blob: aad6f29553fb20c4aa1c330cb2902a05c37fb190 [file] [log] [blame]
//
// Copyright 2019 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// FrameCapture.cpp:
// ANGLE Frame capture implementation.
//
#include "libANGLE/FrameCapture.h"
#include <cerrno>
#include <cstring>
#include <fstream>
#include <string>
#include "sys/stat.h"
#include "common/system_utils.h"
#include "libANGLE/Context.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/Query.h"
#include "libANGLE/ResourceMap.h"
#include "libANGLE/Shader.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/capture_gles_2_0_autogen.h"
#include "libANGLE/capture_gles_3_0_autogen.h"
#include "libANGLE/gl_enum_utils.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/queryutils.h"
#define USE_SYSTEM_ZLIB
#include "compression_utils_portable.h"
#if !ANGLE_CAPTURE_ENABLED
# error Frame capture must be enbled to include this file.
#endif // !ANGLE_CAPTURE_ENABLED
namespace angle
{
namespace
{
constexpr char kEnabledVarName[] = "ANGLE_CAPTURE_ENABLED";
constexpr char kOutDirectoryVarName[] = "ANGLE_CAPTURE_OUT_DIR";
constexpr char kFrameStartVarName[] = "ANGLE_CAPTURE_FRAME_START";
constexpr char kFrameEndVarName[] = "ANGLE_CAPTURE_FRAME_END";
constexpr char kCaptureLabel[] = "ANGLE_CAPTURE_LABEL";
constexpr char kCompression[] = "ANGLE_CAPTURE_COMPRESSION";
#if defined(ANGLE_PLATFORM_ANDROID)
constexpr char kAndroidCaptureEnabled[] = "debug.angle.capture.enabled";
constexpr char kAndroidOutDir[] = "debug.angle.capture.out_dir";
constexpr char kAndroidFrameStart[] = "debug.angle.capture.frame_start";
constexpr char kAndroidFrameEnd[] = "debug.angle.capture.frame_end";
constexpr char kAndroidCaptureLabel[] = "debug.angle.capture.label";
constexpr char kAndroidCompression[] = "debug.angle.capture.compression";
constexpr int kStreamSize = 64;
constexpr char kAndroidOutputSubdir[] = "/angle_capture/";
// Call out to 'getprop' on a shell and return a string if the value was set
std::string AndroidGetEnvFromProp(const char *key)
{
std::string command("getprop ");
command += key;
// Run the command and open a I/O stream to read results
char stream[kStreamSize] = {};
FILE *pipe = popen(command.c_str(), "r");
if (pipe != nullptr)
{
fgets(stream, kStreamSize, pipe);
pclose(pipe);
}
// Right strip white space
std::string result(stream);
result.erase(result.find_last_not_of(" \n\r\t") + 1);
return result;
}
void PrimeAndroidEnvironmentVariables()
{
std::string enabled = AndroidGetEnvFromProp(kAndroidCaptureEnabled);
if (!enabled.empty())
{
INFO() << "Frame capture read " << enabled << " from " << kAndroidCaptureEnabled;
setenv(kEnabledVarName, enabled.c_str(), 1);
}
std::string outDir = AndroidGetEnvFromProp(kAndroidOutDir);
if (!outDir.empty())
{
INFO() << "Frame capture read " << outDir << " from " << kAndroidOutDir;
setenv(kOutDirectoryVarName, outDir.c_str(), 1);
}
std::string frameStart = AndroidGetEnvFromProp(kAndroidFrameStart);
if (!frameStart.empty())
{
INFO() << "Frame capture read " << frameStart << " from " << kAndroidFrameStart;
setenv(kFrameStartVarName, frameStart.c_str(), 1);
}
std::string frameEnd = AndroidGetEnvFromProp(kAndroidFrameEnd);
if (!frameEnd.empty())
{
INFO() << "Frame capture read " << frameEnd << " from " << kAndroidFrameEnd;
setenv(kFrameEndVarName, frameEnd.c_str(), 1);
}
std::string captureLabel = AndroidGetEnvFromProp(kAndroidCaptureLabel);
if (!captureLabel.empty())
{
INFO() << "Frame capture read " << captureLabel << " from " << kAndroidCaptureLabel;
setenv(kCaptureLabel, captureLabel.c_str(), 1);
}
std::string compression = AndroidGetEnvFromProp(kAndroidCompression);
if (!compression.empty())
{
INFO() << "Frame capture read " << compression << " from " << kAndroidCompression;
setenv(kCompression, compression.c_str(), 1);
}
}
#endif
std::string GetDefaultOutDirectory()
{
#if defined(ANGLE_PLATFORM_ANDROID)
std::string path = "/sdcard/Android/data/";
// Linux interface to get application id of the running process
FILE *cmdline = fopen("/proc/self/cmdline", "r");
char applicationId[512];
if (cmdline)
{
fread(applicationId, 1, sizeof(applicationId), cmdline);
fclose(cmdline);
// Some package may have application id as <app_name>:<cmd_name>
char *colonSep = strchr(applicationId, ':');
if (colonSep)
{
*colonSep = '\0';
}
}
else
{
ERR() << "not able to lookup application id";
}
path += std::string(applicationId) + kAndroidOutputSubdir;
// Check for existance of output path
struct stat dir_stat;
if (stat(path.c_str(), &dir_stat) == -1)
{
ERR() << "Output directory '" << path
<< "' does not exist. Create it over adb using mkdir.";
}
return path;
#else
return std::string("./");
#endif // defined(ANGLE_PLATFORM_ANDROID)
}
struct FmtCapturePrefix
{
FmtCapturePrefix(gl::ContextID contextIdIn, const std::string &captureLabelIn)
: contextId(contextIdIn), captureLabel(captureLabelIn)
{}
gl::ContextID contextId;
const std::string &captureLabel;
};
std::ostream &operator<<(std::ostream &os, const FmtCapturePrefix &fmt)
{
if (fmt.captureLabel.empty())
{
os << "angle";
}
else
{
os << fmt.captureLabel;
}
os << "_capture_context" << static_cast<int>(fmt.contextId);
return os;
}
struct FmtReplayFunction
{
FmtReplayFunction(gl::ContextID contextIdIn, uint32_t frameIndexIn)
: contextId(contextIdIn), frameIndex(frameIndexIn)
{}
gl::ContextID contextId;
uint32_t frameIndex;
};
std::ostream &operator<<(std::ostream &os, const FmtReplayFunction &fmt)
{
os << "ReplayContext" << static_cast<int>(fmt.contextId) << "Frame" << fmt.frameIndex << "()";
return os;
}
std::string GetCaptureFileName(gl::ContextID contextId,
const std::string &captureLabel,
uint32_t frameIndex,
const char *suffix)
{
std::stringstream fnameStream;
fnameStream << FmtCapturePrefix(contextId, captureLabel) << "_frame" << std::setfill('0')
<< std::setw(3) << frameIndex << suffix;
return fnameStream.str();
}
std::string GetCaptureFilePath(const std::string &outDir,
gl::ContextID contextId,
const std::string &captureLabel,
uint32_t frameIndex,
const char *suffix)
{
return outDir + GetCaptureFileName(contextId, captureLabel, frameIndex, suffix);
}
void WriteParamStaticVarName(const CallCapture &call,
const ParamCapture &param,
int counter,
std::ostream &out)
{
out << call.name() << "_" << param.name << "_" << counter;
}
void WriteGLFloatValue(std::ostream &out, GLfloat value)
{
// Check for non-representable values
ASSERT(std::numeric_limits<float>::has_infinity);
ASSERT(std::numeric_limits<float>::has_quiet_NaN);
if (std::isinf(value))
{
float negativeInf = -std::numeric_limits<float>::infinity();
if (value == negativeInf)
{
out << "-";
}
out << "std::numeric_limits<float>::infinity()";
}
else if (std::isnan(value))
{
out << "std::numeric_limits<float>::quiet_NaN()";
}
else
{
out << value;
}
}
template <typename T, typename CastT = T>
void WriteInlineData(const std::vector<uint8_t> &vec, std::ostream &out)
{
const T *data = reinterpret_cast<const T *>(vec.data());
size_t count = vec.size() / sizeof(T);
if (data == nullptr)
{
return;
}
out << static_cast<CastT>(data[0]);
for (size_t dataIndex = 1; dataIndex < count; ++dataIndex)
{
out << ", " << static_cast<CastT>(data[dataIndex]);
}
}
template <>
void WriteInlineData<GLfloat>(const std::vector<uint8_t> &vec, std::ostream &out)
{
const float *data = reinterpret_cast<const GLfloat *>(vec.data());
size_t count = vec.size() / sizeof(GLfloat);
if (data == nullptr)
{
return;
}
WriteGLFloatValue(out, data[0]);
for (size_t dataIndex = 1; dataIndex < count; ++dataIndex)
{
out << ", ";
WriteGLFloatValue(out, data[dataIndex]);
}
}
template <>
void WriteInlineData<GLchar>(const std::vector<uint8_t> &vec, std::ostream &out)
{
const GLchar *data = reinterpret_cast<const GLchar *>(vec.data());
size_t count = vec.size() / sizeof(GLchar);
if (data == nullptr || data[0] == '\0')
{
return;
}
out << "\"";
for (size_t dataIndex = 0; dataIndex < count; ++dataIndex)
{
if (data[dataIndex] == '\0')
break;
out << static_cast<GLchar>(data[dataIndex]);
}
out << "\"";
}
constexpr size_t kInlineDataThreshold = 128;
void WriteStringParamReplay(std::ostream &out, const ParamCapture &param)
{
const std::vector<uint8_t> &data = param.data[0];
// null terminate C style string
ASSERT(data.size() > 0 && data.back() == '\0');
std::string str(data.begin(), data.end() - 1);
out << "\"" << str << "\"";
}
void WriteStringPointerParamReplay(DataCounters *counters,
std::ostream &out,
std::ostream &header,
const CallCapture &call,
const ParamCapture &param)
{
int counter = counters->getAndIncrement(call.entryPoint, param.name);
header << "const char *";
WriteParamStaticVarName(call, param, counter, header);
header << "[] = { \n";
for (const std::vector<uint8_t> &data : param.data)
{
// null terminate C style string
ASSERT(data.size() > 0 && data.back() == '\0');
std::string str(data.begin(), data.end() - 1);
header << " R\"(" << str << ")\",\n";
}
header << " };\n";
WriteParamStaticVarName(call, param, counter, out);
}
template <typename ParamT>
void WriteResourceIDPointerParamReplay(DataCounters *counters,
std::ostream &out,
std::ostream &header,
const CallCapture &call,
const ParamCapture &param)
{
int counter = counters->getAndIncrement(call.entryPoint, param.name);
header << "const GLuint ";
WriteParamStaticVarName(call, param, counter, header);
header << "[] = { ";
const ResourceIDType resourceIDType = GetResourceIDTypeFromParamType(param.type);
ASSERT(resourceIDType != ResourceIDType::InvalidEnum);
const char *name = GetResourceIDTypeName(resourceIDType);
GLsizei n = call.params.getParamFlexName("n", "count", ParamType::TGLsizei, 0).value.GLsizeiVal;
ASSERT(param.data.size() == 1);
const ParamT *returnedIDs = reinterpret_cast<const ParamT *>(param.data[0].data());
for (GLsizei resIndex = 0; resIndex < n; ++resIndex)
{
ParamT id = returnedIDs[resIndex];
if (resIndex > 0)
{
header << ", ";
}
header << "g" << name << "Map[" << id.value << "]";
}
header << " };\n ";
WriteParamStaticVarName(call, param, counter, out);
}
void WriteBinaryParamReplay(DataCounters *counters,
std::ostream &out,
std::ostream &header,
const CallCapture &call,
const ParamCapture &param,
std::vector<uint8_t> *binaryData)
{
int counter = counters->getAndIncrement(call.entryPoint, param.name);
ASSERT(param.data.size() == 1);
const std::vector<uint8_t> &data = param.data[0];
if (data.size() > kInlineDataThreshold)
{
size_t offset = binaryData->size();
binaryData->resize(offset + data.size());
memcpy(binaryData->data() + offset, data.data(), data.size());
if (param.type == ParamType::TvoidConstPointer || param.type == ParamType::TvoidPointer)
{
out << "&gBinaryData[" << offset << "]";
}
else
{
out << "reinterpret_cast<" << ParamTypeToString(param.type) << ">(&gBinaryData["
<< offset << "])";
}
}
else
{
ParamType overrideType = param.type;
if (param.type == ParamType::TGLvoidConstPointer ||
param.type == ParamType::TvoidConstPointer)
{
overrideType = ParamType::TGLubyteConstPointer;
}
std::string paramTypeString = ParamTypeToString(overrideType);
header << paramTypeString.substr(0, paramTypeString.length() - 1);
WriteParamStaticVarName(call, param, counter, header);
header << "[] = { ";
switch (overrideType)
{
case ParamType::TGLintConstPointer:
WriteInlineData<GLint>(data, header);
break;
case ParamType::TGLshortConstPointer:
WriteInlineData<GLshort>(data, header);
break;
case ParamType::TGLfloatConstPointer:
WriteInlineData<GLfloat>(data, header);
break;
case ParamType::TGLubyteConstPointer:
WriteInlineData<GLubyte, int>(data, header);
break;
case ParamType::TGLuintConstPointer:
case ParamType::TGLenumConstPointer:
WriteInlineData<GLuint>(data, header);
break;
case ParamType::TGLcharPointer:
WriteInlineData<GLchar>(data, header);
break;
default:
INFO() << "Unhandled ParamType: " << angle::ParamTypeToString(overrideType)
<< " in " << call.name();
UNIMPLEMENTED();
break;
}
header << " };\n";
WriteParamStaticVarName(call, param, counter, out);
}
}
uintptr_t SyncIndexValue(GLsync sync)
{
return reinterpret_cast<uintptr_t>(sync);
}
void WriteCppReplayForCall(const CallCapture &call,
DataCounters *counters,
std::ostream &out,
std::ostream &header,
std::vector<uint8_t> *binaryData)
{
std::ostringstream callOut;
if (call.entryPoint == gl::EntryPoint::CreateShader ||
call.entryPoint == gl::EntryPoint::CreateProgram)
{
GLuint id = call.params.getReturnValue().value.GLuintVal;
callOut << "gShaderProgramMap[" << id << "] = ";
}
if (call.entryPoint == gl::EntryPoint::FenceSync)
{
GLsync sync = call.params.getReturnValue().value.GLsyncVal;
callOut << "gSyncMap[" << SyncIndexValue(sync) << "] = ";
}
if (call.entryPoint == gl::EntryPoint::MapBufferRange ||
call.entryPoint == gl::EntryPoint::MapBufferRangeEXT)
{
GLbitfield access =
call.params.getParam("access", ParamType::TGLbitfield, 3).value.GLbitfieldVal;
if (access & GL_MAP_WRITE_BIT)
{
// Track the returned pointer so we update its data when unmapped
gl::BufferID bufferID = call.params.getMappedBufferID();
callOut << "gMappedBufferData[";
WriteParamValueReplay<ParamType::TBufferID>(callOut, call, bufferID);
callOut << "] = ";
}
}
callOut << call.name() << "(";
bool first = true;
for (const ParamCapture &param : call.params.getParamCaptures())
{
if (!first)
{
callOut << ", ";
}
if (param.arrayClientPointerIndex != -1)
{
callOut << "gClientArrays[" << param.arrayClientPointerIndex << "]";
}
else if (param.readBufferSizeBytes > 0)
{
callOut << "reinterpret_cast<" << ParamTypeToString(param.type) << ">(gReadBuffer)";
}
else if (param.data.empty())
{
if (param.type == ParamType::TGLenum)
{
OutputGLenumString(callOut, param.enumGroup, param.value.GLenumVal);
}
else if (param.type == ParamType::TGLbitfield)
{
OutputGLbitfieldString(callOut, param.enumGroup, param.value.GLbitfieldVal);
}
else if (param.type == ParamType::TGLfloat)
{
WriteGLFloatValue(callOut, param.value.GLfloatVal);
}
else if (param.type == ParamType::TGLsync)
{
callOut << "gSyncMap[" << SyncIndexValue(param.value.GLsyncVal) << "]";
}
else if (param.type == ParamType::TGLuint64 && param.name == "timeout")
{
if (param.value.GLuint64Val == GL_TIMEOUT_IGNORED)
{
callOut << "GL_TIMEOUT_IGNORED";
}
else
{
WriteParamCaptureReplay(callOut, call, param);
}
}
else
{
WriteParamCaptureReplay(callOut, call, param);
}
}
else
{
switch (param.type)
{
case ParamType::TGLcharConstPointer:
WriteStringParamReplay(callOut, param);
break;
case ParamType::TGLcharConstPointerPointer:
WriteStringPointerParamReplay(counters, callOut, header, call, param);
break;
case ParamType::TBufferIDConstPointer:
WriteResourceIDPointerParamReplay<gl::BufferID>(counters, callOut, out, call,
param);
break;
case ParamType::TFenceNVIDConstPointer:
WriteResourceIDPointerParamReplay<gl::FenceNVID>(counters, callOut, out, call,
param);
break;
case ParamType::TFramebufferIDConstPointer:
WriteResourceIDPointerParamReplay<gl::FramebufferID>(counters, callOut, out,
call, param);
break;
case ParamType::TMemoryObjectIDConstPointer:
WriteResourceIDPointerParamReplay<gl::MemoryObjectID>(counters, callOut, out,
call, param);
break;
case ParamType::TProgramPipelineIDConstPointer:
WriteResourceIDPointerParamReplay<gl::ProgramPipelineID>(counters, callOut, out,
call, param);
break;
case ParamType::TQueryIDConstPointer:
WriteResourceIDPointerParamReplay<gl::QueryID>(counters, callOut, out, call,
param);
break;
case ParamType::TRenderbufferIDConstPointer:
WriteResourceIDPointerParamReplay<gl::RenderbufferID>(counters, callOut, out,
call, param);
break;
case ParamType::TSamplerIDConstPointer:
WriteResourceIDPointerParamReplay<gl::SamplerID>(counters, callOut, out, call,
param);
break;
case ParamType::TSemaphoreIDConstPointer:
WriteResourceIDPointerParamReplay<gl::SemaphoreID>(counters, callOut, out, call,
param);
break;
case ParamType::TTextureIDConstPointer:
WriteResourceIDPointerParamReplay<gl::TextureID>(counters, callOut, out, call,
param);
break;
case ParamType::TTransformFeedbackIDConstPointer:
WriteResourceIDPointerParamReplay<gl::TransformFeedbackID>(counters, callOut,
out, call, param);
break;
case ParamType::TVertexArrayIDConstPointer:
WriteResourceIDPointerParamReplay<gl::VertexArrayID>(counters, callOut, out,
call, param);
break;
default:
WriteBinaryParamReplay(counters, callOut, header, call, param, binaryData);
break;
}
}
first = false;
}
callOut << ")";
out << callOut.str();
}
size_t MaxClientArraySize(const gl::AttribArray<size_t> &clientArraySizes)
{
size_t found = 0;
for (size_t size : clientArraySizes)
{
if (size > found)
found = size;
}
return found;
}
struct SaveFileHelper
{
public:
// We always use ios::binary to avoid inconsistent line endings when captured on Linux vs Win.
SaveFileHelper(const std::string &filePathIn)
: mOfs(filePathIn, std::ios::binary | std::ios::out), mFilePath(filePathIn)
{
if (!mOfs.is_open())
{
FATAL() << "Could not open " << filePathIn;
}
}
~SaveFileHelper() { printf("Saved '%s'.\n", mFilePath.c_str()); }
template <typename T>
SaveFileHelper &operator<<(const T &value)
{
mOfs << value;
if (mOfs.bad())
{
FATAL() << "Error writing to " << mFilePath;
}
return *this;
}
void write(const uint8_t *data, size_t size)
{
mOfs.write(reinterpret_cast<const char *>(data), size);
}
private:
std::ofstream mOfs;
std::string mFilePath;
};
std::string GetBinaryDataFilePath(bool compression,
gl::ContextID contextId,
const std::string &captureLabel)
{
std::stringstream fnameStream;
fnameStream << FmtCapturePrefix(contextId, captureLabel) << ".angledata";
if (compression)
{
fnameStream << ".gz";
}
return fnameStream.str();
}
void SaveBinaryData(bool compression,
const std::string &outDir,
gl::ContextID contextId,
const std::string &captureLabel,
const std::vector<uint8_t> &binaryData)
{
std::string binaryDataFileName = GetBinaryDataFilePath(compression, contextId, captureLabel);
std::string dataFilepath = outDir + binaryDataFileName;
SaveFileHelper saveData(dataFilepath);
if (compression)
{
// Save compressed data.
uLong uncompressedSize = static_cast<uLong>(binaryData.size());
uLong expectedCompressedSize = zlib_internal::GzipExpectedCompressedSize(uncompressedSize);
std::vector<uint8_t> compressedData(expectedCompressedSize, 0);
uLong compressedSize = expectedCompressedSize;
int zResult = zlib_internal::GzipCompressHelper(compressedData.data(), &compressedSize,
binaryData.data(), uncompressedSize,
nullptr, nullptr);
if (zResult != Z_OK)
{
FATAL() << "Error compressing binary data: " << zResult;
}
saveData.write(compressedData.data(), compressedSize);
}
else
{
saveData.write(binaryData.data(), binaryData.size());
}
}
void WriteLoadBinaryDataCall(bool compression,
std::ostream &out,
gl::ContextID contextId,
const std::string &captureLabel)
{
std::string binaryDataFileName = GetBinaryDataFilePath(compression, contextId, captureLabel);
out << " LoadBinaryData(\"" << binaryDataFileName << "\");\n";
}
void MaybeResetResources(std::stringstream &out,
ResourceIDType resourceIDType,
DataCounters *counters,
std::stringstream &header,
ResourceTracker *resourceTracker,
std::vector<uint8_t> *binaryData)
{
switch (resourceIDType)
{
case ResourceIDType::Buffer:
{
BufferSet &newBuffers = resourceTracker->getNewBuffers();
BufferCalls &bufferRegenCalls = resourceTracker->getBufferRegenCalls();
BufferCalls &bufferRestoreCalls = resourceTracker->getBufferRestoreCalls();
// If we have any new buffers generated and not deleted during the run, delete them now
if (!newBuffers.empty())
{
out << " const GLuint deleteBuffers[] = {";
BufferSet::iterator bufferIter = newBuffers.begin();
for (size_t i = 0; bufferIter != newBuffers.end(); ++i, ++bufferIter)
{
if (i > 0)
{
out << ", ";
}
if ((i % 4) == 0)
{
out << "\n ";
}
out << "gBufferMap[" << (*bufferIter).value << "]";
}
out << "};\n";
out << " glDeleteBuffers(" << newBuffers.size() << ", deleteBuffers);\n";
}
// If any of our starting buffers were deleted during the run, recreate them
BufferSet &buffersToRegen = resourceTracker->getBuffersToRegen();
for (const gl::BufferID id : buffersToRegen)
{
// Emit their regen calls
for (CallCapture &call : bufferRegenCalls[id])
{
out << " ";
WriteCppReplayForCall(call, counters, out, header, binaryData);
out << ";\n";
}
}
// If any of our starting buffers were modified during the run, restore their contents
BufferSet &buffersToRestore = resourceTracker->getBuffersToRestore();
for (const gl::BufferID id : buffersToRestore)
{
// Emit their restore calls
for (CallCapture &call : bufferRestoreCalls[id])
{
out << " ";
WriteCppReplayForCall(call, counters, out, header, binaryData);
out << ";\n";
}
}
break;
}
default:
// TODO (http://anglebug.com/4599): Reset more than just buffers
break;
}
}
void WriteCppReplay(bool compression,
const std::string &outDir,
gl::ContextID contextId,
const std::string &captureLabel,
uint32_t frameIndex,
uint32_t frameEnd,
const std::vector<CallCapture> &frameCalls,
const std::vector<CallCapture> &setupCalls,
ResourceTracker *resourceTracker,
std::vector<uint8_t> *binaryData)
{
DataCounters counters;
std::stringstream out;
std::stringstream header;
header << "#include \"" << FmtCapturePrefix(contextId, captureLabel) << ".h\"\n";
header << "";
header << "\n";
header << "namespace\n";
header << "{\n";
if (!captureLabel.empty())
{
out << "namespace " << captureLabel << "\n";
out << "{\n";
}
if (frameIndex == 0 || !setupCalls.empty())
{
out << "void SetupContext" << Str(static_cast<int>(contextId)) << "Replay()\n";
out << "{\n";
std::stringstream setupCallStream;
WriteLoadBinaryDataCall(compression, setupCallStream, contextId, captureLabel);
for (const CallCapture &call : setupCalls)
{
setupCallStream << " ";
WriteCppReplayForCall(call, &counters, setupCallStream, header, binaryData);
setupCallStream << ";\n";
}
out << setupCallStream.str();
out << "}\n";
out << "\n";
}
if (frameIndex == frameEnd)
{
// Emit code to reset back to starting state
out << "void ResetContext" << Str(static_cast<int>(contextId)) << "Replay()\n";
out << "{\n";
std::stringstream restoreCallStream;
// For now, we only reset buffer states
// TODO (http://anglebug.com/4599): Reset more state on frame loop
for (ResourceIDType resourceType : AllEnums<ResourceIDType>())
{
MaybeResetResources(restoreCallStream, resourceType, &counters, header, resourceTracker,
binaryData);
}
out << restoreCallStream.str();
out << "}\n";
out << "\n";
}
out << "void " << FmtReplayFunction(contextId, frameIndex) << "\n";
out << "{\n";
std::stringstream callStream;
for (const CallCapture &call : frameCalls)
{
callStream << " ";
WriteCppReplayForCall(call, &counters, callStream, header, binaryData);
callStream << ";\n";
}
out << callStream.str();
out << "}\n";
if (!captureLabel.empty())
{
out << "} // namespace " << captureLabel << "\n";
}
header << "} // namespace\n";
{
std::string outString = out.str();
std::string headerString = header.str();
std::string cppFilePath =
GetCaptureFilePath(outDir, contextId, captureLabel, frameIndex, ".cpp");
SaveFileHelper saveCpp(cppFilePath);
saveCpp << headerString << "\n" << outString;
}
}
void WriteCppReplayIndexFiles(bool compression,
const std::string &outDir,
gl::ContextID contextId,
const std::string &captureLabel,
uint32_t frameStart,
uint32_t frameEnd,
size_t readBufferSize,
const gl::AttribArray<size_t> &clientArraySizes,
const HasResourceTypeMap &hasResourceType)
{
size_t maxClientArraySize = MaxClientArraySize(clientArraySizes);
std::stringstream header;
std::stringstream source;
header << "#pragma once\n";
header << "\n";
header << "#include \"util/gles_loader_autogen.h\"\n";
header << "\n";
header << "#include <cstdint>\n";
header << "#include <cstdio>\n";
header << "#include <cstring>\n";
header << "#include <limits>\n";
header << "#include <vector>\n";
header << "#include <unordered_map>\n";
header << "\n";
if (!captureLabel.empty())
{
header << "namespace " << captureLabel << "\n";
header << "{\n";
}
header << "// Replay functions\n";
header << "\n";
header << "// Maps from <captured Program ID, captured location> to run-time location.\n";
header
<< "using LocationsMap = std::unordered_map<GLuint, std::unordered_map<GLint, GLint>>;\n";
header << "extern LocationsMap gUniformLocations;\n";
header << "extern GLuint gCurrentProgram;\n";
header << "void UpdateUniformLocation(GLuint program, const char *name, GLint location);\n";
header << "void DeleteUniformLocations(GLuint program);\n";
header << "void UpdateCurrentProgram(GLuint program);\n";
header << "\n";
header << "// Maps from captured Resource ID to run-time Resource ID.\n";
header << "using ResourceMap = std::unordered_map<GLuint, GLuint>;\n";
header << "\n";
header << "\n";
header << "constexpr uint32_t kReplayFrameStart = " << frameStart << ";\n";
header << "constexpr uint32_t kReplayFrameEnd = " << frameEnd << ";\n";
header << "\n";
header << "void SetupContext" << static_cast<int>(contextId) << "Replay();\n";
header << "void ReplayContext" << static_cast<int>(contextId)
<< "Frame(uint32_t frameIndex);\n";
header << "void ResetContext" << static_cast<int>(contextId) << "Replay();\n";
header << "\n";
header << "using FramebufferChangeCallback = void(*)(void *userData, GLenum target, GLuint "
"framebuffer);\n";
header << "void SetFramebufferChangeCallback(void *userData, FramebufferChangeCallback "
"callback);\n";
header << "void OnFramebufferChange(GLenum target, GLuint framebuffer);\n";
header << "\n";
for (uint32_t frameIndex = frameStart; frameIndex < frameEnd; ++frameIndex)
{
header << "void " << FmtReplayFunction(contextId, frameIndex) << ";\n";
}
header << "\n";
header << "constexpr bool kIsBinaryDataCompressed = " << (compression ? "true" : "false")
<< ";\n";
header << "\n";
header << "using DecompressCallback = uint8_t *(*)(const std::vector<uint8_t> &);\n";
header << "void SetBinaryDataDecompressCallback(DecompressCallback callback);\n";
header << "void SetBinaryDataDir(const char *dataDir);\n";
header << "void LoadBinaryData(const char *fileName);\n";
header << "\n";
header << "// Global state\n";
header << "\n";
header << "extern uint8_t *gBinaryData;\n";
source << "#include \"" << FmtCapturePrefix(contextId, captureLabel) << ".h\"\n";
source << "\n";
if (!captureLabel.empty())
{
source << "namespace " << captureLabel << "\n";
source << "{\n";
}
source << "namespace\n";
source << "{\n";
source << "void UpdateResourceMap(ResourceMap *resourceMap, GLuint id, GLsizei "
"readBufferOffset)\n";
source << "{\n";
source << " GLuint returnedID;\n";
std::string captureNamespace = !captureLabel.empty() ? captureLabel + "::" : "";
source << " memcpy(&returnedID, &" << captureNamespace
<< "gReadBuffer[readBufferOffset], sizeof(GLuint));\n";
source << " (*resourceMap)[id] = returnedID;\n";
source << "}\n";
source << "\n";
source << "DecompressCallback gDecompressCallback;\n";
source << "const char *gBinaryDataDir = \".\";\n";
source << "FramebufferChangeCallback gFramebufferChangeCallback;\n";
source << "void *gFramebufferChangeCallbackUserData;\n";
source << "} // namespace\n";
source << "\n";
source << "LocationsMap gUniformLocations;\n";
source << "GLuint gCurrentProgram = 0;\n";
source << "\n";
source << "void UpdateUniformLocation(GLuint program, const char *name, GLint location)\n";
source << "{\n";
source << " gUniformLocations[program][location] = glGetUniformLocation(program, name);\n";
source << "}\n";
source << "void DeleteUniformLocations(GLuint program)\n";
source << "{\n";
source << " gUniformLocations.erase(program);\n";
source << "}\n";
source << "void UpdateCurrentProgram(GLuint program)\n";
source << "{\n";
source << " gCurrentProgram = program;\n";
source << "}\n";
source << "\n";
source << "uint8_t *gBinaryData = nullptr;\n";
if (readBufferSize > 0)
{
header << "extern uint8_t gReadBuffer[" << readBufferSize << "];\n";
source << "uint8_t gReadBuffer[" << readBufferSize << "];\n";
}
if (maxClientArraySize > 0)
{
header << "extern uint8_t gClientArrays[" << gl::MAX_VERTEX_ATTRIBS << "]["
<< maxClientArraySize << "];\n";
source << "uint8_t gClientArrays[" << gl::MAX_VERTEX_ATTRIBS << "][" << maxClientArraySize
<< "];\n";
}
for (ResourceIDType resourceType : AllEnums<ResourceIDType>())
{
// TODO: Only emit resources needed by the frames (anglebug.com/4223)
const char *name = GetResourceIDTypeName(resourceType);
header << "extern ResourceMap g" << name << "Map;\n";
source << "ResourceMap g" << name << "Map;\n";
}
header << "using SyncResourceMap = std::unordered_map<uintptr_t, GLsync>;\n";
header << "extern SyncResourceMap gSyncMap;\n";
source << "SyncResourceMap gSyncMap;\n";
header << "\n";
source << "\n";
source << "void SetFramebufferChangeCallback(void *userData, FramebufferChangeCallback "
"callback)\n";
source << "{\n";
source << " gFramebufferChangeCallbackUserData = userData;\n";
source << " gFramebufferChangeCallback = callback;\n";
source << "}\n";
source << "\n";
source << "void OnFramebufferChange(GLenum target, GLuint framebuffer)\n";
source << "{\n";
source << " if (gFramebufferChangeCallback)\n";
source << " gFramebufferChangeCallback(gFramebufferChangeCallbackUserData, target, "
"framebuffer);\n";
source << "}\n";
source << "\n";
source << "void ReplayContext" << static_cast<int>(contextId) << "Frame(uint32_t frameIndex)\n";
source << "{\n";
source << " switch (frameIndex)\n";
source << " {\n";
for (uint32_t frameIndex = frameStart; frameIndex < frameEnd; ++frameIndex)
{
source << " case " << frameIndex << ":\n";
source << " ReplayContext" << static_cast<int>(contextId) << "Frame"
<< frameIndex << "();\n";
source << " break;\n";
}
source << " default:\n";
source << " break;\n";
source << " }\n";
source << "}\n";
source << "\n";
source << "void SetBinaryDataDecompressCallback(DecompressCallback callback)\n";
source << "{\n";
source << " gDecompressCallback = callback;\n";
source << "}\n";
source << "\n";
source << "void SetBinaryDataDir(const char *dataDir)\n";
source << "{\n";
source << " gBinaryDataDir = dataDir;\n";
source << "}\n";
source << "\n";
source << "void LoadBinaryData(const char *fileName)\n";
source << "{\n";
source << " if (gBinaryData != nullptr)\n";
source << " {\n";
source << " delete [] gBinaryData;\n";
source << " }\n";
source << " char pathBuffer[1000] = {};\n";
source << " sprintf(pathBuffer, \"%s/%s\", gBinaryDataDir, fileName);\n";
source << " FILE *fp = fopen(pathBuffer, \"rb\");\n";
source << " if (fp == 0)\n";
source << " {\n";
source << " fprintf(stderr, \"Error loading binary data file: %s\\n\", fileName);\n";
source << " exit(1);\n";
source << " }\n";
source << " fseek(fp, 0, SEEK_END);\n";
source << " long size = ftell(fp);\n";
source << " fseek(fp, 0, SEEK_SET);\n";
source << " if (gDecompressCallback)\n";
source << " {\n";
source << " if (!strstr(fileName, \".gz\"))\n";
source << " {\n";
source << " fprintf(stderr, \"Filename does not end in .gz\");\n";
source << " exit(1);\n";
source << " }\n";
source << " std::vector<uint8_t> compressedData(size);\n";
source << " (void)fread(compressedData.data(), 1, size, fp);\n";
source << " gBinaryData = gDecompressCallback(compressedData);\n";
source << " }\n";
source << " else\n";
source << " {\n";
source << " if (!strstr(fileName, \".angledata\"))\n";
source << " {\n";
source << " fprintf(stderr, \"Filename does not end in .angledata\");\n";
source << " exit(1);\n";
source << " }\n";
source << " gBinaryData = new uint8_t[size];\n";
source << " (void)fread(gBinaryData, 1, size, fp);\n";
source << " }\n";
source << " fclose(fp);\n";
source << "}\n";
if (maxClientArraySize > 0)
{
header
<< "void UpdateClientArrayPointer(int arrayIndex, const void *data, uint64_t size);\n";
source << "\n";
source << "void UpdateClientArrayPointer(int arrayIndex, const void *data, uint64_t size)"
<< "\n";
source << "{\n";
source << " memcpy(gClientArrays[arrayIndex], data, static_cast<size_t>(size));\n";
source << "}\n";
}
// Data types and functions for tracking contents of mapped buffers
header << "using BufferHandleMap = std::unordered_map<GLuint, void*>;\n";
header << "extern BufferHandleMap gMappedBufferData;\n";
header << "void UpdateClientBufferData(GLuint bufferID, const void *source, GLsizei size);\n";
source << "BufferHandleMap gMappedBufferData;\n";
source << "\n";
source << "void UpdateClientBufferData(GLuint bufferID, const void *source, GLsizei size)";
source << "\n";
source << "{\n";
source << " memcpy(gMappedBufferData[gBufferMap[bufferID]], source, size);\n";
source << "}\n";
for (ResourceIDType resourceType : AllEnums<ResourceIDType>())
{
// TODO: Only emit resources needed by the frames (anglebug.com/4223)
const char *name = GetResourceIDTypeName(resourceType);
header << "void Update" << name << "ID(GLuint id, GLsizei readBufferOffset);\n";
source << "\n";
source << "void Update" << name << "ID(GLuint id, GLsizei readBufferOffset)\n";
source << "{\n";
source << " UpdateResourceMap(&g" << name << "Map, id, readBufferOffset);\n";
source << "}\n";
}
if (!captureLabel.empty())
{
header << "} // namespace " << captureLabel << "\n";
source << "} // namespace " << captureLabel << "\n";
}
{
std::string headerContents = header.str();
std::stringstream headerPathStream;
headerPathStream << outDir << FmtCapturePrefix(contextId, captureLabel) << ".h";
std::string headerPath = headerPathStream.str();
SaveFileHelper saveHeader(headerPath);
saveHeader << headerContents;
}
{
std::string sourceContents = source.str();
std::stringstream sourcePathStream;
sourcePathStream << outDir << FmtCapturePrefix(contextId, captureLabel) << ".cpp";
std::string sourcePath = sourcePathStream.str();
SaveFileHelper saveSource(sourcePath);
saveSource << sourceContents;
}
{
std::stringstream indexPathStream;
indexPathStream << outDir << FmtCapturePrefix(contextId, captureLabel) << "_files.txt";
std::string indexPath = indexPathStream.str();
SaveFileHelper saveIndex(indexPath);
for (uint32_t frameIndex = frameStart; frameIndex <= frameEnd; ++frameIndex)
{
saveIndex << GetCaptureFileName(contextId, captureLabel, frameIndex, ".cpp") << "\n";
}
}
}
ProgramSources GetAttachedProgramSources(const gl::Program *program)
{
ProgramSources sources;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
const gl::Shader *shader = program->getAttachedShader(shaderType);
if (shader)
{
sources[shaderType] = shader->getSourceString();
}
}
return sources;
}
template <typename IDType>
void CaptureUpdateResourceIDs(const CallCapture &call,
const ParamCapture &param,
std::vector<CallCapture> *callsOut)
{
GLsizei n = call.params.getParamFlexName("n", "count", ParamType::TGLsizei, 0).value.GLsizeiVal;
ASSERT(param.data.size() == 1);
ResourceIDType resourceIDType = GetResourceIDTypeFromParamType(param.type);
ASSERT(resourceIDType != ResourceIDType::InvalidEnum);
const char *resourceName = GetResourceIDTypeName(resourceIDType);
std::stringstream updateFuncNameStr;
updateFuncNameStr << "Update" << resourceName << "ID";
std::string updateFuncName = updateFuncNameStr.str();
const IDType *returnedIDs = reinterpret_cast<const IDType *>(param.data[0].data());
for (GLsizei idIndex = 0; idIndex < n; ++idIndex)
{
IDType id = returnedIDs[idIndex];
GLsizei readBufferOffset = idIndex * sizeof(gl::RenderbufferID);
ParamBuffer params;
params.addValueParam("id", ParamType::TGLuint, id.value);
params.addValueParam("readBufferOffset", ParamType::TGLsizei, readBufferOffset);
callsOut->emplace_back(updateFuncName, std::move(params));
}
}
void CaptureUpdateUniformLocations(const gl::Program *program, std::vector<CallCapture> *callsOut)
{
const std::vector<gl::LinkedUniform> &uniforms = program->getState().getUniforms();
const std::vector<gl::VariableLocation> &locations = program->getUniformLocations();
for (GLint location = 0; location < static_cast<GLint>(locations.size()); ++location)
{
const gl::VariableLocation &locationVar = locations[location];
const gl::LinkedUniform &uniform = uniforms[locationVar.index];
ParamBuffer params;
params.addValueParam("program", ParamType::TShaderProgramID, program->id());
std::string name = uniform.name;
if (uniform.isArray())
{
if (locationVar.arrayIndex > 0)
{
// Non-sequential array uniform locations are not currently handled.
// In practice array locations shouldn't ever be non-sequential.
ASSERT(uniform.location == -1 ||
location == uniform.location + static_cast<int>(locationVar.arrayIndex));
continue;
}
if (uniform.isArrayOfArrays())
{
UNIMPLEMENTED();
}
name = gl::StripLastArrayIndex(name);
}
ParamCapture nameParam("name", ParamType::TGLcharConstPointer);
CaptureString(name.c_str(), &nameParam);
params.addParam(std::move(nameParam));
params.addValueParam("location", ParamType::TGLint, location);
callsOut->emplace_back("UpdateUniformLocation", std::move(params));
}
}
void CaptureDeleteUniformLocations(gl::ShaderProgramID program, std::vector<CallCapture> *callsOut)
{
ParamBuffer params;
params.addValueParam("program", ParamType::TShaderProgramID, program);
callsOut->emplace_back("DeleteUniformLocations", std::move(params));
}
void CaptureOnFramebufferChange(GLenum target,
gl::FramebufferID framebufferID,
std::vector<CallCapture> *callsOut)
{
ParamBuffer params;
params.addValueParam("target", ParamType::TGLenum, target);
params.addValueParam("framebuffer", ParamType::TFramebufferID, framebufferID);
callsOut->emplace_back("OnFramebufferChange", std::move(params));
}
void MaybeCaptureUpdateResourceIDs(std::vector<CallCapture> *callsOut)
{
const CallCapture &call = callsOut->back();
switch (call.entryPoint)
{
case gl::EntryPoint::GenBuffers:
{
const ParamCapture &buffers =
call.params.getParam("buffersPacked", ParamType::TBufferIDPointer, 1);
CaptureUpdateResourceIDs<gl::BufferID>(call, buffers, callsOut);
break;
}
case gl::EntryPoint::GenFencesNV:
{
const ParamCapture &fences =
call.params.getParam("fencesPacked", ParamType::TFenceNVIDPointer, 1);
CaptureUpdateResourceIDs<gl::FenceNVID>(call, fences, callsOut);
break;
}
case gl::EntryPoint::GenFramebuffers:
case gl::EntryPoint::GenFramebuffersOES:
{
const ParamCapture &framebuffers =
call.params.getParam("framebuffersPacked", ParamType::TFramebufferIDPointer, 1);
CaptureUpdateResourceIDs<gl::FramebufferID>(call, framebuffers, callsOut);
break;
}
case gl::EntryPoint::GenProgramPipelines:
{
const ParamCapture &pipelines =
call.params.getParam("pipelinesPacked", ParamType::TProgramPipelineIDPointer, 1);
CaptureUpdateResourceIDs<gl::ProgramPipelineID>(call, pipelines, callsOut);
break;
}
case gl::EntryPoint::GenQueries:
case gl::EntryPoint::GenQueriesEXT:
{
const ParamCapture &queries =
call.params.getParam("idsPacked", ParamType::TQueryIDPointer, 1);
CaptureUpdateResourceIDs<gl::QueryID>(call, queries, callsOut);
break;
}
case gl::EntryPoint::GenRenderbuffers:
case gl::EntryPoint::GenRenderbuffersOES:
{
const ParamCapture &renderbuffers =
call.params.getParam("renderbuffersPacked", ParamType::TRenderbufferIDPointer, 1);
CaptureUpdateResourceIDs<gl::RenderbufferID>(call, renderbuffers, callsOut);
break;
}
case gl::EntryPoint::GenSamplers:
{
const ParamCapture &samplers =
call.params.getParam("samplersPacked", ParamType::TSamplerIDPointer, 1);
CaptureUpdateResourceIDs<gl::SamplerID>(call, samplers, callsOut);
break;
}
case gl::EntryPoint::GenSemaphoresEXT:
{
const ParamCapture &semaphores =
call.params.getParam("semaphoresPacked", ParamType::TSemaphoreIDPointer, 1);
CaptureUpdateResourceIDs<gl::SemaphoreID>(call, semaphores, callsOut);
break;
}
case gl::EntryPoint::GenTextures:
{
const ParamCapture &textures =
call.params.getParam("texturesPacked", ParamType::TTextureIDPointer, 1);
CaptureUpdateResourceIDs<gl::TextureID>(call, textures, callsOut);
break;
}
case gl::EntryPoint::GenTransformFeedbacks:
{
const ParamCapture &xfbs =
call.params.getParam("idsPacked", ParamType::TTransformFeedbackIDPointer, 1);
CaptureUpdateResourceIDs<gl::TransformFeedbackID>(call, xfbs, callsOut);
break;
}
case gl::EntryPoint::GenVertexArrays:
case gl::EntryPoint::GenVertexArraysOES:
{
const ParamCapture &vertexArrays =
call.params.getParam("arraysPacked", ParamType::TVertexArrayIDPointer, 1);
CaptureUpdateResourceIDs<gl::VertexArrayID>(call, vertexArrays, callsOut);
break;
}
default:
break;
}
}
void CaptureUpdateCurrentProgram(const CallCapture &call, std::vector<CallCapture> *callsOut)
{
const ParamCapture &param =
call.params.getParam("programPacked", ParamType::TShaderProgramID, 0);
gl::ShaderProgramID programID = param.value.ShaderProgramIDVal;
ParamBuffer paramBuffer;
paramBuffer.addValueParam("program", ParamType::TShaderProgramID, programID);
callsOut->emplace_back("UpdateCurrentProgram", std::move(paramBuffer));
}
bool IsDefaultCurrentValue(const gl::VertexAttribCurrentValueData &currentValue)
{
if (currentValue.Type != gl::VertexAttribType::Float)
return false;
return currentValue.Values.FloatValues[0] == 0.0f &&
currentValue.Values.FloatValues[1] == 0.0f &&
currentValue.Values.FloatValues[2] == 0.0f && currentValue.Values.FloatValues[3] == 1.0f;
}
bool IsQueryActive(const gl::State &glState, gl::QueryID &queryID)
{
const gl::ActiveQueryMap &activeQueries = glState.getActiveQueriesForCapture();
for (const auto &activeQueryIter : activeQueries)
{
const gl::Query *activeQuery = activeQueryIter.get();
if (activeQuery && activeQuery->id() == queryID)
{
return true;
}
}
return false;
}
void Capture(std::vector<CallCapture> *setupCalls, CallCapture &&call)
{
setupCalls->emplace_back(std::move(call));
}
void CaptureFramebufferAttachment(std::vector<CallCapture> *setupCalls,
const gl::State &replayState,
const gl::FramebufferAttachment &attachment)
{
GLuint resourceID = attachment.getResource()->getId();
// TODO(jmadill): Layer attachments. http://anglebug.com/3662
if (attachment.type() == GL_TEXTURE)
{
gl::ImageIndex index = attachment.getTextureImageIndex();
Capture(setupCalls, CaptureFramebufferTexture2D(replayState, true, GL_FRAMEBUFFER,
attachment.getBinding(), index.getTarget(),
{resourceID}, index.getLevelIndex()));
}
else
{
ASSERT(attachment.type() == GL_RENDERBUFFER);
Capture(setupCalls, CaptureFramebufferRenderbuffer(replayState, true, GL_FRAMEBUFFER,
attachment.getBinding(), GL_RENDERBUFFER,
{resourceID}));
}
}
void CaptureUpdateUniformValues(const gl::State &replayState,
const gl::Context *context,
const gl::Program *program,
std::vector<CallCapture> *callsOut)
{
if (!program->isLinked())
{
// We can't populate uniforms if the program hasn't been linked
return;
}
// We need to bind the program and update its uniforms
// TODO (http://anglebug.com/3662): Only bind if different from currently bound
Capture(callsOut, CaptureUseProgram(replayState, true, program->id()));
CaptureUpdateCurrentProgram(callsOut->back(), callsOut);
const std::vector<gl::LinkedUniform> &uniforms = program->getState().getUniforms();
for (size_t i = 0; i < uniforms.size(); i++)
{
const gl::LinkedUniform &uniform = uniforms[i];
std::string uniformName = uniform.name;
int uniformCount = 1;
if (uniform.isArray())
{
if (uniform.isArrayOfArrays())
{
UNIMPLEMENTED();
continue;
}
uniformCount = uniform.arraySizes[0];
uniformName = gl::StripLastArrayIndex(uniformName);
}
gl::UniformLocation uniformLoc = program->getUniformLocation(uniformName);
const gl::UniformTypeInfo *typeInfo = uniform.typeInfo;
int uniformSize = uniformCount * typeInfo->componentCount;
switch (typeInfo->componentType)
{
case GL_FLOAT:
{
std::vector<GLfloat> uniformBuffer(uniformSize);
program->getUniformfv(context, uniformLoc, uniformBuffer.data());
switch (typeInfo->type)
{
// Note: All matrix uniforms are populated without transpose
case GL_FLOAT_MAT4x3:
Capture(callsOut, CaptureUniformMatrix4x3fv(replayState, true, uniformLoc,
uniformCount, false,
uniformBuffer.data()));
break;
case GL_FLOAT_MAT4x2:
Capture(callsOut, CaptureUniformMatrix4x2fv(replayState, true, uniformLoc,
uniformCount, false,
uniformBuffer.data()));
break;
case GL_FLOAT_MAT4:
Capture(callsOut,
CaptureUniformMatrix4fv(replayState, true, uniformLoc, uniformCount,
false, uniformBuffer.data()));
break;
case GL_FLOAT_MAT3x4:
Capture(callsOut, CaptureUniformMatrix3x4fv(replayState, true, uniformLoc,
uniformCount, false,
uniformBuffer.data()));
break;
case GL_FLOAT_MAT3x2:
Capture(callsOut, CaptureUniformMatrix3x2fv(replayState, true, uniformLoc,
uniformCount, false,
uniformBuffer.data()));
break;
case GL_FLOAT_MAT3:
Capture(callsOut,
CaptureUniformMatrix3fv(replayState, true, uniformLoc, uniformCount,
false, uniformBuffer.data()));
break;
case GL_FLOAT_MAT2x4:
Capture(callsOut, CaptureUniformMatrix2x4fv(replayState, true, uniformLoc,
uniformCount, false,
uniformBuffer.data()));
break;
case GL_FLOAT_MAT2x3:
Capture(callsOut, CaptureUniformMatrix2x3fv(replayState, true, uniformLoc,
uniformCount, false,
uniformBuffer.data()));
break;
case GL_FLOAT_MAT2:
Capture(callsOut,
CaptureUniformMatrix2fv(replayState, true, uniformLoc, uniformCount,
false, uniformBuffer.data()));
break;
case GL_FLOAT_VEC4:
Capture(callsOut, CaptureUniform4fv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
case GL_FLOAT_VEC3:
Capture(callsOut, CaptureUniform3fv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
case GL_FLOAT_VEC2:
Capture(callsOut, CaptureUniform2fv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
case GL_FLOAT:
Capture(callsOut, CaptureUniform1fv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
default:
UNIMPLEMENTED();
break;
}
break;
}
case GL_INT:
{
std::vector<GLint> uniformBuffer(uniformSize);
program->getUniformiv(context, uniformLoc, uniformBuffer.data());
switch (typeInfo->componentCount)
{
case 4:
Capture(callsOut, CaptureUniform4iv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
case 3:
Capture(callsOut, CaptureUniform3iv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
case 2:
Capture(callsOut, CaptureUniform2iv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
case 1:
Capture(callsOut, CaptureUniform1iv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
default:
UNIMPLEMENTED();
break;
}
break;
}
case GL_UNSIGNED_INT:
{
std::vector<GLuint> uniformBuffer(uniformSize);
program->getUniformuiv(context, uniformLoc, uniformBuffer.data());
switch (typeInfo->componentCount)
{
case 4:
Capture(callsOut, CaptureUniform4uiv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
case 3:
Capture(callsOut, CaptureUniform3uiv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
case 2:
Capture(callsOut, CaptureUniform2uiv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
case 1:
Capture(callsOut, CaptureUniform1uiv(replayState, true, uniformLoc,
uniformCount, uniformBuffer.data()));
break;
default:
UNIMPLEMENTED();
break;
}
break;
}
default:
UNIMPLEMENTED();
break;
}
}
}
void CaptureVertexArrayData(std::vector<CallCapture> *setupCalls,
const gl::Context *context,
const gl::VertexArray *vertexArray,
gl::State *replayState)
{
const std::vector<gl::VertexAttribute> &vertexAttribs = vertexArray->getVertexAttributes();
const std::vector<gl::VertexBinding> &vertexBindings = vertexArray->getVertexBindings();
for (GLuint attribIndex = 0; attribIndex < gl::MAX_VERTEX_ATTRIBS; ++attribIndex)
{
const gl::VertexAttribute defaultAttrib(attribIndex);
const gl::VertexBinding defaultBinding;
const gl::VertexAttribute &attrib = vertexAttribs[attribIndex];
const gl::VertexBinding &binding = vertexBindings[attrib.bindingIndex];
if (attrib.enabled != defaultAttrib.enabled)
{
Capture(setupCalls, CaptureEnableVertexAttribArray(*replayState, false, attribIndex));
}
if (attrib.format != defaultAttrib.format || attrib.pointer != defaultAttrib.pointer ||
binding.getStride() != defaultBinding.getStride() ||
binding.getBuffer().get() != nullptr)
{
gl::Buffer *buffer = binding.getBuffer().get();
if (buffer != replayState->getArrayBuffer())
{
replayState->setBufferBinding(context, gl::BufferBinding::Array, buffer);
Capture(setupCalls, CaptureBindBuffer(*replayState, true, gl::BufferBinding::Array,
buffer->id()));
}
Capture(setupCalls, CaptureVertexAttribPointer(
*replayState, true, attribIndex, attrib.format->channelCount,
attrib.format->vertexAttribType, attrib.format->isNorm(),
binding.getStride(), attrib.pointer));
}
if (binding.getDivisor() != 0)
{
Capture(setupCalls, CaptureVertexAttribDivisor(*replayState, true, attribIndex,
binding.getDivisor()));
}
}
}
void CaptureTextureStorage(std::vector<CallCapture> *setupCalls,
gl::State *replayState,
const gl::Texture *texture)
{
// Use mip-level 0 for the base dimensions
gl::ImageIndex imageIndex = gl::ImageIndex::MakeFromType(texture->getType(), 0);
const gl::ImageDesc &desc = texture->getTextureState().getImageDesc(imageIndex);
switch (texture->getType())
{
case gl::TextureType::_2D:
case gl::TextureType::CubeMap:
{
Capture(setupCalls, CaptureTexStorage2D(*replayState, true, texture->getType(),
texture->getImmutableLevels(),
desc.format.info->internalFormat,
desc.size.width, desc.size.height));
break;
}
case gl::TextureType::_3D:
case gl::TextureType::_2DArray:
{
Capture(setupCalls, CaptureTexStorage3D(
*replayState, true, texture->getType(),
texture->getImmutableLevels(), desc.format.info->internalFormat,
desc.size.width, desc.size.height, desc.size.depth));
break;
}
default:
UNIMPLEMENTED();
break;
}
}
void CaptureTextureContents(std::vector<CallCapture> *setupCalls,
gl::State *replayState,
const gl::Texture *texture,
const gl::ImageIndex &index,
const gl::ImageDesc &desc,
GLuint size,
const void *data)
{
const gl::InternalFormat &format = *desc.format.info;
bool is3D =
(index.getType() == gl::TextureType::_3D || index.getType() == gl::TextureType::_2DArray);
if (format.compressed)
{
if (is3D)
{
if (texture->getImmutableFormat())
{
Capture(setupCalls,
CaptureCompressedTexSubImage3D(
*replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0, 0,
desc.size.width, desc.size.height, desc.size.depth,
format.internalFormat, size, data));
}
else
{
Capture(setupCalls,
CaptureCompressedTexImage3D(*replayState, true, index.getTarget(),
index.getLevelIndex(), format.internalFormat,
desc.size.width, desc.size.height,
desc.size.depth, 0, size, data));
}
}
else
{
if (texture->getImmutableFormat())
{
Capture(setupCalls,
CaptureCompressedTexSubImage2D(
*replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0,
desc.size.width, desc.size.height, format.internalFormat, size, data));
}
else
{
Capture(setupCalls, CaptureCompressedTexImage2D(
*replayState, true, index.getTarget(),
index.getLevelIndex(), format.internalFormat,
desc.size.width, desc.size.height, 0, size, data));
}
}
}
else
{
if (is3D)
{
if (texture->getImmutableFormat())
{
Capture(setupCalls,
CaptureTexSubImage3D(*replayState, true, index.getTarget(),
index.getLevelIndex(), 0, 0, 0, desc.size.width,
desc.size.height, desc.size.depth, format.format,
format.type, data));
}
else
{
Capture(
setupCalls,
CaptureTexImage3D(*replayState, true, index.getTarget(), index.getLevelIndex(),
format.internalFormat, desc.size.width, desc.size.height,
desc.size.depth, 0, format.format, format.type, data));
}
}
else
{
if (texture->getImmutableFormat())
{
Capture(setupCalls,
CaptureTexSubImage2D(*replayState, true, index.getTarget(),
index.getLevelIndex(), 0, 0, desc.size.width,
desc.size.height, format.format, format.type, data));
}
else
{
Capture(setupCalls, CaptureTexImage2D(*replayState, true, index.getTarget(),
index.getLevelIndex(), format.internalFormat,
desc.size.width, desc.size.height, 0,
format.format, format.type, data));
}
}
}
}
// TODO(http://anglebug.com/4599): Improve reset/restore call generation
// There are multiple ways to track reset calls for individual resources. For now, we are tracking
// separate lists of instructions that mirror the calls created during mid-execution setup. Other
// methods could involve passing the original CallCaptures to this function, or tracking the
// indices of original setup calls.
void CaptureBufferResetCalls(const gl::State &replayState,
ResourceTracker *resourceTracker,
gl::BufferID *id,
const gl::Buffer *buffer)
{
// Track this as a starting resource that may need to be restored.
BufferSet &startingBuffers = resourceTracker->getStartingBuffers();
startingBuffers.insert(*id);
// Track calls to regenerate a given buffer
BufferCalls &bufferRegenCalls = resourceTracker->getBufferRegenCalls();
Capture(&bufferRegenCalls[*id], CaptureDeleteBuffers(replayState, true, 1, id));
Capture(&bufferRegenCalls[*id], CaptureGenBuffers(replayState, true, 1, id));
MaybeCaptureUpdateResourceIDs(&bufferRegenCalls[*id]);
// Track calls to restore a given buffer's contents
BufferCalls &bufferRestoreCalls = resourceTracker->getBufferRestoreCalls();
Capture(&bufferRestoreCalls[*id],
CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, *id));
Capture(&bufferRestoreCalls[*id],
CaptureBufferData(replayState, true, gl::BufferBinding::Array,
static_cast<GLsizeiptr>(buffer->getSize()), buffer->getMapPointer(),
buffer->getUsage()));
}
void CaptureMidExecutionSetup(const gl::Context *context,
std::vector<CallCapture> *setupCalls,
ResourceTracker *resourceTracker,
const ShaderSourceMap &cachedShaderSources,
const ProgramSourceMap &cachedProgramSources,
const TextureLevelDataMap &cachedTextureLevelData)
{
const gl::State &apiState = context->getState();
gl::State replayState(nullptr, nullptr, nullptr, EGL_OPENGL_ES_API, apiState.getClientVersion(),
false, true, true, true, false, EGL_CONTEXT_PRIORITY_MEDIUM_IMG);
// Small helper function to make the code more readable.
auto cap = [setupCalls](CallCapture &&call) { setupCalls->emplace_back(std::move(call)); };
// Currently this code assumes we can use create-on-bind. It does not support 'Gen' usage.
// TODO(jmadill): Use handle mapping for captured objects. http://anglebug.com/3662
// Capture Buffer data.
const gl::BufferManager &buffers = apiState.getBufferManagerForCapture();
const gl::BoundBufferMap &boundBuffers = apiState.getBoundBuffersForCapture();
for (const auto &bufferIter : buffers)
{
gl::BufferID id = {bufferIter.first};
gl::Buffer *buffer = bufferIter.second;
if (id.value == 0)
{
continue;
}
// glBufferData. Would possibly be better implemented using a getData impl method.
// Saving buffers that are mapped during a swap is not yet handled.
if (buffer->getSize() == 0)
{
continue;
}
ASSERT(!buffer->isMapped());
(void)buffer->mapRange(context, 0, static_cast<GLsizeiptr>(buffer->getSize()),
GL_MAP_READ_BIT);
// Generate binding.
cap(CaptureGenBuffers(replayState, true, 1, &id));
MaybeCaptureUpdateResourceIDs(setupCalls);
// Always use the array buffer binding point to upload data to keep things simple.
if (buffer != replayState.getArrayBuffer())
{
replayState.setBufferBinding(context, gl::BufferBinding::Array, buffer);
cap(CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, id));
}
cap(CaptureBufferData(replayState, true, gl::BufferBinding::Array,
static_cast<GLsizeiptr>(buffer->getSize()), buffer->getMapPointer(),
buffer->getUsage()));
// Generate the calls needed to restore this buffer to original state for frame looping
CaptureBufferResetCalls(replayState, resourceTracker, &id, buffer);
GLboolean dontCare;
(void)buffer->unmap(context, &dontCare);
}
// Vertex input states. Only handles GLES 2.0 states right now.
// Must happen after buffer data initialization.
// TODO(http://anglebug.com/3662): Complete state capture.
// Capture default vertex attribs
const std::vector<gl::VertexAttribCurrentValueData> &currentValues =
apiState.getVertexAttribCurrentValues();
for (GLuint attribIndex = 0; attribIndex < gl::MAX_VERTEX_ATTRIBS; ++attribIndex)
{
const gl::VertexAttribCurrentValueData &defaultValue = currentValues[attribIndex];
if (!IsDefaultCurrentValue(defaultValue))
{
Capture(setupCalls, CaptureVertexAttrib4fv(replayState, true, attribIndex,
defaultValue.Values.FloatValues));
}
}
// Capture vertex array objects
const gl::VertexArrayMap &vertexArrayMap = context->getVertexArraysForCapture();
gl::VertexArrayID boundVertexArrayID = {0};
for (const auto &vertexArrayIter : vertexArrayMap)
{
gl::VertexArrayID vertexArrayID = {vertexArrayIter.first};
cap(CaptureGenVertexArrays(replayState, true, 1, &vertexArrayID));
MaybeCaptureUpdateResourceIDs(setupCalls);
if (vertexArrayIter.second)
{
const gl::VertexArray *vertexArray = vertexArrayIter.second;
// Bind the vertexArray (unless default) and populate it
if (vertexArrayID.value != 0)
{
cap(CaptureBindVertexArray(replayState, true, vertexArrayID));
boundVertexArrayID = vertexArrayID;
}
CaptureVertexArrayData(setupCalls, context, vertexArray, &replayState);
}
}
// Bind the current vertex array
const gl::VertexArray *currentVertexArray = apiState.getVertexArray();
if (currentVertexArray->id() != boundVertexArrayID)
{
cap(CaptureBindVertexArray(replayState, true, currentVertexArray->id()));
}
// Capture Buffer bindings.
for (gl::BufferBinding binding : angle::AllEnums<gl::BufferBinding>())
{
gl::BufferID bufferID = boundBuffers[binding].id();
// Filter out redundant buffer binding commands. Note that the code in the previous section
// only binds to ARRAY_BUFFER. Therefore we only check the array binding against the binding
// we set earlier.
bool isArray = binding == gl::BufferBinding::Array;
const gl::Buffer *arrayBuffer = replayState.getArrayBuffer();
if ((isArray && arrayBuffer && arrayBuffer->id() != bufferID) ||
(!isArray && bufferID.value != 0))
{
cap(CaptureBindBuffer(replayState, true, binding, bufferID));
}
}
// Set a unpack alignment of 1.
gl::PixelUnpackState &currentUnpackState = replayState.getUnpackState();
if (currentUnpackState.alignment != 1)
{
cap(CapturePixelStorei(replayState, true, GL_UNPACK_ALIGNMENT, 1));
currentUnpackState.alignment = 1;
}
// Capture Texture setup and data.
const gl::TextureManager &textures = apiState.getTextureManagerForCapture();
const gl::TextureBindingMap &boundTextures = apiState.getBoundTexturesForCapture();
gl::TextureTypeMap<gl::TextureID> currentTextureBindings;
for (const auto &textureIter : textures)
{
gl::TextureID id = {textureIter.first};
gl::Texture *texture = textureIter.second;
if (id.value == 0)
{
continue;
}
// Gen the Texture.
cap(CaptureGenTextures(replayState, true, 1, &id));
MaybeCaptureUpdateResourceIDs(setupCalls);
cap(CaptureBindTexture(replayState, true, texture->getType(), id));
currentTextureBindings[texture->getType()] = id;
// Capture sampler parameter states.
// TODO(jmadill): More sampler / texture states. http://anglebug.com/3662
gl::SamplerState defaultSamplerState =
gl::SamplerState::CreateDefaultForTarget(texture->getType());
const gl::SamplerState &textureSamplerState = texture->getSamplerState();
auto capTexParam = [cap, &replayState, texture](GLenum pname, GLint param) {
cap(CaptureTexParameteri(replayState, true, texture->getType(), pname, param));
};
auto capTexParamf = [cap, &replayState, texture](GLenum pname, GLfloat param) {
cap(CaptureTexParameterf(replayState, true, texture->getType(), pname, param));
};
if (textureSamplerState.getMinFilter() != defaultSamplerState.getMinFilter())
{
capTexParam(GL_TEXTURE_MIN_FILTER, textureSamplerState.getMinFilter());
}
if (textureSamplerState.getMagFilter() != defaultSamplerState.getMagFilter())
{
capTexParam(GL_TEXTURE_MAG_FILTER, textureSamplerState.getMagFilter());
}
if (textureSamplerState.getWrapR() != defaultSamplerState.getWrapR())
{
capTexParam(GL_TEXTURE_WRAP_R, textureSamplerState.getWrapR());
}
if (textureSamplerState.getWrapS() != defaultSamplerState.getWrapS())
{
capTexParam(GL_TEXTURE_WRAP_S, textureSamplerState.getWrapS());
}
if (textureSamplerState.getWrapT() != defaultSamplerState.getWrapT())
{
capTexParam(GL_TEXTURE_WRAP_T, textureSamplerState.getWrapT());
}
if (textureSamplerState.getMinLod() != defaultSamplerState.getMinLod())
{
capTexParamf(GL_TEXTURE_MIN_LOD, textureSamplerState.getMinLod());
}
if (textureSamplerState.getMaxLod() != defaultSamplerState.getMaxLod())
{
capTexParamf(GL_TEXTURE_MAX_LOD, textureSamplerState.getMaxLod());
}
if (textureSamplerState.getCompareMode() != defaultSamplerState.getCompareMode())
{
capTexParam(GL_TEXTURE_COMPARE_MODE, textureSamplerState.getCompareMode());
}
if (textureSamplerState.getCompareFunc() != defaultSamplerState.getCompareFunc())
{
capTexParam(GL_TEXTURE_COMPARE_FUNC, textureSamplerState.getCompareFunc());
}
// Texture parameters
if (texture->getSwizzleRed() != GL_RED)
{
capTexParam(GL_TEXTURE_SWIZZLE_R, texture->getSwizzleRed());
}
if (texture->getSwizzleGreen() != GL_GREEN)
{
capTexParam(GL_TEXTURE_SWIZZLE_G, texture->getSwizzleGreen());
}
if (texture->getSwizzleBlue() != GL_BLUE)
{
capTexParam(GL_TEXTURE_SWIZZLE_B, texture->getSwizzleBlue());
}
if (texture->getSwizzleAlpha() != GL_ALPHA)
{
capTexParam(GL_TEXTURE_SWIZZLE_A, texture->getSwizzleAlpha());
}
if (texture->getBaseLevel() != 0)
{
capTexParam(GL_TEXTURE_BASE_LEVEL, texture->getBaseLevel());
}
if (texture->getMaxLevel() != 1000)
{
capTexParam(GL_TEXTURE_MAX_LEVEL, texture->getMaxLevel());
}
// If the texture is immutable, initialize it with TexStorage
if (texture->getImmutableFormat())
{
CaptureTextureStorage(setupCalls, &replayState, texture);
}
// Iterate texture levels and layers.
gl::ImageIndexIterator imageIter = gl::ImageIndexIterator::MakeGeneric(
texture->getType(), 0, texture->getMipmapMaxLevel() + 1, gl::ImageIndex::kEntireLevel,
gl::ImageIndex::kEntireLevel);
while (imageIter.hasNext())
{
gl::ImageIndex index = imageIter.next();
const gl::ImageDesc &desc = texture->getTextureState().getImageDesc(index);
if (desc.size.empty())
continue;
const gl::InternalFormat &format = *desc.format.info;
// Check for supported textures
ASSERT(index.getType() == gl::TextureType::_2D ||
index.getType() == gl::TextureType::_3D ||
index.getType() == gl::TextureType::_2DArray ||
index.getType() == gl::TextureType::CubeMap);
if (format.compressed)
{
// For compressed images, we've tracked a copy of the incoming data, so we can
// use that rather than try to read data back that may have been converted.
// Look up the data for the requested texture
const auto &foundTextureLevels = cachedTextureLevelData.find(texture->id());
ASSERT(foundTextureLevels != cachedTextureLevelData.end());
// For that texture, look up the data for the given level
GLint level = index.getLevelIndex();
const auto &foundTextureLevel = foundTextureLevels->second.find(level);
ASSERT(foundTextureLevel != foundTextureLevels->second.end());
const std::vector<uint8_t> &capturedTextureLevel = foundTextureLevel->second;
// Use the shadow copy of the data to populate the call
CaptureTextureContents(setupCalls, &replayState, texture, index, desc,
static_cast<GLuint>(capturedTextureLevel.size()),
capturedTextureLevel.data());
}
else
{
// Use ANGLE_get_image to read back pixel data.
if (context->getExtensions().getImageANGLE)
{
GLenum getFormat = format.format;
GLenum getType = format.type;
angle::MemoryBuffer data;
const gl::Extents size(desc.size.width, desc.size.height, desc.size.depth);
const gl::PixelUnpackState &unpack = apiState.getUnpackState();
GLuint endByte = 0;
bool unpackSize =
format.computePackUnpackEndByte(getType, size, unpack, true, &endByte);
ASSERT(unpackSize);
bool result = data.resize(endByte);
ASSERT(result);
gl::PixelPackState packState;
packState.alignment = 1;
(void)texture->getTexImage(context, packState, nullptr, index.getTarget(),
index.getLevelIndex(), getFormat, getType,
data.data());
CaptureTextureContents(setupCalls, &replayState, texture, index, desc,
static_cast<GLuint>(data.size()), data.data());
}
else
{
CaptureTextureContents(setupCalls, &replayState, texture, index, desc, 0,
nullptr);
}
}
}
}
// Set Texture bindings.
size_t currentActiveTexture = 0;
for (gl::TextureType textureType : angle::AllEnums<gl::TextureType>())
{
const gl::TextureBindingVector &bindings = boundTextures[textureType];
for (size_t bindingIndex = 0; bindingIndex < bindings.size(); ++bindingIndex)
{
gl::TextureID textureID = bindings[bindingIndex].id();
if (textureID.value != 0)
{
if (currentActiveTexture != bindingIndex)
{
cap(CaptureActiveTexture(replayState, true,
GL_TEXTURE0 + static_cast<GLenum>(bindingIndex)));
currentActiveTexture = bindingIndex;
}
if (currentTextureBindings[textureType] != textureID)
{
cap(CaptureBindTexture(replayState, true, textureType, textureID));
currentTextureBindings[textureType] = textureID;
}
}
}
}
// Set active Texture.
size_t stateActiveTexture = apiState.getActiveSampler();
if (currentActiveTexture != stateActiveTexture)
{
cap(CaptureActiveTexture(replayState, true,
GL_TEXTURE0 + static_cast<GLenum>(stateActiveTexture)));
}
// Capture Renderbuffers.
const gl::RenderbufferManager &renderbuffers = apiState.getRenderbufferManagerForCapture();
gl::RenderbufferID currentRenderbuffer = {0};
for (const auto &renderbufIter : renderbuffers)
{
gl::RenderbufferID id = {renderbufIter.first};
const gl::Renderbuffer *renderbuffer = renderbufIter.second;
// Generate renderbuffer id.
cap(CaptureGenRenderbuffers(replayState, true, 1, &id));
MaybeCaptureUpdateResourceIDs(setupCalls);
cap(CaptureBindRenderbuffer(replayState, true, GL_RENDERBUFFER, id));
currentRenderbuffer = id;
GLenum internalformat = renderbuffer->getFormat().info->internalFormat;
if (renderbuffer->getSamples() > 0)
{
// Note: We could also use extensions if available.
cap(CaptureRenderbufferStorageMultisample(
replayState, true, GL_RENDERBUFFER, renderbuffer->getSamples(), internalformat,
renderbuffer->getWidth(), renderbuffer->getHeight()));
}
else
{
cap(CaptureRenderbufferStorage(replayState, true, GL_RENDERBUFFER, internalformat,
renderbuffer->getWidth(), renderbuffer->getHeight()));
}
// TODO(jmadill): Capture renderbuffer contents. http://anglebug.com/3662
}
// Set Renderbuffer binding.
if (currentRenderbuffer != apiState.getRenderbufferId())
{
cap(CaptureBindRenderbuffer(replayState, true, GL_RENDERBUFFER,
apiState.getRenderbufferId()));
}
// Capture Framebuffers.
const gl::FramebufferManager &framebuffers = apiState.getFramebufferManagerForCapture();
gl::FramebufferID currentDrawFramebuffer = {0};
gl::FramebufferID currentReadFramebuffer = {0};
for (const auto &framebufferIter : framebuffers)
{
gl::FramebufferID id = {framebufferIter.first};
const gl::Framebuffer *framebuffer = framebufferIter.second;
// The default Framebuffer exists (by default).
if (framebuffer->isDefault())
continue;
cap(CaptureGenFramebuffers(replayState, true, 1, &id));
MaybeCaptureUpdateResourceIDs(setupCalls);
cap(CaptureBindFramebuffer(replayState, true, GL_FRAMEBUFFER, id));
currentDrawFramebuffer = currentReadFramebuffer = id;
// Color Attachments.
for (const gl::FramebufferAttachment &colorAttachment : framebuffer->getColorAttachments())
{
if (!colorAttachment.isAttached())
{
continue;
}
CaptureFramebufferAttachment(setupCalls, replayState, colorAttachment);
}
const gl::FramebufferAttachment *depthAttachment = framebuffer->getDepthAttachment();
if (depthAttachment)
{
ASSERT(depthAttachment->getBinding() == GL_DEPTH_ATTACHMENT);
CaptureFramebufferAttachment(setupCalls, replayState, *depthAttachment);
}
const gl::FramebufferAttachment *stencilAttachment = framebuffer->getStencilAttachment();
if (stencilAttachment)
{
ASSERT(stencilAttachment->getBinding() == GL_STENCIL_ATTACHMENT);
CaptureFramebufferAttachment(setupCalls, replayState, *stencilAttachment);
}
// TODO(jmadill): Draw buffer states. http://anglebug.com/3662
}
// Capture framebuffer bindings.
gl::FramebufferID stateReadFramebuffer = apiState.getReadFramebuffer()->id();
gl::FramebufferID stateDrawFramebuffer = apiState.getDrawFramebuffer()->id();
if (stateDrawFramebuffer == stateReadFramebuffer)
{
if (currentDrawFramebuffer != stateDrawFramebuffer ||
currentReadFramebuffer != stateReadFramebuffer)
{
cap(CaptureBindFramebuffer(replayState, true, GL_FRAMEBUFFER, stateDrawFramebuffer));
currentDrawFramebuffer = currentReadFramebuffer = stateDrawFramebuffer;
}
}
else
{
if (currentDrawFramebuffer != stateDrawFramebuffer)
{
cap(CaptureBindFramebuffer(replayState, true, GL_DRAW_FRAMEBUFFER,
currentDrawFramebuffer));
currentDrawFramebuffer = stateDrawFramebuffer;
}
if (currentReadFramebuffer != stateReadFramebuffer)
{
cap(CaptureBindFramebuffer(replayState, true, GL_READ_FRAMEBUFFER,
replayState.getReadFramebuffer()->id()));
currentReadFramebuffer = stateReadFramebuffer;
}
}
// Capture Shaders and Programs.
const gl::ShaderProgramManager &shadersAndPrograms =
apiState.getShaderProgramManagerForCapture();
const gl::ResourceMap<gl::Shader, gl::ShaderProgramID> &shaders =
shadersAndPrograms.getShadersForCapture();
const gl::ResourceMap<gl::Program, gl::ShaderProgramID> &programs =
shadersAndPrograms.getProgramsForCapture();
// Capture Program binary state. Use shader ID 1 as a temporary shader ID.
gl::ShaderProgramID tempShaderID = {1};
for (const auto &programIter : programs)
{
gl::ShaderProgramID id = {programIter.first};
const gl::Program *program = programIter.second;
// Get last compiled shader source.
const auto &foundSources = cachedProgramSources.find(id);
ASSERT(foundSources != cachedProgramSources.end());
const ProgramSources &linkedSources = foundSources->second;
// Unlinked programs don't have an executable. Thus they don't need to be linked.
if (!program->isLinked())
{
continue;
}
cap(CaptureCreateProgram(replayState, true, id.value));
// Compile with last linked sources.
for (gl::ShaderType shaderType : program->getExecutable().getLinkedShaderStages())
{
const std::string &sourceString = linkedSources[shaderType];
const char *sourcePointer = sourceString.c_str();
// Compile and attach the temporary shader. Then free it immediately.
cap(CaptureCreateShader(replayState, true, shaderType, tempShaderID.value));
cap(CaptureShaderSource(replayState, true, tempShaderID, 1, &sourcePointer, nullptr));
cap(CaptureCompileShader(replayState, true, tempShaderID));
cap(CaptureAttachShader(replayState, true, id, tempShaderID));
cap(CaptureDeleteShader(replayState, true, tempShaderID));
}
// Gather XFB varyings
std::vector<std::string> xfbVaryings;
for (const gl::TransformFeedbackVarying &xfbVarying :
program->getState().getLinkedTransformFeedbackVaryings())
{
xfbVaryings.push_back(xfbVarying.nameWithArrayIndex());
}
if (!xfbVaryings.empty())
{
std::vector<const char *> varyingsStrings;
for (const std::string &varyingString : xfbVaryings)
{
varyingsStrings.push_back(varyingString.data());
}
GLenum xfbMode = program->getState().getTransformFeedbackBufferMode();
cap(CaptureTransformFeedbackVaryings(replayState, true, id,
static_cast<GLint>(xfbVaryings.size()),
varyingsStrings.data(), xfbMode));
}
// Force the attributes to be bound the same way as in the existing program.
// This can affect attributes that are optimized out in some implementations.
for (const sh::ShaderVariable &attrib : program->getState().getProgramInputs())
{
ASSERT(attrib.location != -1);
cap(CaptureBindAttribLocation(
replayState, true, id, static_cast<GLuint>(attrib.location), attrib.name.c_str()));
}
cap(CaptureLinkProgram(replayState, true, id));
CaptureUpdateUniformLocations(program, setupCalls);
CaptureUpdateUniformValues(replayState, context, program, setupCalls);
}
// Handle shaders.
for (const auto &shaderIter : shaders)
{
gl::ShaderProgramID id = {shaderIter.first};
gl::Shader *shader = shaderIter.second;
cap(CaptureCreateShader(replayState, true, shader->getType(), id.value));
std::string shaderSource = shader->getSourceString();
const char *sourcePointer = shaderSource.empty() ? nullptr : shaderSource.c_str();
// This does not handle some more tricky situations like attaching shaders to a non-linked
// program. Or attaching uncompiled shaders. Or attaching and then deleting a shader.
// TODO(jmadill): Handle trickier program uses. http://anglebug.com/3662
if (shader->isCompiled())
{
const auto &foundSources = cachedShaderSources.find(id);
ASSERT(foundSources != cachedShaderSources.end());
const std::string &capturedSource = foundSources->second;
if (capturedSource != shaderSource)
{
ASSERT(!capturedSource.empty());
sourcePointer = capturedSource.c_str();
}
cap(CaptureShaderSource(replayState, true, id, 1, &sourcePointer, nullptr));
cap(CaptureCompileShader(replayState, true, id));
}
if (sourcePointer && (!shader->isCompiled() || sourcePointer != shaderSource.c_str()))
{
cap(CaptureShaderSource(replayState, true, id, 1, &sourcePointer, nullptr));
}
}
// For now we assume the installed program executable is the same as the current program.
// TODO(jmadill): Handle installed program executable. http://anglebug.com/3662
if (apiState.getProgram())
{
cap(CaptureUseProgram(replayState, true, apiState.getProgram()->id()));
CaptureUpdateCurrentProgram(setupCalls->back(), setupCalls);
}
// TODO(http://anglebug.com/3662): ES 3.x objects.
// Create existing queries. Note that queries may be genned and not yet started. In that
// case the queries will exist in the query map as nullptr entries.
const gl::QueryMap &queryMap = context->getQueriesForCapture();
for (gl::QueryMap::Iterator queryIter = queryMap.beginWithNull();
queryIter != queryMap.endWithNull(); ++queryIter)
{
ASSERT(queryIter->first);
gl::QueryID queryID = {queryIter->first};
cap(CaptureGenQueries(replayState, true, 1, &queryID));
MaybeCaptureUpdateResourceIDs(setupCalls);
gl::Query *query = queryIter->second;
if (query)
{
gl::QueryType queryType = query->getType();
// Begin the query to generate the object
cap(CaptureBeginQuery(replayState, true, queryType, queryID));
// End the query if it was not active
if (!IsQueryActive(apiState, queryID))
{
cap(CaptureEndQuery(replayState, true, queryType));
}
}
}
// Transform Feedback
const gl::TransformFeedbackMap &xfbMap = context->getTransformFeedbacksForCapture();
for (const auto &xfbIter : xfbMap)
{
gl::TransformFeedbackID xfbID = {xfbIter.first};
cap(CaptureGenTransformFeedbacks(replayState, true, 1, &xfbID));
MaybeCaptureUpdateResourceIDs(setupCalls);
gl::TransformFeedback *xfb = xfbIter.second;
if (!xfb)
{
// The object was never created
continue;
}
// Bind XFB to create the object
cap(CaptureBindTransformFeedback(replayState, true, GL_TRANSFORM_FEEDBACK, xfbID));
// Bind the buffers associated with this XFB object
for (size_t i = 0; i < xfb->getIndexedBufferCount(); ++i)
{
const gl::OffsetBindingPointer<gl::Buffer> &xfbBuffer = xfb->getIndexedBuffer(i);
// Note: Buffers bound with BindBufferBase can be used with BindBuffer
cap(CaptureBindBufferRange(replayState, true, gl::BufferBinding::TransformFeedback, 0,
xfbBuffer.id(), xfbBuffer.getOffset(), xfbBuffer.getSize()));
}
if (xfb->isActive() || xfb->isPaused())
{
// We don't support active XFB in MEC yet
UNIMPLEMENTED();
}
}
// Bind the current XFB buffer after populating XFB objects
gl::TransformFeedback *currentXFB = apiState.getCurrentTransformFeedback();
cap(CaptureBindTransformFeedback(replayState, true, GL_TRANSFORM_FEEDBACK, currentXFB->id()));
// Capture Sampler Objects
const gl::SamplerManager &samplers = apiState.getSamplerManagerForCapture();
for (const auto &samplerIter : samplers)
{
gl::SamplerID samplerID = {samplerIter.first};
cap(CaptureGenSamplers(replayState, true, 1, &samplerID));
MaybeCaptureUpdateResourceIDs(setupCalls);
gl::Sampler *sampler = samplerIter.second;
if (!sampler)
{
continue;
}
gl::SamplerState defaultSamplerState;
if (sampler->getMinFilter() != defaultSamplerState.getMinFilter())
{
cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_MIN_FILTER,
sampler->getMinFilter()));
}
if (sampler->getMagFilter() != defaultSamplerState.getMagFilter())
{
cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_MAG_FILTER,
sampler->getMagFilter()));
}
if (sampler->getWrapS() != defaultSamplerState.getWrapS())
{
cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_WRAP_S,
sampler->getWrapS()));
}
if (sampler->getWrapR() != defaultSamplerState.getWrapR())
{
cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_WRAP_R,
sampler->getWrapR()));
}
if (sampler->getWrapT() != defaultSamplerState.getWrapT())
{
cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_WRAP_T,
sampler->getWrapT()));
}
if (sampler->getMinLod() != defaultSamplerState.getMinLod())
{
cap(CaptureSamplerParameterf(replayState, true, samplerID, GL_TEXTURE_MIN_LOD,
sampler->getMinLod()));
}
if (sampler->getMaxLod() != defaultSamplerState.getMaxLod())
{
cap(CaptureSamplerParameterf(replayState, true, samplerID, GL_TEXTURE_MAX_LOD,
sampler->getMaxLod()));
}
if (sampler->getCompareMode() != defaultSamplerState.getCompareMode())
{
cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_COMPARE_MODE,
sampler->getCompareMode()));
}
if (sampler->getCompareFunc() != defaultSamplerState.getCompareFunc())
{
cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_COMPARE_FUNC,
sampler->getCompareFunc()));
}
}
// Bind samplers
const gl::SamplerBindingVector &samplerBindings = apiState.getSamplers();
for (GLuint bindingIndex = 0; bindingIndex < static_cast<GLuint>(samplerBindings.size());
++bindingIndex)
{
gl::SamplerID samplerID = samplerBindings[bindingIndex].id();
if (samplerID.value != 0)
{
cap(CaptureBindSampler(replayState, true, bindingIndex, samplerID));
}
}
// Capture GL Context states.
// TODO(http://anglebug.com/3662): Complete state capture.
auto capCap = [cap, &replayState](GLenum capEnum, bool capValue) {
if (capValue)
{
cap(CaptureEnable(replayState, true, capEnum));
}
else
{
cap(CaptureDisable(replayState, true, capEnum));
}
};
// Rasterizer state. Missing ES 3.x features.
// TODO(http://anglebug.com/3662): Complete state capture.
const gl::RasterizerState &defaultRasterState = replayState.getRasterizerState();
const gl::RasterizerState &currentRasterState = apiState.getRasterizerState();
if (currentRasterState.cullFace != defaultRasterState.cullFace)
{
capCap(GL_CULL_FACE, currentRasterState.cullFace);
}
if (currentRasterState.cullMode != defaultRasterState.cullMode)
{
cap(CaptureCullFace(replayState, true, currentRasterState.cullMode));
}
if (currentRasterState.frontFace != defaultRasterState.frontFace)
{
cap(CaptureFrontFace(replayState, true, currentRasterState.frontFace));
}
// Depth/stencil state.
const gl::DepthStencilState &defaultDSState = replayState.getDepthStencilState();
const gl::DepthStencilState &currentDSState = apiState.getDepthStencilState();
if (defaultDSState.depthFunc != currentDSState.depthFunc)
{
cap(CaptureDepthFunc(replayState, true, currentDSState.depthFunc));
}
if (defaultDSState.depthMask != currentDSState.depthMask)
{
cap(CaptureDepthMask(replayState, true, gl::ConvertToGLBoolean(currentDSState.depthMask)));
}
if (defaultDSState.depthTest != currentDSState.depthTest)
{
capCap(GL_DEPTH_TEST, currentDSState.depthTest);
}
if (defaultDSState.stencilTest != currentDSState.stencilTest)
{
capCap(GL_STENCIL_TEST, currentDSState.stencilTest);
}
if (defaultDSState.stencilFunc != currentDSState.stencilFunc ||
defaultDSState.stencilMask != currentDSState.stencilMask || apiState.getStencilRef() != 0)
{
cap(CaptureStencilFuncSeparate(replayState, true, GL_FRONT, currentDSState.stencilFunc,
apiState.getStencilRef(), currentDSState.stencilMask));
}
if (defaultDSState.stencilBackFunc != currentDSState.stencilBackFunc ||
defaultDSState.stencilBackMask != currentDSState.stencilBackMask ||
apiState.getStencilBackRef() != 0)
{
cap(CaptureStencilFuncSeparate(replayState, true, GL_BACK, currentDSState.stencilBackFunc,
apiState.getStencilBackRef(),
currentDSState.stencilBackMask));
}
if (defaultDSState.stencilFail != currentDSState.stencilFail ||
defaultDSState.stencilPassDepthFail != currentDSState.stencilPassDepthFail ||
defaultDSState.stencilPassDepthPass != currentDSState.stencilPassDepthPass)
{
cap(CaptureStencilOpSeparate(replayState, true, GL_FRONT, currentDSState.stencilFail,
currentDSState.stencilPassDepthFail,
currentDSState.stencilPassDepthPass));
}
if (defaultDSState.stencilBackFail != currentDSState.stencilBackFail ||
defaultDSState.stencilBackPassDepthFail != currentDSState.stencilBackPassDepthFail ||
defaultDSState.stencilBackPassDepthPass != currentDSState.stencilBackPassDepthPass)
{
cap(CaptureStencilOpSeparate(replayState, true, GL_BACK, currentDSState.stencilBackFail,
currentDSState.stencilBackPassDepthFail,
currentDSState.stencilBackPassDepthPass));
}
if (defaultDSState.stencilWritemask != currentDSState.stencilWritemask)
{
cap(CaptureStencilMaskSeparate(replayState, true, GL_FRONT,
currentDSState.stencilWritemask));
}
if (defaultDSState.stencilBackWritemask != currentDSState.stencilBackWritemask)
{
cap(CaptureStencilMaskSeparate(replayState, true, GL_BACK,
currentDSState.stencilBackWritemask));
}
// Blend state.
const gl::BlendState &defaultBlendState = replayState.getBlendState();
const gl::BlendState &currentBlendState = apiState.getBlendState();
if (currentBlendState.blend != defaultBlendState.blend)
{
capCap(GL_BLEND, currentBlendState.blend);
}
if (currentBlendState.sourceBlendRGB != defaultBlendState.sourceBlendRGB ||
currentBlendState.destBlendRGB != defaultBlendState.destBlendRGB ||
currentBlendState.sourceBlendAlpha != defaultBlendState.sourceBlendAlpha ||
currentBlendState.destBlendAlpha != defaultBlendState.destBlendAlpha)
{
cap(CaptureBlendFuncSeparate(
replayState, true, currentBlendState.sourceBlendRGB, currentBlendState.destBlendRGB,
currentBlendState.sourceBlendAlpha, currentBlendState.destBlendAlpha));
}
if (currentBlendState.blendEquationRGB != defaultBlendState.blendEquationRGB ||
currentBlendState.blendEquationAlpha != defaultBlendState.blendEquationAlpha)
{
cap(CaptureBlendEquationSeparate(replayState, true, currentBlendState.blendEquationRGB,
currentBlendState.blendEquationAlpha));
}
if (currentBlendState.colorMaskRed != defaultBlendState.colorMaskRed ||
currentBlendState.colorMaskGreen != defaultBlendState.colorMaskGreen ||
currentBlendState.colorMaskBlue != defaultBlendState.colorMaskBlue ||
currentBlendState.colorMaskAlpha != defaultBlendState.colorMaskAlpha)
{
cap(CaptureColorMask(replayState, true,
gl::ConvertToGLBoolean(currentBlendState.colorMaskRed),
gl::ConvertToGLBoolean(currentBlendState.colorMaskGreen),
gl::ConvertToGLBoolean(currentBlendState.colorMaskBlue),
gl::ConvertToGLBoolean(currentBlendState.colorMaskAlpha)));
}
const gl::ColorF &currentBlendColor = apiState.getBlendColor();
if (currentBlendColor != gl::ColorF())
{
cap(CaptureBlendColor(replayState, true, currentBlendColor.red, currentBlendColor.green,
currentBlendColor.blue, currentBlendColor.alpha));
}
// Pixel storage states.
gl::PixelPackState &currentPackState = replayState.getPackState();
if (currentPackState.alignment != apiState.getPackAlignment())
{
cap(CapturePixelStorei(replayState, true, GL_PACK_ALIGNMENT, apiState.getPackAlignment()));
currentPackState.alignment = apiState.getPackAlignment();
}
if (currentPackState.rowLength != apiState.getPackRowLength())
{
cap(CapturePixelStorei(replayState, true, GL_PACK_ROW_LENGTH, apiState.getPackRowLength()));
currentPackState.rowLength = apiState.getPackRowLength();
}
if (currentPackState.skipRows != apiState.getPackSkipRows())
{
cap(CapturePixelStorei(replayState, true, GL_PACK_SKIP_ROWS, apiState.getPackSkipRows()));
currentPackState.skipRows = apiState.getPackSkipRows();
}
if (currentPackState.skipPixels != apiState.getPackSkipPixels())
{
cap(CapturePixelStorei(replayState, true, GL_PACK_SKIP_PIXELS,
apiState.getPackSkipPixels()));
currentPackState.skipPixels = apiState.getPackSkipPixels();
}
// We set unpack alignment above, no need to change it here
ASSERT(currentUnpackState.alignment == 1);
if (currentUnpackState.rowLength != apiState.getUnpackRowLength())
{
cap(CapturePixelStorei(replayState, true, GL_UNPACK_ROW_LENGTH,
apiState.getUnpackRowLength()));
currentUnpackState.rowLength = apiState.getUnpackRowLength();
}
if (currentUnpackState.skipRows != apiState.getUnpackSkipRows())
{
cap(CapturePixelStorei(replayState, true, GL_UNPACK_SKIP_ROWS,
apiState.getUnpackSkipRows()));
currentUnpackState.skipRows = apiState.getUnpackSkipRows();
}
if (currentUnpackState.skipPixels != apiState.getUnpackSkipPixels())
{
cap(CapturePixelStorei(replayState, true, GL_UNPACK_SKIP_PIXELS,
apiState.getUnpackSkipPixels()));
currentUnpackState.skipPixels = apiState.getUnpackSkipPixels();
}
if (currentUnpackState.imageHeight != apiState.getUnpackImageHeight())
{
cap(CapturePixelStorei(replayState, true, GL_UNPACK_IMAGE_HEIGHT,
apiState.getUnpackImageHeight()));
currentUnpackState.imageHeight = apiState.getUnpackImageHeight();
}
if (currentUnpackState.skipImages != apiState.getUnpackSkipImages())
{
cap(CapturePixelStorei(replayState, true, GL_UNPACK_SKIP_IMAGES,
apiState.getUnpackSkipImages()));
currentUnpackState.skipImages = apiState.getUnpackSkipImages();
}
// Clear state. Missing ES 3.x features.
// TODO(http://anglebug.com/3662): Complete state capture.
const gl::ColorF &currentClearColor = apiState.getColorClearValue();
if (currentClearColor != gl::ColorF())
{
cap(CaptureClearColor(replayState, true, currentClearColor.red, currentClearColor.green,
currentClearColor.blue, currentClearColor.alpha));
}
if (apiState.getDepthClearValue() != 1.0f)
{
cap(CaptureClearDepthf(replayState, true, apiState.getDepthClearValue()));
}
if (apiState.getStencilClearValue() != 0)
{
cap(CaptureClearStencil(replayState, true, apiState.getStencilClearValue()));
}
// Viewport / scissor / clipping planes.
const gl::Rectangle &currentViewport = apiState.getViewport();
if (currentViewport != gl::Rectangle())
{
cap(CaptureViewport(replayState, true, currentViewport.x, currentViewport.y,
currentViewport.width, currentViewport.height));
}
if (apiState.getNearPlane() != 0.0f || apiState.getFarPlane() != 1.0f)
{
cap(CaptureDepthRangef(replayState, true, apiState.getNearPlane(), apiState.getFarPlane()));
}
if (apiState.isScissorTestEnabled())
{
capCap(GL_SCISSOR_TEST, apiState.isScissorTestEnabled());
}
const gl::Rectangle &currentScissor = apiState.getScissor();
if (currentScissor != gl::Rectangle())
{
cap(CaptureScissor(replayState, true, currentScissor.x, currentScissor.y,
currentScissor.width, currentScissor.height));
}
if (apiState.isDitherEnabled())
{
capCap(GL_DITHER, apiState.isDitherEnabled());
}
const gl::SyncManager &syncs = apiState.getSyncManagerForCapture();
for (const auto &syncIter : syncs)
{
// TODO: Create existing sync objects (http://anglebug.com/3662)
(void)syncIter;
UNIMPLEMENTED();
}
// Allow the replayState object to be destroyed conveniently.
replayState.setBufferBinding(context, gl::BufferBinding::Array, nullptr);
}
} // namespace
ParamCapture::ParamCapture() : type(ParamType::TGLenum), enumGroup(gl::GLenumGroup::DefaultGroup) {}
ParamCapture::ParamCapture(const char *nameIn, ParamType typeIn)
: name(nameIn), type(typeIn), enumGroup(gl::GLenumGroup::DefaultGroup)
{}
ParamCapture::~ParamCapture() = default;
ParamCapture::ParamCapture(ParamCapture &&other)
: type(ParamType::TGLenum), enumGroup(gl::GLenumGroup::DefaultGroup)
{
*this = std::move(other);
}
ParamCapture &ParamCapture::operator=(ParamCapture &&other)
{
std::swap(name, other.name);
std::swap(type, other.type);
std::swap(value, other.value);
std::swap(enumGroup, other.enumGroup);
std::swap(data, other.data);
std::swap(arrayClientPointerIndex, other.arrayClientPointerIndex);
std::swap(readBufferSizeBytes, other.readBufferSizeBytes);
return *this;
}
ParamBuffer::ParamBuffer() {}
ParamBuffer::~ParamBuffer() = default;
ParamBuffer::ParamBuffer(ParamBuffer &&other)
{
*this = std::move(other);
}
ParamBuffer &ParamBuffer::operator=(ParamBuffer &&other)
{
std::swap(mParamCaptures, other.mParamCaptures);
std::swap(mClientArrayDataParam, other.mClientArrayDataParam);
std::swap(mReadBufferSize, other.mReadBufferSize);
std::swap(mReturnValueCapture, other.mReturnValueCapture);
std::swap(mMappedBufferID, other.mMappedBufferID);
return *this;
}
ParamCapture &ParamBuffer::getParam(const char *paramName, ParamType paramType, int index)
{
ParamCapture &capture = mParamCaptures[index];
ASSERT(capture.name == paramName);
ASSERT(capture.type == paramType);
return capture;
}
const ParamCapture &ParamBuffer::getParam(const char *paramName,
ParamType paramType,
int index) const
{
return const_cast<ParamBuffer *>(this)->getParam(paramName, paramType, index);
}
ParamCapture &ParamBuffer::getParamFlexName(const char *paramName1,
const char *paramName2,
ParamType paramType,
int index)
{
ParamCapture &capture = mParamCaptures[index];
ASSERT(capture.name == paramName1 || capture.name == paramName2);
ASSERT(capture.type == paramType);
return capture;
}
const ParamCapture &ParamBuffer::getParamFlexName(const char *paramName1,
const char *paramName2,
ParamType paramType,
int index) const
{
return const_cast<ParamBuffer *>(this)->getParamFlexName(paramName1, paramName2, paramType,
index);
}
void ParamBuffer::addParam(ParamCapture &&param)
{
if (param.arrayClientPointerIndex != -1)
{
ASSERT(mClientArrayDataParam == -1);
mClientArrayDataParam = static_cast<int>(mParamCaptures.size());
}
mReadBufferSize = std::max(param.readBufferSizeBytes, mReadBufferSize);
mParamCaptures.emplace_back(std::move(param));
}
void ParamBuffer::addReturnValue(ParamCapture &&returnValue)
{
mReturnValueCapture = std::move(returnValue);
}
ParamCapture &ParamBuffer::getClientArrayPointerParameter()
{
ASSERT(hasClientArrayData());
return mParamCaptures[mClientArrayDataParam];
}
CallCapture::CallCapture(gl::EntryPoint entryPointIn, ParamBuffer &&paramsIn)
: entryPoint(entryPointIn), params(std::move(paramsIn))
{}
CallCapture::CallCapture(const std::string &customFunctionNameIn, ParamBuffer &&paramsIn)
: entryPoint(gl::EntryPoint::Invalid),
customFunctionName(customFunctionNameIn),
params(std::move(paramsIn))
{}
CallCapture::~CallCapture() = default;
CallCapture::CallCapture(CallCapture &&other)
{
*this = std::move(other);
}
CallCapture &CallCapture::operator=(CallCapture &&other)
{
std::swap(entryPoint, other.entryPoint);
std::swap(customFunctionName, other.customFunctionName);
std::swap(params, other.params);
return *this;
}
const char *CallCapture::name() const
{
if (entryPoint == gl::EntryPoint::Invalid)
{
ASSERT(!customFunctionName.empty());
return customFunctionName.c_str();
}
return gl::GetEntryPointName(entryPoint);
}
ReplayContext::ReplayContext(size_t readBufferSizebytes,
const gl::AttribArray<size_t> &clientArraysSizebytes)
{
mReadBuffer.resize(readBufferSizebytes);
for (uint32_t i = 0; i < clientArraysSizebytes.size(); i++)
{
mClientArraysBuffer[i].resize(clientArraysSizebytes[i]);
}
}
ReplayContext::~ReplayContext() {}
FrameCapture::FrameCapture()
: mEnabled(true),
mCompression(true),
mClientVertexArrayMap{},
mFrameIndex(0),
mFrameStart(0),
mFrameEnd(10),
mClientArraySizes{},
mReadBufferSize(0),
mHasResourceType{}
{
reset();
#if defined(ANGLE_PLATFORM_ANDROID)
PrimeAndroidEnvironmentVariables();
#endif
std::string enabledFromEnv = angle::GetEnvironmentVar(kEnabledVarName);
if (enabledFromEnv == "0")
{
mEnabled = false;
}
std::string pathFromEnv = angle::GetEnvironmentVar(kOutDirectoryVarName);
if (pathFromEnv.empty())
{
mOutDirectory = GetDefaultOutDirectory();
}
else
{
mOutDirectory = pathFromEnv;
}
// Ensure the capture path ends with a slash.
if (mOutDirectory.back() != '\\' && mOutDirectory.back() != '/')
{
mOutDirectory += '/';
}
std::string startFromEnv = angle::GetEnvironmentVar(kFrameStartVarName);
if (!startFromEnv.empty())
{
mFrameStart = atoi(startFromEnv.c_str());
}
std::string endFromEnv = angle::GetEnvironmentVar(kFrameEndVarName);
if (!endFromEnv.empty())
{
mFrameEnd = atoi(endFromEnv.c_str());
}
std::string labelFromEnv = angle::GetEnvironmentVar(kCaptureLabel);
if (!labelFromEnv.empty())
{
// Optional label to provide unique file names and namespaces
mCaptureLabel = labelFromEnv;
}
std::string compressionFromEnv = angle::GetEnvironmentVar(kCompression);
if (compressionFromEnv == "0")
{
mCompression = false;
}
}
FrameCapture::~FrameCapture() = default;
void FrameCapture::captureCompressedTextureData(const gl::Context *context, const CallCapture &call)
{
// For compressed textures, track a shadow copy of the data
// for use during mid-execution capture, rather than reading it back
// with ANGLE_get_image
// Storing the compressed data is handled the same for all entry points,
// they just have slightly different parameter locations
int dataParamOffset = -1;
int xoffsetParamOffset = -1;
int yoffsetParamOffset = -1;
int zoffsetParamOffset = -1;
int widthParamOffset = -1;
int heightParamOffset = -1;
int depthParamOffset = -1;
switch (call.entryPoint)
{
case gl::EntryPoint::CompressedTexSubImage3D:
xoffsetParamOffset = 2;
yoffsetParamOffset = 3;
zoffsetParamOffset = 4;
widthParamOffset = 5;
heightParamOffset = 6;
depthParamOffset = 7;
dataParamOffset = 10;
break;
case gl::EntryPoint::CompressedTexImage3D:
widthParamOffset = 4;
heightParamOffset = 5;
depthParamOffset = 6;
dataParamOffset = 9;
break;
case gl::EntryPoint::CompressedTexSubImage2D:
xoffsetParamOffset = 2;
yoffsetParamOffset = 3;
widthParamOffset = 4;
heightParamOffset = 5;
dataParamOffset = 8;
break;
case gl::EntryPoint::CompressedTexImage2D:
widthParamOffset = 3;
heightParamOffset = 4;
dataParamOffset = 7;
break;
default:
// There should be no other callers of this function
ASSERT(0);
break;
}
gl::Buffer *pixelUnpackBuffer =
context->getState().getTargetBuffer(gl::BufferBinding::PixelUnpack);
const uint8_t *data = static_cast<const uint8_t *>(
call.params.getParam("data", ParamType::TvoidConstPointer, dataParamOffset)
.value.voidConstPointerVal);
GLsizei imageSize = call.params.getParam("imageSize", ParamType::TGLsizei, dataParamOffset - 1)
.value.GLsizeiVal;
const uint8_t *pixelData = nullptr;
if (pixelUnpackBuffer)
{
// If using pixel unpack buffer, map the buffer and track its data
ASSERT(!pixelUnpackBuffer->isMapped());
(void)pixelUnpackBuffer->mapRange(context, reinterpret_cast<GLintptr>(data), imageSize,
GL_MAP_READ_BIT);
pixelData = reinterpret_cast<const uint8_t *>(pixelUnpackBuffer->getMapPointer());
}
else
{
pixelData = data;
}
if (!pixelData)
{
// If no pointer was provided and we weren't able to map the buffer, there is no data to
// capture
return;
}
// Look up the texture type
gl::TextureTarget targetPacked =
call.params.getParam("targetPacked", ParamType::TTextureTarget, 0).value.TextureTargetVal;
gl::TextureType textureType = gl::TextureTargetToType(targetPacked);
// Create a copy of the incoming data
std::vector<uint8_t> compressedData;
compressedData.assign(pixelData, pixelData + imageSize);
// Look up the currently bound texture
gl::Texture *texture = context->getState().getTargetTexture(textureType);
ASSERT(texture);
// Record the data, indexed by textureID and level
GLint level = call.params.getParam("level", ParamType::TGLint, 1).value.GLintVal;
auto foundTextureLevels = mCachedTextureLevelData.find(texture->id());
if (foundTextureLevels == mCachedTextureLevelData.end())
{
// Initialize the texture ID data.
auto emplaceResult = mCachedTextureLevelData.emplace(texture->id(), TextureLevels());
ASSERT(emplaceResult.second);
foundTextureLevels = emplaceResult.first;
}
// Get the format of the texture for use with the compressed block size math.
const gl::InternalFormat &format = *texture->getFormat(targetPacked, level).info;
TextureLevels &foundLevels = foundTextureLevels->second;
auto foundLevel = foundLevels.find(level);
// Divide dimensions according to block size.
const gl::Extents &levelExtents = texture->getExtents(targetPacked, level);
if (foundLevel == foundLevels.end())
{
// Initialize texture rectangle data. Default init to zero for stability.
GLuint sizeInBytes;
bool result = format.computeCompressedImageSize(levelExtents, &sizeInBytes);
ASSERT(result);
std::vector<uint8_t> newPixelData(sizeInBytes, 0);
auto emplaceResult = foundLevels.emplace(level, std::move(newPixelData));
ASSERT(emplaceResult.second);
foundLevel = emplaceResult.first;
}
// Unpack the various pixel rectangle parameters.
ASSERT(widthParamOffset != -1);
ASSERT(heightParamOffset != -1);
GLsizei pixelWidth =
call.params.getParam("width", ParamType::TGLsizei, widthParamOffset).value.GLsizeiVal;
GLsizei pixelHeight =
call.params.getParam("height", ParamType::TGLsizei, heightParamOffset).value.GLsizeiVal;
GLsizei pixelDepth = 1;
if (depthParamOffset != -1)
{
pixelDepth =
call.params.getParam("depth", ParamType::TGLsizei, depthParamOffset).value.GLsizeiVal;
}
GLint xoffset = 0;
GLint yoffset = 0;
GLint zoffset = 0;
if (xoffsetParamOffset != -1)
{
xoffset =
call.params.getParam("xoffset", ParamType::TGLint, xoffsetParamOffset).value.GLintVal;
}
if (yoffsetParamOffset != -1)
{
yoffset =
call.params.getParam("yoffset", ParamType::TGLint, yoffsetParamOffset).value.GLintVal;
}
if (zoffsetParamOffset != -1)
{
zoffset =
call.params.getParam("zoffset", ParamType::TGLint, zoffsetParamOffset).value.GLintVal;
}
// Since we're dealing in 4x4 blocks, scale down the width/height pixel offsets.
ASSERT(format.compressedBlockWidth == 4);
ASSERT(format.compressedBlockHeight == 4);
ASSERT(format.compressedBlockDepth == 1);
pixelWidth >>= 2;
pixelHeight >>= 2;
xoffset >>= 2;
yoffset >>= 2;
// Update pixel data.
std::vector<uint8_t> &levelData = foundLevel->second;
GLint pixelBytes = static_cast<GLint>(format.pixelBytes);
GLint pixelRowPitch = pixelWidth * pixelBytes;
GLint pixelDepthPitch = pixelRowPitch * pixelHeight;
GLint levelRowPitch = (levelExtents.width >> 2) * pixelBytes;
GLint levelDepthPitch = levelRowPitch * (levelExtents.height >> 2);
for (GLint zindex = 0; zindex < pixelDepth; ++zindex)
{
GLint z = zindex + zoffset;
for (GLint yindex = 0; yindex < pixelHeight; ++yindex)
{
GLint y = yindex + yoffset;
GLint pixelOffset = zindex * pixelDepthPitch + yindex * pixelRowPitch;
GLint levelOffset = z * levelDepthPitch + y * levelRowPitch + xoffset * pixelBytes;
memcpy(&levelData[levelOffset], &pixelData[pixelOffset], pixelRowPitch);
}
}
if (pixelUnpackBuffer)
{
GLboolean success;
(void)pixelUnpackBuffer->unmap(context, &success);
ASSERT(success);
}
}
void FrameCapture::maybeCaptureClientData(const gl::Context *context, CallCapture &call)
{
switch (call.entryPoint)
{
case gl::EntryPoint::VertexAttribPointer:
{
// Get array location
GLuint index = call.params.getParam("index", ParamType::TGLuint, 0).value.GLuintVal;
if (call.params.hasClientArrayData())
{
mClientVertexArrayMap[index] = static_cast<int>(mFrameCalls.size());
}
else
{
mClientVertexArrayMap[index] = -1;
}
break;
}
case gl::EntryPoint::DeleteBuffers:
{
GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal;
const gl::BufferID *bufferIDs =
call.params.getParam("buffersPacked", ParamType::TBufferIDConstPointer, 1)
.value.BufferIDConstPointerVal;
for (GLsizei i = 0; i < count; i++)
{
// For each buffer being deleted, check our backup of data and remove it
const auto &bufferDataInfo = mBufferDataMap.find(bufferIDs[i]);
if (bufferDataInfo != mBufferDataMap.end())
{
mBufferDataMap.erase(bufferDataInfo);
}
// If we're capturing, track what new buffers have been genned
if (mFrameIndex >= mFrameStart)
{
mResourceTracker.setDeletedBuffer(bufferIDs[i]);
}
}
break;
}
case gl::EntryPoint::GenBuffers:
{
GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal;
const gl::BufferID *bufferIDs =
call.params.getParam("buffersPacked", ParamType::TBufferIDPointer, 1)
.value.BufferIDPointerVal;
for (GLsizei i = 0; i < count; i++)
{
// If we're capturing, track what new buffers have been genned
if (mFrameIndex >= mFrameStart)
{
mResourceTracker.setGennedBuffer(bufferIDs[i]);
}
}
break;
}
case gl::EntryPoint::DrawArrays:
{
if (context->getStateCache().hasAnyActiveClientAttrib())
{
// Get counts from paramBuffer.
GLint firstVertex =
call.params.getParam("first", ParamType::TGLint, 1).value.GLintVal;
GLsizei drawCount =
call.params.getParam("count", ParamType::TGLsizei, 2).value.GLsizeiVal;
captureClientArraySnapshot(context, firstVertex + drawCount, 1);
}
break;
}
case gl::EntryPoint::DrawElements:
{
if (context->getStateCache().hasAnyActiveClientAttrib())
{
GLsizei count =
call.params.getParam("count", ParamType::TGLsizei, 1).value.GLsizeiVal;
gl::DrawElementsType drawElementsType =
call.params.getParam("typePacked", ParamType::TDrawElementsType, 2)
.value.DrawElementsTypeVal;
const void *indices =
call.params.getParam("indices", ParamType::TvoidConstPointer, 3)
.value.voidConstPointerVal;
gl::IndexRange indexRange;
bool restart = context->getState().isPrimitiveRestartEnabled();
gl::Buffer *elementArrayBuffer =
context->getState().getVertexArray()->getElementArrayBuffer();
if (elementArrayBuffer)
{
size_t offset = reinterpret_cast<size_t>(indices);
(void)elementArrayBuffer->getIndexRange(context, drawElementsType, offset,
count, restart, &indexRange);
}
else
{
indexRange = gl::ComputeIndexRange(drawElementsType, indices, count, restart);
}
// index starts from 0
captureClientArraySnapshot(context, indexRange.end + 1, 1);
}
break;
}
case gl::EntryPoint::CompileShader:
{
// Refresh the cached shader sources.
gl::ShaderProgramID shaderID =
call.params.getParam("shaderPacked", ParamType::TShaderProgramID, 0)
.value.ShaderProgramIDVal;
const gl::Shader *shader = context->getShader(shaderID);
mCachedShaderSources[shaderID] = shader->getSourceString();
break;
}
case gl::EntryPoint::LinkProgram:
{
// Refresh the cached program sources.
gl::ShaderProgramID programID =
call.params.getParam("programPacked", ParamType::TShaderProgramID, 0)
.value.ShaderProgramIDVal;
const gl::Program *program = context->getProgramResolveLink(programID);
mCachedProgramSources[programID] = GetAttachedProgramSources(program);
break;
}
case gl::EntryPoint::CompressedTexImage1D:
case gl::EntryPoint::CompressedTexSubImage1D:
{
UNIMPLEMENTED();
break;
}
case gl::EntryPoint::CompressedTexImage2D:
case gl::EntryPoint::CompressedTexImage3D:
case gl::EntryPoint::CompressedTexSubImage2D:
case gl::EntryPoint::CompressedTexSubImage3D:
{
captureCompressedTextureData(context, call);
break;
}
case gl::EntryPoint::DeleteTextures:
{
// Free any TextureLevelDataMap entries being tracked for this texture
// This is to cover the scenario where a texture has been created, its
// levels cached, then texture deleted and recreated, receiving the same ID
// Look up how many textures are being deleted
GLsizei n = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal;
// Look up the pointer to list of textures
const gl::TextureID *textureIDs =
call.params.getParam("texturesPacked", ParamType::TTextureIDConstPointer, 1)
.value.TextureIDConstPointerVal;
// For each texture listed for deletion
for (int32_t i = 0; i < n; ++i)
{
// Look it up in the cache, and delete it if found
const auto &foundTextureLevels = mCachedTextureLevelData.find(textureIDs[i]);
if (foundTextureLevels != mCachedTextureLevelData.end())
{
// Delete all texture levels at once
mCachedTextureLevelData.erase(foundTextureLevels);
}
}
break;
}
case gl::EntryPoint::MapBuffer:
{
UNIMPLEMENTED();
break;
}
case gl::EntryPoint::MapBufferOES:
{
UNIMPLEMENTED();
break;
}
case gl::EntryPoint::UnmapNamedBuffer:
{
UNIMPLEMENTED();
break;
}
case gl::EntryPoint::MapBufferRange:
case gl::EntryPoint::MapBufferRangeEXT:
{
// Use the access bits to see if contents may be modified
GLbitfield access =
call.params.getParam("access", ParamType::TGLbitfield, 3).value.GLbitfieldVal;
if (access & GL_MAP_WRITE_BIT)
{
// If this buffer was mapped writable, we don't have any visibility into what
// happens to it. Therefore, remember the details about it, and we'll read it back
// on Unmap to repopulate it during replay.
gl::BufferBinding target =
call.params.getParam("targetPacked", ParamType::TBufferBinding, 0)
.value.BufferBindingVal;
GLintptr offset =
call.params.getParam("offset", ParamType::TGLintptr, 1).value.GLintptrVal;
GLsizeiptr length =
call.params.getParam("length", ParamType::TGLsizeiptr, 2).value.GLsizeiptrVal;
gl::Buffer *buffer = context->getState().getTargetBuffer(target);
mBufferDataMap[buffer->id()] = std::make_pair(offset, length);
// Track the bufferID that was just mapped
call.params.setMappedBufferID(buffer->id());
// Remember that it was mapped writable, for use during state reset
mResourceTracker.setBufferModified(buffer->id());
}
break;
}
case gl::EntryPoint::UnmapBuffer:
case gl::EntryPoint::UnmapBufferOES:
{
// See if we need to capture the buffer contents
captureMappedBufferSnapshot(context, call);
break;
}
case gl::EntryPoint::BufferData:
case gl::EntryPoint::BufferSubData:
{
gl::BufferBinding target =
call.params.getParam("targetPacked", ParamType::TBufferBinding, 0)
.value.BufferBindingVal;
gl::Buffer *buffer = context->getState().getTargetBuffer(target);
// Track that this buffer's contents have been modified
mResourceTracker.setBufferModified(buffer->id());
break;
}
default:
break;
}
}
void FrameCapture::captureCall(const gl::Context *context, CallCapture &&call)
{
// Process client data snapshots.
maybeCaptureClientData(context, call);
mReadBufferSize = std::max(mReadBufferSize, call.params.getReadBufferSize());
mFrameCalls.emplace_back(std::move(call));
maybeCapturePostCallUpdates(context);
}
void FrameCapture::maybeCapturePostCallUpdates(const gl::Context *context)
{
// Process resource ID updates.
MaybeCaptureUpdateResourceIDs(&mFrameCalls);
const CallCapture &lastCall = mFrameCalls.back();
switch (lastCall.entryPoint)
{
case gl::EntryPoint::LinkProgram:
{
const ParamCapture &param =
lastCall.params.getParam("programPacked", ParamType::TShaderProgramID, 0);
const gl::Program *program =
context->getProgramResolveLink(param.value.ShaderProgramIDVal);
CaptureUpdateUniformLocations(program, &mFrameCalls);
break;
}
case gl::EntryPoint::UseProgram:
CaptureUpdateCurrentProgram(lastCall, &mFrameCalls);
break;
case gl::EntryPoint::DeleteProgram:
{
const ParamCapture &param =
lastCall.params.getParam("programPacked", ParamType::TShaderProgramID, 0);
CaptureDeleteUniformLocations(param.value.ShaderProgramIDVal, &mFrameCalls);
break;
}
case gl::EntryPoint::BindFramebuffer:
{
const ParamCapture &target = lastCall.params.getParam("target", ParamType::TGLenum, 0);
const ParamCapture &framebuffer =
lastCall.params.getParam("framebufferPacked", ParamType::TFramebufferID, 1);
CaptureOnFramebufferChange(target.value.GLenumVal, framebuffer.value.FramebufferIDVal,
&mFrameCalls);
break;
}
default:
break;
}
}
void FrameCapture::captureClientArraySnapshot(const gl::Context *context,
size_t vertexCount,
size_t instanceCount)
{
const gl::VertexArray *vao = context->getState().getVertexArray();
// Capture client array data.
for (size_t attribIndex : context->getStateCache().getActiveClientAttribsMask())
{
const gl::VertexAttribute &attrib = vao->getVertexAttribute(attribIndex);
const gl::VertexBinding &binding = vao->getVertexBinding(attrib.bindingIndex);
int callIndex = mClientVertexArrayMap[attribIndex];
if (callIndex != -1)
{
size_t count = vertexCount;
if (binding.getDivisor() > 0)
{
count = rx::UnsignedCeilDivide(static_cast<uint32_t>(instanceCount),
binding.getDivisor());
}
// The last capture element doesn't take up the full stride.
size_t bytesToCapture = (count - 1) * binding.getStride() + attrib.format->pixelBytes;
CallCapture &call = mFrameCalls[callIndex];
ParamCapture &param = call.params.getClientArrayPointerParameter();
ASSERT(param.type == ParamType::TvoidConstPointer);
ParamBuffer updateParamBuffer;
updateParamBuffer.addValueParam<GLint>("arrayIndex", ParamType::TGLint,
static_cast<uint32_t>(attribIndex));
ParamCapture updateMemory("pointer", ParamType::TvoidConstPointer);
CaptureMemory(param.value.voidConstPointerVal, bytesToCapture, &updateMemory);
updateParamBuffer.addParam(std::move(updateMemory));
updateParamBuffer.addValueParam<GLuint64>("size", ParamType::TGLuint64, bytesToCapture);
mFrameCalls.emplace_back("UpdateClientArrayPointer", std::move(updateParamBuffer));
mClientArraySizes[attribIndex] =
std::max(mClientArraySizes[attribIndex], bytesToCapture);
}
}
}
void FrameCapture::captureMappedBufferSnapshot(const gl::Context *context, const CallCapture &call)
{
// If the buffer was mapped writable, we need to restore its data, since we have no visibility
// into what the client did to the buffer while mapped
// This sequence will result in replay calls like this:
// ...
// gMappedBufferData[gBufferMap[42]] = glMapBufferRange(GL_PIXEL_UNPACK_BUFFER, 0, 65536,
// GL_MAP_WRITE_BIT);
// ...
// UpdateClientBufferData(42, &gBinaryData[164631024], 65536);
// glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
// ...
// Re-map the buffer, using the info we tracked about the buffer
gl::BufferBinding target =
call.params.getParam("targetPacked", ParamType::TBufferBinding, 0).value.BufferBindingVal;
gl::Buffer *buffer = context->getState().getTargetBuffer(target);
const auto &bufferDataInfo = mBufferDataMap.find(buffer->id());
if (bufferDataInfo == mBufferDataMap.end())
{
// This buffer was not marked writable, so we did not back it up
return;
}
GLintptr offset = bufferDataInfo->second.first;
GLsizeiptr length = bufferDataInfo->second.second;
// Map the buffer so we can copy its contents out
ASSERT(!buffer->isMapped());
angle::Result result = buffer->mapRange(context, offset, length, GL_MAP_READ_BIT);
if (result != angle::Result::Continue)
{
ERR() << "Failed to mapRange of buffer" << std::endl;
}
const uint8_t *data = reinterpret_cast<const uint8_t *>(buffer->getMapPointer());
// Create the parameters to our helper for use during replay
ParamBuffer dataParamBuffer;
// Pass in the target buffer ID
dataParamBuffer.addValueParam("dest", ParamType::TGLuint, buffer->id().value);
// Capture the current buffer data with a binary param
ParamCapture captureData("source", ParamType::TvoidConstPointer);
CaptureMemory(data, length, &captureData);
dataParamBuffer.addParam(std::move(captureData));
// Also track its size for use with memcpy
dataParamBuffer.addValueParam<GLsizeiptr>("size", ParamType::TGLsizeiptr, length);
// Call the helper that populates the buffer with captured data
mFrameCalls.emplace_back("UpdateClientBufferData", std::move(dataParamBuffer));
// Unmap the buffer and move on
GLboolean dontCare;
(void)buffer->unmap(context, &dontCare);
}
void FrameCapture::onEndFrame(const gl::Context *context)
{
// Note that we currently capture before the start frame to collect shader and program sources.
if (!mFrameCalls.empty() && mFrameIndex >= mFrameStart)
{
WriteCppReplay(mCompression, mOutDirectory, context->id(), mCaptureLabel, mFrameIndex,
mFrameEnd, mFrameCalls, mSetupCalls, &mResourceTracker, &mBinaryData);
// Save the index files after the last frame.
if (mFrameIndex == mFrameEnd)
{
WriteCppReplayIndexFiles(mCompression, mOutDirectory, context->id(), mCaptureLabel,
mFrameStart, mFrameEnd, mReadBufferSize, mClientArraySizes,
mHasResourceType);
if (!mBinaryData.empty())
{
SaveBinaryData(mCompression, mOutDirectory, context->id(), mCaptureLabel,
mBinaryData);
mBinaryData.clear();
}
}
}
// Count resource IDs. This is also done on every frame. It could probably be done by checking
// the GL state instead of the calls.
for (const CallCapture &call : mFrameCalls)
{
for (const ParamCapture &param : call.params.getParamCaptures())
{
ResourceIDType idType = GetResourceIDTypeFromParamType(param.type);
if (idType != ResourceIDType::InvalidEnum)
{
mHasResourceType.set(idType);
}
}
}
reset();
mFrameIndex++;
if (enabled() && mFrameIndex == mFrameStart)
{
mSetupCalls.clear();
CaptureMidExecutionSetup(context, &mSetupCalls, &mResourceTracker, mCachedShaderSources,
mCachedProgramSources, mCachedTextureLevelData);
}
}
DataCounters::DataCounters() = default;
DataCounters::~DataCounters() = default;
int DataCounters::getAndIncrement(gl::EntryPoint entryPoint, const std::string &paramName)
{
Counter counterKey = {entryPoint, paramName};
return mData[counterKey]++;
}
ResourceTracker::ResourceTracker() = default;
ResourceTracker::~ResourceTracker() = default;
void ResourceTracker::setDeletedBuffer(gl::BufferID id)
{
if (mNewBuffers.find(id) != mNewBuffers.end())
{
// This is a buffer genned after MEC was initialized, just clear it, since there will be no
// actions required for it to return to starting state.
mNewBuffers.erase(id);
return;
}
// Ensure this buffer was in our starting set
// It's possible this could fire if the app deletes buffers that were never generated
ASSERT(mStartingBuffers.find(id) != mStartingBuffers.end());
// In this case, the app is deleting a buffer we started with, we need to regen on loop
mBuffersToRegen.insert(id);
mBuffersToRestore.insert(id);
}
void ResourceTracker::setGennedBuffer(gl::BufferID id)
{
if (mStartingBuffers.find(id) == mStartingBuffers.end())
{
// This is a buffer genned after MEC was initialized, track it
mNewBuffers.insert(id);
return;
}
}
void ResourceTracker::setBufferModified(gl::BufferID id)
{
// If this was a starting buffer, we need to track it for restore
if (mStartingBuffers.find(id) != mStartingBuffers.end())
{
mBuffersToRestore.insert(id);
}
}
bool FrameCapture::isCapturing() const
{
// Currently we will always do a capture up until the last frame. In the future we could improve
// mid execution capture by only capturing between the start and end frames. The only necessary
// reason we need to capture before the start is for attached program and shader sources.
return mEnabled && mFrameIndex <= mFrameEnd;
}
void FrameCapture::replay(gl::Context *context)
{
ReplayContext replayContext(mReadBufferSize, mClientArraySizes);
for (const CallCapture &call : mFrameCalls)
{
INFO() << "frame index: " << mFrameIndex << " " << call.name();
if (call.entryPoint == gl::EntryPoint::Invalid)
{
if (call.customFunctionName == "UpdateClientArrayPointer")
{
GLint arrayIndex =
call.params.getParam("arrayIndex", ParamType::TGLint, 0).value.GLintVal;
ASSERT(arrayIndex < gl::MAX_VERTEX_ATTRIBS);
const ParamCapture &pointerParam =
call.params.getParam("pointer", ParamType::TvoidConstPointer, 1);
ASSERT(pointerParam.data.size() == 1);
const void *pointer = pointerParam.data[0].data();
size_t size = static_cast<size_t>(
call.params.getParam("size", ParamType::TGLuint64, 2).value.GLuint64Val);
std::vector<uint8_t> &curClientArrayBuffer =
replayContext.getClientArraysBuffer()[arrayIndex];
ASSERT(curClientArrayBuffer.size() >= size);
memcpy(curClientArrayBuffer.data(), pointer, size);
}
continue;
}
ReplayCall(context, &replayContext, call);
}
}
void FrameCapture::reset()
{
mFrameCalls.clear();
mSetupCalls.clear();
mClientVertexArrayMap.fill(-1);
// Do not reset replay-specific settings like the maximum read buffer size, client array sizes,
// or the 'has seen' type map. We could refine this into per-frame and per-capture maximums if
// necessary.
}
void CaptureMemory(const void *source, size_t size, ParamCapture *paramCapture)
{
std::vector<uint8_t> data(size);
memcpy(data.data(), source, size);
paramCapture->data.emplace_back(std::move(data));
}
void CaptureString(const GLchar *str, ParamCapture *paramCapture)
{
// include the '\0' suffix
CaptureMemory(str, strlen(str) + 1, paramCapture);
}
void CaptureStringLimit(const GLchar *str, uint32_t limit, ParamCapture *paramCapture)
{
// Write the incoming string up to limit, including null terminator
size_t length = strlen(str) + 1;
if (length > limit)
{
// If too many characters, resize the string to fit in the limit
std::string newStr = str;
newStr.resize(limit - 1);
CaptureString(newStr.c_str(), paramCapture);
}
else
{
CaptureMemory(str, length, paramCapture);
}
}
gl::Program *GetLinkedProgramForCapture(const gl::State &glState, gl::ShaderProgramID handle)
{
gl::Program *program = glState.getShaderProgramManagerForCapture().getProgram(handle);
ASSERT(program->isLinked());
return program;
}
void CaptureGetParameter(const gl::State &glState,
GLenum pname,
size_t typeSize,
ParamCapture *paramCapture)
{
GLenum nativeType;
unsigned int numParams;
if (!gl::GetQueryParameterInfo(glState, pname, &nativeType, &numParams))
{
numParams = 1;
}
paramCapture->readBufferSizeBytes = typeSize * numParams;
}
void CaptureGenHandlesImpl(GLsizei n, GLuint *handles, ParamCapture *paramCapture)
{
paramCapture->readBufferSizeBytes = sizeof(GLuint) * n;
CaptureMemory(handles, paramCapture->readBufferSizeBytes, paramCapture);
}
template <>
void WriteParamValueReplay<ParamType::TGLboolean>(std::ostream &os,
const CallCapture &call,
GLboolean value)
{
switch (value)
{
case GL_TRUE:
os << "GL_TRUE";
break;
case GL_FALSE:
os << "GL_FALSE";
break;
default:
os << "GL_INVALID_ENUM";
}
}
template <>
void WriteParamValueReplay<ParamType::TvoidConstPointer>(std::ostream &os,
const CallCapture &call,
const void *value)
{
if (value == 0)
{
os << "nullptr";
}
else
{
os << "reinterpret_cast<const void *>("
<< static_cast<int>(reinterpret_cast<uintptr_t>(value)) << ")";
}
}
template <>
void WriteParamValueReplay<ParamType::TGLDEBUGPROCKHR>(std::ostream &os,
const CallCapture &call,
GLDEBUGPROCKHR value)
{}
template <>
void WriteParamValueReplay<ParamType::TGLDEBUGPROC>(std::ostream &os,
const CallCapture &call,
GLDEBUGPROC value)
{}
template <>
void WriteParamValueReplay<ParamType::TBufferID>(std::ostream &os,
const CallCapture &call,
gl::BufferID value)
{
os << "gBufferMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TFenceNVID>(std::ostream &os,
const CallCapture &call,
gl::FenceNVID value)
{
os << "gFenceMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TFramebufferID>(std::ostream &os,
const CallCapture &call,
gl::FramebufferID value)
{
os << "gFramebufferMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TMemoryObjectID>(std::ostream &os,
const CallCapture &call,
gl::MemoryObjectID value)
{
os << "gMemoryObjectMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TProgramPipelineID>(std::ostream &os,
const CallCapture &call,
gl::ProgramPipelineID value)
{
os << "gProgramPipelineMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TQueryID>(std::ostream &os,
const CallCapture &call,
gl::QueryID value)
{
os << "gQueryMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TRenderbufferID>(std::ostream &os,
const CallCapture &call,
gl::RenderbufferID value)
{
os << "gRenderbufferMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TSamplerID>(std::ostream &os,
const CallCapture &call,
gl::SamplerID value)
{
os << "gSamplerMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TSemaphoreID>(std::ostream &os,
const CallCapture &call,
gl::SemaphoreID value)
{
os << "gSempahoreMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TShaderProgramID>(std::ostream &os,
const CallCapture &call,
gl::ShaderProgramID value)
{
os << "gShaderProgramMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TGLsync>(std::ostream &os,
const CallCapture &call,
GLsync value)
{
os << "gSyncMap[" << SyncIndexValue(value) << "]";
}
template <>
void WriteParamValueReplay<ParamType::TTextureID>(std::ostream &os,
const CallCapture &call,
gl::TextureID value)
{
os << "gTextureMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TTransformFeedbackID>(std::ostream &os,
const CallCapture &call,
gl::TransformFeedbackID value)
{
os << "gTransformFeedbackMap[" << value.value << "]";
}
template <>
void WriteParamValueReplay<ParamType::TVertexArrayID>(std::ostream &os,
const CallCapture &call,
gl::VertexArrayID value)
{
os << "gVertexArrayMap[" << value.value << "]";
}
bool FindShaderProgramIDInCall(const CallCapture &call, gl::ShaderProgramID *idOut)
{
for (const ParamCapture &param : call.params.getParamCaptures())
{
if (param.type == ParamType::TShaderProgramID && param.name == "programPacked")
{
*idOut = param.value.ShaderProgramIDVal;
return true;
}
}
return false;
}
template <>
void WriteParamValueReplay<ParamType::TUniformLocation>(std::ostream &os,
const CallCapture &call,
gl::UniformLocation value)
{
if (value.value == -1)
{
os << "-1";
return;
}
os << "gUniformLocations[";
// Find the program from the call parameters.
gl::ShaderProgramID programID;
if (FindShaderProgramIDInCall(call, &programID))
{
os << "gShaderProgramMap[" << programID.value << "]";
}
else
{
os << "gCurrentProgram";
}
os << "][" << value.value << "]";
}
} // namespace angle