blob: 7bd3b37e777d6bfd656367167be57d2edd38b9cc [file] [log] [blame]
/*
* Copyright (C) 2011-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGByteCodeParser.h"
#if ENABLE(DFG_JIT)
#include "ArrayConstructor.h"
#include "BasicBlockLocation.h"
#include "CallLinkStatus.h"
#include "CodeBlock.h"
#include "CodeBlockWithJITType.h"
#include "DFGArrayMode.h"
#include "DFGCapabilities.h"
#include "DFGClobbersExitState.h"
#include "DFGGraph.h"
#include "DFGJITCode.h"
#include "GetByIdStatus.h"
#include "Heap.h"
#include "JSLexicalEnvironment.h"
#include "JSCInlines.h"
#include "JSModuleEnvironment.h"
#include "PreciseJumpTargets.h"
#include "PutByIdFlags.h"
#include "PutByIdStatus.h"
#include "StackAlignment.h"
#include "StringConstructor.h"
#include "Watchdog.h"
#include <wtf/CommaPrinter.h>
#include <wtf/HashMap.h>
#include <wtf/MathExtras.h>
#include <wtf/StdLibExtras.h>
namespace JSC { namespace DFG {
static const bool verbose = false;
class ConstantBufferKey {
public:
ConstantBufferKey()
: m_codeBlock(0)
, m_index(0)
{
}
ConstantBufferKey(WTF::HashTableDeletedValueType)
: m_codeBlock(0)
, m_index(1)
{
}
ConstantBufferKey(CodeBlock* codeBlock, unsigned index)
: m_codeBlock(codeBlock)
, m_index(index)
{
}
bool operator==(const ConstantBufferKey& other) const
{
return m_codeBlock == other.m_codeBlock
&& m_index == other.m_index;
}
unsigned hash() const
{
return WTF::PtrHash<CodeBlock*>::hash(m_codeBlock) ^ m_index;
}
bool isHashTableDeletedValue() const
{
return !m_codeBlock && m_index;
}
CodeBlock* codeBlock() const { return m_codeBlock; }
unsigned index() const { return m_index; }
private:
CodeBlock* m_codeBlock;
unsigned m_index;
};
struct ConstantBufferKeyHash {
static unsigned hash(const ConstantBufferKey& key) { return key.hash(); }
static bool equal(const ConstantBufferKey& a, const ConstantBufferKey& b)
{
return a == b;
}
static const bool safeToCompareToEmptyOrDeleted = true;
};
} } // namespace JSC::DFG
namespace WTF {
template<typename T> struct DefaultHash;
template<> struct DefaultHash<JSC::DFG::ConstantBufferKey> {
typedef JSC::DFG::ConstantBufferKeyHash Hash;
};
template<typename T> struct HashTraits;
template<> struct HashTraits<JSC::DFG::ConstantBufferKey> : SimpleClassHashTraits<JSC::DFG::ConstantBufferKey> { };
} // namespace WTF
namespace JSC { namespace DFG {
// === ByteCodeParser ===
//
// This class is used to compile the dataflow graph from a CodeBlock.
class ByteCodeParser {
public:
ByteCodeParser(Graph& graph)
: m_vm(&graph.m_vm)
, m_codeBlock(graph.m_codeBlock)
, m_profiledBlock(graph.m_profiledBlock)
, m_graph(graph)
, m_currentBlock(0)
, m_currentIndex(0)
, m_constantUndefined(graph.freeze(jsUndefined()))
, m_constantNull(graph.freeze(jsNull()))
, m_constantNaN(graph.freeze(jsNumber(PNaN)))
, m_constantOne(graph.freeze(jsNumber(1)))
, m_numArguments(m_codeBlock->numParameters())
, m_numLocals(m_codeBlock->m_numCalleeRegisters)
, m_parameterSlots(0)
, m_numPassedVarArgs(0)
, m_inlineStackTop(0)
, m_currentInstruction(0)
, m_hasDebuggerEnabled(graph.hasDebuggerEnabled())
{
ASSERT(m_profiledBlock);
}
// Parse a full CodeBlock of bytecode.
bool parse();
private:
struct InlineStackEntry;
// Just parse from m_currentIndex to the end of the current CodeBlock.
void parseCodeBlock();
void ensureLocals(unsigned newNumLocals)
{
if (newNumLocals <= m_numLocals)
return;
m_numLocals = newNumLocals;
for (size_t i = 0; i < m_graph.numBlocks(); ++i)
m_graph.block(i)->ensureLocals(newNumLocals);
}
// Helper for min and max.
template<typename ChecksFunctor>
bool handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks);
// Handle calls. This resolves issues surrounding inlining and intrinsics.
void handleCall(
int result, NodeType op, InlineCallFrame::Kind, unsigned instructionSize,
Node* callTarget, int argCount, int registerOffset, CallLinkStatus,
SpeculatedType prediction);
void handleCall(
int result, NodeType op, InlineCallFrame::Kind, unsigned instructionSize,
Node* callTarget, int argCount, int registerOffset, CallLinkStatus);
void handleCall(int result, NodeType op, CodeSpecializationKind, unsigned instructionSize, int callee, int argCount, int registerOffset);
void handleCall(Instruction* pc, NodeType op, CodeSpecializationKind);
void handleVarargsCall(Instruction* pc, NodeType op, CodeSpecializationKind);
void emitFunctionChecks(CallVariant, Node* callTarget, VirtualRegister thisArgumnt);
void emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis);
unsigned inliningCost(CallVariant, int argumentCountIncludingThis, CodeSpecializationKind); // Return UINT_MAX if it's not an inlining candidate. By convention, intrinsics have a cost of 1.
// Handle inlining. Return true if it succeeded, false if we need to plant a call.
bool handleInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, VirtualRegister thisArgument, VirtualRegister argumentsArgument, unsigned argumentsOffset, int argumentCountIncludingThis, unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind, SpeculatedType prediction);
enum CallerLinkability { CallerDoesNormalLinking, CallerLinksManually };
template<typename ChecksFunctor>
bool attemptToInlineCall(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind, CallerLinkability, SpeculatedType prediction, unsigned& inliningBalance, const ChecksFunctor& insertChecks);
template<typename ChecksFunctor>
void inlineCall(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind, CallerLinkability, const ChecksFunctor& insertChecks);
void cancelLinkingForBlock(InlineStackEntry*, BasicBlock*); // Only works when the given block is the last one to have been added for that inline stack entry.
// Handle intrinsic functions. Return true if it succeeded, false if we need to plant a call.
template<typename ChecksFunctor>
bool handleIntrinsic(int resultOperand, Intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks);
template<typename ChecksFunctor>
bool handleTypedArrayConstructor(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, TypedArrayType, const ChecksFunctor& insertChecks);
template<typename ChecksFunctor>
bool handleConstantInternalFunction(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind, const ChecksFunctor& insertChecks);
Node* handlePutByOffset(Node* base, unsigned identifier, PropertyOffset, Node* value);
Node* handleGetByOffset(SpeculatedType, Node* base, unsigned identifierNumber, PropertyOffset, NodeType = GetByOffset);
Node* handleGetByOffset(SpeculatedType, Node* base, UniquedStringImpl*, PropertyOffset, NodeType = GetByOffset);
// Create a presence ObjectPropertyCondition based on some known offset and structure set. Does not
// check the validity of the condition, but it may return a null one if it encounters a contradiction.
ObjectPropertyCondition presenceLike(
JSObject* knownBase, UniquedStringImpl*, PropertyOffset, const StructureSet&);
// Attempt to watch the presence of a property. It will watch that the property is present in the same
// way as in all of the structures in the set. It may emit code instead of just setting a watchpoint.
// Returns true if this all works out.
bool checkPresenceLike(JSObject* knownBase, UniquedStringImpl*, PropertyOffset, const StructureSet&);
void checkPresenceLike(Node* base, UniquedStringImpl*, PropertyOffset, const StructureSet&);
// Works with both GetByIdVariant and the setter form of PutByIdVariant.
template<typename VariantType>
Node* load(SpeculatedType, Node* base, unsigned identifierNumber, const VariantType&);
Node* store(Node* base, unsigned identifier, const PutByIdVariant&, Node* value);
void handleGetById(
int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber,
const GetByIdStatus&);
void emitPutById(
Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus&, bool isDirect);
void handlePutById(
Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus&,
bool isDirect);
// Either register a watchpoint or emit a check for this condition. Returns false if the
// condition no longer holds, and therefore no reasonable check can be emitted.
bool check(const ObjectPropertyCondition&);
GetByOffsetMethod promoteToConstant(GetByOffsetMethod);
// Either register a watchpoint or emit a check for this condition. It must be a Presence
// condition. It will attempt to promote a Presence condition to an Equivalence condition.
// Emits code for the loaded value that the condition guards, and returns a node containing
// the loaded value. Returns null if the condition no longer holds.
GetByOffsetMethod planLoad(const ObjectPropertyCondition&);
Node* load(SpeculatedType, unsigned identifierNumber, const GetByOffsetMethod&, NodeType = GetByOffset);
Node* load(SpeculatedType, const ObjectPropertyCondition&, NodeType = GetByOffset);
// Calls check() for each condition in the set: that is, it either emits checks or registers
// watchpoints (or a combination of the two) to make the conditions hold. If any of those
// conditions are no longer checkable, returns false.
bool check(const ObjectPropertyConditionSet&);
// Calls check() for those conditions that aren't the slot base, and calls load() for the slot
// base. Does a combination of watchpoint registration and check emission to guard the
// conditions, and emits code to load the value from the slot base. Returns a node containing
// the loaded value. Returns null if any of the conditions were no longer checkable.
GetByOffsetMethod planLoad(const ObjectPropertyConditionSet&);
Node* load(SpeculatedType, const ObjectPropertyConditionSet&, NodeType = GetByOffset);
void prepareToParseBlock();
void clearCaches();
// Parse a single basic block of bytecode instructions.
bool parseBlock(unsigned limit);
// Link block successors.
void linkBlock(BasicBlock*, Vector<BasicBlock*>& possibleTargets);
void linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets);
VariableAccessData* newVariableAccessData(VirtualRegister operand)
{
ASSERT(!operand.isConstant());
m_graph.m_variableAccessData.append(VariableAccessData(operand));
return &m_graph.m_variableAccessData.last();
}
// Get/Set the operands/result of a bytecode instruction.
Node* getDirect(VirtualRegister operand)
{
ASSERT(!operand.isConstant());
// Is this an argument?
if (operand.isArgument())
return getArgument(operand);
// Must be a local.
return getLocal(operand);
}
Node* get(VirtualRegister operand)
{
if (operand.isConstant()) {
unsigned constantIndex = operand.toConstantIndex();
unsigned oldSize = m_constants.size();
if (constantIndex >= oldSize || !m_constants[constantIndex]) {
const CodeBlock& codeBlock = *m_inlineStackTop->m_codeBlock;
JSValue value = codeBlock.getConstant(operand.offset());
SourceCodeRepresentation sourceCodeRepresentation = codeBlock.constantSourceCodeRepresentation(operand.offset());
if (constantIndex >= oldSize) {
m_constants.grow(constantIndex + 1);
for (unsigned i = oldSize; i < m_constants.size(); ++i)
m_constants[i] = nullptr;
}
Node* constantNode = nullptr;
if (sourceCodeRepresentation == SourceCodeRepresentation::Double)
constantNode = addToGraph(DoubleConstant, OpInfo(m_graph.freezeStrong(jsDoubleNumber(value.asNumber()))));
else
constantNode = addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(value)));
m_constants[constantIndex] = constantNode;
}
ASSERT(m_constants[constantIndex]);
return m_constants[constantIndex];
}
if (inlineCallFrame()) {
if (!inlineCallFrame()->isClosureCall) {
JSFunction* callee = inlineCallFrame()->calleeConstant();
if (operand.offset() == JSStack::Callee)
return weakJSConstant(callee);
}
} else if (operand.offset() == JSStack::Callee) {
// We have to do some constant-folding here because this enables CreateThis folding. Note
// that we don't have such watchpoint-based folding for inlined uses of Callee, since in that
// case if the function is a singleton then we already know it.
if (FunctionExecutable* executable = jsDynamicCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())) {
InferredValue* singleton = executable->singletonFunction();
if (JSValue value = singleton->inferredValue()) {
m_graph.watchpoints().addLazily(singleton);
JSFunction* function = jsCast<JSFunction*>(value);
return weakJSConstant(function);
}
}
return addToGraph(GetCallee);
}
return getDirect(m_inlineStackTop->remapOperand(operand));
}
enum SetMode {
// A normal set which follows a two-phase commit that spans code origins. During
// the current code origin it issues a MovHint, and at the start of the next
// code origin there will be a SetLocal. If the local needs flushing, the second
// SetLocal will be preceded with a Flush.
NormalSet,
// A set where the SetLocal happens immediately and there is still a Flush. This
// is relevant when assigning to a local in tricky situations for the delayed
// SetLocal logic but where we know that we have not performed any side effects
// within this code origin. This is a safe replacement for NormalSet anytime we
// know that we have not yet performed side effects in this code origin.
ImmediateSetWithFlush,
// A set where the SetLocal happens immediately and we do not Flush it even if
// this is a local that is marked as needing it. This is relevant when
// initializing locals at the top of a function.
ImmediateNakedSet
};
Node* setDirect(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
addToGraph(MovHint, OpInfo(operand.offset()), value);
// We can't exit anymore because our OSR exit state has changed.
m_exitOK = false;
DelayedSetLocal delayed(currentCodeOrigin(), operand, value);
if (setMode == NormalSet) {
m_setLocalQueue.append(delayed);
return 0;
}
return delayed.execute(this, setMode);
}
void processSetLocalQueue()
{
for (unsigned i = 0; i < m_setLocalQueue.size(); ++i)
m_setLocalQueue[i].execute(this);
m_setLocalQueue.resize(0);
}
Node* set(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
return setDirect(m_inlineStackTop->remapOperand(operand), value, setMode);
}
Node* injectLazyOperandSpeculation(Node* node)
{
ASSERT(node->op() == GetLocal);
ASSERT(node->origin.semantic.bytecodeIndex == m_currentIndex);
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
LazyOperandValueProfileKey key(m_currentIndex, node->local());
SpeculatedType prediction = m_inlineStackTop->m_lazyOperands.prediction(locker, key);
node->variableAccessData()->predict(prediction);
return node;
}
// Used in implementing get/set, above, where the operand is a local variable.
Node* getLocal(VirtualRegister operand)
{
unsigned local = operand.toLocal();
Node* node = m_currentBlock->variablesAtTail.local(local);
// This has two goals: 1) link together variable access datas, and 2)
// try to avoid creating redundant GetLocals. (1) is required for
// correctness - no other phase will ensure that block-local variable
// access data unification is done correctly. (2) is purely opportunistic
// and is meant as an compile-time optimization only.
VariableAccessData* variable;
if (node) {
variable = node->variableAccessData();
switch (node->op()) {
case GetLocal:
return node;
case SetLocal:
return node->child1().node();
default:
break;
}
} else
variable = newVariableAccessData(operand);
node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
m_currentBlock->variablesAtTail.local(local) = node;
return node;
}
Node* setLocal(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
CodeOrigin oldSemanticOrigin = m_currentSemanticOrigin;
m_currentSemanticOrigin = semanticOrigin;
unsigned local = operand.toLocal();
if (setMode != ImmediateNakedSet) {
ArgumentPosition* argumentPosition = findArgumentPositionForLocal(operand);
if (argumentPosition)
flushDirect(operand, argumentPosition);
else if (m_hasDebuggerEnabled && operand == m_codeBlock->scopeRegister())
flush(operand);
}
VariableAccessData* variableAccessData = newVariableAccessData(operand);
variableAccessData->mergeStructureCheckHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache));
variableAccessData->mergeCheckArrayHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType));
Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
m_currentBlock->variablesAtTail.local(local) = node;
m_currentSemanticOrigin = oldSemanticOrigin;
return node;
}
// Used in implementing get/set, above, where the operand is an argument.
Node* getArgument(VirtualRegister operand)
{
unsigned argument = operand.toArgument();
ASSERT(argument < m_numArguments);
Node* node = m_currentBlock->variablesAtTail.argument(argument);
VariableAccessData* variable;
if (node) {
variable = node->variableAccessData();
switch (node->op()) {
case GetLocal:
return node;
case SetLocal:
return node->child1().node();
default:
break;
}
} else
variable = newVariableAccessData(operand);
node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
m_currentBlock->variablesAtTail.argument(argument) = node;
return node;
}
Node* setArgument(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
CodeOrigin oldSemanticOrigin = m_currentSemanticOrigin;
m_currentSemanticOrigin = semanticOrigin;
unsigned argument = operand.toArgument();
ASSERT(argument < m_numArguments);
VariableAccessData* variableAccessData = newVariableAccessData(operand);
// Always flush arguments, except for 'this'. If 'this' is created by us,
// then make sure that it's never unboxed.
if (argument) {
if (setMode != ImmediateNakedSet)
flushDirect(operand);
} else if (m_codeBlock->specializationKind() == CodeForConstruct)
variableAccessData->mergeShouldNeverUnbox(true);
variableAccessData->mergeStructureCheckHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache));
variableAccessData->mergeCheckArrayHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType));
Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
m_currentBlock->variablesAtTail.argument(argument) = node;
m_currentSemanticOrigin = oldSemanticOrigin;
return node;
}
ArgumentPosition* findArgumentPositionForArgument(int argument)
{
InlineStackEntry* stack = m_inlineStackTop;
while (stack->m_inlineCallFrame)
stack = stack->m_caller;
return stack->m_argumentPositions[argument];
}
ArgumentPosition* findArgumentPositionForLocal(VirtualRegister operand)
{
for (InlineStackEntry* stack = m_inlineStackTop; ; stack = stack->m_caller) {
InlineCallFrame* inlineCallFrame = stack->m_inlineCallFrame;
if (!inlineCallFrame)
break;
if (operand.offset() < static_cast<int>(inlineCallFrame->stackOffset + JSStack::CallFrameHeaderSize))
continue;
if (operand.offset() == inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset())
continue;
if (operand.offset() >= static_cast<int>(inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset() + inlineCallFrame->arguments.size()))
continue;
int argument = VirtualRegister(operand.offset() - inlineCallFrame->stackOffset).toArgument();
return stack->m_argumentPositions[argument];
}
return 0;
}
ArgumentPosition* findArgumentPosition(VirtualRegister operand)
{
if (operand.isArgument())
return findArgumentPositionForArgument(operand.toArgument());
return findArgumentPositionForLocal(operand);
}
void flush(VirtualRegister operand)
{
flushDirect(m_inlineStackTop->remapOperand(operand));
}
void flushDirect(VirtualRegister operand)
{
flushDirect(operand, findArgumentPosition(operand));
}
void flushDirect(VirtualRegister operand, ArgumentPosition* argumentPosition)
{
ASSERT(!operand.isConstant());
Node* node = m_currentBlock->variablesAtTail.operand(operand);
VariableAccessData* variable;
if (node)
variable = node->variableAccessData();
else
variable = newVariableAccessData(operand);
node = addToGraph(Flush, OpInfo(variable));
m_currentBlock->variablesAtTail.operand(operand) = node;
if (argumentPosition)
argumentPosition->addVariable(variable);
}
void flush(InlineStackEntry* inlineStackEntry)
{
int numArguments;
if (InlineCallFrame* inlineCallFrame = inlineStackEntry->m_inlineCallFrame) {
ASSERT(!m_hasDebuggerEnabled);
numArguments = inlineCallFrame->arguments.size();
if (inlineCallFrame->isClosureCall)
flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::Callee)));
if (inlineCallFrame->isVarargs())
flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::ArgumentCount)));
} else
numArguments = inlineStackEntry->m_codeBlock->numParameters();
for (unsigned argument = numArguments; argument-- > 1;)
flushDirect(inlineStackEntry->remapOperand(virtualRegisterForArgument(argument)));
if (m_hasDebuggerEnabled)
flush(m_codeBlock->scopeRegister());
}
void flushForTerminal()
{
for (InlineStackEntry* inlineStackEntry = m_inlineStackTop; inlineStackEntry; inlineStackEntry = inlineStackEntry->m_caller)
flush(inlineStackEntry);
}
void flushForReturn()
{
flush(m_inlineStackTop);
}
void flushIfTerminal(SwitchData& data)
{
if (data.fallThrough.bytecodeIndex() > m_currentIndex)
return;
for (unsigned i = data.cases.size(); i--;) {
if (data.cases[i].target.bytecodeIndex() > m_currentIndex)
return;
}
flushForTerminal();
}
// Assumes that the constant should be strongly marked.
Node* jsConstant(JSValue constantValue)
{
return addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(constantValue)));
}
Node* weakJSConstant(JSValue constantValue)
{
return addToGraph(JSConstant, OpInfo(m_graph.freeze(constantValue)));
}
// Helper functions to get/set the this value.
Node* getThis()
{
return get(m_inlineStackTop->m_codeBlock->thisRegister());
}
void setThis(Node* value)
{
set(m_inlineStackTop->m_codeBlock->thisRegister(), value);
}
InlineCallFrame* inlineCallFrame()
{
return m_inlineStackTop->m_inlineCallFrame;
}
CodeOrigin currentCodeOrigin()
{
return CodeOrigin(m_currentIndex, inlineCallFrame());
}
NodeOrigin currentNodeOrigin()
{
CodeOrigin semantic;
CodeOrigin forExit;
if (m_currentSemanticOrigin.isSet())
semantic = m_currentSemanticOrigin;
else
semantic = currentCodeOrigin();
forExit = currentCodeOrigin();
return NodeOrigin(semantic, forExit, m_exitOK);
}
BranchData* branchData(unsigned taken, unsigned notTaken)
{
// We assume that branches originating from bytecode always have a fall-through. We
// use this assumption to avoid checking for the creation of terminal blocks.
ASSERT((taken > m_currentIndex) || (notTaken > m_currentIndex));
BranchData* data = m_graph.m_branchData.add();
*data = BranchData::withBytecodeIndices(taken, notTaken);
return data;
}
Node* addToGraph(Node* node)
{
if (Options::verboseDFGByteCodeParsing())
dataLog(" appended ", node, " ", Graph::opName(node->op()), "\n");
m_currentBlock->append(node);
if (clobbersExitState(m_graph, node))
m_exitOK = false;
return node;
}
Node* addToGraph(NodeType op, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
SpecNone, op, currentNodeOrigin(), Edge(child1), Edge(child2),
Edge(child3));
return addToGraph(result);
}
Node* addToGraph(NodeType op, Edge child1, Edge child2 = Edge(), Edge child3 = Edge())
{
Node* result = m_graph.addNode(
SpecNone, op, currentNodeOrigin(), child1, child2, child3);
return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
SpecNone, op, currentNodeOrigin(), info, Edge(child1), Edge(child2),
Edge(child3));
return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info1, OpInfo info2, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
SpecNone, op, currentNodeOrigin(), info1, info2,
Edge(child1), Edge(child2), Edge(child3));
return addToGraph(result);
}
Node* addToGraph(Node::VarArgTag, NodeType op, OpInfo info1, OpInfo info2)
{
Node* result = m_graph.addNode(
SpecNone, Node::VarArg, op, currentNodeOrigin(), info1, info2,
m_graph.m_varArgChildren.size() - m_numPassedVarArgs, m_numPassedVarArgs);
addToGraph(result);
m_numPassedVarArgs = 0;
return result;
}
void addVarArgChild(Node* child)
{
m_graph.m_varArgChildren.append(Edge(child));
m_numPassedVarArgs++;
}
Node* addCallWithoutSettingResult(
NodeType op, OpInfo opInfo, Node* callee, int argCount, int registerOffset,
SpeculatedType prediction)
{
addVarArgChild(callee);
size_t parameterSlots = JSStack::CallFrameHeaderSize - JSStack::CallerFrameAndPCSize + argCount;
if (parameterSlots > m_parameterSlots)
m_parameterSlots = parameterSlots;
for (int i = 0; i < argCount; ++i)
addVarArgChild(get(virtualRegisterForArgument(i, registerOffset)));
return addToGraph(Node::VarArg, op, opInfo, OpInfo(prediction));
}
Node* addCall(
int result, NodeType op, OpInfo opInfo, Node* callee, int argCount, int registerOffset,
SpeculatedType prediction)
{
Node* call = addCallWithoutSettingResult(
op, opInfo, callee, argCount, registerOffset, prediction);
VirtualRegister resultReg(result);
if (resultReg.isValid())
set(resultReg, call);
return call;
}
Node* cellConstantWithStructureCheck(JSCell* object, Structure* structure)
{
// FIXME: This should route to emitPropertyCheck, not the other way around. But currently,
// this gets no profit from using emitPropertyCheck() since we'll non-adaptively watch the
// object's structure as soon as we make it a weakJSCosntant.
Node* objectNode = weakJSConstant(object);
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(structure)), objectNode);
return objectNode;
}
SpeculatedType getPredictionWithoutOSRExit(unsigned bytecodeIndex)
{
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
return m_inlineStackTop->m_profiledBlock->valueProfilePredictionForBytecodeOffset(locker, bytecodeIndex);
}
SpeculatedType getPrediction(unsigned bytecodeIndex)
{
SpeculatedType prediction = getPredictionWithoutOSRExit(bytecodeIndex);
if (prediction == SpecNone) {
// We have no information about what values this node generates. Give up
// on executing this code, since we're likely to do more damage than good.
addToGraph(ForceOSRExit);
}
return prediction;
}
SpeculatedType getPredictionWithoutOSRExit()
{
return getPredictionWithoutOSRExit(m_currentIndex);
}
SpeculatedType getPrediction()
{
return getPrediction(m_currentIndex);
}
ArrayMode getArrayMode(ArrayProfile* profile, Array::Action action)
{
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
profile->computeUpdatedPrediction(locker, m_inlineStackTop->m_profiledBlock);
bool makeSafe = profile->outOfBounds(locker);
return ArrayMode::fromObserved(locker, profile, action, makeSafe);
}
ArrayMode getArrayMode(ArrayProfile* profile)
{
return getArrayMode(profile, Array::Read);
}
Node* makeSafe(Node* node)
{
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInDFG);
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
node->mergeFlags(NodeMayNegZeroInDFG);
if (!isX86() && node->op() == ArithMod)
return node;
if (!m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex))
return node;
switch (node->op()) {
case UInt32ToNumber:
case ArithAdd:
case ArithSub:
case ValueAdd:
case ArithMod: // for ArithMod "MayOverflow" means we tried to divide by zero, or we saw double.
node->mergeFlags(NodeMayOverflowInBaseline);
break;
case ArithNegate:
// Currently we can't tell the difference between a negation overflowing
// (i.e. -(1 << 31)) or generating negative zero (i.e. -0). If it took slow
// path then we assume that it did both of those things.
node->mergeFlags(NodeMayOverflowInBaseline);
node->mergeFlags(NodeMayNegZeroInBaseline);
break;
case ArithMul:
// FIXME: We should detect cases where we only overflowed but never created
// negative zero.
// https://bugs.webkit.org/show_bug.cgi?id=132470
if (m_inlineStackTop->m_profiledBlock->likelyToTakeDeepestSlowCase(m_currentIndex)
|| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInBaseline | NodeMayNegZeroInBaseline);
else if (m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex)
|| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
node->mergeFlags(NodeMayNegZeroInBaseline);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
return node;
}
Node* makeDivSafe(Node* node)
{
ASSERT(node->op() == ArithDiv);
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInDFG);
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
node->mergeFlags(NodeMayNegZeroInDFG);
// The main slow case counter for op_div in the old JIT counts only when
// the operands are not numbers. We don't care about that since we already
// have speculations in place that take care of that separately. We only
// care about when the outcome of the division is not an integer, which
// is what the special fast case counter tells us.
if (!m_inlineStackTop->m_profiledBlock->couldTakeSpecialFastCase(m_currentIndex))
return node;
// FIXME: It might be possible to make this more granular.
node->mergeFlags(NodeMayOverflowInBaseline | NodeMayNegZeroInBaseline);
return node;
}
void noticeArgumentsUse()
{
// All of the arguments in this function need to be formatted as JSValues because we will
// load from them in a random-access fashion and we don't want to have to switch on
// format.
for (ArgumentPosition* argument : m_inlineStackTop->m_argumentPositions)
argument->mergeShouldNeverUnbox(true);
}
VM* m_vm;
CodeBlock* m_codeBlock;
CodeBlock* m_profiledBlock;
Graph& m_graph;
// The current block being generated.
BasicBlock* m_currentBlock;
// The bytecode index of the current instruction being generated.
unsigned m_currentIndex;
// The semantic origin of the current node if different from the current Index.
CodeOrigin m_currentSemanticOrigin;
// True if it's OK to OSR exit right now.
bool m_exitOK { false };
FrozenValue* m_constantUndefined;
FrozenValue* m_constantNull;
FrozenValue* m_constantNaN;
FrozenValue* m_constantOne;
Vector<Node*, 16> m_constants;
// The number of arguments passed to the function.
unsigned m_numArguments;
// The number of locals (vars + temporaries) used in the function.
unsigned m_numLocals;
// The number of slots (in units of sizeof(Register)) that we need to
// preallocate for arguments to outgoing calls from this frame. This
// number includes the CallFrame slots that we initialize for the callee
// (but not the callee-initialized CallerFrame and ReturnPC slots).
// This number is 0 if and only if this function is a leaf.
unsigned m_parameterSlots;
// The number of var args passed to the next var arg node.
unsigned m_numPassedVarArgs;
HashMap<ConstantBufferKey, unsigned> m_constantBufferCache;
struct InlineStackEntry {
ByteCodeParser* m_byteCodeParser;
CodeBlock* m_codeBlock;
CodeBlock* m_profiledBlock;
InlineCallFrame* m_inlineCallFrame;
ScriptExecutable* executable() { return m_codeBlock->ownerScriptExecutable(); }
QueryableExitProfile m_exitProfile;
// Remapping of identifier and constant numbers from the code block being
// inlined (inline callee) to the code block that we're inlining into
// (the machine code block, which is the transitive, though not necessarily
// direct, caller).
Vector<unsigned> m_identifierRemap;
Vector<unsigned> m_constantBufferRemap;
Vector<unsigned> m_switchRemap;
// Blocks introduced by this code block, which need successor linking.
// May include up to one basic block that includes the continuation after
// the callsite in the caller. These must be appended in the order that they
// are created, but their bytecodeBegin values need not be in order as they
// are ignored.
Vector<UnlinkedBlock> m_unlinkedBlocks;
// Potential block linking targets. Must be sorted by bytecodeBegin, and
// cannot have two blocks that have the same bytecodeBegin.
Vector<BasicBlock*> m_blockLinkingTargets;
// If the callsite's basic block was split into two, then this will be
// the head of the callsite block. It needs its successors linked to the
// m_unlinkedBlocks, but not the other way around: there's no way for
// any blocks in m_unlinkedBlocks to jump back into this block.
BasicBlock* m_callsiteBlockHead;
// Does the callsite block head need linking? This is typically true
// but will be false for the machine code block's inline stack entry
// (since that one is not inlined) and for cases where an inline callee
// did the linking for us.
bool m_callsiteBlockHeadNeedsLinking;
VirtualRegister m_returnValue;
// Speculations about variable types collected from the profiled code block,
// which are based on OSR exit profiles that past DFG compilatins of this
// code block had gathered.
LazyOperandValueProfileParser m_lazyOperands;
CallLinkInfoMap m_callLinkInfos;
StubInfoMap m_stubInfos;
ByValInfoMap m_byValInfos;
// Did we see any returns? We need to handle the (uncommon but necessary)
// case where a procedure that does not return was inlined.
bool m_didReturn;
// Did we have any early returns?
bool m_didEarlyReturn;
// Pointers to the argument position trackers for this slice of code.
Vector<ArgumentPosition*> m_argumentPositions;
InlineStackEntry* m_caller;
InlineStackEntry(
ByteCodeParser*,
CodeBlock*,
CodeBlock* profiledBlock,
BasicBlock* callsiteBlockHead,
JSFunction* callee, // Null if this is a closure call.
VirtualRegister returnValueVR,
VirtualRegister inlineCallFrameStart,
int argumentCountIncludingThis,
InlineCallFrame::Kind);
~InlineStackEntry()
{
m_byteCodeParser->m_inlineStackTop = m_caller;
}
VirtualRegister remapOperand(VirtualRegister operand) const
{
if (!m_inlineCallFrame)
return operand;
ASSERT(!operand.isConstant());
return VirtualRegister(operand.offset() + m_inlineCallFrame->stackOffset);
}
};
InlineStackEntry* m_inlineStackTop;
struct DelayedSetLocal {
CodeOrigin m_origin;
VirtualRegister m_operand;
Node* m_value;
DelayedSetLocal() { }
DelayedSetLocal(const CodeOrigin& origin, VirtualRegister operand, Node* value)
: m_origin(origin)
, m_operand(operand)
, m_value(value)
{
}
Node* execute(ByteCodeParser* parser, SetMode setMode = NormalSet)
{
if (m_operand.isArgument())
return parser->setArgument(m_origin, m_operand, m_value, setMode);
return parser->setLocal(m_origin, m_operand, m_value, setMode);
}
};
Vector<DelayedSetLocal, 2> m_setLocalQueue;
CodeBlock* m_dfgCodeBlock;
CallLinkStatus::ContextMap m_callContextMap;
StubInfoMap m_dfgStubInfos;
Instruction* m_currentInstruction;
bool m_hasDebuggerEnabled;
};
#define NEXT_OPCODE(name) \
m_currentIndex += OPCODE_LENGTH(name); \
continue
#define LAST_OPCODE(name) \
m_currentIndex += OPCODE_LENGTH(name); \
m_exitOK = false; \
return shouldContinueParsing
void ByteCodeParser::handleCall(Instruction* pc, NodeType op, CodeSpecializationKind kind)
{
ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct));
handleCall(
pc[1].u.operand, op, kind, OPCODE_LENGTH(op_call),
pc[2].u.operand, pc[3].u.operand, -pc[4].u.operand);
}
void ByteCodeParser::handleCall(
int result, NodeType op, CodeSpecializationKind kind, unsigned instructionSize,
int callee, int argumentCountIncludingThis, int registerOffset)
{
Node* callTarget = get(VirtualRegister(callee));
CallLinkStatus callLinkStatus = CallLinkStatus::computeFor(
m_inlineStackTop->m_profiledBlock, currentCodeOrigin(),
m_inlineStackTop->m_callLinkInfos, m_callContextMap);
handleCall(
result, op, InlineCallFrame::kindFor(kind), instructionSize, callTarget,
argumentCountIncludingThis, registerOffset, callLinkStatus);
}
void ByteCodeParser::handleCall(
int result, NodeType op, InlineCallFrame::Kind kind, unsigned instructionSize,
Node* callTarget, int argumentCountIncludingThis, int registerOffset,
CallLinkStatus callLinkStatus)
{
handleCall(
result, op, kind, instructionSize, callTarget, argumentCountIncludingThis,
registerOffset, callLinkStatus, getPrediction());
}
void ByteCodeParser::handleCall(
int result, NodeType op, InlineCallFrame::Kind kind, unsigned instructionSize,
Node* callTarget, int argumentCountIncludingThis, int registerOffset,
CallLinkStatus callLinkStatus, SpeculatedType prediction)
{
ASSERT(registerOffset <= 0);
if (callTarget->isCellConstant())
callLinkStatus.setProvenConstantCallee(CallVariant(callTarget->asCell()));
if (Options::verboseDFGByteCodeParsing())
dataLog(" Handling call at ", currentCodeOrigin(), ": ", callLinkStatus, "\n");
if (!callLinkStatus.canOptimize()) {
// Oddly, this conflates calls that haven't executed with calls that behaved sufficiently polymorphically
// that we cannot optimize them.
addCall(result, op, OpInfo(), callTarget, argumentCountIncludingThis, registerOffset, prediction);
return;
}
unsigned nextOffset = m_currentIndex + instructionSize;
OpInfo callOpInfo;
if (handleInlining(callTarget, result, callLinkStatus, registerOffset, virtualRegisterForArgument(0, registerOffset), VirtualRegister(), 0, argumentCountIncludingThis, nextOffset, op, kind, prediction)) {
if (m_graph.compilation())
m_graph.compilation()->noticeInlinedCall();
return;
}
addCall(result, op, callOpInfo, callTarget, argumentCountIncludingThis, registerOffset, prediction);
}
void ByteCodeParser::handleVarargsCall(Instruction* pc, NodeType op, CodeSpecializationKind kind)
{
ASSERT(OPCODE_LENGTH(op_call_varargs) == OPCODE_LENGTH(op_construct_varargs));
int result = pc[1].u.operand;
int callee = pc[2].u.operand;
int thisReg = pc[3].u.operand;
int arguments = pc[4].u.operand;
int firstFreeReg = pc[5].u.operand;
int firstVarArgOffset = pc[6].u.operand;
SpeculatedType prediction = getPrediction();
Node* callTarget = get(VirtualRegister(callee));
CallLinkStatus callLinkStatus = CallLinkStatus::computeFor(
m_inlineStackTop->m_profiledBlock, currentCodeOrigin(),
m_inlineStackTop->m_callLinkInfos, m_callContextMap);
if (callTarget->isCellConstant())
callLinkStatus.setProvenConstantCallee(CallVariant(callTarget->asCell()));
if (Options::verboseDFGByteCodeParsing())
dataLog(" Varargs call link status at ", currentCodeOrigin(), ": ", callLinkStatus, "\n");
if (callLinkStatus.canOptimize()
&& handleInlining(callTarget, result, callLinkStatus, firstFreeReg, VirtualRegister(thisReg), VirtualRegister(arguments), firstVarArgOffset, 0, m_currentIndex + OPCODE_LENGTH(op_call_varargs), op, InlineCallFrame::varargsKindFor(kind), prediction)) {
if (m_graph.compilation())
m_graph.compilation()->noticeInlinedCall();
return;
}
CallVarargsData* data = m_graph.m_callVarargsData.add();
data->firstVarArgOffset = firstVarArgOffset;
Node* thisChild = get(VirtualRegister(thisReg));
Node* call = addToGraph(op, OpInfo(data), OpInfo(prediction), callTarget, get(VirtualRegister(arguments)), thisChild);
VirtualRegister resultReg(result);
if (resultReg.isValid())
set(resultReg, call);
}
void ByteCodeParser::emitFunctionChecks(CallVariant callee, Node* callTarget, VirtualRegister thisArgumentReg)
{
Node* thisArgument;
if (thisArgumentReg.isValid())
thisArgument = get(thisArgumentReg);
else
thisArgument = 0;
JSCell* calleeCell;
Node* callTargetForCheck;
if (callee.isClosureCall()) {
calleeCell = callee.executable();
callTargetForCheck = addToGraph(GetExecutable, callTarget);
} else {
calleeCell = callee.nonExecutableCallee();
callTargetForCheck = callTarget;
}
ASSERT(calleeCell);
addToGraph(CheckCell, OpInfo(m_graph.freeze(calleeCell)), callTargetForCheck, thisArgument);
}
void ByteCodeParser::emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis)
{
for (int i = 0; i < argumentCountIncludingThis; ++i)
addToGraph(Phantom, get(virtualRegisterForArgument(i, registerOffset)));
}
unsigned ByteCodeParser::inliningCost(CallVariant callee, int argumentCountIncludingThis, CodeSpecializationKind kind)
{
if (verbose)
dataLog("Considering inlining ", callee, " into ", currentCodeOrigin(), "\n");
if (m_hasDebuggerEnabled) {
if (verbose)
dataLog(" Failing because the debugger is in use.\n");
return UINT_MAX;
}
FunctionExecutable* executable = callee.functionExecutable();
if (!executable) {
if (verbose)
dataLog(" Failing because there is no function executable.\n");
return UINT_MAX;
}
// Does the number of arguments we're passing match the arity of the target? We currently
// inline only if the number of arguments passed is greater than or equal to the number
// arguments expected.
if (static_cast<int>(executable->parameterCount()) + 1 > argumentCountIncludingThis) {
if (verbose)
dataLog(" Failing because of arity mismatch.\n");
return UINT_MAX;
}
// Do we have a code block, and does the code block's size match the heuristics/requirements for
// being an inline candidate? We might not have a code block (1) if code was thrown away,
// (2) if we simply hadn't actually made this call yet or (3) code is a builtin function and
// specialization kind is construct. In the former 2 cases, we could still theoretically attempt
// to inline it if we had a static proof of what was being called; this might happen for example
// if you call a global function, where watchpointing gives us static information. Overall,
// it's a rare case because we expect that any hot callees would have already been compiled.
CodeBlock* codeBlock = executable->baselineCodeBlockFor(kind);
if (!codeBlock) {
if (verbose)
dataLog(" Failing because no code block available.\n");
return UINT_MAX;
}
CapabilityLevel capabilityLevel = inlineFunctionForCapabilityLevel(
codeBlock, kind, callee.isClosureCall());
if (verbose) {
dataLog(" Kind: ", kind, "\n");
dataLog(" Is closure call: ", callee.isClosureCall(), "\n");
dataLog(" Capability level: ", capabilityLevel, "\n");
dataLog(" Might inline function: ", mightInlineFunctionFor(codeBlock, kind), "\n");
dataLog(" Might compile function: ", mightCompileFunctionFor(codeBlock, kind), "\n");
dataLog(" Is supported for inlining: ", isSupportedForInlining(codeBlock), "\n");
dataLog(" Needs activation: ", codeBlock->ownerScriptExecutable()->needsActivation(), "\n");
dataLog(" Is inlining candidate: ", codeBlock->ownerScriptExecutable()->isInliningCandidate(), "\n");
}
if (!canInline(capabilityLevel)) {
if (verbose)
dataLog(" Failing because the function is not inlineable.\n");
return UINT_MAX;
}
// Check if the caller is already too large. We do this check here because that's just
// where we happen to also have the callee's code block, and we want that for the
// purpose of unsetting SABI.
if (!isSmallEnoughToInlineCodeInto(m_codeBlock)) {
codeBlock->m_shouldAlwaysBeInlined = false;
if (verbose)
dataLog(" Failing because the caller is too large.\n");
return UINT_MAX;
}
// FIXME: this should be better at predicting how much bloat we will introduce by inlining
// this function.
// https://bugs.webkit.org/show_bug.cgi?id=127627
// FIXME: We currently inline functions that have run in LLInt but not in Baseline. These
// functions have very low fidelity profiling, and presumably they weren't very hot if they
// haven't gotten to Baseline yet. Consider not inlining these functions.
// https://bugs.webkit.org/show_bug.cgi?id=145503
// Have we exceeded inline stack depth, or are we trying to inline a recursive call to
// too many levels? If either of these are detected, then don't inline. We adjust our
// heuristics if we are dealing with a function that cannot otherwise be compiled.
unsigned depth = 0;
unsigned recursion = 0;
for (InlineStackEntry* entry = m_inlineStackTop; entry; entry = entry->m_caller) {
++depth;
if (depth >= Options::maximumInliningDepth()) {
if (verbose)
dataLog(" Failing because depth exceeded.\n");
return UINT_MAX;
}
if (entry->executable() == executable) {
++recursion;
if (recursion >= Options::maximumInliningRecursion()) {
if (verbose)
dataLog(" Failing because recursion detected.\n");
return UINT_MAX;
}
}
}
if (verbose)
dataLog(" Inlining should be possible.\n");
// It might be possible to inline.
return codeBlock->instructionCount();
}
template<typename ChecksFunctor>
void ByteCodeParser::inlineCall(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind kind, CallerLinkability callerLinkability, const ChecksFunctor& insertChecks)
{
CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
ASSERT(inliningCost(callee, argumentCountIncludingThis, specializationKind) != UINT_MAX);
CodeBlock* codeBlock = callee.functionExecutable()->baselineCodeBlockFor(specializationKind);
insertChecks(codeBlock);
// FIXME: Don't flush constants!
int inlineCallFrameStart = m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset() + JSStack::CallFrameHeaderSize;
ensureLocals(
VirtualRegister(inlineCallFrameStart).toLocal() + 1 +
JSStack::CallFrameHeaderSize + codeBlock->m_numCalleeRegisters);
size_t argumentPositionStart = m_graph.m_argumentPositions.size();
VirtualRegister resultReg(resultOperand);
if (resultReg.isValid())
resultReg = m_inlineStackTop->remapOperand(resultReg);
VariableAccessData* calleeVariable = nullptr;
if (callee.isClosureCall()) {
Node* calleeSet = set(
VirtualRegister(registerOffset + JSStack::Callee), callTargetNode, ImmediateNakedSet);
calleeVariable = calleeSet->variableAccessData();
calleeVariable->mergeShouldNeverUnbox(true);
}
InlineStackEntry inlineStackEntry(
this, codeBlock, codeBlock, m_graph.lastBlock(), callee.function(), resultReg,
(VirtualRegister)inlineCallFrameStart, argumentCountIncludingThis, kind);
// This is where the actual inlining really happens.
unsigned oldIndex = m_currentIndex;
m_currentIndex = 0;
// At this point, it's again OK to OSR exit.
m_exitOK = true;
InlineVariableData inlineVariableData;
inlineVariableData.inlineCallFrame = m_inlineStackTop->m_inlineCallFrame;
inlineVariableData.argumentPositionStart = argumentPositionStart;
inlineVariableData.calleeVariable = 0;
RELEASE_ASSERT(
m_inlineStackTop->m_inlineCallFrame->isClosureCall
== callee.isClosureCall());
if (callee.isClosureCall()) {
RELEASE_ASSERT(calleeVariable);
inlineVariableData.calleeVariable = calleeVariable;
}
m_graph.m_inlineVariableData.append(inlineVariableData);
parseCodeBlock();
clearCaches(); // Reset our state now that we're back to the outer code.
m_currentIndex = oldIndex;
m_exitOK = false;
// If the inlined code created some new basic blocks, then we have linking to do.
if (inlineStackEntry.m_callsiteBlockHead != m_graph.lastBlock()) {
ASSERT(!inlineStackEntry.m_unlinkedBlocks.isEmpty());
if (inlineStackEntry.m_callsiteBlockHeadNeedsLinking)
linkBlock(inlineStackEntry.m_callsiteBlockHead, inlineStackEntry.m_blockLinkingTargets);
else
ASSERT(inlineStackEntry.m_callsiteBlockHead->isLinked);
if (callerLinkability == CallerDoesNormalLinking)
cancelLinkingForBlock(inlineStackEntry.m_caller, inlineStackEntry.m_callsiteBlockHead);
linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets);
} else
ASSERT(inlineStackEntry.m_unlinkedBlocks.isEmpty());
BasicBlock* lastBlock = m_graph.lastBlock();
// If there was a return, but no early returns, then we're done. We allow parsing of
// the caller to continue in whatever basic block we're in right now.
if (!inlineStackEntry.m_didEarlyReturn && inlineStackEntry.m_didReturn) {
if (Options::verboseDFGByteCodeParsing())
dataLog(" Allowing parsing to continue in last inlined block.\n");
ASSERT(lastBlock->isEmpty() || !lastBlock->terminal());
// If we created new blocks then the last block needs linking, but in the
// caller. It doesn't need to be linked to, but it needs outgoing links.
if (!inlineStackEntry.m_unlinkedBlocks.isEmpty()) {
// For debugging purposes, set the bytecodeBegin. Note that this doesn't matter
// for release builds because this block will never serve as a potential target
// in the linker's binary search.
if (Options::verboseDFGByteCodeParsing())
dataLog(" Repurposing last block from ", lastBlock->bytecodeBegin, " to ", m_currentIndex, "\n");
lastBlock->bytecodeBegin = m_currentIndex;
if (callerLinkability == CallerDoesNormalLinking) {
if (verbose)
dataLog("Adding unlinked block ", RawPointer(m_graph.lastBlock()), " (one return)\n");
m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.lastBlock()));
}
}
m_currentBlock = m_graph.lastBlock();
return;
}
if (Options::verboseDFGByteCodeParsing())
dataLog(" Creating new block after inlining.\n");
// If we get to this point then all blocks must end in some sort of terminals.
ASSERT(lastBlock->terminal());
// Need to create a new basic block for the continuation at the caller.
RefPtr<BasicBlock> block = adoptRef(new BasicBlock(nextOffset, m_numArguments, m_numLocals, PNaN));
// Link the early returns to the basic block we're about to create.
for (size_t i = 0; i < inlineStackEntry.m_unlinkedBlocks.size(); ++i) {
if (!inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking)
continue;
BasicBlock* blockToLink = inlineStackEntry.m_unlinkedBlocks[i].m_block;
ASSERT(!blockToLink->isLinked);
Node* node = blockToLink->terminal();
ASSERT(node->op() == Jump);
ASSERT(!node->targetBlock());
node->targetBlock() = block.get();
inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking = false;
if (verbose)
dataLog("Marking ", RawPointer(blockToLink), " as linked (jumps to return)\n");
blockToLink->didLink();
}
m_currentBlock = block.get();
ASSERT(m_inlineStackTop->m_caller->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_caller->m_blockLinkingTargets.last()->bytecodeBegin < nextOffset);
if (verbose)
dataLog("Adding unlinked block ", RawPointer(block.get()), " (many returns)\n");
if (callerLinkability == CallerDoesNormalLinking) {
m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(block.get()));
m_inlineStackTop->m_caller->m_blockLinkingTargets.append(block.get());
}
m_graph.appendBlock(block);
prepareToParseBlock();
}
void ByteCodeParser::cancelLinkingForBlock(InlineStackEntry* inlineStackEntry, BasicBlock* block)
{
// It's possible that the callsite block head is not owned by the caller.
if (!inlineStackEntry->m_unlinkedBlocks.isEmpty()) {
// It's definitely owned by the caller, because the caller created new blocks.
// Assert that this all adds up.
ASSERT_UNUSED(block, inlineStackEntry->m_unlinkedBlocks.last().m_block == block);
ASSERT(inlineStackEntry->m_unlinkedBlocks.last().m_needsNormalLinking);
inlineStackEntry->m_unlinkedBlocks.last().m_needsNormalLinking = false;
} else {
// It's definitely not owned by the caller. Tell the caller that he does not
// need to link his callsite block head, because we did it for him.
ASSERT(inlineStackEntry->m_callsiteBlockHeadNeedsLinking);
ASSERT_UNUSED(block, inlineStackEntry->m_callsiteBlockHead == block);
inlineStackEntry->m_callsiteBlockHeadNeedsLinking = false;
}
}
template<typename ChecksFunctor>
bool ByteCodeParser::attemptToInlineCall(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind kind, CallerLinkability callerLinkability, SpeculatedType prediction, unsigned& inliningBalance, const ChecksFunctor& insertChecks)
{
CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
if (!inliningBalance)
return false;
bool didInsertChecks = false;
auto insertChecksWithAccounting = [&] () {
insertChecks(nullptr);
didInsertChecks = true;
};
if (verbose)
dataLog(" Considering callee ", callee, "\n");
// Intrinsics and internal functions can only be inlined if we're not doing varargs. This is because
// we currently don't have any way of getting profiling information for arguments to non-JS varargs
// calls. The prediction propagator won't be of any help because LoadVarargs obscures the data flow,
// and there are no callsite value profiles and native function won't have callee value profiles for
// those arguments. Even worse, if the intrinsic decides to exit, it won't really have anywhere to
// exit to: LoadVarargs is effectful and it's part of the op_call_varargs, so we can't exit without
// calling LoadVarargs twice.
if (!InlineCallFrame::isVarargs(kind)) {
if (InternalFunction* function = callee.internalFunction()) {
if (handleConstantInternalFunction(resultOperand, function, registerOffset, argumentCountIncludingThis, specializationKind, insertChecksWithAccounting)) {
RELEASE_ASSERT(didInsertChecks);
addToGraph(Phantom, callTargetNode);
emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
inliningBalance--;
return true;
}
RELEASE_ASSERT(!didInsertChecks);
return false;
}
Intrinsic intrinsic = callee.intrinsicFor(specializationKind);
if (intrinsic != NoIntrinsic) {
if (handleIntrinsic(resultOperand, intrinsic, registerOffset, argumentCountIncludingThis, prediction, insertChecksWithAccounting)) {
RELEASE_ASSERT(didInsertChecks);
addToGraph(Phantom, callTargetNode);
emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
inliningBalance--;
return true;
}
RELEASE_ASSERT(!didInsertChecks);
return false;
}
}
unsigned myInliningCost = inliningCost(callee, argumentCountIncludingThis, specializationKind);
if (myInliningCost > inliningBalance)
return false;
Instruction* savedCurrentInstruction = m_currentInstruction;
inlineCall(callTargetNode, resultOperand, callee, registerOffset, argumentCountIncludingThis, nextOffset, kind, callerLinkability, insertChecks);
inliningBalance -= myInliningCost;
m_currentInstruction = savedCurrentInstruction;
return true;
}
bool ByteCodeParser::handleInlining(
Node* callTargetNode, int resultOperand, const CallLinkStatus& callLinkStatus,
int registerOffsetOrFirstFreeReg, VirtualRegister thisArgument,
VirtualRegister argumentsArgument, unsigned argumentsOffset, int argumentCountIncludingThis,
unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind kind, SpeculatedType prediction)
{
if (verbose) {
dataLog("Handling inlining...\n");
dataLog("Stack: ", currentCodeOrigin(), "\n");
}
CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
if (!callLinkStatus.size()) {
if (verbose)
dataLog("Bailing inlining.\n");
return false;
}
if (InlineCallFrame::isVarargs(kind)
&& callLinkStatus.maxNumArguments() > Options::maximumVarargsForInlining()) {
if (verbose)
dataLog("Bailing inlining because of varargs.\n");
return false;
}
unsigned inliningBalance = Options::maximumFunctionForCallInlineCandidateInstructionCount();
if (specializationKind == CodeForConstruct)
inliningBalance = std::min(inliningBalance, Options::maximumFunctionForConstructInlineCandidateInstructionCount());
if (callLinkStatus.isClosureCall())
inliningBalance = std::min(inliningBalance, Options::maximumFunctionForClosureCallInlineCandidateInstructionCount());
// First check if we can avoid creating control flow. Our inliner does some CFG
// simplification on the fly and this helps reduce compile times, but we can only leverage
// this in cases where we don't need control flow diamonds to check the callee.
if (!callLinkStatus.couldTakeSlowPath() && callLinkStatus.size() == 1) {
int registerOffset;
// Only used for varargs calls.
unsigned mandatoryMinimum = 0;
unsigned maxNumArguments = 0;
if (InlineCallFrame::isVarargs(kind)) {
if (FunctionExecutable* functionExecutable = callLinkStatus[0].functionExecutable())
mandatoryMinimum = functionExecutable->parameterCount();
else
mandatoryMinimum = 0;
// includes "this"
maxNumArguments = std::max(
callLinkStatus.maxNumArguments(),
mandatoryMinimum + 1);
// We sort of pretend that this *is* the number of arguments that were passed.
argumentCountIncludingThis = maxNumArguments;
registerOffset = registerOffsetOrFirstFreeReg + 1;
registerOffset -= maxNumArguments; // includes "this"
registerOffset -= JSStack::CallFrameHeaderSize;
registerOffset = -WTF::roundUpToMultipleOf(
stackAlignmentRegisters(),
-registerOffset);
} else
registerOffset = registerOffsetOrFirstFreeReg;
bool result = attemptToInlineCall(
callTargetNode, resultOperand, callLinkStatus[0], registerOffset,
argumentCountIncludingThis, nextOffset, kind, CallerDoesNormalLinking, prediction,
inliningBalance, [&] (CodeBlock* codeBlock) {
emitFunctionChecks(callLinkStatus[0], callTargetNode, thisArgument);
// If we have a varargs call, we want to extract the arguments right now.
if (InlineCallFrame::isVarargs(kind)) {
int remappedRegisterOffset =
m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset();
ensureLocals(VirtualRegister(remappedRegisterOffset).toLocal());
int argumentStart = registerOffset + JSStack::CallFrameHeaderSize;
int remappedArgumentStart =
m_inlineStackTop->remapOperand(VirtualRegister(argumentStart)).offset();
LoadVarargsData* data = m_graph.m_loadVarargsData.add();
data->start = VirtualRegister(remappedArgumentStart + 1);
data->count = VirtualRegister(remappedRegisterOffset + JSStack::ArgumentCount);
data->offset = argumentsOffset;
data->limit = maxNumArguments;
data->mandatoryMinimum = mandatoryMinimum;
addToGraph(LoadVarargs, OpInfo(data), get(argumentsArgument));
// LoadVarargs may OSR exit. Hence, we need to keep alive callTargetNode, thisArgument
// and argumentsArgument for the baseline JIT. However, we only need a Phantom for
// callTargetNode because the other 2 are still in use and alive at this point.
addToGraph(Phantom, callTargetNode);
// In DFG IR before SSA, we cannot insert control flow between after the
// LoadVarargs and the last SetArgument. This isn't a problem once we get to DFG
// SSA. Fortunately, we also have other reasons for not inserting control flow
// before SSA.
VariableAccessData* countVariable = newVariableAccessData(
VirtualRegister(remappedRegisterOffset + JSStack::ArgumentCount));
// This is pretty lame, but it will force the count to be flushed as an int. This doesn't
// matter very much, since our use of a SetArgument and Flushes for this local slot is
// mostly just a formality.
countVariable->predict(SpecInt32);
countVariable->mergeIsProfitableToUnbox(true);
Node* setArgumentCount = addToGraph(SetArgument, OpInfo(countVariable));
m_currentBlock->variablesAtTail.setOperand(countVariable->local(), setArgumentCount);
set(VirtualRegister(argumentStart), get(thisArgument), ImmediateNakedSet);
for (unsigned argument = 1; argument < maxNumArguments; ++argument) {
VariableAccessData* variable = newVariableAccessData(
VirtualRegister(remappedArgumentStart + argument));
variable->mergeShouldNeverUnbox(true); // We currently have nowhere to put the type check on the LoadVarargs. LoadVarargs is effectful, so after it finishes, we cannot exit.
// For a while it had been my intention to do things like this inside the
// prediction injection phase. But in this case it's really best to do it here,
// because it's here that we have access to the variable access datas for the
// inlining we're about to do.
//
// Something else that's interesting here is that we'd really love to get
// predictions from the arguments loaded at the callsite, rather than the
// arguments received inside the callee. But that probably won't matter for most
// calls.
if (codeBlock && argument < static_cast<unsigned>(codeBlock->numParameters())) {
ConcurrentJITLocker locker(codeBlock->m_lock);
if (ValueProfile* profile = codeBlock->valueProfileForArgument(argument))
variable->predict(profile->computeUpdatedPrediction(locker));
}
Node* setArgument = addToGraph(SetArgument, OpInfo(variable));
m_currentBlock->variablesAtTail.setOperand(variable->local(), setArgument);
}
}
});
if (verbose) {
dataLog("Done inlining (simple).\n");
dataLog("Stack: ", currentCodeOrigin(), "\n");
dataLog("Result: ", result, "\n");
}
return result;
}
// We need to create some kind of switch over callee. For now we only do this if we believe that
// we're in the top tier. We have two reasons for this: first, it provides us an opportunity to
// do more detailed polyvariant/polymorphic profiling; and second, it reduces compile times in
// the DFG. And by polyvariant profiling we mean polyvariant profiling of *this* call. Note that
// we could improve that aspect of this by doing polymorphic inlining but having the profiling
// also.
if (!isFTL(m_graph.m_plan.mode) || !Options::enablePolymorphicCallInlining()
|| InlineCallFrame::isVarargs(kind)) {
if (verbose) {
dataLog("Bailing inlining (hard).\n");
dataLog("Stack: ", currentCodeOrigin(), "\n");
}
return false;
}
unsigned oldOffset = m_currentIndex;
bool allAreClosureCalls = true;
bool allAreDirectCalls = true;
for (unsigned i = callLinkStatus.size(); i--;) {
if (callLinkStatus[i].isClosureCall())
allAreDirectCalls = false;
else
allAreClosureCalls = false;
}
Node* thingToSwitchOn;
if (allAreDirectCalls)
thingToSwitchOn = callTargetNode;
else if (allAreClosureCalls)
thingToSwitchOn = addToGraph(GetExecutable, callTargetNode);
else {
// FIXME: We should be able to handle this case, but it's tricky and we don't know of cases
// where it would be beneficial. It might be best to handle these cases as if all calls were
// closure calls.
// https://bugs.webkit.org/show_bug.cgi?id=136020
if (verbose) {
dataLog("Bailing inlining (mix).\n");
dataLog("Stack: ", currentCodeOrigin(), "\n");
}
return false;
}
if (verbose) {
dataLog("Doing hard inlining...\n");
dataLog("Stack: ", currentCodeOrigin(), "\n");
}
int registerOffset = registerOffsetOrFirstFreeReg;
// This makes me wish that we were in SSA all the time. We need to pick a variable into which to
// store the callee so that it will be accessible to all of the blocks we're about to create. We
// get away with doing an immediate-set here because we wouldn't have performed any side effects
// yet.
if (verbose)
dataLog("Register offset: ", registerOffset);
VirtualRegister calleeReg(registerOffset + JSStack::Callee);
calleeReg = m_inlineStackTop->remapOperand(calleeReg);
if (verbose)
dataLog("Callee is going to be ", calleeReg, "\n");
setDirect(calleeReg, callTargetNode, ImmediateSetWithFlush);
// It's OK to exit right now, even though we set some locals. That's because those locals are not
// user-visible.
m_exitOK = true;
addToGraph(ExitOK);
SwitchData& data = *m_graph.m_switchData.add();
data.kind = SwitchCell;
addToGraph(Switch, OpInfo(&data), thingToSwitchOn);
BasicBlock* originBlock = m_currentBlock;
if (verbose)
dataLog("Marking ", RawPointer(originBlock), " as linked (origin of poly inline)\n");
originBlock->didLink();
cancelLinkingForBlock(m_inlineStackTop, originBlock);
// Each inlined callee will have a landing block that it returns at. They should all have jumps
// to the continuation block, which we create last.
Vector<BasicBlock*> landingBlocks;
// We may force this true if we give up on inlining any of the edges.
bool couldTakeSlowPath = callLinkStatus.couldTakeSlowPath();
if (verbose)
dataLog("About to loop over functions at ", currentCodeOrigin(), ".\n");
for (unsigned i = 0; i < callLinkStatus.size(); ++i) {
m_currentIndex = oldOffset;
RefPtr<BasicBlock> block = adoptRef(new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, PNaN));
m_currentBlock = block.get();
m_graph.appendBlock(block);
prepareToParseBlock();
Node* myCallTargetNode = getDirect(calleeReg);
bool inliningResult = attemptToInlineCall(
myCallTargetNode, resultOperand, callLinkStatus[i], registerOffset,
argumentCountIncludingThis, nextOffset, kind, CallerLinksManually, prediction,
inliningBalance, [&] (CodeBlock*) { });
if (!inliningResult) {
// That failed so we let the block die. Nothing interesting should have been added to
// the block. We also give up on inlining any of the (less frequent) callees.
ASSERT(m_currentBlock == block.get());
ASSERT(m_graph.m_blocks.last() == block);
m_graph.killBlockAndItsContents(block.get());
m_graph.m_blocks.removeLast();
// The fact that inlining failed means we need a slow path.
couldTakeSlowPath = true;
break;
}
JSCell* thingToCaseOn;
if (allAreDirectCalls)
thingToCaseOn = callLinkStatus[i].nonExecutableCallee();
else {
ASSERT(allAreClosureCalls);
thingToCaseOn = callLinkStatus[i].executable();
}
data.cases.append(SwitchCase(m_graph.freeze(thingToCaseOn), block.get()));
m_currentIndex = nextOffset;
m_exitOK = true;
processSetLocalQueue(); // This only comes into play for intrinsics, since normal inlined code will leave an empty queue.
addToGraph(Jump);
if (verbose)
dataLog("Marking ", RawPointer(m_currentBlock), " as linked (tail of poly inlinee)\n");
m_currentBlock->didLink();
landingBlocks.append(m_currentBlock);
if (verbose)
dataLog("Finished inlining ", callLinkStatus[i], " at ", currentCodeOrigin(), ".\n");
}
RefPtr<BasicBlock> slowPathBlock = adoptRef(
new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, PNaN));
m_currentIndex = oldOffset;
m_exitOK = true;
data.fallThrough = BranchTarget(slowPathBlock.get());
m_graph.appendBlock(slowPathBlock);
if (verbose)
dataLog("Marking ", RawPointer(slowPathBlock.get()), " as linked (slow path block)\n");
slowPathBlock->didLink();
prepareToParseBlock();
m_currentBlock = slowPathBlock.get();
Node* myCallTargetNode = getDirect(calleeReg);
if (couldTakeSlowPath) {
addCall(
resultOperand, callOp, OpInfo(), myCallTargetNode, argumentCountIncludingThis,
registerOffset, prediction);
} else {
addToGraph(CheckBadCell);
addToGraph(Phantom, myCallTargetNode);
emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
set(VirtualRegister(resultOperand), addToGraph(BottomValue));
}
m_currentIndex = nextOffset;
m_exitOK = true; // Origin changed, so it's fine to exit again.
processSetLocalQueue();
addToGraph(Jump);
landingBlocks.append(m_currentBlock);
RefPtr<BasicBlock> continuationBlock = adoptRef(
new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, PNaN));
m_graph.appendBlock(continuationBlock);
if (verbose)
dataLog("Adding unlinked block ", RawPointer(continuationBlock.get()), " (continuation)\n");
m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(continuationBlock.get()));
prepareToParseBlock();
m_currentBlock = continuationBlock.get();
for (unsigned i = landingBlocks.size(); i--;)
landingBlocks[i]->terminal()->targetBlock() = continuationBlock.get();
m_currentIndex = oldOffset;
m_exitOK = true;
if (verbose) {
dataLog("Done inlining (hard).\n");
dataLog("Stack: ", currentCodeOrigin(), "\n");
}
return true;
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks)
{
if (argumentCountIncludingThis == 1) { // Math.min()
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
if (argumentCountIncludingThis == 2) { // Math.min(x)
insertChecks();
Node* result = get(VirtualRegister(virtualRegisterForArgument(1, registerOffset)));
addToGraph(Phantom, Edge(result, NumberUse));
set(VirtualRegister(resultOperand), result);
return true;
}
if (argumentCountIncludingThis == 3) { // Math.min(x, y)
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(op, get(virtualRegisterForArgument(1, registerOffset)), get(virtualRegisterForArgument(2, registerOffset))));
return true;
}
// Don't handle >=3 arguments for now.
return false;
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleIntrinsic(int resultOperand, Intrinsic intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks)
{
switch (intrinsic) {
case AbsIntrinsic: {
if (argumentCountIncludingThis == 1) { // Math.abs()
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
if (!MacroAssembler::supportsFloatingPointAbs())
return false;
insertChecks();
Node* node = addToGraph(ArithAbs, get(virtualRegisterForArgument(1, registerOffset)));
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInDFG);
set(VirtualRegister(resultOperand), node);
return true;
}
case MinIntrinsic:
return handleMinMax(resultOperand, ArithMin, registerOffset, argumentCountIncludingThis, insertChecks);
case MaxIntrinsic:
return handleMinMax(resultOperand, ArithMax, registerOffset, argumentCountIncludingThis, insertChecks);
case SqrtIntrinsic:
case CosIntrinsic:
case SinIntrinsic:
case LogIntrinsic: {
if (argumentCountIncludingThis == 1) {
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
switch (intrinsic) {
case SqrtIntrinsic:
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(ArithSqrt, get(virtualRegisterForArgument(1, registerOffset))));
return true;
case CosIntrinsic:
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(ArithCos, get(virtualRegisterForArgument(1, registerOffset))));
return true;
case SinIntrinsic:
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(ArithSin, get(virtualRegisterForArgument(1, registerOffset))));
return true;
case LogIntrinsic:
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(ArithLog, get(virtualRegisterForArgument(1, registerOffset))));
return true;
default:
RELEASE_ASSERT_NOT_REACHED();
return false;
}
}
case PowIntrinsic: {
if (argumentCountIncludingThis < 3) {
// Math.pow() and Math.pow(x) return NaN.
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
insertChecks();
VirtualRegister xOperand = virtualRegisterForArgument(1, registerOffset);
VirtualRegister yOperand = virtualRegisterForArgument(2, registerOffset);
set(VirtualRegister(resultOperand), addToGraph(ArithPow, get(xOperand), get(yOperand)));
return true;
}
case ArrayPushIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile);
if (!arrayMode.isJSArray())
return false;
switch (arrayMode.type()) {
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage: {
insertChecks();
Node* arrayPush = addToGraph(ArrayPush, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), arrayPush);
return true;
}
default:
return false;
}
}
case ArrayPopIntrinsic: {
if (argumentCountIncludingThis != 1)
return false;
ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile);
if (!arrayMode.isJSArray())
return false;
switch (arrayMode.type()) {
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage: {
insertChecks();
Node* arrayPop = addToGraph(ArrayPop, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)));
set(VirtualRegister(resultOperand), arrayPop);
return true;
}
default:
return false;
}
}
case CharCodeAtIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset);
VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
Node* charCode = addToGraph(StringCharCodeAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand));
set(VirtualRegister(resultOperand), charCode);
return true;
}
case CharAtIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset);
VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
Node* charCode = addToGraph(StringCharAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand));
set(VirtualRegister(resultOperand), charCode);
return true;
}
case Clz32Intrinsic: {
insertChecks();
if (argumentCountIncludingThis == 1)
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_graph.freeze(jsNumber(32)))));
else {
Node* operand = get(virtualRegisterForArgument(1, registerOffset));
set(VirtualRegister(resultOperand), addToGraph(ArithClz32, operand));
}
return true;
}
case FromCharCodeIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
Node* charCode = addToGraph(StringFromCharCode, get(indexOperand));
set(VirtualRegister(resultOperand), charCode);
return true;
}
case RegExpExecIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
Node* regExpExec = addToGraph(RegExpExec, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), regExpExec);
return true;
}
case RegExpTestIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
Node* regExpExec = addToGraph(RegExpTest, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), regExpExec);
return true;
}
case RoundIntrinsic: {
if (argumentCountIncludingThis == 1) {
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
if (argumentCountIncludingThis == 2) {
insertChecks();
Node* operand = get(virtualRegisterForArgument(1, registerOffset));
Node* roundNode = addToGraph(ArithRound, OpInfo(0), OpInfo(prediction), operand);
set(VirtualRegister(resultOperand), roundNode);
return true;
}
return false;
}
case IMulIntrinsic: {
if (argumentCountIncludingThis != 3)
return false;
insertChecks();
VirtualRegister leftOperand = virtualRegisterForArgument(1, registerOffset);
VirtualRegister rightOperand = virtualRegisterForArgument(2, registerOffset);
Node* left = get(leftOperand);
Node* right = get(rightOperand);
set(VirtualRegister(resultOperand), addToGraph(ArithIMul, left, right));
return true;
}
case FRoundIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
VirtualRegister operand = virtualRegisterForArgument(1, registerOffset);
set(VirtualRegister(resultOperand), addToGraph(ArithFRound, get(operand)));
return true;
}
case DFGTrueIntrinsic: {
insertChecks();
set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true)));
return true;
}
case OSRExitIntrinsic: {
insertChecks();
addToGraph(ForceOSRExit);
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
return true;
}
case IsFinalTierIntrinsic: {
insertChecks();
set(VirtualRegister(resultOperand),
jsConstant(jsBoolean(Options::useFTLJIT() ? isFTL(m_graph.m_plan.mode) : true)));
return true;
}
case SetInt32HeapPredictionIntrinsic: {
insertChecks();
for (int i = 1; i < argumentCountIncludingThis; ++i) {
Node* node = get(virtualRegisterForArgument(i, registerOffset));
if (node->hasHeapPrediction())
node->setHeapPrediction(SpecInt32);
}
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
return true;
}
case CheckInt32Intrinsic: {
insertChecks();
for (int i = 1; i < argumentCountIncludingThis; ++i) {
Node* node = get(virtualRegisterForArgument(i, registerOffset));
addToGraph(Phantom, Edge(node, Int32Use));
}
set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true)));
return true;
}
case FiatInt52Intrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
VirtualRegister operand = virtualRegisterForArgument(1, registerOffset);
if (enableInt52())
set(VirtualRegister(resultOperand), addToGraph(FiatInt52, get(operand)));
else
set(VirtualRegister(resultOperand), get(operand));
return true;
}
default:
return false;
}
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleTypedArrayConstructor(
int resultOperand, InternalFunction* function, int registerOffset,
int argumentCountIncludingThis, TypedArrayType type, const ChecksFunctor& insertChecks)
{
if (!isTypedView(type))
return false;
if (function->classInfo() != constructorClassInfoForType(type))
return false;
if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject())
return false;
// We only have an intrinsic for the case where you say:
//
// new FooArray(blah);
//
// Of course, 'blah' could be any of the following:
//
// - Integer, indicating that you want to allocate an array of that length.
// This is the thing we're hoping for, and what we can actually do meaningful
// optimizations for.
//
// - Array buffer, indicating that you want to create a view onto that _entire_
// buffer.
//
// - Non-buffer object, indicating that you want to create a copy of that
// object by pretending that it quacks like an array.
//
// - Anything else, indicating that you want to have an exception thrown at
// you.
//
// The intrinsic, NewTypedArray, will behave as if it could do any of these
// things up until we do Fixup. Thereafter, if child1 (i.e. 'blah') is
// predicted Int32, then we lock it in as a normal typed array allocation.
// Otherwise, NewTypedArray turns into a totally opaque function call that
// may clobber the world - by virtue of it accessing properties on what could
// be an object.
//
// Note that although the generic form of NewTypedArray sounds sort of awful,
// it is actually quite likely to be more efficient than a fully generic
// Construct. So, we might want to think about making NewTypedArray variadic,
// or else making Construct not super slow.
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
set(VirtualRegister(resultOperand),
addToGraph(NewTypedArray, OpInfo(type), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleConstantInternalFunction(
int resultOperand, InternalFunction* function, int registerOffset,
int argumentCountIncludingThis, CodeSpecializationKind kind, const ChecksFunctor& insertChecks)
{
if (verbose)
dataLog(" Handling constant internal function ", JSValue(function), "\n");
// If we ever find that we have a lot of internal functions that we specialize for,
// then we should probably have some sort of hashtable dispatch, or maybe even
// dispatch straight through the MethodTable of the InternalFunction. But for now,
// it seems that this case is hit infrequently enough, and the number of functions
// we know about is small enough, that having just a linear cascade of if statements
// is good enough.
if (function->classInfo() == ArrayConstructor::info()) {
if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject())
return false;
insertChecks();
if (argumentCountIncludingThis == 2) {
set(VirtualRegister(resultOperand),
addToGraph(NewArrayWithSize, OpInfo(ArrayWithUndecided), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
// FIXME: Array constructor should use "this" as newTarget.
for (int i = 1; i < argumentCountIncludingThis; ++i)
addVarArgChild(get(virtualRegisterForArgument(i, registerOffset)));
set(VirtualRegister(resultOperand),
addToGraph(Node::VarArg, NewArray, OpInfo(ArrayWithUndecided), OpInfo(0)));
return true;
}
if (function->classInfo() == StringConstructor::info()) {
insertChecks();
Node* result;
if (argumentCountIncludingThis <= 1)
result = jsConstant(m_vm->smallStrings.emptyString());
else
result = addToGraph(CallStringConstructor, get(virtualRegisterForArgument(1, registerOffset)));
if (kind == CodeForConstruct)
result = addToGraph(NewStringObject, OpInfo(function->globalObject()->stringObjectStructure()), result);
set(VirtualRegister(resultOperand), result);
return true;
}
for (unsigned typeIndex = 0; typeIndex < NUMBER_OF_TYPED_ARRAY_TYPES; ++typeIndex) {
bool result = handleTypedArrayConstructor(
resultOperand, function, registerOffset, argumentCountIncludingThis,
indexToTypedArrayType(typeIndex), insertChecks);
if (result)
return true;
}
return false;
}
Node* ByteCodeParser::handleGetByOffset(SpeculatedType prediction, Node* base, unsigned identifierNumber, PropertyOffset offset, NodeType op)
{
Node* propertyStorage;
if (isInlineOffset(offset))
propertyStorage = base;
else
propertyStorage = addToGraph(GetButterfly, base);
StorageAccessData* data = m_graph.m_storageAccessData.add();
data->offset = offset;
data->identifierNumber = identifierNumber;
Node* getByOffset = addToGraph(op, OpInfo(data), OpInfo(prediction), propertyStorage, base);
return getByOffset;
}
Node* ByteCodeParser::handlePutByOffset(Node* base, unsigned identifier, PropertyOffset offset, Node* value)
{
Node* propertyStorage;
if (isInlineOffset(offset))
propertyStorage = base;
else
propertyStorage = addToGraph(GetButterfly, base);
StorageAccessData* data = m_graph.m_storageAccessData.add();
data->offset = offset;
data->identifierNumber = identifier;
Node* result = addToGraph(PutByOffset, OpInfo(data), propertyStorage, base, value);
return result;
}
bool ByteCodeParser::check(const ObjectPropertyCondition& condition)
{
if (m_graph.watchCondition(condition))
return true;
Structure* structure = condition.object()->structure();
if (!condition.structureEnsuresValidity(structure))
return false;
addToGraph(
CheckStructure,
OpInfo(m_graph.addStructureSet(structure)),
weakJSConstant(condition.object()));
return true;
}
GetByOffsetMethod ByteCodeParser::promoteToConstant(GetByOffsetMethod method)
{
if (method.kind() == GetByOffsetMethod::LoadFromPrototype
&& method.prototype()->structure()->dfgShouldWatch()) {
if (JSValue constant = m_graph.tryGetConstantProperty(method.prototype()->value(), method.prototype()->structure(), method.offset()))
return GetByOffsetMethod::constant(m_graph.freeze(constant));
}
return method;
}
GetByOffsetMethod ByteCodeParser::planLoad(const ObjectPropertyCondition& condition)
{
if (verbose)
dataLog("Planning a load: ", condition, "\n");
// We might promote this to Equivalence, and a later DFG pass might also do such promotion
// even if we fail, but for simplicity this cannot be asked to load an equivalence condition.
// None of the clients of this method will request a load of an Equivalence condition anyway,
// and supporting it would complicate the heuristics below.
RELEASE_ASSERT(condition.kind() == PropertyCondition::Presence);
// Here's the ranking of how to handle this, from most preferred to least preferred:
//
// 1) Watchpoint on an equivalence condition and return a constant node for the loaded value.
// No other code is emitted, and the structure of the base object is never registered.
// Hence this results in zero code and we won't jettison this compilation if the object
// transitions, even if the structure is watchable right now.
//
// 2) Need to emit a load, and the current structure of the base is going to be watched by the
// DFG anyway (i.e. dfgShouldWatch). Watch the structure and emit the load. Don't watch the
// condition, since the act of turning the base into a constant in IR will cause the DFG to
// watch the structure anyway and doing so would subsume watching the condition.
//
// 3) Need to emit a load, and the current structure of the base is watchable but not by the
// DFG (i.e. transitionWatchpointSetIsStillValid() and !dfgShouldWatchIfPossible()). Watch
// the condition, and emit a load.
//
// 4) Need to emit a load, and the current structure of the base is not watchable. Emit a
// structure check, and emit a load.
//
// 5) The condition does not hold. Give up and return null.
// First, try to promote Presence to Equivalence. We do this before doing anything else
// because it's the most profitable. Also, there are cases where the presence is watchable but
// we don't want to watch it unless it became an equivalence (see the relationship between
// (1), (2), and (3) above).
ObjectPropertyCondition equivalenceCondition = condition.attemptToMakeEquivalenceWithoutBarrier();
if (m_graph.watchCondition(equivalenceCondition))
return GetByOffsetMethod::constant(m_graph.freeze(equivalenceCondition.requiredValue()));
// At this point, we'll have to materialize the condition's base as a constant in DFG IR. Once
// we do this, the frozen value will have its own idea of what the structure is. Use that from
// now on just because it's less confusing.
FrozenValue* base = m_graph.freeze(condition.object());
Structure* structure = base->structure();
// Check if the structure that we've registered makes the condition hold. If not, just give
// up. This is case (5) above.
if (!condition.structureEnsuresValidity(structure))
return GetByOffsetMethod();
// If the structure is watched by the DFG already, then just use this fact to emit the load.
// This is case (2) above.
if (structure->dfgShouldWatch())
return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset()));
// If we can watch the condition right now, then we can emit the load after watching it. This
// is case (3) above.
if (m_graph.watchCondition(condition))
return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset()));
// We can't watch anything but we know that the current structure satisfies the condition. So,
// check for that structure and then emit the load.
addToGraph(
CheckStructure,
OpInfo(m_graph.addStructureSet(structure)),
addToGraph(JSConstant, OpInfo(base)));
return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset()));
}
Node* ByteCodeParser::load(
SpeculatedType prediction, unsigned identifierNumber, const GetByOffsetMethod& method,
NodeType op)
{
switch (method.kind()) {
case GetByOffsetMethod::Invalid:
return nullptr;
case GetByOffsetMethod::Constant:
return addToGraph(JSConstant, OpInfo(method.constant()));
case GetByOffsetMethod::LoadFromPrototype: {
Node* baseNode = addToGraph(JSConstant, OpInfo(method.prototype()));
return handleGetByOffset(prediction, baseNode, identifierNumber, method.offset(), op);
}
case GetByOffsetMethod::Load:
// Will never see this from planLoad().
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
Node* ByteCodeParser::load(
SpeculatedType prediction, const ObjectPropertyCondition& condition, NodeType op)
{
GetByOffsetMethod method = planLoad(condition);
return load(prediction, m_graph.identifiers().ensure(condition.uid()), method, op);
}
bool ByteCodeParser::check(const ObjectPropertyConditionSet& conditionSet)
{
for (const ObjectPropertyCondition condition : conditionSet) {
if (!check(condition))
return false;
}
return true;
}
GetByOffsetMethod ByteCodeParser::planLoad(const ObjectPropertyConditionSet& conditionSet)
{
if (verbose)
dataLog("conditionSet = ", conditionSet, "\n");
GetByOffsetMethod result;
for (const ObjectPropertyCondition condition : conditionSet) {
switch (condition.kind()) {
case PropertyCondition::Presence:
RELEASE_ASSERT(!result); // Should only see exactly one of these.
result = planLoad(condition);
if (!result)
return GetByOffsetMethod();
break;
default:
if (!check(condition))
return GetByOffsetMethod();
break;
}
}
RELEASE_ASSERT(!!result);
return result;
}
Node* ByteCodeParser::load(
SpeculatedType prediction, const ObjectPropertyConditionSet& conditionSet, NodeType op)
{
GetByOffsetMethod method = planLoad(conditionSet);
return load(
prediction,
m_graph.identifiers().ensure(conditionSet.slotBaseCondition().uid()),
method, op);
}
ObjectPropertyCondition ByteCodeParser::presenceLike(
JSObject* knownBase, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set)
{
if (set.isEmpty())
return ObjectPropertyCondition();
unsigned attributes;
PropertyOffset firstOffset = set[0]->getConcurrently(uid, attributes);
if (firstOffset != offset)
return ObjectPropertyCondition();
for (unsigned i = 1; i < set.size(); ++i) {
unsigned otherAttributes;
PropertyOffset otherOffset = set[i]->getConcurrently(uid, otherAttributes);
if (otherOffset != offset || otherAttributes != attributes)
return ObjectPropertyCondition();
}
return ObjectPropertyCondition::presenceWithoutBarrier(knownBase, uid, offset, attributes);
}
bool ByteCodeParser::checkPresenceLike(
JSObject* knownBase, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set)
{
return check(presenceLike(knownBase, uid, offset, set));
}
void ByteCodeParser::checkPresenceLike(
Node* base, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set)
{
if (JSObject* knownBase = base->dynamicCastConstant<JSObject*>()) {
if (checkPresenceLike(knownBase, uid, offset, set))
return;
}
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(set)), base);
}
template<typename VariantType>
Node* ByteCodeParser::load(
SpeculatedType prediction, Node* base, unsigned identifierNumber, const VariantType& variant)
{
// Make sure backwards propagation knows that we've used base.
addToGraph(Phantom, base);
bool needStructureCheck = true;
if (JSObject* knownBase = base->dynamicCastConstant<JSObject*>()) {
// Try to optimize away the structure check. Note that it's not worth doing anything about this
// if the base's structure is watched.
Structure* structure = base->constant()->structure();
if (!structure->dfgShouldWatch()) {
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
if (!variant.conditionSet().isEmpty()) {
// This means that we're loading from a prototype. We expect the base not to have the
// property. We can only use ObjectPropertyCondition if all of the structures in the
// variant.structureSet() agree on the prototype (it would be hilariously rare if they
// didn't). Note that we are relying on structureSet() having at least one element. That
// will always be true here because of how GetByIdStatus/PutByIdStatus work.
JSObject* prototype = variant.structureSet()[0]->storedPrototypeObject();
bool allAgree = true;
for (unsigned i = 1; i < variant.structureSet().size(); ++i) {
if (variant.structureSet()[i]->storedPrototypeObject() != prototype) {
allAgree = false;
break;
}
}
if (allAgree) {
ObjectPropertyCondition condition = ObjectPropertyCondition::absenceWithoutBarrier(
knownBase, uid, prototype);
if (check(condition))
needStructureCheck = false;
}
} else {
// This means we're loading directly from base. We can avoid all of the code that follows
// if we can prove that the property is a constant. Otherwise, we try to prove that the
// property is watchably present, in which case we get rid of the structure check.
ObjectPropertyCondition presenceCondition =
presenceLike(knownBase, uid, variant.offset(), variant.structureSet());
ObjectPropertyCondition equivalenceCondition =
presenceCondition.attemptToMakeEquivalenceWithoutBarrier();
if (m_graph.watchCondition(equivalenceCondition))
return weakJSConstant(equivalenceCondition.requiredValue());
if (check(presenceCondition))
needStructureCheck = false;
}
}
}
if (needStructureCheck)
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.structureSet())), base);
SpeculatedType loadPrediction;
NodeType loadOp;
if (variant.callLinkStatus()) {
loadPrediction = SpecCellOther;
loadOp = GetGetterSetterByOffset;
} else {
loadPrediction = prediction;
loadOp = GetByOffset;
}
Node* loadedValue;
if (!variant.conditionSet().isEmpty())
loadedValue = load(loadPrediction, variant.conditionSet(), loadOp);
else {
if (needStructureCheck && base->hasConstant()) {
// We did emit a structure check. That means that we have an opportunity to do constant folding
// here, since we didn't do it above.
JSValue constant = m_graph.tryGetConstantProperty(
base->asJSValue(), variant.structureSet(), variant.offset());
if (constant)
return weakJSConstant(constant);
}
loadedValue = handleGetByOffset(
loadPrediction, base, identifierNumber, variant.offset(), loadOp);
}
return loadedValue;
}
Node* ByteCodeParser::store(Node* base, unsigned identifier, const PutByIdVariant& variant, Node* value)
{
RELEASE_ASSERT(variant.kind() == PutByIdVariant::Replace);
checkPresenceLike(base, m_graph.identifiers()[identifier], variant.offset(), variant.structure());
return handlePutByOffset(base, identifier, variant.offset(), value);
}
void ByteCodeParser::handleGetById(
int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber,
const GetByIdStatus& getByIdStatus)
{
NodeType getById = getByIdStatus.makesCalls() ? GetByIdFlush : GetById;
if (!getByIdStatus.isSimple() || !getByIdStatus.numVariants() || !Options::enableAccessInlining()) {
set(VirtualRegister(destinationOperand),
addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
if (getByIdStatus.numVariants() > 1) {
if (getByIdStatus.makesCalls() || !isFTL(m_graph.m_plan.mode)
|| !Options::enablePolymorphicAccessInlining()) {
set(VirtualRegister(destinationOperand),
addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
Vector<MultiGetByOffsetCase, 2> cases;
// 1) Emit prototype structure checks for all chains. This could sort of maybe not be
// optimal, if there is some rarely executed case in the chain that requires a lot
// of checks and those checks are not watchpointable.
for (const GetByIdVariant& variant : getByIdStatus.variants()) {
if (variant.conditionSet().isEmpty()) {
cases.append(
MultiGetByOffsetCase(
variant.structureSet(),
GetByOffsetMethod::load(variant.offset())));
continue;
}
GetByOffsetMethod method = planLoad(variant.conditionSet());
if (!method) {
set(VirtualRegister(destinationOperand),
addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
cases.append(MultiGetByOffsetCase(variant.structureSet(), method));
}
if (m_graph.compilation())
m_graph.compilation()->noticeInlinedGetById();
// 2) Emit a MultiGetByOffset
MultiGetByOffsetData* data = m_graph.m_multiGetByOffsetData.add();
data->cases = cases;
data->identifierNumber = identifierNumber;
set(VirtualRegister(destinationOperand),
addToGraph(MultiGetByOffset, OpInfo(data), OpInfo(prediction), base));
return;
}
ASSERT(getByIdStatus.numVariants() == 1);
GetByIdVariant variant = getByIdStatus[0];
Node* loadedValue = load(prediction, base, identifierNumber, variant);
if (!loadedValue) {
set(VirtualRegister(destinationOperand),
addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
if (m_graph.compilation())
m_graph.compilation()->noticeInlinedGetById();
if (!variant.callLinkStatus()) {
set(VirtualRegister(destinationOperand), loadedValue);
return;
}
Node* getter = addToGraph(GetGetter, loadedValue);
// Make a call. We don't try to get fancy with using the smallest operand number because
// the stack layout phase should compress the stack anyway.
unsigned numberOfParameters = 0;
numberOfParameters++; // The 'this' argument.
numberOfParameters++; // True return PC.
// Start with a register offset that corresponds to the last in-use register.
int registerOffset = virtualRegisterForLocal(
m_inlineStackTop->m_profiledBlock->m_numCalleeRegisters - 1).offset();
registerOffset -= numberOfParameters;
registerOffset -= JSStack::CallFrameHeaderSize;
// Get the alignment right.
registerOffset = -WTF::roundUpToMultipleOf(
stackAlignmentRegisters(),
-registerOffset);
ensureLocals(
m_inlineStackTop->remapOperand(
VirtualRegister(registerOffset)).toLocal());
// Issue SetLocals. This has two effects:
// 1) That's how handleCall() sees the arguments.
// 2) If we inline then this ensures that the arguments are flushed so that if you use
// the dreaded arguments object on the getter, the right things happen. Well, sort of -
// since we only really care about 'this' in this case. But we're not going to take that
// shortcut.
int nextRegister = registerOffset + JSStack::CallFrameHeaderSize;
set(VirtualRegister(nextRegister++), base, ImmediateNakedSet);
// We've set some locals, but they are not user-visible. It's still OK to exit from here.
m_exitOK = true;
addToGraph(ExitOK);
handleCall(
destinationOperand, Call, InlineCallFrame::GetterCall, OPCODE_LENGTH(op_get_by_id),
getter, numberOfParameters - 1, registerOffset, *variant.callLinkStatus(), prediction);
}
void ByteCodeParser::emitPutById(
Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus& putByIdStatus, bool isDirect)
{
if (isDirect)
addToGraph(PutByIdDirect, OpInfo(identifierNumber), base, value);
else
addToGraph(putByIdStatus.makesCalls() ? PutByIdFlush : PutById, OpInfo(identifierNumber), base, value);
}
void ByteCodeParser::handlePutById(
Node* base, unsigned identifierNumber, Node* value,
const PutByIdStatus& putByIdStatus, bool isDirect)
{
if (!putByIdStatus.isSimple() || !putByIdStatus.numVariants() || !Options::enableAccessInlining()) {
if (!putByIdStatus.isSet())
addToGraph(ForceOSRExit);
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
if (putByIdStatus.numVariants() > 1) {
if (!isFTL(m_graph.m_plan.mode) || putByIdStatus.makesCalls()
|| !Options::enablePolymorphicAccessInlining()) {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
if (!isDirect) {
for (unsigned variantIndex = putByIdStatus.numVariants(); variantIndex--;) {
if (putByIdStatus[variantIndex].kind() != PutByIdVariant::Transition)
continue;
if (!check(putByIdStatus[variantIndex].conditionSet())) {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
}
}
if (m_graph.compilation())
m_graph.compilation()->noticeInlinedPutById();
MultiPutByOffsetData* data = m_graph.m_multiPutByOffsetData.add();
data->variants = putByIdStatus.variants();
data->identifierNumber = identifierNumber;
addToGraph(MultiPutByOffset, OpInfo(data), base, value);
return;
}
ASSERT(putByIdStatus.numVariants() == 1);
const PutByIdVariant& variant = putByIdStatus[0];
switch (variant.kind()) {
case PutByIdVariant::Replace: {
store(base, identifierNumber, variant, value);
if (m_graph.compilation())
m_graph.compilation()->noticeInlinedPutById();
return;
}
case PutByIdVariant::Transition: {
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.oldStructure())), base);
if (!check(variant.conditionSet())) {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
ASSERT(variant.oldStructureForTransition()->transitionWatchpointSetHasBeenInvalidated());
Node* propertyStorage;
Transition* transition = m_graph.m_transitions.add(
variant.oldStructureForTransition(), variant.newStructure());
if (variant.reallocatesStorage()) {
// If we're growing the property storage then it must be because we're
// storing into the out-of-line storage.
ASSERT(!isInlineOffset(variant.offset()));
if (!variant.oldStructureForTransition()->outOfLineCapacity()) {
propertyStorage = addToGraph(
AllocatePropertyStorage, OpInfo(transition), base);
} else {
propertyStorage = addToGraph(
ReallocatePropertyStorage, OpInfo(transition),
base, addToGraph(GetButterfly, base));
}
} else {
if (isInlineOffset(variant.offset()))
propertyStorage = base;
else
propertyStorage = addToGraph(GetButterfly, base);
}
StorageAccessData* data = m_graph.m_storageAccessData.add();
data->offset = variant.offset();
data->identifierNumber = identifierNumber;
addToGraph(
PutByOffset,
OpInfo(data),
propertyStorage,
base,
value);
// FIXME: PutStructure goes last until we fix either
// https://bugs.webkit.org/show_bug.cgi?id=142921 or
// https://bugs.webkit.org/show_bug.cgi?id=142924.
addToGraph(PutStructure, OpInfo(transition), base);
if (m_graph.compilation())
m_graph.compilation()->noticeInlinedPutById();
return;
}
case PutByIdVariant::Setter: {
Node* loadedValue = load(SpecCellOther, base, identifierNumber, variant);
if (!loadedValue) {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
Node* setter = addToGraph(GetSetter, loadedValue);
// Make a call. We don't try to get fancy with using the smallest operand number because
// the stack layout phase should compress the stack anyway.
unsigned numberOfParameters = 0;
numberOfParameters++; // The 'this' argument.
numberOfParameters++; // The new value.
numberOfParameters++; // True return PC.
// Start with a register offset that corresponds to the last in-use register.
int registerOffset = virtualRegisterForLocal(
m_inlineStackTop->m_profiledBlock->m_numCalleeRegisters - 1).offset();
registerOffset -= numberOfParameters;
registerOffset -= JSStack::CallFrameHeaderSize;
// Get the alignment right.
registerOffset = -WTF::roundUpToMultipleOf(
stackAlignmentRegisters(),
-registerOffset);
ensureLocals(
m_inlineStackTop->remapOperand(
VirtualRegister(registerOffset)).toLocal());
int nextRegister = registerOffset + JSStack::CallFrameHeaderSize;
set(VirtualRegister(nextRegister++), base, ImmediateNakedSet);
set(VirtualRegister(nextRegister++), value, ImmediateNakedSet);
// We've set some locals, but they are not user-visible. It's still OK to exit from here.
m_exitOK = true;
addToGraph(ExitOK);
handleCall(
VirtualRegister().offset(), Call, InlineCallFrame::SetterCall,
OPCODE_LENGTH(op_put_by_id), setter, numberOfParameters - 1, registerOffset,
*variant.callLinkStatus(), SpecOther);
return;
}
default: {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
} }
}
void ByteCodeParser::prepareToParseBlock()
{
clearCaches();
ASSERT(m_setLocalQueue.isEmpty());
}
void ByteCodeParser::clearCaches()
{
m_constants.resize(0);
}
bool ByteCodeParser::parseBlock(unsigned limit)
{
bool shouldContinueParsing = true;
Interpreter* interpreter = m_vm->interpreter;
Instruction* instructionsBegin = m_inlineStackTop->m_codeBlock->instructions().begin();
unsigned blockBegin = m_currentIndex;
// If we are the first basic block, introduce markers for arguments. This allows
// us to track if a use of an argument may use the actual argument passed, as
// opposed to using a value we set explicitly.
if (m_currentBlock == m_graph.block(0) && !inlineCallFrame()) {
m_graph.m_arguments.resize(m_numArguments);
// We will emit SetArgument nodes. They don't exit, but we're at the top of an op_enter so
// exitOK = true.
m_exitOK = true;
for (unsigned argument = 0; argument < m_numArguments; ++argument) {
VariableAccessData* variable = newVariableAccessData(
virtualRegisterForArgument(argument));
variable->mergeStructureCheckHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
variable->mergeCheckArrayHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType));
Node* setArgument = addToGraph(SetArgument, OpInfo(variable));
m_graph.m_arguments[argument] = setArgument;
m_currentBlock->variablesAtTail.setArgumentFirstTime(argument, setArgument);
}
}
while (true) {
// We're staring a new bytecode instruction. Hence, we once again have a place that we can exit
// to.
m_exitOK = true;
processSetLocalQueue();
// Don't extend over jump destinations.
if (m_currentIndex == limit) {
// Ordinarily we want to plant a jump. But refuse to do this if the block is
// empty. This is a special case for inlining, which might otherwise create
// some empty blocks in some cases. When parseBlock() returns with an empty
// block, it will get repurposed instead of creating a new one. Note that this
// logic relies on every bytecode resulting in one or more nodes, which would
// be true anyway except for op_loop_hint, which emits a Phantom to force this
// to be true.
if (!m_currentBlock->isEmpty())
addToGraph(Jump, OpInfo(m_currentIndex));
return shouldContinueParsing;
}
// Switch on the current bytecode opcode.
Instruction* currentInstruction = instructionsBegin + m_currentIndex;
m_currentInstruction = currentInstruction; // Some methods want to use this, and we'd rather not thread it through calls.
OpcodeID opcodeID = interpreter->getOpcodeID(currentInstruction->u.opcode);
if (Options::verboseDFGByteCodeParsing())
dataLog(" parsing ", currentCodeOrigin(), "\n");
if (m_graph.compilation()) {
addToGraph(CountExecution, OpInfo(m_graph.compilation()->executionCounterFor(
Profiler::OriginStack(*m_vm->m_perBytecodeProfiler, m_codeBlock, currentCodeOrigin()))));
}
switch (opcodeID) {
// === Function entry opcodes ===
case op_enter: {
Node* undefined = addToGraph(JSConstant, OpInfo(m_constantUndefined));
// Initialize all locals to undefined.
for (int i = 0; i < m_inlineStackTop->m_codeBlock->m_numVars; ++i)
set(virtualRegisterForLocal(i), undefined, ImmediateNakedSet);
NEXT_OPCODE(op_enter);
}
case op_to_this: {
Node* op1 = getThis();
if (op1->op() != ToThis) {
Structure* cachedStructure = currentInstruction[2].u.structure.get();
if (currentInstruction[2].u.toThisStatus != ToThisOK
|| !cachedStructure
|| cachedStructure->classInfo()->methodTable.toThis != JSObject::info()->methodTable.toThis
|| m_inlineStackTop->m_profiledBlock->couldTakeSlowCase(m_currentIndex)
|| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
|| (op1->op() == GetLocal && op1->variableAccessData()->structureCheckHoistingFailed())) {
setThis(addToGraph(ToThis, op1));
} else {
addToGraph(
CheckStructure,
OpInfo(m_graph.addStructureSet(cachedStructure)),
op1);
}
}
NEXT_OPCODE(op_to_this);
}
case op_create_this: {
int calleeOperand = currentInstruction[2].u.operand;
Node* callee = get(VirtualRegister(calleeOperand));
JSFunction* function = callee->dynamicCastConstant<JSFunction*>();
if (!function) {
JSCell* cachedFunction = currentInstruction[4].u.jsCell.unvalidatedGet();
if (cachedFunction
&& cachedFunction != JSCell::seenMultipleCalleeObjects()
&& !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell)) {
ASSERT(cachedFunction->inherits(JSFunction::info()));
FrozenValue* frozen = m_graph.freeze(cachedFunction);
addToGraph(CheckCell, OpInfo(frozen), callee);
function = static_cast<JSFunction*>(cachedFunction);
}
}
bool alreadyEmitted = false;
if (function) {
if (FunctionRareData* rareData = function->rareData()) {
if (Structure* structure = rareData->allocationStructure()) {
m_graph.freeze(rareData);
m_graph.watchpoints().addLazily(rareData->allocationProfileWatchpointSet());
// The callee is still live up to this point.
addToGraph(Phantom, callee);
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewObject, OpInfo(structure)));
alreadyEmitted = true;
}
}
}
if (!alreadyEmitted) {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(CreateThis, OpInfo(currentInstruction[3].u.operand), callee));
}
NEXT_OPCODE(op_create_this);
}
case op_new_object: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(NewObject,
OpInfo(currentInstruction[3].u.objectAllocationProfile->structure())));
NEXT_OPCODE(op_new_object);
}
case op_new_array: {
int startOperand = currentInstruction[2].u.operand;
int numOperands = currentInstruction[3].u.operand;
ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile;
for (int operandIdx = startOperand; operandIdx > startOperand - numOperands; --operandIdx)
addVarArgChild(get(VirtualRegister(operandIdx)));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(Node::VarArg, NewArray, OpInfo(profile->selectIndexingType()), OpInfo(0)));
NEXT_OPCODE(op_new_array);
}
case op_new_array_with_size: {
int lengthOperand = currentInstruction[2].u.operand;
ArrayAllocationProfile* profile = currentInstruction[3].u.arrayAllocationProfile;
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayWithSize, OpInfo(profile->selectIndexingType()), get(VirtualRegister(lengthOperand))));
NEXT_OPCODE(op_new_array_with_size);
}
case op_new_array_buffer: {
int startConstant = currentInstruction[2].u.operand;
int numConstants = currentInstruction[3].u.operand;
ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile;
NewArrayBufferData data;
data.startConstant = m_inlineStackTop->m_constantBufferRemap[startConstant];
data.numConstants = numConstants;
data.indexingType = profile->selectIndexingType();
// If this statement has never executed, we'll have the wrong indexing type in the profile.
for (int i = 0; i < numConstants; ++i) {
data.indexingType =
leastUpperBoundOfIndexingTypeAndValue(
data.indexingType,
m_codeBlock->constantBuffer(data.startConstant)[i]);
}
m_graph.m_newArrayBufferData.append(data);
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayBuffer, OpInfo(&m_graph.m_newArrayBufferData.last())));
NEXT_OPCODE(op_new_array_buffer);
}
case op_new_regexp: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewRegexp, OpInfo(currentInstruction[2].u.operand)));
NEXT_OPCODE(op_new_regexp);
}
// === Bitwise operations ===
case op_bitand: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitAnd, op1, op2));
NEXT_OPCODE(op_bitand);
}
case op_bitor: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitOr, op1, op2));
NEXT_OPCODE(op_bitor);
}
case op_bitxor: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitXor, op1, op2));
NEXT_OPCODE(op_bitxor);
}
case op_rshift: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(BitRShift, op1, op2));
NEXT_OPCODE(op_rshift);
}
case op_lshift: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(BitLShift, op1, op2));
NEXT_OPCODE(op_lshift);
}
case op_urshift: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(BitURShift, op1, op2));
NEXT_OPCODE(op_urshift);
}
case op_unsigned: {
set(VirtualRegister(currentInstruction[1].u.operand),
makeSafe(addToGraph(UInt32ToNumber, get(VirtualRegister(currentInstruction[2].u.operand)))));
NEXT_OPCODE(op_unsigned);
}
// === Increment/Decrement opcodes ===
case op_inc: {
int srcDst = currentInstruction[1].u.operand;
VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst);
Node* op = get(srcDstVirtualRegister);
set(srcDstVirtualRegister, makeSafe(addToGraph(ArithAdd, op, addToGraph(JSConstant, OpInfo(m_constantOne)))));
NEXT_OPCODE(op_inc);
}
case op_dec: {
int srcDst = currentInstruction[1].u.operand;
VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst);
Node* op = get(srcDstVirtualRegister);
set(srcDstVirtualRegister, makeSafe(addToGraph(ArithSub, op, addToGraph(JSConstant, OpInfo(m_constantOne)))));
NEXT_OPCODE(op_dec);
}
// === Arithmetic operations ===
case op_add: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
if (op1->hasNumberResult() && op2->hasNumberResult())
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithAdd, op1, op2)));
else
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ValueAdd, op1, op2)));
NEXT_OPCODE(op_add);
}
case op_sub: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithSub, op1, op2)));
NEXT_OPCODE(op_sub);
}
case op_negate: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithNegate, op1)));
NEXT_OPCODE(op_negate);
}
case op_mul: {
// Multiply requires that the inputs are not truncated, unfortunately.
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMul, op1, op2)));
NEXT_OPCODE(op_mul);
}
case op_mod: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMod, op1, op2)));
NEXT_OPCODE(op_mod);
}
case op_div: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeDivSafe(addToGraph(ArithDiv, op1, op2)));
NEXT_OPCODE(op_div);
}
// === Misc operations ===
case op_debug:
addToGraph(Breakpoint);
NEXT_OPCODE(op_debug);
case op_profile_will_call: {
addToGraph(ProfileWillCall);
NEXT_OPCODE(op_profile_will_call);
}
case op_profile_did_call: {
addToGraph(ProfileDidCall);
NEXT_OPCODE(op_profile_did_call);
}
case op_mov: {
Node* op = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), op);
NEXT_OPCODE(op_mov);
}
case op_check_tdz: {
addToGraph(CheckNotEmpty, get(VirtualRegister(currentInstruction[1].u.operand)));
NEXT_OPCODE(op_check_tdz);
}
case op_check_has_instance:
addToGraph(CheckHasInstance, get(VirtualRegister(currentInstruction[3].u.operand)));
NEXT_OPCODE(op_check_has_instance);
case op_instanceof: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
Node* prototype = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(InstanceOf, value, prototype));
NEXT_OPCODE(op_instanceof);
}
case op_is_undefined: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsUndefined, value));
NEXT_OPCODE(op_is_undefined);
}
case op_is_boolean: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsBoolean, value));
NEXT_OPCODE(op_is_boolean);
}
case op_is_number: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsNumber, value));
NEXT_OPCODE(op_is_number);
}
case op_is_string: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsString, value));
NEXT_OPCODE(op_is_string);
}
case op_is_object: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObject, value));
NEXT_OPCODE(op_is_object);
}
case op_is_object_or_null: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObjectOrNull, value));
NEXT_OPCODE(op_is_object_or_null);
}
case op_is_function: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsFunction, value));
NEXT_OPCODE(op_is_function);
}
case op_not: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, value));
NEXT_OPCODE(op_not);
}
case op_to_primitive: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToPrimitive, value));
NEXT_OPCODE(op_to_primitive);
}
case op_strcat: {
int startOperand = currentInstruction[2].u.operand;
int numOperands = currentInstruction[3].u.operand;
#if CPU(X86)
// X86 doesn't have enough registers to compile MakeRope with three arguments. The
// StrCat we emit here may be turned into a MakeRope. Rather than try to be clever,
// we just make StrCat dumber on this processor.
const unsigned maxArguments = 2;
#else
const unsigned maxArguments = 3;
#endif
Node* operands[AdjacencyList::Size];
unsigned indexInOperands = 0;
for (unsigned i = 0; i < AdjacencyList::Size; ++i)
operands[i] = 0;
for (int operandIdx = 0; operandIdx < numOperands; ++operandIdx) {
if (indexInOperands == maxArguments) {
operands[0] = addToGraph(StrCat, operands[0], operands[1], operands[2]);
for (unsigned i = 1; i < AdjacencyList::Size; ++i)
operands[i] = 0;
indexInOperands = 1;
}
ASSERT(indexInOperands < AdjacencyList::Size);
ASSERT(indexInOperands < maxArguments);
operands[indexInOperands++] = get(VirtualRegister(startOperand - operandIdx));
}
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(StrCat, operands[0], operands[1], operands[2]));
NEXT_OPCODE(op_strcat);
}
case op_less: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLess, op1, op2));
NEXT_OPCODE(op_less);
}
case op_lesseq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLessEq, op1, op2));
NEXT_OPCODE(op_lesseq);
}
case op_greater: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreater, op1, op2));
NEXT_OPCODE(op_greater);
}
case op_greatereq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreaterEq, op1, op2));
NEXT_OPCODE(op_greatereq);
}
case op_eq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEq, op1, op2));
NEXT_OPCODE(op_eq);
}
case op_eq_null: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEq, value, nullConstant));
NEXT_OPCODE(op_eq_null);
}
case op_stricteq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareStrictEq, op1, op2));
NEXT_OPCODE(op_stricteq);
}
case op_neq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEq, op1, op2)));
NEXT_OPCODE(op_neq);
}
case op_neq_null: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEq, value, nullConstant)));
NEXT_OPCODE(op_neq_null);
}
case op_nstricteq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
Node* invertedResult;
invertedResult = addToGraph(CompareStrictEq, op1, op2);
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, invertedResult));
NEXT_OPCODE(op_nstricteq);
}
// === Property access operations ===
case op_get_by_val: {
SpeculatedType prediction = getPredictionWithoutOSRExit();
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
bool compiledAsGetById = false;
{
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
ByValInfo* byValInfo = m_inlineStackTop->m_byValInfos.get(CodeOrigin(currentCodeOrigin().bytecodeIndex));
// FIXME: When the bytecode is not compiled in the baseline JIT, byValInfo becomes null.
// At that time, there is no information.
if (byValInfo && byValInfo->stubInfo && !byValInfo->tookSlowPath && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIdent)) {
compiledAsGetById = true;
unsigned identifierNumber = m_graph.identifiers().ensure(byValInfo->cachedId.impl());
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
addToGraph(CheckIdent, OpInfo(uid), property);
GetByIdStatus getByIdStatus = GetByIdStatus::computeForStubInfo(
locker, m_inlineStackTop->m_profiledBlock,
byValInfo->stubInfo, currentCodeOrigin(), uid);
handleGetById(currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus);
}
}
if (!compiledAsGetById) {
ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read);
Node* getByVal = addToGraph(GetByVal, OpInfo(arrayMode.asWord()), OpInfo(prediction), base, property);
m_exitOK = false; // GetByVal must be treated as if it clobbers exit state, since FixupPhase may make it generic.
set(VirtualRegister(currentInstruction[1].u.operand), getByVal);
}
NEXT_OPCODE(op_get_by_val);
}
case op_put_by_val_direct:
case op_put_by_val: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
Node* property = get(VirtualRegister(currentInstruction[2].u.operand));
Node* value = get(VirtualRegister(currentInstruction[3].u.operand));
bool isDirect = opcodeID == op_put_by_val_direct;
bool compiledAsPutById = false;
{
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
ByValInfo* byValInfo = m_inlineStackTop->m_byValInfos.get(CodeOrigin(currentCodeOrigin().bytecodeIndex));
// FIXME: When the bytecode is not compiled in the baseline JIT, byValInfo becomes null.
// At that time, there is no information.
if (byValInfo && byValInfo->stubInfo && !byValInfo->tookSlowPath && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIdent)) {
compiledAsPutById = true;
unsigned identifierNumber = m_graph.identifiers().ensure(byValInfo->cachedId.impl());
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
addToGraph(CheckIdent, OpInfo(uid), property);
PutByIdStatus putByIdStatus = PutByIdStatus::computeForStubInfo(
locker, m_inlineStackTop->m_profiledBlock,
byValInfo->stubInfo, currentCodeOrigin(), uid);
handlePutById(base, identifierNumber, value, putByIdStatus, isDirect);
}
}
if (!compiledAsPutById) {
ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Write);
addVarArgChild(base);
addVarArgChild(property);
addVarArgChild(value);
addVarArgChild(0); // Leave room for property storage.
addVarArgChild(0); // Leave room for length.
addToGraph(Node::VarArg, isDirect ? PutByValDirect : PutByVal, OpInfo(arrayMode.asWord()), OpInfo(0));
}
NEXT_OPCODE(op_put_by_val);
}
case op_get_by_id:
case op_get_array_length: {
SpeculatedType prediction = getPrediction();
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
GetByIdStatus getByIdStatus = GetByIdStatus::computeFor(
m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock,
m_inlineStackTop->m_stubInfos, m_dfgStubInfos,
currentCodeOrigin(), uid);
handleGetById(
currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus);
NEXT_OPCODE(op_get_by_id);
}
case op_put_by_id: {
Node* value = get(VirtualRegister(currentInstruction[3].u.operand));
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
bool direct = currentInstruction[8].u.putByIdFlags & PutByIdIsDirect;
PutByIdStatus putByIdStatus = PutByIdStatus::computeFor(
m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock,
m_inlineStackTop->m_stubInfos, m_dfgStubInfos,
currentCodeOrigin(), m_graph.identifiers()[identifierNumber]);
handlePutById(base, identifierNumber, value, putByIdStatus, direct);
NEXT_OPCODE(op_put_by_id);
}
case op_profile_type: {
Node* valueToProfile = get(VirtualRegister(currentInstruction[1].u.operand));
addToGraph(ProfileType, OpInfo(currentInstruction[2].u.location), valueToProfile);
NEXT_OPCODE(op_profile_type);
}
case op_profile_control_flow: {
BasicBlockLocation* basicBlockLocation = currentInstruction[1].u.basicBlockLocation;
addToGraph(ProfileControlFlow, OpInfo(basicBlockLocation));
NEXT_OPCODE(op_profile_control_flow);
}
// === Block terminators. ===
case op_jmp: {
int relativeOffset = currentInstruction[1].u.operand;
addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
if (relativeOffset <= 0)
flushForTerminal();
LAST_OPCODE(op_jmp);
}
case op_jtrue: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* condition = get(VirtualRegister(currentInstruction[1].u.operand));
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jtrue))), condition);
LAST_OPCODE(op_jtrue);
}
case op_jfalse: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* condition = get(VirtualRegister(currentInstruction[1].u.operand));
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jfalse), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jfalse);
}
case op_jeq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* value = get(VirtualRegister(currentInstruction[1].u.operand));
Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
Node* condition = addToGraph(CompareEq, value, nullConstant);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jeq_null))), condition);
LAST_OPCODE(op_jeq_null);
}
case op_jneq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* value = get(VirtualRegister(currentInstruction[1].u.operand));
Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
Node* condition = addToGraph(CompareEq, value, nullConstant);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jneq_null), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jneq_null);
}
case op_jless: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLess, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jless))), condition);
LAST_OPCODE(op_jless);
}
case op_jlesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLessEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jlesseq))), condition);
LAST_OPCODE(op_jlesseq);
}
case op_jgreater: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreater, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jgreater))), condition);
LAST_OPCODE(op_jgreater);
}
case op_jgreatereq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreaterEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jgreatereq))), condition);
LAST_OPCODE(op_jgreatereq);
}
case op_jnless: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLess, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jnless), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jnless);
}
case op_jnlesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLessEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jnlesseq), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jnlesseq);
}
case op_jngreater: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreater, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jngreater), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jngreater);
}
case op_jngreatereq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreaterEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jngreatereq), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jngreatereq);
}
case op_switch_imm: {
SwitchData& data = *m_graph.m_switchData.add();
data.kind = SwitchImm;
data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand];
data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand);
SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex);
for (unsigned i = 0; i < table.branchOffsets.size(); ++i) {
if (!table.branchOffsets[i])
continue;
unsigned target = m_currentIndex + table.branchOffsets[i];
if (target == data.fallThrough.bytecodeIndex())
continue;
data.cases.append(SwitchCase::withBytecodeIndex(m_graph.freeze(jsNumber(static_cast<int32_t>(table.min + i))), target));
}
addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
flushIfTerminal(data);
LAST_OPCODE(op_switch_imm);
}
case op_switch_char: {
SwitchData& data = *m_graph.m_switchData.add();
data.kind = SwitchChar;
data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand];
data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand);
SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex);
for (unsigned i = 0; i < table.branchOffsets.size(); ++i) {
if (!table.branchOffsets[i])
continue;
unsigned target = m_currentIndex + table.branchOffsets[i];
if (target == data.fallThrough.bytecodeIndex())
continue;
data.cases.append(
SwitchCase::withBytecodeIndex(LazyJSValue::singleCharacterString(table.min + i), target));
}
addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
flushIfTerminal(data);
LAST_OPCODE(op_switch_char);
}
case op_switch_string: {
SwitchData& data = *m_graph.m_switchData.add();
data.kind = SwitchString;
data.switchTableIndex = currentInstruction[1].u.operand;
data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand);
StringJumpTable& table = m_codeBlock->stringSwitchJumpTable(data.switchTableIndex);
StringJumpTable::StringOffsetTable::iterator iter;
StringJumpTable::StringOffsetTable::iterator end = table.offsetTable.end();
for (iter = table.offsetTable.begin(); iter != end; ++iter) {
unsigned target = m_currentIndex + iter->value.branchOffset;
if (target == data.fallThrough.bytecodeIndex())
continue;
data.cases.append(
SwitchCase::withBytecodeIndex(LazyJSValue::knownStringImpl(iter->key.get()), target));
}
addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
flushIfTerminal(data);
LAST_OPCODE(op_switch_string);
}
case op_ret:
if (inlineCallFrame()) {
flushForReturn();
if (m_inlineStackTop->m_returnValue.isValid())
setDirect(m_inlineStackTop->m_returnValue, get(VirtualRegister(currentInstruction[1].u.operand)), ImmediateSetWithFlush);
m_inlineStackTop->m_didReturn = true;
if (m_inlineStackTop->m_unlinkedBlocks.isEmpty()) {
// If we're returning from the first block, then we're done parsing.
ASSERT(m_inlineStackTop->m_callsiteBlockHead == m_graph.lastBlock());
shouldContinueParsing = false;
LAST_OPCODE(op_ret);
} else {
// If inlining created blocks, and we're doing a return, then we need some
// special linking.
ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_block == m_graph.lastBlock());
m_inlineStackTop->m_unlinkedBlocks.last().m_needsNormalLinking = false;
}
if (m_currentIndex + OPCODE_LENGTH(op_ret) != m_inlineStackTop->m_codeBlock->instructions().size() || m_inlineStackTop->m_didEarlyReturn) {
ASSERT(m_currentIndex + OPCODE_LENGTH(op_ret) <= m_inlineStackTop->m_codeBlock->instructions().size());
addToGraph(Jump, OpInfo(0));
m_inlineStackTop->m_unlinkedBlocks.last().m_needsEarlyReturnLinking = true;
m_inlineStackTop->m_didEarlyReturn = true;
}
LAST_OPCODE(op_ret);
}
addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand)));
flushForReturn();
LAST_OPCODE(op_ret);
case op_end:
ASSERT(!inlineCallFrame());
addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand)));
flushForReturn();
LAST_OPCODE(op_end);
case op_throw:
addToGraph(Throw, get(VirtualRegister(currentInstruction[1].u.operand)));
flushForTerminal();
addToGraph(Unreachable);
LAST_OPCODE(op_throw);
case op_throw_static_error:
addToGraph(ThrowReferenceError);
flushForTerminal();
addToGraph(Unreachable);
LAST_OPCODE(op_throw_static_error);
case op_call:
handleCall(currentInstruction, Call, CodeForCall);
// Verify that handleCall(), which could have inlined the callee, didn't trash m_currentInstruction
ASSERT(m_currentInstruction == currentInstruction);
NEXT_OPCODE(op_call);
case op_construct:
handleCall(currentInstruction, Construct, CodeForConstruct);
NEXT_OPCODE(op_construct);
case op_call_varargs: {
handleVarargsCall(currentInstruction, CallVarargs, CodeForCall);
NEXT_OPCODE(op_call_varargs);
}
case op_construct_varargs: {
handleVarargsCall(currentInstruction, ConstructVarargs, CodeForConstruct);
NEXT_OPCODE(op_construct_varargs);
}
case op_jneq_ptr:
// Statically speculate for now. It makes sense to let speculate-only jneq_ptr
// support simmer for a while before making it more general, since it's
// already gnarly enough as it is.
ASSERT(pointerIsFunction(currentInstruction[2].u.specialPointer));
addToGraph(
CheckCell,
OpInfo(m_graph.freeze(static_cast<JSCell*>(actualPointerFor(
m_inlineStackTop->m_codeBlock, currentInstruction[2].u.specialPointer)))),
get(VirtualRegister(currentInstruction[1].u.operand)));
addToGraph(Jump, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_ptr)));
LAST_OPCODE(op_jneq_ptr);
case op_resolve_scope: {
int dst = currentInstruction[1].u.operand;
ResolveType resolveType = static_cast<ResolveType>(currentInstruction[4].u.operand);
unsigned depth = currentInstruction[5].u.operand;
int scope = currentInstruction[2].u.operand;
// get_from_scope and put_to_scope depend on this watchpoint forcing OSR exit, so they don't add their own watchpoints.
if (needsVarInjectionChecks(resolveType))
addToGraph(VarInjectionWatchpoint);
switch (resolveType) {
case GlobalProperty:
case GlobalVar:
case GlobalPropertyWithVarInjectionChecks:
case GlobalVarWithVarInjectionChecks:
case GlobalLexicalVar:
case GlobalLexicalVarWithVarInjectionChecks: {
JSScope* constantScope = JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock);
RELEASE_ASSERT(constantScope);
RELEASE_ASSERT(static_cast<JSScope*>(currentInstruction[6].u.pointer) == constantScope);
set(VirtualRegister(dst), weakJSConstant(constantScope));
addToGraph(Phantom, get(VirtualRegister(scope)));
break;
}
case ModuleVar: {
// Since the value of the "scope" virtual register is not used in LLInt / baseline op_resolve_scope with ModuleVar,
// we need not to keep it alive by the Phantom node.
JSModuleEnvironment* moduleEnvironment = jsCast<JSModuleEnvironment*>(currentInstruction[6].u.jsCell.get());
// Module environment is already strongly referenced by the CodeBlock.
set(VirtualRegister(dst), weakJSConstant(moduleEnvironment));
break;
}
case LocalClosureVar:
case ClosureVar:
case ClosureVarWithVarInjectionChecks: {
Node* localBase = get(VirtualRegister(scope));
addToGraph(Phantom, localBase); // OSR exit cannot handle resolve_scope on a DCE'd scope.
// We have various forms of constant folding here. This is necessary to avoid
// spurious recompiles in dead-but-foldable code.
if (SymbolTable* symbolTable = currentInstruction[6].u.symbolTable.get()) {
InferredValue* singleton = symbolTable->singletonScope();
if (JSValue value = singleton->inferredValue()) {
m_graph.watchpoints().addLazily(singleton);
set(VirtualRegister(dst), weakJSConstant(value));
break;
}
}
if (JSScope* scope = localBase->dynamicCastConstant<JSScope*>()) {
for (unsigned n = depth; n--;)
scope = scope->next();
set(VirtualRegister(dst), weakJSConstant(scope));
break;
}
for (unsigned n = depth; n--;)
localBase = addToGraph(SkipScope, localBase);
set(VirtualRegister(dst), localBase);
break;
}
case UnresolvedProperty:
case UnresolvedPropertyWithVarInjectionChecks: {
addToGraph(Phantom, get(VirtualRegister(scope)));
addToGraph(ForceOSRExit);
set(VirtualRegister(dst), addToGraph(JSConstant, OpInfo(m_constantNull)));
break;
}
case Dynamic:
RELEASE_ASSERT_NOT_REACHED();
break;
}
NEXT_OPCODE(op_resolve_scope);
}
case op_get_from_scope: {
int dst = currentInstruction[1].u.operand;
int scope = currentInstruction[2].u.operand;
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
ResolveType resolveType = GetPutInfo(currentInstruction[4].u.operand).resolveType();
Structure* structure = 0;
WatchpointSet* watchpoints = 0;
uintptr_t operand;
{
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks || resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)
watchpoints = currentInstruction[5].u.watchpointSet;
else if (resolveType != UnresolvedProperty && resolveType != UnresolvedPropertyWithVarInjectionChecks)
structure = currentInstruction[5].u.structure.get();
operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer);
}
UNUSED_PARAM(watchpoints); // We will use this in the future. For now we set it as a way of documenting the fact that that's what index 5 is in GlobalVar mode.
JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
switch (resolveType) {
case GlobalProperty:
case GlobalPropertyWithVarInjectionChecks: {
SpeculatedType prediction = getPrediction();
GetByIdStatus status = GetByIdStatus::computeFor(structure, uid);
if (status.state() != GetByIdStatus::Simple
|| status.numVariants() != 1
|| status[0].structureSet().size() != 1) {
set(VirtualRegister(dst), addToGraph(GetByIdFlush, OpInfo(identifierNumber), OpInfo(prediction), get(VirtualRegister(scope))));
break;
}
Node* base = weakJSConstant(globalObject);
Node* result = load(prediction, base, identifierNumber, status[0]);
addToGraph(Phantom, get(VirtualRegister(scope)));
set(VirtualRegister(dst), result);
break;
}
case GlobalVar:
case GlobalVarWithVarInjectionChecks:
case GlobalLexicalVar:
case GlobalLexicalVarWithVarInjectionChecks: {
addToGraph(Phantom, get(VirtualRegister(scope)));
WatchpointSet* watchpointSet;
ScopeOffset offset;
JSSegmentedVariableObject* scopeObject = jsCast<JSSegmentedVariableObject*>(JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock));
{
ConcurrentJITLocker locker(scopeObject->symbolTable()->m_lock);
SymbolTableEntry entry = scopeObject->symbolTable()->get(locker, uid);
watchpointSet = entry.watchpointSet();
offset = entry.scopeOffset();
}
if (watchpointSet && watchpointSet->state() == IsWatched) {
// This has a fun concurrency story. There is the possibility of a race in two
// directions:
//
// We see that the set IsWatched, but in the meantime it gets invalidated: this is
// fine because if we saw that it IsWatched then we add a watchpoint. If it gets
// invalidated, then this compilation is invalidated. Note that in the meantime we
// may load an absurd value from the global object. It's fine to load an absurd
// value if the compilation is invalidated anyway.
//
// We see that the set IsWatched, but the value isn't yet initialized: this isn't
// possible because of the ordering of operations.
//
// Here's how we order operations:
//
// Main thread stores to the global object: always store a value first, and only
// after that do we touch the watchpoint set. There is a fence in the touch, that
// ensures that the store to the global object always happens before the touch on the
// set.
//
// Compilation thread: always first load the state of the watchpoint set, and then
// load the value. The WatchpointSet::state() method does fences for us to ensure
// that the load of the state happens before our load of the value.
//
// Finalizing compilation: this happens on the main thread and synchronously checks
// validity of all watchpoint sets.
//
// We will only perform optimizations if the load of the state yields IsWatched. That
// means that at least one store would have happened to initialize the original value
// of the variable (that is, the value we'd like to constant fold to). There may be
// other stores that happen after that, but those stores will invalidate the
// watchpoint set and also the compilation.
// Note that we need to use the operand, which is a direct pointer at the global,
// rather than looking up the global by doing variableAt(offset). That's because the
// internal data structures of JSSegmentedVariableObject are not thread-safe even
// though accessing the global itself is. The segmentation involves a vector spine
// that resizes with malloc/free, so if new globals unrelated to the one we are
// reading are added, we might access freed memory if we do variableAt().
WriteBarrier<Unknown>* pointer = bitwise_cast<WriteBarrier<Unknown>*>(operand);
ASSERT(scopeObject->findVariableIndex(pointer) == offset);
JSValue value = pointer->get();
if (value) {
m_graph.watchpoints().addLazily(watchpointSet);
set(VirtualRegister(dst), weakJSConstant(value));
break;
}
}
SpeculatedType prediction = getPrediction();
NodeType nodeType;
if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks)
nodeType = GetGlobalVar;
else
nodeType = GetGlobalLexicalVariable;
Node* value = addToGraph(nodeType, OpInfo(operand), OpInfo(prediction));
if (resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)
addToGraph(CheckNotEmpty, value);
set(VirtualRegister(dst), value);
break;
}
case LocalClosureVar:
case ClosureVar:
case ClosureVarWithVarInjectionChecks: {
Node* scopeNode = get(VirtualRegister(scope));
// Ideally we wouldn't have to do this Phantom. But:
//
// For the constant case: we must do it because otherwise we would have no way of knowing
// that the scope is live at OSR here.
//
// For the non-constant case: GetClosureVar could be DCE'd, but baseline's implementation
// won't be able to handle an Undefined scope.
addToGraph(Phantom, scopeNode);
// Constant folding in the bytecode parser is important for performance. This may not
// have executed yet. If it hasn't, then we won't have a prediction. Lacking a
// prediction, we'd otherwise think that it has to exit. Then when it did execute, we
// would recompile. But if we can fold it here, we avoid the exit.
if (JSValue value = m_graph.tryGetConstantClosureVar(scopeNode, ScopeOffset(operand))) {
set(VirtualRegister(dst), weakJSConstant(value));
break;
}
SpeculatedType prediction = getPrediction();
set(VirtualRegister(dst),
addToGraph(GetClosureVar, OpInfo(operand), OpInfo(prediction), scopeNode));
break;
}
case UnresolvedProperty:
case UnresolvedPropertyWithVarInjectionChecks: {
addToGraph(ForceOSRExit);
Node* scopeNode = get(VirtualRegister(scope));
addToGraph(Phantom, scopeNode);
set(VirtualRegister(dst), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
break;
}
case ModuleVar:
case Dynamic:
RELEASE_ASSERT_NOT_REACHED();
break;
}
NEXT_OPCODE(op_get_from_scope);
}
case op_put_to_scope: {
unsigned scope = currentInstruction[1].u.operand;
unsigned identifierNumber = currentInstruction[2].u.operand;
if (identifierNumber != UINT_MAX)
identifierNumber = m_inlineStackTop->m_identifierRemap[identifierNumber];
unsigned value = currentInstruction[3].u.operand;
GetPutInfo getPutInfo = GetPutInfo(currentInstruction[4].u.operand);
ResolveType resolveType = getPutInfo.resolveType();
UniquedStringImpl* uid;
if (identifierNumber != UINT_MAX)
uid = m_graph.identifiers()[identifierNumber];
else
uid = nullptr;
Structure* structure = nullptr;
WatchpointSet* watchpoints = nullptr;
uintptr_t operand;
{
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks || resolveType == LocalClosureVar || resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)
watchpoints = currentInstruction[5].u.watchpointSet;
else if (resolveType != UnresolvedProperty && resolveType != UnresolvedPropertyWithVarInjectionChecks)
structure = currentInstruction[5].u.structure.get();
operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer);
}
JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
switch (resolveType) {
case GlobalProperty:
case GlobalPropertyWithVarInjectionChecks: {
PutByIdStatus status;
if (uid)
status = PutByIdStatus::computeFor(globalObject, structure, uid, false);
else
status = PutByIdStatus(PutByIdStatus::TakesSlowPath);
if (status.numVariants() != 1
|| status[0].kind() != PutByIdVariant::Replace
|| status[0].structure().size() != 1) {
addToGraph(PutById, OpInfo(identifierNumber), get(VirtualRegister(scope)), get(VirtualRegister(value)));
break;
}
Node* base = weakJSConstant(globalObject);
store(base, identifierNumber, status[0], get(VirtualRegister(value)));
// Keep scope alive until after put.
addToGraph(Phantom, get(VirtualRegister(scope)));
break;
}
case GlobalLexicalVar:
case GlobalLexicalVarWithVarInjectionChecks:
case GlobalVar:
case GlobalVarWithVarInjectionChecks: {
if (getPutInfo.initializationMode() != Initialization && (resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)) {
SpeculatedType prediction = SpecEmpty;
Node* value = addToGraph(GetGlobalLexicalVariable, OpInfo(operand), OpInfo(prediction));
addToGraph(CheckNotEmpty, value);
}
JSSegmentedVariableObject* scopeObject = jsCast<JSSegmentedVariableObject*>(JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock));
if (watchpoints) {
SymbolTableEntry entry = scopeObject->symbolTable()->get(uid);
ASSERT_UNUSED(entry, watchpoints == entry.watchpointSet());
}
Node* valueNode = get(VirtualRegister(value));
addToGraph(PutGlobalVariable, OpInfo(operand), weakJSConstant(scopeObject), valueNode);
if (watchpoints && watchpoints->state() != IsInvalidated) {
// Must happen after the store. See comment for GetGlobalVar.
addToGraph(NotifyWrite, OpInfo(watchpoints));
}
// Keep scope alive until after put.
addToGraph(Phantom, get(VirtualRegister(scope)));
break;
}
case LocalClosureVar:
case ClosureVar:
case ClosureVarWithVarInjectionChecks: {
Node* scopeNode = get(VirtualRegister(scope));
Node* valueNode = get(VirtualRegister(value));
addToGraph(PutClosureVar, OpInfo(operand), scopeNode, valueNode);
if (watchpoints && watchpoints->state() != IsInvalidated) {
// Must happen after the store. See comment for GetGlobalVar.
addToGraph(NotifyWrite, OpInfo(watchpoints));
}
break;
}
case UnresolvedProperty:
case UnresolvedPropertyWithVarInjectionChecks: {
addToGraph(ForceOSRExit);
Node* scopeNode = get(VirtualRegister(scope));
addToGraph(Phantom, scopeNode);
break;
}
case ModuleVar:
// Need not to keep "scope" and "value" register values here by Phantom because
// they are not used in LLInt / baseline op_put_to_scope with ModuleVar.
addToGraph(ForceOSRExit);
break;
case Dynamic:
RELEASE_ASSERT_NOT_REACHED();
break;
}
NEXT_OPCODE(op_put_to_scope);
}
case op_loop_hint: {
// Baseline->DFG OSR jumps between loop hints. The DFG assumes that Baseline->DFG
// OSR can only happen at basic block boundaries. Assert that these two statements
// are compatible.
RELEASE_ASSERT(m_currentIndex == blockBegin);
// We never do OSR into an inlined code block. That could not happen, since OSR
// looks up the code block that is the replacement for the baseline JIT code
// block. Hence, machine code block = true code block = not inline code block.
if (!m_inlineStackTop->m_caller)
m_currentBlock->isOSRTarget = true;
addToGraph(LoopHint);
if (m_vm->watchdog)
addToGraph(CheckWatchdogTimer);
NEXT_OPCODE(op_loop_hint);
}
case op_create_lexical_environment: {
VirtualRegister symbolTableRegister(currentInstruction[3].u.operand);
VirtualRegister initialValueRegister(currentInstruction[4].u.operand);
ASSERT(symbolTableRegister.isConstant() && initialValueRegister.isConstant());
FrozenValue* symbolTable = m_graph.freezeStrong(m_inlineStackTop->m_codeBlock->getConstant(symbolTableRegister.offset()));
FrozenValue* initialValue = m_graph.freezeStrong(m_inlineStackTop->m_codeBlock->getConstant(initialValueRegister.offset()));
Node* scope = get(VirtualRegister(currentInstruction[2].u.operand));
Node* lexicalEnvironment = addToGraph(CreateActivation, OpInfo(symbolTable), OpInfo(initialValue), scope);
set(VirtualRegister(currentInstruction[1].u.operand), lexicalEnvironment);
NEXT_OPCODE(op_create_lexical_environment);
}
case op_get_parent_scope: {
Node* currentScope = get(VirtualRegister(currentInstruction[2].u.operand));
Node* newScope = addToGraph(SkipScope, currentScope);
set(VirtualRegister(currentInstruction[1].u.operand), newScope);
addToGraph(Phantom, currentScope);
NEXT_OPCODE(op_get_parent_scope);
}
case op_get_scope: {
// Help the later stages a bit by doing some small constant folding here. Note that this
// only helps for the first basic block. It's extremely important not to constant fold
// loads from the scope register later, as that would prevent the DFG from tracking the
// bytecode-level liveness of the scope register.
Node* callee = get(VirtualRegister(JSStack::Callee));
Node* result;
if (JSFunction* function = callee->dynamicCastConstant<JSFunction*>())
result = weakJSConstant(function->scope());
else
result = addToGraph(GetScope, callee);
set(VirtualRegister(currentInstruction[1].u.operand), result);
NEXT_OPCODE(op_get_scope);
}
case op_load_arrowfunction_this: {
Node* callee = get(VirtualRegister(JSStack::Callee));
Node* result;
if (JSArrowFunction* function = callee->dynamicCastConstant<JSArrowFunction*>())
result = jsConstant(function->boundThis());
else
result = addToGraph(LoadArrowFunctionThis, callee);
set(VirtualRegister(currentInstruction[1].u.operand), result);
NEXT_OPCODE(op_load_arrowfunction_this);
}
case op_create_direct_arguments: {
noticeArgumentsUse();
Node* createArguments = addToGraph(CreateDirectArguments);
set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
NEXT_OPCODE(op_create_direct_arguments);
}
case op_create_scoped_arguments: {
noticeArgumentsUse();
Node* createArguments = addToGraph(CreateScopedArguments, get(VirtualRegister(currentInstruction[2].u.operand)));
set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
NEXT_OPCODE(op_create_scoped_arguments);
}
case op_create_out_of_band_arguments: {
noticeArgumentsUse();
Node* createArguments = addToGraph(CreateClonedArguments);
set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
NEXT_OPCODE(op_create_out_of_band_arguments);
}
case op_get_from_arguments: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(
GetFromArguments,
OpInfo(currentInstruction[3].u.operand),
OpInfo(getPrediction()),
get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_get_from_arguments);
}
case op_put_to_arguments: {
addToGraph(
PutToArguments,
OpInfo(currentInstruction[2].u.operand),
get(VirtualRegister(currentInstruction[1].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand)));
NEXT_OPCODE(op_put_to_arguments);
}
case op_new_func: {
FunctionExecutable* decl = m_inlineStackTop->m_profiledBlock->functionDecl(currentInstruction[3].u.operand);
FrozenValue* frozen = m_graph.freezeStrong(decl);
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(NewFunction, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_new_func);
}
case op_new_func_exp: {
FunctionExecutable* expr = m_inlineStackTop->m_profiledBlock->functionExpr(currentInstruction[3].u.operand);
FrozenValue* frozen = m_graph.freezeStrong(expr);
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(NewFunction, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_new_func_exp);
}
case op_new_arrow_func_exp: {
FunctionExecutable* expr = m_inlineStackTop->m_profiledBlock->functionExpr(currentInstruction[3].u.operand);
FrozenValue* frozen = m_graph.freezeStrong(expr);
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(NewArrowFunction, OpInfo(frozen),
get(VirtualRegister(currentInstruction[2].u.operand)),
get(VirtualRegister(currentInstruction[4].u.operand))));
NEXT_OPCODE(op_new_arrow_func_exp);
}
case op_typeof: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(TypeOf, get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_typeof);
}
case op_to_number: {
Node* node = get(VirtualRegister(currentInstruction[2].u.operand));
addToGraph(Phantom, Edge(node, NumberUse));
set(VirtualRegister(currentInstruction[1].u.operand), node);
NEXT_OPCODE(op_to_number);
}
case op_to_string: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToString, value));
NEXT_OPCODE(op_to_string);
}
case op_in: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(In, get(VirtualRegister(currentInstruction[2].u.operand)), get(VirtualRegister(currentInstruction[3].u.operand))));
NEXT_OPCODE(op_in);
}
case op_get_enumerable_length: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumerableLength,
get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_get_enumerable_length);
}
case op_has_generic_property: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasGenericProperty,
get(VirtualRegister(currentInstruction[2].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand))));
NEXT_OPCODE(op_has_generic_property);
}
case op_has_structure_property: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasStructureProperty,
get(VirtualRegister(currentInstruction[2].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand)),
get(VirtualRegister(currentInstruction[4].u.operand))));
NEXT_OPCODE(op_has_structure_property);
}
case op_has_indexed_property: {
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read);
Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
Node* hasIterableProperty = addToGraph(HasIndexedProperty, OpInfo(arrayMode.asWord()), base, property);
set(VirtualRegister(currentInstruction[1].u.operand), hasIterableProperty);
NEXT_OPCODE(op_has_indexed_property);
}
case op_get_direct_pname: {
SpeculatedType prediction = getPredictionWithoutOSRExit();
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
Node* index = get(VirtualRegister(currentInstruction[4].u.operand));
Node* enumerator = get(VirtualRegister(currentInstruction[5].u.operand));
addVarArgChild(base);
addVarArgChild(property);
addVarArgChild(index);
addVarArgChild(enumerator);
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(Node::VarArg, GetDirectPname, OpInfo(0), OpInfo(prediction)));
NEXT_OPCODE(op_get_direct_pname);
}
case op_get_property_enumerator: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetPropertyEnumerator,
get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_get_property_enumerator);
}
case op_enumerator_structure_pname: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorStructurePname,
get(VirtualRegister(currentInstruction[2].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand))));
NEXT_OPCODE(op_enumerator_structure_pname);
}
case op_enumerator_generic_pname: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorGenericPname,
get(VirtualRegister(currentInstruction[2].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand))));
NEXT_OPCODE(op_enumerator_generic_pname);
}
case op_to_index_string: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToIndexString,
get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_to_index_string);
}
default:
// Parse failed! This should not happen because the capabilities checker
// should have caught it.
RELEASE_ASSERT_NOT_REACHED();
return false;
}
}
}
void ByteCodeParser::linkBlock(BasicBlock* block, Vector<BasicBlock*>& possibleTargets)
{
ASSERT(!block->isLinked);
ASSERT(!block->isEmpty());
Node* node = block->terminal();
ASSERT(node->isTerminal());
switch (node->op()) {
case Jump:
node->targetBlock() = blockForBytecodeOffset(possibleTargets, node->targetBytecodeOffsetDuringParsing());
break;
case Branch: {
BranchData* data = node->branchData();
data->taken.block = blockForBytecodeOffset(possibleTargets, data->takenBytecodeIndex());
data->notTaken.block = blockForBytecodeOffset(possibleTargets, data->notTakenBytecodeIndex());
break;
}
case Switch: {
SwitchData* data = node->switchData();
for (unsigned i = node->switchData()->cases.size(); i--;)
data->cases[i].target.block = blockForBytecodeOffset(possibleTargets, data->cases[i].target.bytecodeIndex());
data->fallThrough.block = blockForBytecodeOffset(possibleTargets, data->fallThrough.bytecodeIndex());
break;
}
default:
break;
}
if (verbose)
dataLog("Marking ", RawPointer(block), " as linked (actually did linking)\n");
block->didLink();
}
void ByteCodeParser::linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets)
{
for (size_t i = 0; i < unlinkedBlocks.size(); ++i) {
if (verbose)
dataLog("Attempting to link ", RawPointer(unlinkedBlocks[i].m_block), "\n");
if (unlinkedBlocks[i].m_needsNormalLinking) {
if (verbose)
dataLog(" Does need normal linking.\n");
linkBlock(unlinkedBlocks[i].m_block, possibleTargets);
unlinkedBlocks[i].m_needsNormalLinking = false;
}
}
}
ByteCodeParser::InlineStackEntry::InlineStackEntry(
ByteCodeParser* byteCodeParser,
CodeBlock* codeBlock,
CodeBlock* profiledBlock,
BasicBlock* callsiteBlockHead,
JSFunction* callee, // Null if this is a closure call.
VirtualRegister returnValueVR,
VirtualRegister inlineCallFrameStart,
int argumentCountIncludingThis,
InlineCallFrame::Kind kind)
: m_byteCodeParser(byteCodeParser)
, m_codeBlock(codeBlock)
, m_profiledBlock(profiledBlock)
, m_callsiteBlockHead(callsiteBlockHead)
, m_returnValue(returnValueVR)
, m_didReturn(false)
, m_didEarlyReturn(false)
, m_caller(byteCodeParser->m_inlineStackTop)
{
{
ConcurrentJITLocker locker(m_profiledBlock->m_lock);
m_lazyOperands.initialize(locker, m_profiledBlock->lazyOperandValueProfiles());
m_exitProfile.initialize(locker, profiledBlock->exitProfile());
// We do this while holding the lock because we want to encourage StructureStubInfo's
// to be potentially added to operations and because the profiled block could be in the
// middle of LLInt->JIT tier-up in which case we would be adding the info's right now.
if (m_profiledBlock->hasBaselineJITProfiling()) {
m_profiledBlock->getStubInfoMap(locker, m_stubInfos);
m_profiledBlock->getCallLinkInfoMap(locker, m_callLinkInfos);
m_profiledBlock->getByValInfoMap(locker, m_byValInfos);
}
}
m_argumentPositions.resize(argumentCountIncludingThis);
for (int i = 0; i < argumentCountIncludingThis; ++i) {
byteCodeParser->m_graph.m_argumentPositions.append(ArgumentPosition());
ArgumentPosition* argumentPosition = &byteCodeParser->m_graph.m_argumentPositions.last();
m_argumentPositions[i] = argumentPosition;
}
if (m_caller) {
// Inline case.
ASSERT(codeBlock != byteCodeParser->m_codeBlock);
ASSERT(inlineCallFrameStart.isValid());
ASSERT(callsiteBlockHead);
m_inlineCallFrame = byteCodeParser->m_graph.m_plan.inlineCallFrames->add();
byteCodeParser->m_graph.freeze(codeBlock->ownerExecutable());
// The owner is the machine code block, and we already have a barrier on that when the
// plan finishes.
m_inlineCallFrame->executable.setWithoutWriteBarrier(codeBlock->ownerScriptExecutable());
m_inlineCallFrame->setStackOffset(inlineCallFrameStart.offset() - JSStack::CallFrameHeaderSize);
if (callee) {
m_inlineCallFrame->calleeRecovery = ValueRecovery::constant(callee);
m_inlineCallFrame->isClosureCall = false;
} else
m_inlineCallFrame->isClosureCall = true;
m_inlineCallFrame->caller = byteCodeParser->currentCodeOrigin();
m_inlineCallFrame->arguments.resizeToFit(argumentCountIncludingThis); // Set the number of arguments including this, but don't configure the value recoveries, yet.
m_inlineCallFrame->kind = kind;
m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers());
m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables());
for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i) {
UniquedStringImpl* rep = codeBlock->identifier(i).impl();
unsigned index = byteCodeParser->m_graph.identifiers().ensure(rep);
m_identifierRemap[i] = index;
}
for (unsigned i = 0; i < codeBlock->numberOfConstantBuffers(); ++i) {
// If we inline the same code block multiple times, we don't want to needlessly
// duplicate its constant buffers.
HashMap<ConstantBufferKey, unsigned>::iterator iter =
byteCodeParser->m_constantBufferCache.find(ConstantBufferKey(codeBlock, i));
if (iter != byteCodeParser->m_constantBufferCache.end()) {
m_constantBufferRemap[i] = iter->value;
continue;
}
Vector<JSValue>& buffer = codeBlock->constantBufferAsVector(i);
unsigned newIndex = byteCodeParser->m_codeBlock->addConstantBuffer(buffer);
m_constantBufferRemap[i] = newIndex;
byteCodeParser->m_constantBufferCache.add(ConstantBufferKey(codeBlock, i), newIndex);
}
for (unsigned i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i) {
m_switchRemap[i] = byteCodeParser->m_codeBlock->numberOfSwitchJumpTables();
byteCodeParser->m_codeBlock->addSwitchJumpTable() = codeBlock->switchJumpTable(i);
}
m_callsiteBlockHeadNeedsLinking = true;
} else {
// Machine code block case.
ASSERT(codeBlock == byteCodeParser->m_codeBlock);
ASSERT(!callee);
ASSERT(!returnValueVR.isValid());
ASSERT(!inlineCallFrameStart.isValid());
ASSERT(!callsiteBlockHead);
m_inlineCallFrame = 0;
m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers());
m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables());
for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i)
m_identifierRemap[i] = i;
for (size_t i = 0; i < codeBlock->numberOfConstantBuffers(); ++i)
m_constantBufferRemap[i] = i;
for (size_t i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i)
m_switchRemap[i] = i;
m_callsiteBlockHeadNeedsLinking = false;
}
byteCodeParser->m_inlineStackTop = this;
}
void ByteCodeParser::parseCodeBlock()
{
clearCaches();
CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock;
if (m_graph.compilation()) {
m_graph.compilation()->addProfiledBytecodes(
*m_vm->m_perBytecodeProfiler, m_inlineStackTop->m_profiledBlock);
}
if (UNLIKELY(Options::dumpSourceAtDFGTime())) {
Vector<DeferredSourceDump>& deferredSourceDump = m_graph.m_plan.callback->ensureDeferredSourceDump();
if (inlineCallFrame()) {
DeferredSourceDump dump(codeBlock->baselineVersion(), m_codeBlock, JITCode::DFGJIT, inlineCallFrame()->caller);
deferredSourceDump.append(dump);
} else
deferredSourceDump.append(DeferredSourceDump(codeBlock->baselineVersion()));
}
if (Options::dumpBytecodeAtDFGTime()) {
dataLog("Parsing ", *codeBlock);
if (inlineCallFrame()) {
dataLog(
" for inlining at ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT),
" ", inlineCallFrame()->caller);
}
dataLog(
": needsActivation = ", codeBlock->needsActivation(),
", isStrictMode = ", codeBlock->ownerScriptExecutable()->isStrictMode(), "\n");
codeBlock->baselineVersion()->dumpBytecode();
}
Vector<unsigned, 32> jumpTargets;
computePreciseJumpTargets(codeBlock, jumpTargets);
if (Options::dumpBytecodeAtDFGTime()) {
dataLog("Jump targets: ");
CommaPrinter comma;
for (unsigned i = 0; i < jumpTargets.size(); ++i)
dataLog(comma, jumpTargets[i]);
dataLog("\n");
}
for (unsigned jumpTargetIndex = 0; jumpTargetIndex <= jumpTargets.size(); ++jumpTargetIndex) {
// The maximum bytecode offset to go into the current basicblock is either the next jump target, or the end of the instructions.
unsigned limit = jumpTargetIndex < jumpTargets.size() ? jumpTargets[jumpTargetIndex] : codeBlock->instructions().size();
ASSERT(m_currentIndex < limit);
// Loop until we reach the current limit (i.e. next jump target).
do {
if (!m_currentBlock) {
// Check if we can use the last block.
if (m_graph.numBlocks() && m_graph.lastBlock()->isEmpty()) {
// This must be a block belonging to us.
ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_block == m_graph.lastBlock());
// Either the block is linkable or it isn't. If it's linkable then it's the last
// block in the blockLinkingTargets list. If it's not then the last block will
// have a lower bytecode index that the one we're about to give to this block.
if (m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_blockLinkingTargets.last()->bytecodeBegin != m_currentIndex) {
// Make the block linkable.
ASSERT(m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_blockLinkingTargets.last()->bytecodeBegin < m_currentIndex);
m_inlineStackTop->m_blockLinkingTargets.append(m_graph.lastBlock());
}
// Change its bytecode begin and continue.
m_currentBlock = m_graph.lastBlock();
m_currentBlock->bytecodeBegin = m_currentIndex;
} else {
RefPtr<BasicBlock> block = adoptRef(new BasicBlock(m_currentIndex, m_numArguments, m_numLocals, PNaN));
m_currentBlock = block.get();
// This assertion checks two things:
// 1) If the bytecodeBegin is greater than currentIndex, then something has gone
// horribly wrong. So, we're probably generating incorrect code.
// 2) If the bytecodeBegin is equal to the currentIndex, then we failed to do
// a peephole coalescing of this block in the if statement above. So, we're
// generating suboptimal code and leaving more work for the CFG simplifier.
if (!m_inlineStackTop->m_unlinkedBlocks.isEmpty()) {
unsigned lastBegin =
m_inlineStackTop->m_unlinkedBlocks.last().m_block->bytecodeBegin;
ASSERT_UNUSED(
lastBegin, lastBegin == UINT_MAX || lastBegin < m_currentIndex);
}
m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(block.get()));
m_inlineStackTop->m_blockLinkingTargets.append(block.get());
// The first block is definitely an OSR target.
if (!m_graph.numBlocks())
block->isOSRTarget = true;
m_graph.appendBlock(block);
prepareToParseBlock();
}
}
bool shouldContinueParsing = parseBlock(limit);
// We should not have gone beyond the limit.
ASSERT(m_currentIndex <= limit);
// We should have planted a terminal, or we just gave up because
// we realized that the jump target information is imprecise, or we
// are at the end of an inline function, or we realized that we
// should stop parsing because there was a return in the first
// basic block.
ASSERT(m_currentBlock->isEmpty() || m_currentBlock->terminal() || (m_currentIndex == codeBlock->instructions().size() && inlineCallFrame()) || !shouldContinueParsing);
if (!shouldContinueParsing) {
if (Options::verboseDFGByteCodeParsing())
dataLog("Done parsing ", *codeBlock, "\n");
return;
}
m_currentBlock = 0;
} while (m_currentIndex < limit);
}
// Should have reached the end of the instructions.
ASSERT(m_currentIndex == codeBlock->instructions().size());
if (Options::verboseDFGByteCodeParsing())
dataLog("Done parsing ", *codeBlock, " (fell off end)\n");
}
bool ByteCodeParser::parse()
{
// Set during construction.
ASSERT(!m_currentIndex);
if (Options::verboseDFGByteCodeParsing())
dataLog("Parsing ", *m_codeBlock, "\n");
m_dfgCodeBlock = m_graph.m_plan.profiledDFGCodeBlock.get();
if (isFTL(m_graph.m_plan.mode) && m_dfgCodeBlock
&& Options::enablePolyvariantDevirtualization()) {
if (Options::enablePolyvariantCallInlining())
CallLinkStatus::computeDFGStatuses(m_dfgCodeBlock, m_callContextMap);
if (Options::enablePolyvariantByIdInlining())
m_dfgCodeBlock->getStubInfoMap(m_dfgStubInfos);
}
InlineStackEntry inlineStackEntry(
this, m_codeBlock, m_profiledBlock, 0, 0, VirtualRegister(), VirtualRegister(),
m_codeBlock->numParameters(), InlineCallFrame::Call);
parseCodeBlock();
linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets);
m_graph.determineReachability();
m_graph.killUnreachableBlocks();
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
ASSERT(block->variablesAtHead.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals());
ASSERT(block->variablesAtHead.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments());
ASSERT(block->variablesAtTail.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals());
ASSERT(block->variablesAtTail.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments());
}
m_graph.m_localVars = m_numLocals;
m_graph.m_parameterSlots = m_parameterSlots;
return true;
}
bool parse(Graph& graph)
{
SamplingRegion samplingRegion("DFG Parsing");
return ByteCodeParser(graph).parse();
}
} } // namespace JSC::DFG
#endif