
| return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); |
| } |
| |
| void CodeBlock::optimizeNextInvocation() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing next invocation.\n"); |
| m_jitExecuteCounter.setNewThreshold(0, this); |
| } |
| |
| void CodeBlock::dontOptimizeAnytimeSoon() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Not optimizing anytime soon.\n"); |
| m_jitExecuteCounter.deferIndefinitely(); |
| } |
| |
| void CodeBlock::optimizeAfterWarmUp() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing after warm-up.\n"); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold( |
| adjustedCounterValue(Options::thresholdForOptimizeAfterWarmUp()), this); |
| #endif |
| } |
| |
| void CodeBlock::optimizeAfterLongWarmUp() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing after long warm-up.\n"); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold( |
| adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp()), this); |
| #endif |
| } |
| |
| void CodeBlock::optimizeSoon() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing soon.\n"); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold( |
| adjustedCounterValue(Options::thresholdForOptimizeSoon()), this); |
| #endif |
| } |
| |
| void CodeBlock::forceOptimizationSlowPathConcurrently() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Forcing slow path concurrently.\n"); |
| m_jitExecuteCounter.forceSlowPathConcurrently(); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result) |
| { |
| JITCode::JITType type = jitType(); |
| if (type != JITCode::BaselineJIT) { |
| dataLog(*this, ": expected to have baseline code but have ", type, "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| CodeBlock* theReplacement = replacement(); |
| if ((result == CompilationSuccessful) != (theReplacement != this)) { |
| dataLog(*this, ": we have result = ", result, " but "); |
| if (theReplacement == this) |
| dataLog("we are our own replacement.\n"); |
| else |
| dataLog("our replacement is ", pointerDump(theReplacement), "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| switch (result) { |
| case CompilationSuccessful: |
| RELEASE_ASSERT(JITCode::isOptimizingJIT(replacement()->jitType())); |
| optimizeNextInvocation(); |
| return; |
| case CompilationFailed: |
| dontOptimizeAnytimeSoon(); |
| return; |
| case CompilationDeferred: |
| // We'd like to do dontOptimizeAnytimeSoon() but we cannot because |
| // forceOptimizationSlowPathConcurrently() is inherently racy. It won't |
| // necessarily guarantee anything. So, we make sure that even if that |
| // function ends up being a no-op, we still eventually retry and realize |
| // that we have optimized code ready. |
| optimizeAfterWarmUp(); |
| return; |
| case CompilationInvalidated: |
| // Retry with exponential backoff. |
| countReoptimization(); |
| optimizeAfterWarmUp(); |
| return; |
| } |
| |
| dataLog("Unrecognized result: ", static_cast<int>(result), "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| #endif |
| |
| uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) |
| { |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| // Compute this the lame way so we don't saturate. This is called infrequently |
| // enough that this loop won't hurt us. |
| unsigned result = desiredThreshold; |
| for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { |
| unsigned newResult = result << 1; |
| if (newResult < result) |
| return std::numeric_limits<uint32_t>::max(); |
| result = newResult; |
| } |
| return result; |
| } |
| |
| uint32_t CodeBlock::exitCountThresholdForReoptimization() |
| { |
| return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); |
| } |
| |
| uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() |
| { |
| return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); |
| } |
| |
| bool CodeBlock::shouldReoptimizeNow() |
| { |
| return osrExitCounter() >= exitCountThresholdForReoptimization(); |
| } |
| |
| bool CodeBlock::shouldReoptimizeFromLoopNow() |
| { |
| return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); |
| } |
| #endif |
| |
| ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset) |
| { |
| for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) { |
| if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset) |
| return &m_arrayProfiles[i]; |
| } |
| return 0; |
| } |
| |
| ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset) |
| { |
| ArrayProfile* result = getArrayProfile(bytecodeOffset); |
| if (result) |
| return result; |
| return addArrayProfile(bytecodeOffset); |
| } |
| |
| void CodeBlock::updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) |
| { |
| ConcurrentJITLocker locker(m_lock); |
| |
| numberOfLiveNonArgumentValueProfiles = 0; |
| numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. |
| for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { |
| ValueProfile* profile = getFromAllValueProfiles(i); |
| unsigned numSamples = profile->totalNumberOfSamples(); |
| if (numSamples > ValueProfile::numberOfBuckets) |
| numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. |
| numberOfSamplesInProfiles += numSamples; |
| if (profile->m_bytecodeOffset < 0) { |
| profile->computeUpdatedPrediction(locker); |
| continue; |
| } |
| if (profile->numberOfSamples() || profile->m_prediction != SpecNone) |
| numberOfLiveNonArgumentValueProfiles++; |
| profile->computeUpdatedPrediction(locker); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| m_lazyOperandValueProfiles.computeUpdatedPredictions(locker); |
| #endif |
| } |
| |
| void CodeBlock::updateAllValueProfilePredictions() |
| { |
| unsigned ignoredValue1, ignoredValue2; |
| updateAllPredictionsAndCountLiveness(ignoredValue1, ignoredValue2); |
| } |
| |
| void CodeBlock::updateAllArrayPredictions() |
| { |
| ConcurrentJITLocker locker(m_lock); |
| |
| for (unsigned i = m_arrayProfiles.size(); i--;) |
| m_arrayProfiles[i].computeUpdatedPrediction(locker, this); |
| |
| // Don't count these either, for similar reasons. |
| for (unsigned i = m_arrayAllocationProfiles.size(); i--;) |
| m_arrayAllocationProfiles[i].updateIndexingType(); |
| } |
| |
| void CodeBlock::updateAllPredictions() |
| { |
| updateAllValueProfilePredictions(); |
| updateAllArrayPredictions(); |
| } |
| |
| bool CodeBlock::shouldOptimizeNow() |
| { |
| if (Options::verboseOSR()) |
| dataLog("Considering optimizing ", *this, "...\n"); |
| |
| if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) |
| return true; |
| |
| updateAllArrayPredictions(); |
| |
| unsigned numberOfLiveNonArgumentValueProfiles; |
| unsigned numberOfSamplesInProfiles; |
| updateAllPredictionsAndCountLiveness(numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); |
| |
| if (Options::verboseOSR()) { |
| dataLogF( |
| "Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", |
| (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), |
| numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), |
| (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), |
| numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles()); |
| } |
| |
| if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate()) |
| && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) |
| && static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) |
| return true; |
| |
| ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max()); |
| m_optimizationDelayCounter++; |
| optimizeAfterWarmUp(); |
| return false; |
| } |
| |
| #if ENABLE(DFG_JIT) |
| void CodeBlock::tallyFrequentExitSites() |
| { |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| ASSERT(alternative()->jitType() == JITCode::BaselineJIT); |
| |
| CodeBlock* profiledBlock = alternative(); |
| |
| switch (jitType()) { |
| case JITCode::DFGJIT: { |
| DFG::JITCode* jitCode = m_jitCode->dfg(); |
| for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { |
| DFG::OSRExit& exit = jitCode->osrExit[i]; |
| exit.considerAddingAsFrequentExitSite(profiledBlock); |
| } |
| break; |
| } |
| |
| #if ENABLE(FTL_JIT) |
| case JITCode::FTLJIT: { |
| // There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit |
| // vector contains a totally different type, that just so happens to behave like |
| // DFG::JITCode::osrExit. |
| FTL::JITCode* jitCode = m_jitCode->ftl(); |
| for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { |
| FTL::OSRExit& exit = jitCode->osrExit[i]; |
| exit.considerAddingAsFrequentExitSite(profiledBlock); |
| } |
| break; |
| } |
| #endif |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| #if ENABLE(VERBOSE_VALUE_PROFILE) |
| void CodeBlock::dumpValueProfiles() |
| { |
| dataLog("ValueProfile for ", *this, ":\n"); |
| for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { |
| ValueProfile* profile = getFromAllValueProfiles(i); |
| if (profile->m_bytecodeOffset < 0) { |
| ASSERT(profile->m_bytecodeOffset == -1); |
| dataLogF(" arg = %u: ", i); |
| } else |
| dataLogF(" bc = %d: ", profile->m_bytecodeOffset); |
| if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) { |
| dataLogF("<empty>\n"); |
| continue; |
| } |
| profile->dump(WTF::dataFile()); |
| dataLogF("\n"); |
| } |
| dataLog("RareCaseProfile for ", *this, ":\n"); |
| for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { |
| RareCaseProfile* profile = rareCaseProfile(i); |
| dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); |
| } |
| dataLog("SpecialFastCaseProfile for ", *this, ":\n"); |
| for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) { |
| RareCaseProfile* profile = specialFastCaseProfile(i); |
| dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); |
| } |
| } |
| #endif // ENABLE(VERBOSE_VALUE_PROFILE) |
| |
| unsigned CodeBlock::frameRegisterCount() |
| { |
| switch (jitType()) { |
| case JITCode::InterpreterThunk: |
| return LLInt::frameRegisterCountFor(this); |
| |
| #if ENABLE(JIT) |
| case JITCode::BaselineJIT: |
| return JIT::frameRegisterCountFor(this); |
| #endif // ENABLE(JIT) |
| |
| #if ENABLE(DFG_JIT) |
| case JITCode::DFGJIT: |
| case JITCode::FTLJIT: |
| return jitCode()->dfgCommon()->frameRegisterCount; |
| #endif // ENABLE(DFG_JIT) |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| } |
| |
| int CodeBlock::stackPointerOffset() |
| { |
| return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); |
| } |
| |
| size_t CodeBlock::predictedMachineCodeSize() |
| { |
| // This will be called from CodeBlock::CodeBlock before either m_vm or the |
| // instructions have been initialized. It's OK to return 0 because what will really |
| // matter is the recomputation of this value when the slow path is triggered. |
| if (!m_vm) |
| return 0; |
| |
| if (!m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT) |
| return 0; // It's as good of a prediction as we'll get. |
| |
| // Be conservative: return a size that will be an overestimation 84% of the time. |
| double multiplier = m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() + |
| m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation(); |
| |
| // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing |
| // here is OK, since this whole method is just a heuristic. |
| if (multiplier < 0 || multiplier > 1000) |
| return 0; |
| |
| double doubleResult = multiplier * m_instructions.size(); |
| |
| // Be even more paranoid: silently reject values that won't fit into a size_t. If |
| // the function is so huge that we can't even fit it into virtual memory then we |
| // should probably have some other guards in place to prevent us from even getting |
| // to this point. |
| if (doubleResult > std::numeric_limits<size_t>::max()) |
| return 0; |
| |
| return static_cast<size_t>(doubleResult); |
| } |
| |
| bool CodeBlock::usesOpcode(OpcodeID opcodeID) |
| { |
| Interpreter* interpreter = vm()->interpreter; |
| Instruction* instructionsBegin = instructions().begin(); |
| unsigned instructionCount = instructions().size(); |
| |
| for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) { |
| switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) { |
| #define DEFINE_OP(curOpcode, length) \ |
| case curOpcode: \ |
| if (curOpcode == opcodeID) \ |
| return true; \ |
| bytecodeOffset += length; \ |
| break; |
| FOR_EACH_OPCODE_ID(DEFINE_OP) |
| #undef DEFINE_OP |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| String CodeBlock::nameForRegister(VirtualRegister virtualRegister) |
| { |
| for (unsigned i = 0; i < m_constantRegisters.size(); i++) { |
| if (m_constantRegisters[i].get().isEmpty()) |
| continue; |
| if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(m_constantRegisters[i].get())) { |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| auto end = symbolTable->end(locker); |
| for (auto ptr = symbolTable->begin(locker); ptr != end; ++ptr) { |
| if (ptr->value.varOffset() == VarOffset(virtualRegister)) { |
| // FIXME: This won't work from the compilation thread. |
| // https://bugs.webkit.org/show_bug.cgi?id=115300 |
| return ptr->key.get(); |
| } |
| } |
| } |
| } |
| if (virtualRegister == thisRegister()) |
| return ASCIILiteral("this"); |
| if (virtualRegister.isArgument()) |
| return String::format("arguments[%3d]", virtualRegister.toArgument()); |
| |
| return ""; |
| } |
| |
| ValueProfile* CodeBlock::valueProfileForBytecodeOffset(int bytecodeOffset) |
| { |
| ValueProfile* result = binarySearch<ValueProfile, int>( |
| m_valueProfiles, m_valueProfiles.size(), bytecodeOffset, |
| getValueProfileBytecodeOffset<ValueProfile>); |
| ASSERT(result->m_bytecodeOffset != -1); |
| ASSERT(instructions()[bytecodeOffset + opcodeLength( |
| m_vm->interpreter->getOpcodeID( |
| instructions()[bytecodeOffset].u.opcode)) - 1].u.profile == result); |
| return result; |
| } |
| |
| void CodeBlock::validate() |
| { |
| BytecodeLivenessAnalysis liveness(this); // Compute directly from scratch so it doesn't effect CodeBlock footprint. |
| |
| FastBitVector liveAtHead = liveness.getLivenessInfoAtBytecodeOffset(0); |
| |
| if (liveAtHead.numBits() != static_cast<size_t>(m_numCalleeRegisters)) { |
| beginValidationDidFail(); |
| dataLog(" Wrong number of bits in result!\n"); |
| dataLog(" Result: ", liveAtHead, "\n"); |
| dataLog(" Bit count: ", liveAtHead.numBits(), "\n"); |
| endValidationDidFail(); |
| } |
| |
| for (unsigned i = m_numCalleeRegisters; i--;) { |
| VirtualRegister reg = virtualRegisterForLocal(i); |
| |
| if (liveAtHead.get(i)) { |
| beginValidationDidFail(); |
| dataLog(" Variable ", reg, " is expected to be dead.\n"); |
| dataLog(" Result: ", liveAtHead, "\n"); |
| endValidationDidFail(); |
| } |
| } |
| } |
| |
| void CodeBlock::beginValidationDidFail() |
| { |
| dataLog("Validation failure in ", *this, ":\n"); |
| dataLog("\n"); |
| } |
| |
| void CodeBlock::endValidationDidFail() |
| { |
| dataLog("\n"); |
| dumpBytecode(); |
| dataLog("\n"); |
| dataLog("Validation failure.\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| void CodeBlock::addBreakpoint(unsigned numBreakpoints) |
| { |
| m_numBreakpoints += numBreakpoints; |
| ASSERT(m_numBreakpoints); |
| if (JITCode::isOptimizingJIT(jitType())) |
| jettison(Profiler::JettisonDueToDebuggerBreakpoint); |
| } |
| |
| void CodeBlock::setSteppingMode(CodeBlock::SteppingMode mode) |
| { |
| m_steppingMode = mode; |
| if (mode == SteppingModeEnabled && JITCode::isOptimizingJIT(jitType())) |
| jettison(Profiler::JettisonDueToDebuggerStepping); |
| } |
| |
| RareCaseProfile* CodeBlock::rareCaseProfileForBytecodeOffset(int bytecodeOffset) |
| { |
| return tryBinarySearch<RareCaseProfile, int>( |
| m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset, |
| getRareCaseProfileBytecodeOffset); |
| } |
| |
| #if ENABLE(JIT) |
| DFG::CapabilityLevel CodeBlock::capabilityLevel() |
| { |
| DFG::CapabilityLevel result = capabilityLevelInternal(); |
| m_capabilityLevelState = result; |
| return result; |
| } |
| #endif |
| |
| void CodeBlock::insertBasicBlockBoundariesForControlFlowProfiler(Vector<Instruction, 0, UnsafeVectorOverflow>& instructions) |
| { |
| const Vector<size_t>& bytecodeOffsets = unlinkedCodeBlock()->opProfileControlFlowBytecodeOffsets(); |
| for (size_t i = 0, offsetsLength = bytecodeOffsets.size(); i < offsetsLength; i++) { |
| // Because op_profile_control_flow is emitted at the beginning of every basic block, finding |
| // the next op_profile_control_flow will give us the text range of a single basic block. |
| size_t startIdx = bytecodeOffsets[i]; |
| RELEASE_ASSERT(vm()->interpreter->getOpcodeID(instructions[startIdx].u.opcode) == op_profile_control_flow); |
| int basicBlockStartOffset = instructions[startIdx + 1].u.operand; |
| int basicBlockEndOffset; |
| if (i + 1 < offsetsLength) { |
| size_t endIdx = bytecodeOffsets[i + 1]; |
| RELEASE_ASSERT(vm()->interpreter->getOpcodeID(instructions[endIdx].u.opcode) == op_profile_control_flow); |
| basicBlockEndOffset = instructions[endIdx + 1].u.operand - 1; |
| } else { |
| basicBlockEndOffset = m_sourceOffset + m_ownerExecutable->source().length() - 1; // Offset before the closing brace. |
| basicBlockStartOffset = std::min(basicBlockStartOffset, basicBlockEndOffset); // Some start offsets may be at the closing brace, ensure it is the offset before. |
| } |
| |
| // The following check allows for the same textual JavaScript basic block to have its bytecode emitted more |
| // than once and still play nice with the control flow profiler. When basicBlockStartOffset is larger than |
| // basicBlockEndOffset, it indicates that the bytecode generator has emitted code for the same AST node |
| // more than once (for example: ForInNode, Finally blocks in TryNode, etc). Though these are different |
| // basic blocks at the bytecode level, they are generated from the same textual basic block in the JavaScript |
| // program. The condition: |
| // (basicBlockEndOffset < basicBlockStartOffset) |
| // is encountered when op_profile_control_flow lies across the boundary of these duplicated bytecode basic |
| // blocks and the textual offset goes from the end of the duplicated block back to the beginning. These |
| // ranges are dummy ranges and are ignored. The duplicated bytecode basic blocks point to the same |
| // internal data structure, so if any of them execute, it will record the same textual basic block in the |
| // JavaScript program as executing. |
| // At the bytecode level, this situation looks like: |
| // j: op_profile_control_flow (from j->k, we have basicBlockEndOffset < basicBlockStartOffset) |
| // ... |
| // k: op_profile_control_flow (we want to skip over the j->k block and start fresh at offset k as the start of a new basic block k->m). |
| // ... |
| // m: op_profile_control_flow |
| if (basicBlockEndOffset < basicBlockStartOffset) { |
| RELEASE_ASSERT(i + 1 < offsetsLength); // We should never encounter dummy blocks at the end of a CodeBlock. |
| instructions[startIdx + 1].u.basicBlockLocation = vm()->controlFlowProfiler()->dummyBasicBlock(); |
| continue; |
| } |
| |
| BasicBlockLocation* basicBlockLocation = vm()->controlFlowProfiler()->getBasicBlockLocation(m_ownerExecutable->sourceID(), basicBlockStartOffset, basicBlockEndOffset); |
| |
| // Find all functions that are enclosed within the range: [basicBlockStartOffset, basicBlockEndOffset] |
| // and insert these functions' start/end offsets as gaps in the current BasicBlockLocation. |
| // This is necessary because in the original source text of a JavaScript program, |
| // function literals form new basic blocks boundaries, but they aren't represented |
| // inside the CodeBlock's instruction stream. |
| auto insertFunctionGaps = [basicBlockLocation, basicBlockStartOffset, basicBlockEndOffset] (const WriteBarrier<FunctionExecutable>& functionExecutable) { |
| const UnlinkedFunctionExecutable* executable = functionExecutable->unlinkedExecutable(); |
| int functionStart = executable->typeProfilingStartOffset(); |
| int functionEnd = executable->typeProfilingEndOffset(); |
| if (functionStart >= basicBlockStartOffset && functionEnd <= basicBlockEndOffset) |
| basicBlockLocation->insertGap(functionStart, functionEnd); |
| }; |
| |
| for (const WriteBarrier<FunctionExecutable>& executable : m_functionDecls) |
| insertFunctionGaps(executable); |
| for (const WriteBarrier<FunctionExecutable>& executable : m_functionExprs) |
| insertFunctionGaps(executable); |
| |
| instructions[startIdx + 1].u.basicBlockLocation = basicBlockLocation; |
| } |
| } |
| |
| } // namespace JSC |