blob: 4fb11649d5225c2136d0e8f203215fcb81a2d349 [file] [log] [blame]
/*
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 2000 Gunnstein Lye (gunnstein@netcom.no)
* (C) 2000 Frederik Holljen (frederik.holljen@hig.no)
* (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2004, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "Range.h"
#include "RangeException.h"
#include "CString.h"
#include "DocumentFragment.h"
#include "HTMLElement.h"
#include "NodeWithIndex.h"
#include "ProcessingInstruction.h"
#include "Text.h"
#include "TextIterator.h"
#include "VisiblePosition.h"
#include "markup.h"
#include "visible_units.h"
#include <stdio.h>
#include <wtf/RefCountedLeakCounter.h>
namespace WebCore {
using namespace std;
#ifndef NDEBUG
static WTF::RefCountedLeakCounter rangeCounter("Range");
#endif
inline Range::Range(PassRefPtr<Document> ownerDocument)
: m_ownerDocument(ownerDocument)
, m_start(m_ownerDocument)
, m_end(m_ownerDocument)
{
#ifndef NDEBUG
rangeCounter.increment();
#endif
m_ownerDocument->attachRange(this);
}
PassRefPtr<Range> Range::create(PassRefPtr<Document> ownerDocument)
{
return adoptRef(new Range(ownerDocument));
}
inline Range::Range(PassRefPtr<Document> ownerDocument, PassRefPtr<Node> startContainer, int startOffset, PassRefPtr<Node> endContainer, int endOffset)
: m_ownerDocument(ownerDocument)
, m_start(m_ownerDocument)
, m_end(m_ownerDocument)
{
#ifndef NDEBUG
rangeCounter.increment();
#endif
m_ownerDocument->attachRange(this);
// Simply setting the containers and offsets directly would not do any of the checking
// that setStart and setEnd do, so we call those functions.
ExceptionCode ec = 0;
setStart(startContainer, startOffset, ec);
ASSERT(!ec);
setEnd(endContainer, endOffset, ec);
ASSERT(!ec);
}
PassRefPtr<Range> Range::create(PassRefPtr<Document> ownerDocument, PassRefPtr<Node> startContainer, int startOffset, PassRefPtr<Node> endContainer, int endOffset)
{
return adoptRef(new Range(ownerDocument, startContainer, startOffset, endContainer, endOffset));
}
PassRefPtr<Range> Range::create(PassRefPtr<Document> ownerDocument, const Position& start, const Position& end)
{
return adoptRef(new Range(ownerDocument, start.node(), start.deprecatedEditingOffset(), end.node(), end.deprecatedEditingOffset()));
}
Range::~Range()
{
// Always detach (even if we've already detached) to fix https://bugs.webkit.org/show_bug.cgi?id=26044
m_ownerDocument->detachRange(this);
#ifndef NDEBUG
rangeCounter.decrement();
#endif
}
Node* Range::startContainer(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_start.container();
}
int Range::startOffset(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_start.offset();
}
Node* Range::endContainer(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_end.container();
}
int Range::endOffset(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_end.offset();
}
Node* Range::commonAncestorContainer(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return commonAncestorContainer(m_start.container(), m_end.container());
}
Node* Range::commonAncestorContainer(Node* containerA, Node* containerB)
{
for (Node* parentA = containerA; parentA; parentA = parentA->parentNode()) {
for (Node* parentB = containerB; parentB; parentB = parentB->parentNode()) {
if (parentA == parentB)
return parentA;
}
}
return 0;
}
bool Range::collapsed(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_start == m_end;
}
void Range::setStart(PassRefPtr<Node> refNode, int offset, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
if (refNode->document() != m_ownerDocument) {
ec = WRONG_DOCUMENT_ERR;
return;
}
ec = 0;
Node* childNode = checkNodeWOffset(refNode.get(), offset, ec);
if (ec)
return;
m_start.set(refNode, offset, childNode);
// check if different root container
Node* endRootContainer = m_end.container();
while (endRootContainer->parentNode())
endRootContainer = endRootContainer->parentNode();
Node* startRootContainer = m_start.container();
while (startRootContainer->parentNode())
startRootContainer = startRootContainer->parentNode();
if (startRootContainer != endRootContainer)
collapse(true, ec);
// check if new start after end
else if (compareBoundaryPoints(m_start, m_end) > 0)
collapse(true, ec);
}
void Range::setEnd(PassRefPtr<Node> refNode, int offset, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
if (refNode->document() != m_ownerDocument) {
ec = WRONG_DOCUMENT_ERR;
return;
}
ec = 0;
Node* childNode = checkNodeWOffset(refNode.get(), offset, ec);
if (ec)
return;
m_end.set(refNode, offset, childNode);
// check if different root container
Node* endRootContainer = m_end.container();
while (endRootContainer->parentNode())
endRootContainer = endRootContainer->parentNode();
Node* startRootContainer = m_start.container();
while (startRootContainer->parentNode())
startRootContainer = startRootContainer->parentNode();
if (startRootContainer != endRootContainer)
collapse(false, ec);
// check if new end before start
if (compareBoundaryPoints(m_start, m_end) > 0)
collapse(false, ec);
}
void Range::collapse(bool toStart, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (toStart)
m_end = m_start;
else
m_start = m_end;
}
bool Range::isPointInRange(Node* refNode, int offset, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return false;
}
if (!refNode) {
ec = HIERARCHY_REQUEST_ERR;
return false;
}
if (!refNode->attached()) {
// Firefox doesn't throw an exception for this case; it returns false.
return false;
}
if (refNode->document() != m_ownerDocument) {
ec = WRONG_DOCUMENT_ERR;
return false;
}
ec = 0;
checkNodeWOffset(refNode, offset, ec);
if (ec)
return false;
return compareBoundaryPoints(refNode, offset, m_start.container(), m_start.offset()) >= 0
&& compareBoundaryPoints(refNode, offset, m_end.container(), m_end.offset()) <= 0;
}
short Range::comparePoint(Node* refNode, int offset, ExceptionCode& ec)
{
// http://developer.mozilla.org/en/docs/DOM:range.comparePoint
// This method returns -1, 0 or 1 depending on if the point described by the
// refNode node and an offset within the node is before, same as, or after the range respectively.
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
if (!refNode) {
ec = HIERARCHY_REQUEST_ERR;
return 0;
}
if (!refNode->attached() || refNode->document() != m_ownerDocument) {
ec = WRONG_DOCUMENT_ERR;
return 0;
}
ec = 0;
checkNodeWOffset(refNode, offset, ec);
if (ec)
return 0;
// compare to start, and point comes before
if (compareBoundaryPoints(refNode, offset, m_start.container(), m_start.offset()) < 0)
return -1;
// compare to end, and point comes after
if (compareBoundaryPoints(refNode, offset, m_end.container(), m_end.offset()) > 0)
return 1;
// point is in the middle of this range, or on the boundary points
return 0;
}
Range::CompareResults Range::compareNode(Node* refNode, ExceptionCode& ec)
{
// http://developer.mozilla.org/en/docs/DOM:range.compareNode
// This method returns 0, 1, 2, or 3 based on if the node is before, after,
// before and after(surrounds), or inside the range, respectively
if (!refNode) {
ec = NOT_FOUND_ERR;
return NODE_BEFORE;
}
if (!m_start.container() && refNode->attached()) {
ec = INVALID_STATE_ERR;
return NODE_BEFORE;
}
if (m_start.container() && !refNode->attached()) {
// Firefox doesn't throw an exception for this case; it returns 0.
return NODE_BEFORE;
}
if (refNode->document() != m_ownerDocument) {
// Firefox doesn't throw an exception for this case; it returns 0.
return NODE_BEFORE;
}
Node* parentNode = refNode->parentNode();
int nodeIndex = refNode->nodeIndex();
if (!parentNode) {
// if the node is the top document we should return NODE_BEFORE_AND_AFTER
// but we throw to match firefox behavior
ec = NOT_FOUND_ERR;
return NODE_BEFORE;
}
if (comparePoint(parentNode, nodeIndex, ec) < 0) { // starts before
if (comparePoint(parentNode, nodeIndex + 1, ec) > 0) // ends after the range
return NODE_BEFORE_AND_AFTER;
return NODE_BEFORE; // ends before or in the range
} else { // starts at or after the range start
if (comparePoint(parentNode, nodeIndex + 1, ec) > 0) // ends after the range
return NODE_AFTER;
return NODE_INSIDE; // ends inside the range
}
}
short Range::compareBoundaryPoints(CompareHow how, const Range* sourceRange, ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
if (!sourceRange) {
ec = NOT_FOUND_ERR;
return 0;
}
ec = 0;
Node* thisCont = commonAncestorContainer(ec);
if (ec)
return 0;
Node* sourceCont = sourceRange->commonAncestorContainer(ec);
if (ec)
return 0;
if (thisCont->document() != sourceCont->document()) {
ec = WRONG_DOCUMENT_ERR;
return 0;
}
Node* thisTop = thisCont;
Node* sourceTop = sourceCont;
while (thisTop->parentNode())
thisTop = thisTop->parentNode();
while (sourceTop->parentNode())
sourceTop = sourceTop->parentNode();
if (thisTop != sourceTop) { // in different DocumentFragments
ec = WRONG_DOCUMENT_ERR;
return 0;
}
switch (how) {
case START_TO_START:
return compareBoundaryPoints(m_start, sourceRange->m_start);
case START_TO_END:
return compareBoundaryPoints(m_end, sourceRange->m_start);
case END_TO_END:
return compareBoundaryPoints(m_end, sourceRange->m_end);
case END_TO_START:
return compareBoundaryPoints(m_start, sourceRange->m_end);
}
ec = SYNTAX_ERR;
return 0;
}
short Range::compareBoundaryPoints(Node* containerA, int offsetA, Node* containerB, int offsetB)
{
ASSERT(containerA);
ASSERT(containerB);
if (!containerA)
return -1;
if (!containerB)
return 1;
// see DOM2 traversal & range section 2.5
// case 1: both points have the same container
if (containerA == containerB) {
if (offsetA == offsetB)
return 0; // A is equal to B
if (offsetA < offsetB)
return -1; // A is before B
else
return 1; // A is after B
}
// case 2: node C (container B or an ancestor) is a child node of A
Node* c = containerB;
while (c && c->parentNode() != containerA)
c = c->parentNode();
if (c) {
int offsetC = 0;
Node* n = containerA->firstChild();
while (n != c && offsetC < offsetA) {
offsetC++;
n = n->nextSibling();
}
if (offsetA <= offsetC)
return -1; // A is before B
else
return 1; // A is after B
}
// case 3: node C (container A or an ancestor) is a child node of B
c = containerA;
while (c && c->parentNode() != containerB)
c = c->parentNode();
if (c) {
int offsetC = 0;
Node* n = containerB->firstChild();
while (n != c && offsetC < offsetB) {
offsetC++;
n = n->nextSibling();
}
if (offsetC < offsetB)
return -1; // A is before B
else
return 1; // A is after B
}
// case 4: containers A & B are siblings, or children of siblings
// ### we need to do a traversal here instead
Node* commonAncestor = commonAncestorContainer(containerA, containerB);
if (!commonAncestor)
return 0;
Node* childA = containerA;
while (childA && childA->parentNode() != commonAncestor)
childA = childA->parentNode();
if (!childA)
childA = commonAncestor;
Node* childB = containerB;
while (childB && childB->parentNode() != commonAncestor)
childB = childB->parentNode();
if (!childB)
childB = commonAncestor;
if (childA == childB)
return 0; // A is equal to B
Node* n = commonAncestor->firstChild();
while (n) {
if (n == childA)
return -1; // A is before B
if (n == childB)
return 1; // A is after B
n = n->nextSibling();
}
// Should never reach this point.
ASSERT_NOT_REACHED();
return 0;
}
short Range::compareBoundaryPoints(const RangeBoundaryPoint& boundaryA, const RangeBoundaryPoint& boundaryB)
{
return compareBoundaryPoints(boundaryA.container(), boundaryA.offset(), boundaryB.container(), boundaryB.offset());
}
bool Range::boundaryPointsValid() const
{
return m_start.container() && compareBoundaryPoints(m_start, m_end) <= 0;
}
void Range::deleteContents(ExceptionCode& ec)
{
checkDeleteExtract(ec);
if (ec)
return;
processContents(DELETE_CONTENTS, ec);
}
bool Range::intersectsNode(Node* refNode, ExceptionCode& ec)
{
// http://developer.mozilla.org/en/docs/DOM:range.intersectsNode
// Returns a bool if the node intersects the range.
if (!refNode) {
ec = NOT_FOUND_ERR;
return false;
}
if ((!m_start.container() && refNode->attached())
|| (m_start.container() && !refNode->attached())
|| refNode->document() != m_ownerDocument) {
// Firefox doesn't throw an exception for these cases; it returns false.
return false;
}
Node* parentNode = refNode->parentNode();
int nodeIndex = refNode->nodeIndex();
if (!parentNode) {
// if the node is the top document we should return NODE_BEFORE_AND_AFTER
// but we throw to match firefox behavior
ec = NOT_FOUND_ERR;
return false;
}
if (comparePoint(parentNode, nodeIndex, ec) < 0 && // starts before start
comparePoint(parentNode, nodeIndex + 1, ec) < 0) { // ends before start
return false;
} else if (comparePoint(parentNode, nodeIndex, ec) > 0 && // starts after end
comparePoint(parentNode, nodeIndex + 1, ec) > 0) { // ends after end
return false;
}
return true; // all other cases
}
PassRefPtr<DocumentFragment> Range::processContents(ActionType action, ExceptionCode& ec)
{
// FIXME: To work properly with mutation events, we will have to take into account
// situations where the tree is being transformed while we work on it - ugh!
RefPtr<DocumentFragment> fragment;
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS)
fragment = new DocumentFragment(m_ownerDocument.get());
ec = 0;
if (collapsed(ec))
return fragment.release();
if (ec)
return 0;
Node* commonRoot = commonAncestorContainer(ec);
if (ec)
return 0;
ASSERT(commonRoot);
// what is the highest node that partially selects the start of the range?
Node* partialStart = 0;
if (m_start.container() != commonRoot) {
partialStart = m_start.container();
while (partialStart->parentNode() != commonRoot)
partialStart = partialStart->parentNode();
}
// what is the highest node that partially selects the end of the range?
Node* partialEnd = 0;
if (m_end.container() != commonRoot) {
partialEnd = m_end.container();
while (partialEnd->parentNode() != commonRoot)
partialEnd = partialEnd->parentNode();
}
// Simple case: the start and end containers are the same. We just grab
// everything >= start offset and < end offset
if (m_start.container() == m_end.container()) {
Node::NodeType startNodeType = m_start.container()->nodeType();
if (startNodeType == Node::TEXT_NODE || startNodeType == Node::CDATA_SECTION_NODE || startNodeType == Node::COMMENT_NODE) {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
RefPtr<CharacterData> c = static_pointer_cast<CharacterData>(m_start.container()->cloneNode(true));
c->deleteData(m_end.offset(), c->length() - m_end.offset(), ec);
c->deleteData(0, m_start.offset(), ec);
fragment->appendChild(c.release(), ec);
}
if (action == EXTRACT_CONTENTS || action == DELETE_CONTENTS)
static_cast<CharacterData*>(m_start.container())->deleteData(m_start.offset(), m_end.offset() - m_start.offset(), ec);
} else if (startNodeType == Node::PROCESSING_INSTRUCTION_NODE) {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
RefPtr<ProcessingInstruction> c = static_pointer_cast<ProcessingInstruction>(m_start.container()->cloneNode(true));
c->setData(c->data().substring(m_start.offset(), m_end.offset() - m_start.offset()), ec);
fragment->appendChild(c.release(), ec);
}
if (action == EXTRACT_CONTENTS || action == DELETE_CONTENTS) {
ProcessingInstruction* pi = static_cast<ProcessingInstruction*>(m_start.container());
String data(pi->data());
data.remove(m_start.offset(), m_end.offset() - m_start.offset());
pi->setData(data, ec);
}
} else {
Node* n = m_start.container()->firstChild();
int i;
for (i = 0; n && i < m_start.offset(); i++) // skip until start offset
n = n->nextSibling();
int endOffset = m_end.offset();
while (n && i < endOffset) { // delete until end offset
Node* next = n->nextSibling();
if (action == EXTRACT_CONTENTS)
fragment->appendChild(n, ec); // will remove n from its parent
else if (action == CLONE_CONTENTS)
fragment->appendChild(n->cloneNode(true), ec);
else
m_start.container()->removeChild(n, ec);
n = next;
i++;
}
}
return fragment.release();
}
// Complex case: Start and end containers are different.
// There are three possiblities here:
// 1. Start container == commonRoot (End container must be a descendant)
// 2. End container == commonRoot (Start container must be a descendant)
// 3. Neither is commonRoot, they are both descendants
//
// In case 3, we grab everything after the start (up until a direct child
// of commonRoot) into leftContents, and everything before the end (up until
// a direct child of commonRoot) into rightContents. Then we process all
// commonRoot children between leftContents and rightContents
//
// In case 1 or 2, we skip either processing of leftContents or rightContents,
// in which case the last lot of nodes either goes from the first or last
// child of commonRoot.
//
// These are deleted, cloned, or extracted (i.e. both) depending on action.
RefPtr<Node> leftContents;
if (m_start.container() != commonRoot) {
// process the left-hand side of the range, up until the last ancestor of
// start container before commonRoot
Node::NodeType startNodeType = m_start.container()->nodeType();
if (startNodeType == Node::TEXT_NODE || startNodeType == Node::CDATA_SECTION_NODE || startNodeType == Node::COMMENT_NODE) {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
RefPtr<CharacterData> c = static_pointer_cast<CharacterData>(m_start.container()->cloneNode(true));
c->deleteData(0, m_start.offset(), ec);
leftContents = c.release();
}
if (action == EXTRACT_CONTENTS || action == DELETE_CONTENTS)
static_cast<CharacterData*>(m_start.container())->deleteData(
m_start.offset(), static_cast<CharacterData*>(m_start.container())->length() - m_start.offset(), ec);
} else if (startNodeType == Node::PROCESSING_INSTRUCTION_NODE) {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
RefPtr<ProcessingInstruction> c = static_pointer_cast<ProcessingInstruction>(m_start.container()->cloneNode(true));
c->setData(c->data().substring(m_start.offset()), ec);
leftContents = c.release();
}
if (action == EXTRACT_CONTENTS || action == DELETE_CONTENTS) {
ProcessingInstruction* pi = static_cast<ProcessingInstruction*>(m_start.container());
String data(pi->data());
pi->setData(data.left(m_start.offset()), ec);
}
} else {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS)
leftContents = m_start.container()->cloneNode(false);
Node* n = m_start.container()->firstChild();
for (int i = 0; n && i < m_start.offset(); i++) // skip until start offset
n = n->nextSibling();
while (n) { // process until end
Node* next = n->nextSibling();
if (action == EXTRACT_CONTENTS)
leftContents->appendChild(n, ec); // will remove n from start container
else if (action == CLONE_CONTENTS)
leftContents->appendChild(n->cloneNode(true), ec);
else
m_start.container()->removeChild(n, ec);
n = next;
}
}
Node* leftParent = m_start.container()->parentNode();
Node* n = m_start.container()->nextSibling();
for (; leftParent != commonRoot; leftParent = leftParent->parentNode()) {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
RefPtr<Node> leftContentsParent = leftParent->cloneNode(false);
leftContentsParent->appendChild(leftContents,ec);
leftContents = leftContentsParent;
}
Node* next;
for (; n; n = next) {
next = n->nextSibling();
if (action == EXTRACT_CONTENTS)
leftContents->appendChild(n,ec); // will remove n from leftParent
else if (action == CLONE_CONTENTS)
leftContents->appendChild(n->cloneNode(true),ec);
else
leftParent->removeChild(n,ec);
}
n = leftParent->nextSibling();
}
}
RefPtr<Node> rightContents;
if (m_end.container() != commonRoot) {
// delete the right-hand side of the range, up until the last ancestor of
// end container before commonRoot
Node::NodeType endNodeType = m_end.container()->nodeType();
if (endNodeType == Node::TEXT_NODE || endNodeType == Node::CDATA_SECTION_NODE || endNodeType == Node::COMMENT_NODE) {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
RefPtr<CharacterData> c = static_pointer_cast<CharacterData>(m_end.container()->cloneNode(true));
c->deleteData(m_end.offset(), static_cast<CharacterData*>(m_end.container())->length() - m_end.offset(), ec);
rightContents = c;
}
if (action == EXTRACT_CONTENTS || action == DELETE_CONTENTS)
static_cast<CharacterData*>(m_end.container())->deleteData(0, m_end.offset(), ec);
} else if (endNodeType == Node::PROCESSING_INSTRUCTION_NODE) {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
RefPtr<ProcessingInstruction> c = static_pointer_cast<ProcessingInstruction>(m_end.container()->cloneNode(true));
c->setData(c->data().left(m_end.offset()), ec);
rightContents = c.release();
}
if (action == EXTRACT_CONTENTS || action == DELETE_CONTENTS) {
ProcessingInstruction* pi = static_cast<ProcessingInstruction*>(m_end.container());
pi->setData(pi->data().substring(m_end.offset()), ec);
}
} else {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS)
rightContents = m_end.container()->cloneNode(false);
Node* n = m_end.container()->firstChild();
if (n && m_end.offset()) {
for (int i = 0; i + 1 < m_end.offset(); i++) { // skip to end.offset()
Node* next = n->nextSibling();
if (!next)
break;
n = next;
}
Node* prev;
for (; n; n = prev) {
prev = n->previousSibling();
if (action == EXTRACT_CONTENTS)
rightContents->insertBefore(n, rightContents->firstChild(), ec); // will remove n from its parent
else if (action == CLONE_CONTENTS)
rightContents->insertBefore(n->cloneNode(true), rightContents->firstChild(), ec);
else
m_end.container()->removeChild(n, ec);
}
}
}
Node* rightParent = m_end.container()->parentNode();
Node* n = m_end.container()->previousSibling();
for (; rightParent != commonRoot; rightParent = rightParent->parentNode()) {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
RefPtr<Node> rightContentsParent = rightParent->cloneNode(false);
rightContentsParent->appendChild(rightContents,ec);
rightContents = rightContentsParent;
}
Node* prev;
for (; n; n = prev) {
prev = n->previousSibling();
if (action == EXTRACT_CONTENTS)
rightContents->insertBefore(n, rightContents->firstChild(), ec); // will remove n from its parent
else if (action == CLONE_CONTENTS)
rightContents->insertBefore(n->cloneNode(true), rightContents->firstChild(), ec);
else
rightParent->removeChild(n, ec);
}
n = rightParent->previousSibling();
}
}
// delete all children of commonRoot between the start and end container
Node* processStart; // child of commonRoot
if (m_start.container() == commonRoot) {
processStart = m_start.container()->firstChild();
for (int i = 0; i < m_start.offset(); i++)
processStart = processStart->nextSibling();
} else {
processStart = m_start.container();
while (processStart->parentNode() != commonRoot)
processStart = processStart->parentNode();
processStart = processStart->nextSibling();
}
Node* processEnd; // child of commonRoot
if (m_end.container() == commonRoot) {
processEnd = m_end.container()->firstChild();
for (int i = 0; i < m_end.offset(); i++)
processEnd = processEnd->nextSibling();
} else {
processEnd = m_end.container();
while (processEnd->parentNode() != commonRoot)
processEnd = processEnd->parentNode();
}
// Collapse the range, making sure that the result is not within a node that was partially selected.
if (action == EXTRACT_CONTENTS || action == DELETE_CONTENTS) {
if (partialStart)
setStart(partialStart->parentNode(), partialStart->nodeIndex() + 1, ec);
else if (partialEnd)
setStart(partialEnd->parentNode(), partialEnd->nodeIndex(), ec);
if (ec)
return 0;
m_end = m_start;
}
// Now add leftContents, stuff in between, and rightContents to the fragment
// (or just delete the stuff in between)
if ((action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) && leftContents)
fragment->appendChild(leftContents, ec);
Node* next;
Node* n;
if (processStart) {
for (n = processStart; n && n != processEnd; n = next) {
next = n->nextSibling();
if (action == EXTRACT_CONTENTS)
fragment->appendChild(n, ec); // will remove from commonRoot
else if (action == CLONE_CONTENTS)
fragment->appendChild(n->cloneNode(true), ec);
else
commonRoot->removeChild(n, ec);
}
}
if ((action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) && rightContents)
fragment->appendChild(rightContents, ec);
return fragment.release();
}
PassRefPtr<DocumentFragment> Range::extractContents(ExceptionCode& ec)
{
checkDeleteExtract(ec);
if (ec)
return 0;
return processContents(EXTRACT_CONTENTS, ec);
}
PassRefPtr<DocumentFragment> Range::cloneContents(ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return processContents(CLONE_CONTENTS, ec);
}
void Range::insertNode(PassRefPtr<Node> prpNewNode, ExceptionCode& ec)
{
RefPtr<Node> newNode = prpNewNode;
ec = 0;
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!newNode) {
ec = NOT_FOUND_ERR;
return;
}
// NO_MODIFICATION_ALLOWED_ERR: Raised if an ancestor container of either boundary-point of
// the Range is read-only.
if (containedByReadOnly()) {
ec = NO_MODIFICATION_ALLOWED_ERR;
return;
}
// WRONG_DOCUMENT_ERR: Raised if newParent and the container of the start of the Range were
// not created from the same document.
if (newNode->document() != m_start.container()->document()) {
ec = WRONG_DOCUMENT_ERR;
return;
}
// HIERARCHY_REQUEST_ERR: Raised if the container of the start of the Range is of a type that
// does not allow children of the type of newNode or if newNode is an ancestor of the container.
// an extra one here - if a text node is going to split, it must have a parent to insert into
bool startIsText = m_start.container()->isTextNode();
if (startIsText && !m_start.container()->parentNode()) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
// In the case where the container is a text node, we check against the container's parent, because
// text nodes get split up upon insertion.
Node* checkAgainst;
if (startIsText)
checkAgainst = m_start.container()->parentNode();
else
checkAgainst = m_start.container();
Node::NodeType newNodeType = newNode->nodeType();
int numNewChildren;
if (newNodeType == Node::DOCUMENT_FRAGMENT_NODE) {
// check each child node, not the DocumentFragment itself
numNewChildren = 0;
for (Node* c = newNode->firstChild(); c; c = c->nextSibling()) {
if (!checkAgainst->childTypeAllowed(c->nodeType())) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
++numNewChildren;
}
} else {
numNewChildren = 1;
if (!checkAgainst->childTypeAllowed(newNodeType)) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
}
for (Node* n = m_start.container(); n; n = n->parentNode()) {
if (n == newNode) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
}
// INVALID_NODE_TYPE_ERR: Raised if newNode is an Attr, Entity, Notation, or Document node.
if (newNodeType == Node::ATTRIBUTE_NODE || newNodeType == Node::ENTITY_NODE
|| newNodeType == Node::NOTATION_NODE || newNodeType == Node::DOCUMENT_NODE) {
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
bool collapsed = m_start == m_end;
if (startIsText) {
RefPtr<Text> newText = static_cast<Text*>(m_start.container())->splitText(m_start.offset(), ec);
if (ec)
return;
m_start.container()->parentNode()->insertBefore(newNode.release(), newText.get(), ec);
if (ec)
return;
// This special case doesn't seem to match the DOM specification, but it's currently required
// to pass Acid3. We might later decide to remove this.
if (collapsed)
m_end.setToBeforeChild(newText.get());
} else {
RefPtr<Node> lastChild;
if (collapsed)
lastChild = (newNodeType == Node::DOCUMENT_FRAGMENT_NODE) ? newNode->lastChild() : newNode;
int startOffset = m_start.offset();
m_start.container()->insertBefore(newNode.release(), m_start.container()->childNode(startOffset), ec);
if (ec)
return;
// This special case doesn't seem to match the DOM specification, but it's currently required
// to pass Acid3. We might later decide to remove this.
if (collapsed)
m_end.set(m_start.container(), startOffset + numNewChildren, lastChild.get());
}
}
String Range::toString(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return String();
}
Vector<UChar> result;
Node* pastLast = pastLastNode();
for (Node* n = firstNode(); n != pastLast; n = n->traverseNextNode()) {
if (n->nodeType() == Node::TEXT_NODE || n->nodeType() == Node::CDATA_SECTION_NODE) {
String data = static_cast<CharacterData*>(n)->data();
int length = data.length();
int start = (n == m_start.container()) ? min(max(0, m_start.offset()), length) : 0;
int end = (n == m_end.container()) ? min(max(start, m_end.offset()), length) : length;
result.append(data.characters() + start, end - start);
}
}
return String::adopt(result);
}
String Range::toHTML() const
{
return createMarkup(this);
}
String Range::text() const
{
if (!m_start.container())
return String();
// We need to update layout, since plainText uses line boxes in the render tree.
// FIXME: As with innerText, we'd like this to work even if there are no render objects.
m_start.container()->document()->updateLayout();
return plainText(this);
}
PassRefPtr<DocumentFragment> Range::createContextualFragment(const String& markup, ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
Node* element = m_start.container()->isElementNode() ? m_start.container() : m_start.container()->parentNode();
if (!element || !element->isHTMLElement()) {
ec = NOT_SUPPORTED_ERR;
return 0;
}
RefPtr<DocumentFragment> fragment = static_cast<HTMLElement*>(element)->createContextualFragment(markup);
if (!fragment) {
ec = NOT_SUPPORTED_ERR;
return 0;
}
return fragment.release();
}
void Range::detach(ExceptionCode& ec)
{
// Check first to see if we've already detached:
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
m_ownerDocument->detachRange(this);
m_start.clear();
m_end.clear();
}
Node* Range::checkNodeWOffset(Node* n, int offset, ExceptionCode& ec) const
{
switch (n->nodeType()) {
case Node::DOCUMENT_TYPE_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return 0;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::TEXT_NODE:
if (static_cast<unsigned>(offset) > static_cast<CharacterData*>(n)->length())
ec = INDEX_SIZE_ERR;
return 0;
case Node::PROCESSING_INSTRUCTION_NODE:
if (static_cast<unsigned>(offset) > static_cast<ProcessingInstruction*>(n)->data().length())
ec = INDEX_SIZE_ERR;
return 0;
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::XPATH_NAMESPACE_NODE: {
if (!offset)
return 0;
Node* childBefore = n->childNode(offset - 1);
if (!childBefore)
ec = INDEX_SIZE_ERR;
return childBefore;
}
}
ASSERT_NOT_REACHED();
return 0;
}
void Range::checkNodeBA(Node* n, ExceptionCode& ec) const
{
// INVALID_NODE_TYPE_ERR: Raised if the root container of refNode is not an
// Attr, Document or DocumentFragment node or part of a shadow DOM tree
// or if refNode is a Document, DocumentFragment, Attr, Entity, or Notation node.
switch (n->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
}
Node* root = n;
while (Node* parent = root->parentNode())
root = parent;
switch (root->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
break;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::NOTATION_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
if (root->isShadowNode())
break;
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
}
PassRefPtr<Range> Range::cloneRange(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return Range::create(m_ownerDocument, m_start.container(), m_start.offset(), m_end.container(), m_end.offset());
}
void Range::setStartAfter(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
if (refNode->document() != m_ownerDocument) {
ec = WRONG_DOCUMENT_ERR;
return;
}
ec = 0;
checkNodeBA(refNode, ec);
if (ec)
return;
setStart(refNode->parentNode(), refNode->nodeIndex() + 1, ec);
}
void Range::setEndBefore(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
if (refNode->document() != m_ownerDocument) {
ec = WRONG_DOCUMENT_ERR;
return;
}
ec = 0;
checkNodeBA(refNode, ec);
if (ec)
return;
setEnd(refNode->parentNode(), refNode->nodeIndex(), ec);
}
void Range::setEndAfter(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
if (refNode->document() != m_ownerDocument) {
ec = WRONG_DOCUMENT_ERR;
return;
}
ec = 0;
checkNodeBA(refNode, ec);
if (ec)
return;
setEnd(refNode->parentNode(), refNode->nodeIndex() + 1, ec);
}
void Range::selectNode(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
// INVALID_NODE_TYPE_ERR: Raised if an ancestor of refNode is an Entity, Notation or
// DocumentType node or if refNode is a Document, DocumentFragment, Attr, Entity, or Notation
// node.
for (Node* anc = refNode->parentNode(); anc; anc = anc->parentNode()) {
switch (anc->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
case Node::DOCUMENT_TYPE_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
}
switch (refNode->nodeType()) {
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
ec = 0;
setStartBefore(refNode, ec);
if (ec)
return;
setEndAfter(refNode, ec);
}
void Range::selectNodeContents(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
// INVALID_NODE_TYPE_ERR: Raised if refNode or an ancestor of refNode is an Entity, Notation
// or DocumentType node.
for (Node* n = refNode; n; n = n->parentNode()) {
switch (n->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
case Node::DOCUMENT_TYPE_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
}
m_start.setToStartOfNode(refNode);
m_end.setToEndOfNode(refNode);
}
void Range::surroundContents(PassRefPtr<Node> passNewParent, ExceptionCode& ec)
{
RefPtr<Node> newParent = passNewParent;
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!newParent) {
ec = NOT_FOUND_ERR;
return;
}
// INVALID_NODE_TYPE_ERR: Raised if node is an Attr, Entity, DocumentType, Notation,
// Document, or DocumentFragment node.
switch (newParent->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
}
// NO_MODIFICATION_ALLOWED_ERR: Raised if an ancestor container of either boundary-point of
// the Range is read-only.
if (containedByReadOnly()) {
ec = NO_MODIFICATION_ALLOWED_ERR;
return;
}
// WRONG_DOCUMENT_ERR: Raised if newParent and the container of the start of the Range were
// not created from the same document.
if (newParent->document() != m_start.container()->document()) {
ec = WRONG_DOCUMENT_ERR;
return;
}
// Raise a HIERARCHY_REQUEST_ERR if m_start.container() doesn't accept children like newParent.
Node* parentOfNewParent = m_start.container();
// If m_start.container() is a character data node, it will be split and it will be its parent that will
// need to accept newParent (or in the case of a comment, it logically "would" be inserted into the parent,
// although this will fail below for another reason).
if (parentOfNewParent->isCharacterDataNode())
parentOfNewParent = parentOfNewParent->parentNode();
if (!parentOfNewParent->childTypeAllowed(newParent->nodeType())) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
if (m_start.container() == newParent || m_start.container()->isDescendantOf(newParent.get())) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
// FIXME: Do we need a check if the node would end up with a child node of a type not
// allowed by the type of node?
// BAD_BOUNDARYPOINTS_ERR: Raised if the Range partially selects a non-Text node.
Node* startNonTextContainer = m_start.container();
if (startNonTextContainer->nodeType() == Node::TEXT_NODE)
startNonTextContainer = startNonTextContainer->parentNode();
Node* endNonTextContainer = m_end.container();
if (endNonTextContainer->nodeType() == Node::TEXT_NODE)
endNonTextContainer = endNonTextContainer->parentNode();
if (startNonTextContainer != endNonTextContainer) {
ec = RangeException::BAD_BOUNDARYPOINTS_ERR;
return;
}
ec = 0;
while (Node* n = newParent->firstChild()) {
newParent->removeChild(n, ec);
if (ec)
return;
}
RefPtr<DocumentFragment> fragment = extractContents(ec);
if (ec)
return;
insertNode(newParent, ec);
if (ec)
return;
newParent->appendChild(fragment.release(), ec);
if (ec)
return;
selectNode(newParent.get(), ec);
}
void Range::setStartBefore(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
if (refNode->document() != m_ownerDocument) {
ec = WRONG_DOCUMENT_ERR;
return;
}
ec = 0;
checkNodeBA(refNode, ec);
if (ec)
return;
setStart(refNode->parentNode(), refNode->nodeIndex(), ec);
}
void Range::checkDeleteExtract(ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
ec = 0;
if (!commonAncestorContainer(ec) || ec)
return;
Node* pastLast = pastLastNode();
for (Node* n = firstNode(); n != pastLast; n = n->traverseNextNode()) {
if (n->isReadOnlyNode()) {
ec = NO_MODIFICATION_ALLOWED_ERR;
return;
}
if (n->nodeType() == Node::DOCUMENT_TYPE_NODE) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
}
if (containedByReadOnly()) {
ec = NO_MODIFICATION_ALLOWED_ERR;
return;
}
}
bool Range::containedByReadOnly() const
{
for (Node* n = m_start.container(); n; n = n->parentNode()) {
if (n->isReadOnlyNode())
return true;
}
for (Node* n = m_end.container(); n; n = n->parentNode()) {
if (n->isReadOnlyNode())
return true;
}
return false;
}
Node* Range::firstNode() const
{
if (!m_start.container())
return 0;
if (m_start.container()->offsetInCharacters())
return m_start.container();
if (Node* child = m_start.container()->childNode(m_start.offset()))
return child;
if (!m_start.offset())
return m_start.container();
return m_start.container()->traverseNextSibling();
}
Position Range::editingStartPosition() const
{
// This function is used by range style computations to avoid bugs like:
// <rdar://problem/4017641> REGRESSION (Mail): you can only bold/unbold a selection starting from end of line once
// It is important to skip certain irrelevant content at the start of the selection, so we do not wind up
// with a spurious "mixed" style.
VisiblePosition visiblePosition(m_start.container(), m_start.offset(), VP_DEFAULT_AFFINITY);
if (visiblePosition.isNull())
return Position();
ExceptionCode ec = 0;
// if the selection is a caret, just return the position, since the style
// behind us is relevant
if (collapsed(ec))
return visiblePosition.deepEquivalent();
// if the selection starts just before a paragraph break, skip over it
if (isEndOfParagraph(visiblePosition))
return visiblePosition.next().deepEquivalent().downstream();
// otherwise, make sure to be at the start of the first selected node,
// instead of possibly at the end of the last node before the selection
return visiblePosition.deepEquivalent().downstream();
}
Node* Range::shadowTreeRootNode() const
{
return startContainer() ? startContainer()->shadowTreeRootNode() : 0;
}
Node* Range::pastLastNode() const
{
if (!m_start.container() || !m_end.container())
return 0;
if (m_end.container()->offsetInCharacters())
return m_end.container()->traverseNextSibling();
if (Node* child = m_end.container()->childNode(m_end.offset()))
return child;
return m_end.container()->traverseNextSibling();
}
IntRect Range::boundingBox()
{
IntRect result;
Vector<IntRect> rects;
textRects(rects);
const size_t n = rects.size();
for (size_t i = 0; i < n; ++i)
result.unite(rects[i]);
return result;
}
void Range::textRects(Vector<IntRect>& rects, bool useSelectionHeight)
{
if (!m_start.container() || !m_end.container())
return;
Node* startContainer = m_start.container();
Node* endContainer = m_end.container();
Node* stopNode = pastLastNode();
for (Node* node = firstNode(); node != stopNode; node = node->traverseNextNode()) {
RenderObject* r = node->renderer();
if (!r || !r->isText())
continue;
RenderText* renderText = toRenderText(r);
int startOffset = node == startContainer ? m_start.offset() : 0;
int endOffset = node == endContainer ? m_end.offset() : INT_MAX;
renderText->absoluteRectsForRange(rects, startOffset, endOffset, useSelectionHeight);
}
}
#ifndef NDEBUG
#define FormatBufferSize 1024
void Range::formatForDebugger(char* buffer, unsigned length) const
{
String result;
String s;
if (!m_start.container() || !m_end.container())
result = "<empty>";
else {
char s[FormatBufferSize];
result += "from offset ";
result += String::number(m_start.offset());
result += " of ";
m_start.container()->formatForDebugger(s, FormatBufferSize);
result += s;
result += " to offset ";
result += String::number(m_end.offset());
result += " of ";
m_end.container()->formatForDebugger(s, FormatBufferSize);
result += s;
}
strncpy(buffer, result.utf8().data(), length - 1);
}
#undef FormatBufferSize
#endif
bool operator==(const Range& a, const Range& b)
{
if (&a == &b)
return true;
// Not strictly legal C++, but in practice this can happen, and this check works
// fine with GCC to detect such cases and return false rather than crashing.
if (!&a || !&b)
return false;
return a.startPosition() == b.startPosition() && a.endPosition() == b.endPosition();
}
PassRefPtr<Range> rangeOfContents(Node* node)
{
ASSERT(node);
RefPtr<Range> range = Range::create(node->document());
int exception = 0;
range->selectNodeContents(node, exception);
return range.release();
}
int Range::maxStartOffset() const
{
if (!m_start.container())
return 0;
if (!m_start.container()->offsetInCharacters())
return m_start.container()->childNodeCount();
return m_start.container()->maxCharacterOffset();
}
int Range::maxEndOffset() const
{
if (!m_end.container())
return 0;
if (!m_end.container()->offsetInCharacters())
return m_end.container()->childNodeCount();
return m_end.container()->maxCharacterOffset();
}
static inline void boundaryNodeChildrenChanged(RangeBoundaryPoint& boundary, ContainerNode* container)
{
if (!boundary.childBefore())
return;
if (boundary.container() != container)
return;
boundary.invalidateOffset();
}
void Range::nodeChildrenChanged(ContainerNode* container)
{
ASSERT(container);
ASSERT(container->document() == m_ownerDocument);
boundaryNodeChildrenChanged(m_start, container);
boundaryNodeChildrenChanged(m_end, container);
}
static inline void boundaryNodeWillBeRemoved(RangeBoundaryPoint& boundary, Node* nodeToBeRemoved)
{
if (boundary.childBefore() == nodeToBeRemoved) {
boundary.childBeforeWillBeRemoved();
return;
}
for (Node* n = boundary.container(); n; n = n->parentNode()) {
if (n == nodeToBeRemoved) {
boundary.setToBeforeChild(nodeToBeRemoved);
return;
}
}
}
void Range::nodeWillBeRemoved(Node* node)
{
ASSERT(node);
ASSERT(node->document() == m_ownerDocument);
ASSERT(node != m_ownerDocument);
ASSERT(node->parentNode());
boundaryNodeWillBeRemoved(m_start, node);
boundaryNodeWillBeRemoved(m_end, node);
}
static inline void boundaryTextInserted(RangeBoundaryPoint& boundary, Node* text, unsigned offset, unsigned length)
{
if (boundary.container() != text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
boundary.setOffset(boundaryOffset + length);
}
void Range::textInserted(Node* text, unsigned offset, unsigned length)
{
ASSERT(text);
ASSERT(text->document() == m_ownerDocument);
boundaryTextInserted(m_start, text, offset, length);
boundaryTextInserted(m_end, text, offset, length);
}
static inline void boundaryTextRemoved(RangeBoundaryPoint& boundary, Node* text, unsigned offset, unsigned length)
{
if (boundary.container() != text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
if (offset + length >= boundaryOffset)
boundary.setOffset(offset);
else
boundary.setOffset(boundaryOffset - length);
}
void Range::textRemoved(Node* text, unsigned offset, unsigned length)
{
ASSERT(text);
ASSERT(text->document() == m_ownerDocument);
boundaryTextRemoved(m_start, text, offset, length);
boundaryTextRemoved(m_end, text, offset, length);
}
static inline void boundaryTextNodesMerged(RangeBoundaryPoint& boundary, NodeWithIndex& oldNode, unsigned offset)
{
if (boundary.container() == oldNode.node())
boundary.set(oldNode.node()->previousSibling(), boundary.offset() + offset, 0);
else if (boundary.container() == oldNode.node()->parentNode() && boundary.offset() == oldNode.index())
boundary.set(oldNode.node()->previousSibling(), offset, 0);
}
void Range::textNodesMerged(NodeWithIndex& oldNode, unsigned offset)
{
ASSERT(oldNode.node());
ASSERT(oldNode.node()->document() == m_ownerDocument);
ASSERT(oldNode.node()->parentNode());
ASSERT(oldNode.node()->isTextNode());
ASSERT(oldNode.node()->previousSibling());
ASSERT(oldNode.node()->previousSibling()->isTextNode());
boundaryTextNodesMerged(m_start, oldNode, offset);
boundaryTextNodesMerged(m_end, oldNode, offset);
}
static inline void boundaryTextNodesSplit(RangeBoundaryPoint& boundary, Text* oldNode)
{
if (boundary.container() != oldNode)
return;
unsigned boundaryOffset = boundary.offset();
if (boundaryOffset <= oldNode->length())
return;
boundary.set(oldNode->nextSibling(), boundaryOffset - oldNode->length(), 0);
}
void Range::textNodeSplit(Text* oldNode)
{
ASSERT(oldNode);
ASSERT(oldNode->document() == m_ownerDocument);
ASSERT(oldNode->parentNode());
ASSERT(oldNode->isTextNode());
ASSERT(oldNode->nextSibling());
ASSERT(oldNode->nextSibling()->isTextNode());
boundaryTextNodesSplit(m_start, oldNode);
boundaryTextNodesSplit(m_end, oldNode);
}
}