| /* |
| * Copyright (C) 2011-2015 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "DFGByteCodeParser.h" |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "ArrayConstructor.h" |
| #include "BasicBlockLocation.h" |
| #include "CallLinkStatus.h" |
| #include "CodeBlock.h" |
| #include "CodeBlockWithJITType.h" |
| #include "DFGArrayMode.h" |
| #include "DFGCapabilities.h" |
| #include "DFGClobbersExitState.h" |
| #include "DFGGraph.h" |
| #include "DFGJITCode.h" |
| #include "GetByIdStatus.h" |
| #include "Heap.h" |
| #include "JSLexicalEnvironment.h" |
| #include "JSCInlines.h" |
| #include "JSModuleEnvironment.h" |
| #include "PreciseJumpTargets.h" |
| #include "PutByIdFlags.h" |
| #include "PutByIdStatus.h" |
| #include "StackAlignment.h" |
| #include "StringConstructor.h" |
| #include "Watchdog.h" |
| #include <wtf/CommaPrinter.h> |
| #include <wtf/HashMap.h> |
| #include <wtf/MathExtras.h> |
| #include <wtf/StdLibExtras.h> |
| |
| namespace JSC { namespace DFG { |
| |
| static const bool verbose = false; |
| |
| class ConstantBufferKey { |
| public: |
| ConstantBufferKey() |
| : m_codeBlock(0) |
| , m_index(0) |
| { |
| } |
| |
| ConstantBufferKey(WTF::HashTableDeletedValueType) |
| : m_codeBlock(0) |
| , m_index(1) |
| { |
| } |
| |
| ConstantBufferKey(CodeBlock* codeBlock, unsigned index) |
| : m_codeBlock(codeBlock) |
| , m_index(index) |
| { |
| } |
| |
| bool operator==(const ConstantBufferKey& other) const |
| { |
| return m_codeBlock == other.m_codeBlock |
| && m_index == other.m_index; |
| } |
| |
| unsigned hash() const |
| { |
| return WTF::PtrHash<CodeBlock*>::hash(m_codeBlock) ^ m_index; |
| } |
| |
| bool isHashTableDeletedValue() const |
| { |
| return !m_codeBlock && m_index; |
| } |
| |
| CodeBlock* codeBlock() const { return m_codeBlock; } |
| unsigned index() const { return m_index; } |
| |
| private: |
| CodeBlock* m_codeBlock; |
| unsigned m_index; |
| }; |
| |
| struct ConstantBufferKeyHash { |
| static unsigned hash(const ConstantBufferKey& key) { return key.hash(); } |
| static bool equal(const ConstantBufferKey& a, const ConstantBufferKey& b) |
| { |
| return a == b; |
| } |
| |
| static const bool safeToCompareToEmptyOrDeleted = true; |
| }; |
| |
| } } // namespace JSC::DFG |
| |
| namespace WTF { |
| |
| template<typename T> struct DefaultHash; |
| template<> struct DefaultHash<JSC::DFG::ConstantBufferKey> { |
| typedef JSC::DFG::ConstantBufferKeyHash Hash; |
| }; |
| |
| template<typename T> struct HashTraits; |
| template<> struct HashTraits<JSC::DFG::ConstantBufferKey> : SimpleClassHashTraits<JSC::DFG::ConstantBufferKey> { }; |
| |
| } // namespace WTF |
| |
| namespace JSC { namespace DFG { |
| |
| // === ByteCodeParser === |
| // |
| // This class is used to compile the dataflow graph from a CodeBlock. |
| class ByteCodeParser { |
| public: |
| ByteCodeParser(Graph& graph) |
| : m_vm(&graph.m_vm) |
| , m_codeBlock(graph.m_codeBlock) |
| , m_profiledBlock(graph.m_profiledBlock) |
| , m_graph(graph) |
| , m_currentBlock(0) |
| , m_currentIndex(0) |
| , m_constantUndefined(graph.freeze(jsUndefined())) |
| , m_constantNull(graph.freeze(jsNull())) |
| , m_constantNaN(graph.freeze(jsNumber(PNaN))) |
| , m_constantOne(graph.freeze(jsNumber(1))) |
| , m_numArguments(m_codeBlock->numParameters()) |
| , m_numLocals(m_codeBlock->m_numCalleeRegisters) |
| , m_parameterSlots(0) |
| , m_numPassedVarArgs(0) |
| , m_inlineStackTop(0) |
| , m_currentInstruction(0) |
| , m_hasDebuggerEnabled(graph.hasDebuggerEnabled()) |
| { |
| ASSERT(m_profiledBlock); |
| } |
| |
| // Parse a full CodeBlock of bytecode. |
| bool parse(); |
| |
| private: |
| struct InlineStackEntry; |
| |
| // Just parse from m_currentIndex to the end of the current CodeBlock. |
| void parseCodeBlock(); |
| |
| void ensureLocals(unsigned newNumLocals) |
| { |
| if (newNumLocals <= m_numLocals) |
| return; |
| m_numLocals = newNumLocals; |
| for (size_t i = 0; i < m_graph.numBlocks(); ++i) |
| m_graph.block(i)->ensureLocals(newNumLocals); |
| } |
| |
| // Helper for min and max. |
| template<typename ChecksFunctor> |
| bool handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks); |
| |
| // Handle calls. This resolves issues surrounding inlining and intrinsics. |
| void handleCall( |
| int result, NodeType op, InlineCallFrame::Kind, unsigned instructionSize, |
| Node* callTarget, int argCount, int registerOffset, CallLinkStatus, |
| SpeculatedType prediction); |
| void handleCall( |
| int result, NodeType op, InlineCallFrame::Kind, unsigned instructionSize, |
| Node* callTarget, int argCount, int registerOffset, CallLinkStatus); |
| void handleCall(int result, NodeType op, CodeSpecializationKind, unsigned instructionSize, int callee, int argCount, int registerOffset); |
| void handleCall(Instruction* pc, NodeType op, CodeSpecializationKind); |
| void handleVarargsCall(Instruction* pc, NodeType op, CodeSpecializationKind); |
| void emitFunctionChecks(CallVariant, Node* callTarget, VirtualRegister thisArgumnt); |
| void emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis); |
| unsigned inliningCost(CallVariant, int argumentCountIncludingThis, CodeSpecializationKind); // Return UINT_MAX if it's not an inlining candidate. By convention, intrinsics have a cost of 1. |
| // Handle inlining. Return true if it succeeded, false if we need to plant a call. |
| bool handleInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, VirtualRegister thisArgument, VirtualRegister argumentsArgument, unsigned argumentsOffset, int argumentCountIncludingThis, unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind, SpeculatedType prediction); |
| enum CallerLinkability { CallerDoesNormalLinking, CallerLinksManually }; |
| template<typename ChecksFunctor> |
| bool attemptToInlineCall(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind, CallerLinkability, SpeculatedType prediction, unsigned& inliningBalance, const ChecksFunctor& insertChecks); |
| template<typename ChecksFunctor> |
| void inlineCall(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind, CallerLinkability, const ChecksFunctor& insertChecks); |
| void cancelLinkingForBlock(InlineStackEntry*, BasicBlock*); // Only works when the given block is the last one to have been added for that inline stack entry. |
| // Handle intrinsic functions. Return true if it succeeded, false if we need to plant a call. |
| template<typename ChecksFunctor> |
| bool handleIntrinsic(int resultOperand, Intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks); |
| template<typename ChecksFunctor> |
| bool handleTypedArrayConstructor(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, TypedArrayType, const ChecksFunctor& insertChecks); |
| template<typename ChecksFunctor> |
| bool handleConstantInternalFunction(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind, const ChecksFunctor& insertChecks); |
| Node* handlePutByOffset(Node* base, unsigned identifier, PropertyOffset, Node* value); |
| Node* handleGetByOffset(SpeculatedType, Node* base, unsigned identifierNumber, PropertyOffset, NodeType = GetByOffset); |
| Node* handleGetByOffset(SpeculatedType, Node* base, UniquedStringImpl*, PropertyOffset, NodeType = GetByOffset); |
| |
| // Create a presence ObjectPropertyCondition based on some known offset and structure set. Does not |
| // check the validity of the condition, but it may return a null one if it encounters a contradiction. |
| ObjectPropertyCondition presenceLike( |
| JSObject* knownBase, UniquedStringImpl*, PropertyOffset, const StructureSet&); |
| |
| // Attempt to watch the presence of a property. It will watch that the property is present in the same |
| // way as in all of the structures in the set. It may emit code instead of just setting a watchpoint. |
| // Returns true if this all works out. |
| bool checkPresenceLike(JSObject* knownBase, UniquedStringImpl*, PropertyOffset, const StructureSet&); |
| void checkPresenceLike(Node* base, UniquedStringImpl*, PropertyOffset, const StructureSet&); |
| |
| // Works with both GetByIdVariant and the setter form of PutByIdVariant. |
| template<typename VariantType> |
| Node* load(SpeculatedType, Node* base, unsigned identifierNumber, const VariantType&); |
| |
| Node* store(Node* base, unsigned identifier, const PutByIdVariant&, Node* value); |
| |
| void handleGetById( |
| int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber, |
| const GetByIdStatus&); |
| void emitPutById( |
| Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus&, bool isDirect); |
| void handlePutById( |
| Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus&, |
| bool isDirect); |
| |
| // Either register a watchpoint or emit a check for this condition. Returns false if the |
| // condition no longer holds, and therefore no reasonable check can be emitted. |
| bool check(const ObjectPropertyCondition&); |
| |
| GetByOffsetMethod promoteToConstant(GetByOffsetMethod); |
| |
| // Either register a watchpoint or emit a check for this condition. It must be a Presence |
| // condition. It will attempt to promote a Presence condition to an Equivalence condition. |
| // Emits code for the loaded value that the condition guards, and returns a node containing |
| // the loaded value. Returns null if the condition no longer holds. |
| GetByOffsetMethod planLoad(const ObjectPropertyCondition&); |
| Node* load(SpeculatedType, unsigned identifierNumber, const GetByOffsetMethod&, NodeType = GetByOffset); |
| Node* load(SpeculatedType, const ObjectPropertyCondition&, NodeType = GetByOffset); |
| |
| // Calls check() for each condition in the set: that is, it either emits checks or registers |
| // watchpoints (or a combination of the two) to make the conditions hold. If any of those |
| // conditions are no longer checkable, returns false. |
| bool check(const ObjectPropertyConditionSet&); |
| |
| // Calls check() for those conditions that aren't the slot base, and calls load() for the slot |
| // base. Does a combination of watchpoint registration and check emission to guard the |
| // conditions, and emits code to load the value from the slot base. Returns a node containing |
| // the loaded value. Returns null if any of the conditions were no longer checkable. |
| GetByOffsetMethod planLoad(const ObjectPropertyConditionSet&); |
| Node* load(SpeculatedType, const ObjectPropertyConditionSet&, NodeType = GetByOffset); |
| |
| void prepareToParseBlock(); |
| void clearCaches(); |
| |
| // Parse a single basic block of bytecode instructions. |
| bool parseBlock(unsigned limit); |
| // Link block successors. |
| void linkBlock(BasicBlock*, Vector<BasicBlock*>& possibleTargets); |
| void linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets); |
| |
| VariableAccessData* newVariableAccessData(VirtualRegister operand) |
| { |
| ASSERT(!operand.isConstant()); |
| |
| m_graph.m_variableAccessData.append(VariableAccessData(operand)); |
| return &m_graph.m_variableAccessData.last(); |
| } |
| |
| // Get/Set the operands/result of a bytecode instruction. |
| Node* getDirect(VirtualRegister operand) |
| { |
| ASSERT(!operand.isConstant()); |
| |
| // Is this an argument? |
| if (operand.isArgument()) |
| return getArgument(operand); |
| |
| // Must be a local. |
| return getLocal(operand); |
| } |
| |
| Node* get(VirtualRegister operand) |
| { |
| if (operand.isConstant()) { |
| unsigned constantIndex = operand.toConstantIndex(); |
| unsigned oldSize = m_constants.size(); |
| if (constantIndex >= oldSize || !m_constants[constantIndex]) { |
| const CodeBlock& codeBlock = *m_inlineStackTop->m_codeBlock; |
| JSValue value = codeBlock.getConstant(operand.offset()); |
| SourceCodeRepresentation sourceCodeRepresentation = codeBlock.constantSourceCodeRepresentation(operand.offset()); |
| if (constantIndex >= oldSize) { |
| m_constants.grow(constantIndex + 1); |
| for (unsigned i = oldSize; i < m_constants.size(); ++i) |
| m_constants[i] = nullptr; |
| } |
| |
| Node* constantNode = nullptr; |
| if (sourceCodeRepresentation == SourceCodeRepresentation::Double) |
| constantNode = addToGraph(DoubleConstant, OpInfo(m_graph.freezeStrong(jsDoubleNumber(value.asNumber())))); |
| else |
| constantNode = addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(value))); |
| m_constants[constantIndex] = constantNode; |
| } |
| ASSERT(m_constants[constantIndex]); |
| return m_constants[constantIndex]; |
| } |
| |
| if (inlineCallFrame()) { |
| if (!inlineCallFrame()->isClosureCall) { |
| JSFunction* callee = inlineCallFrame()->calleeConstant(); |
| if (operand.offset() == JSStack::Callee) |
| return weakJSConstant(callee); |
| } |
| } else if (operand.offset() == JSStack::Callee) { |
| // We have to do some constant-folding here because this enables CreateThis folding. Note |
| // that we don't have such watchpoint-based folding for inlined uses of Callee, since in that |
| // case if the function is a singleton then we already know it. |
| if (FunctionExecutable* executable = jsDynamicCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())) { |
| InferredValue* singleton = executable->singletonFunction(); |
| if (JSValue value = singleton->inferredValue()) { |
| m_graph.watchpoints().addLazily(singleton); |
| JSFunction* function = jsCast<JSFunction*>(value); |
| return weakJSConstant(function); |
| } |
| } |
| return addToGraph(GetCallee); |
| } |
| |
| return getDirect(m_inlineStackTop->remapOperand(operand)); |
| } |
| |
| enum SetMode { |
| // A normal set which follows a two-phase commit that spans code origins. During |
| // the current code origin it issues a MovHint, and at the start of the next |
| // code origin there will be a SetLocal. If the local needs flushing, the second |
| // SetLocal will be preceded with a Flush. |
| NormalSet, |
| |
| // A set where the SetLocal happens immediately and there is still a Flush. This |
| // is relevant when assigning to a local in tricky situations for the delayed |
| // SetLocal logic but where we know that we have not performed any side effects |
| // within this code origin. This is a safe replacement for NormalSet anytime we |
| // know that we have not yet performed side effects in this code origin. |
| ImmediateSetWithFlush, |
| |
| // A set where the SetLocal happens immediately and we do not Flush it even if |
| // this is a local that is marked as needing it. This is relevant when |
| // initializing locals at the top of a function. |
| ImmediateNakedSet |
| }; |
| Node* setDirect(VirtualRegister operand, Node* value, SetMode setMode = NormalSet) |
| { |
| addToGraph(MovHint, OpInfo(operand.offset()), value); |
| |
| // We can't exit anymore because our OSR exit state has changed. |
| m_exitOK = false; |
| |
| DelayedSetLocal delayed(currentCodeOrigin(), operand, value); |
| |
| if (setMode == NormalSet) { |
| m_setLocalQueue.append(delayed); |
| return 0; |
| } |
| |
| return delayed.execute(this, setMode); |
| } |
| |
| void processSetLocalQueue() |
| { |
| for (unsigned i = 0; i < m_setLocalQueue.size(); ++i) |
| m_setLocalQueue[i].execute(this); |
| m_setLocalQueue.resize(0); |
| } |
| |
| Node* set(VirtualRegister operand, Node* value, SetMode setMode = NormalSet) |
| { |
| return setDirect(m_inlineStackTop->remapOperand(operand), value, setMode); |
| } |
| |
| Node* injectLazyOperandSpeculation(Node* node) |
| { |
| ASSERT(node->op() == GetLocal); |
| ASSERT(node->origin.semantic.bytecodeIndex == m_currentIndex); |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| LazyOperandValueProfileKey key(m_currentIndex, node->local()); |
| SpeculatedType prediction = m_inlineStackTop->m_lazyOperands.prediction(locker, key); |
| node->variableAccessData()->predict(prediction); |
| return node; |
| } |
| |
| // Used in implementing get/set, above, where the operand is a local variable. |
| Node* getLocal(VirtualRegister operand) |
| { |
| unsigned local = operand.toLocal(); |
| |
| Node* node = m_currentBlock->variablesAtTail.local(local); |
| |
| // This has two goals: 1) link together variable access datas, and 2) |
| // try to avoid creating redundant GetLocals. (1) is required for |
| // correctness - no other phase will ensure that block-local variable |
| // access data unification is done correctly. (2) is purely opportunistic |
| // and is meant as an compile-time optimization only. |
| |
| VariableAccessData* variable; |
| |
| if (node) { |
| variable = node->variableAccessData(); |
| |
| switch (node->op()) { |
| case GetLocal: |
| return node; |
| case SetLocal: |
| return node->child1().node(); |
| default: |
| break; |
| } |
| } else |
| variable = newVariableAccessData(operand); |
| |
| node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable))); |
| m_currentBlock->variablesAtTail.local(local) = node; |
| return node; |
| } |
| |
| Node* setLocal(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet) |
| { |
| CodeOrigin oldSemanticOrigin = m_currentSemanticOrigin; |
| m_currentSemanticOrigin = semanticOrigin; |
| |
| unsigned local = operand.toLocal(); |
| |
| if (setMode != ImmediateNakedSet) { |
| ArgumentPosition* argumentPosition = findArgumentPositionForLocal(operand); |
| if (argumentPosition) |
| flushDirect(operand, argumentPosition); |
| else if (m_hasDebuggerEnabled && operand == m_codeBlock->scopeRegister()) |
| flush(operand); |
| } |
| |
| VariableAccessData* variableAccessData = newVariableAccessData(operand); |
| variableAccessData->mergeStructureCheckHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache)); |
| variableAccessData->mergeCheckArrayHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType)); |
| Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value); |
| m_currentBlock->variablesAtTail.local(local) = node; |
| |
| m_currentSemanticOrigin = oldSemanticOrigin; |
| return node; |
| } |
| |
| // Used in implementing get/set, above, where the operand is an argument. |
| Node* getArgument(VirtualRegister operand) |
| { |
| unsigned argument = operand.toArgument(); |
| ASSERT(argument < m_numArguments); |
| |
| Node* node = m_currentBlock->variablesAtTail.argument(argument); |
| |
| VariableAccessData* variable; |
| |
| if (node) { |
| variable = node->variableAccessData(); |
| |
| switch (node->op()) { |
| case GetLocal: |
| return node; |
| case SetLocal: |
| return node->child1().node(); |
| default: |
| break; |
| } |
| } else |
| variable = newVariableAccessData(operand); |
| |
| node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable))); |
| m_currentBlock->variablesAtTail.argument(argument) = node; |
| return node; |
| } |
| Node* setArgument(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet) |
| { |
| CodeOrigin oldSemanticOrigin = m_currentSemanticOrigin; |
| m_currentSemanticOrigin = semanticOrigin; |
| |
| unsigned argument = operand.toArgument(); |
| ASSERT(argument < m_numArguments); |
| |
| VariableAccessData* variableAccessData = newVariableAccessData(operand); |
| |
| // Always flush arguments, except for 'this'. If 'this' is created by us, |
| // then make sure that it's never unboxed. |
| if (argument) { |
| if (setMode != ImmediateNakedSet) |
| flushDirect(operand); |
| } else if (m_codeBlock->specializationKind() == CodeForConstruct) |
| variableAccessData->mergeShouldNeverUnbox(true); |
| |
| variableAccessData->mergeStructureCheckHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache)); |
| variableAccessData->mergeCheckArrayHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType)); |
| Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value); |
| m_currentBlock->variablesAtTail.argument(argument) = node; |
| |
| m_currentSemanticOrigin = oldSemanticOrigin; |
| return node; |
| } |
| |
| ArgumentPosition* findArgumentPositionForArgument(int argument) |
| { |
| InlineStackEntry* stack = m_inlineStackTop; |
| while (stack->m_inlineCallFrame) |
| stack = stack->m_caller; |
| return stack->m_argumentPositions[argument]; |
| } |
| |
| ArgumentPosition* findArgumentPositionForLocal(VirtualRegister operand) |
| { |
| for (InlineStackEntry* stack = m_inlineStackTop; ; stack = stack->m_caller) { |
| InlineCallFrame* inlineCallFrame = stack->m_inlineCallFrame; |
| if (!inlineCallFrame) |
| break; |
| if (operand.offset() < static_cast<int>(inlineCallFrame->stackOffset + JSStack::CallFrameHeaderSize)) |
| continue; |
| if (operand.offset() == inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset()) |
| continue; |
| if (operand.offset() >= static_cast<int>(inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset() + inlineCallFrame->arguments.size())) |
| continue; |
| int argument = VirtualRegister(operand.offset() - inlineCallFrame->stackOffset).toArgument(); |
| return stack->m_argumentPositions[argument]; |
| } |
| return 0; |
| } |
| |
| ArgumentPosition* findArgumentPosition(VirtualRegister operand) |
| { |
| if (operand.isArgument()) |
| return findArgumentPositionForArgument(operand.toArgument()); |
| return findArgumentPositionForLocal(operand); |
| } |
| |
| void flush(VirtualRegister operand) |
| { |
| flushDirect(m_inlineStackTop->remapOperand(operand)); |
| } |
| |
| void flushDirect(VirtualRegister operand) |
| { |
| flushDirect(operand, findArgumentPosition(operand)); |
| } |
| |
| void flushDirect(VirtualRegister operand, ArgumentPosition* argumentPosition) |
| { |
| ASSERT(!operand.isConstant()); |
| |
| Node* node = m_currentBlock->variablesAtTail.operand(operand); |
| |
| VariableAccessData* variable; |
| |
| if (node) |
| variable = node->variableAccessData(); |
| else |
| variable = newVariableAccessData(operand); |
| |
| node = addToGraph(Flush, OpInfo(variable)); |
| m_currentBlock->variablesAtTail.operand(operand) = node; |
| if (argumentPosition) |
| argumentPosition->addVariable(variable); |
| } |
| |
| void flush(InlineStackEntry* inlineStackEntry) |
| { |
| int numArguments; |
| if (InlineCallFrame* inlineCallFrame = inlineStackEntry->m_inlineCallFrame) { |
| ASSERT(!m_hasDebuggerEnabled); |
| numArguments = inlineCallFrame->arguments.size(); |
| if (inlineCallFrame->isClosureCall) |
| flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::Callee))); |
| if (inlineCallFrame->isVarargs()) |
| flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::ArgumentCount))); |
| } else |
| numArguments = inlineStackEntry->m_codeBlock->numParameters(); |
| for (unsigned argument = numArguments; argument-- > 1;) |
| flushDirect(inlineStackEntry->remapOperand(virtualRegisterForArgument(argument))); |
| if (m_hasDebuggerEnabled) |
| flush(m_codeBlock->scopeRegister()); |
| } |
| |
| void flushForTerminal() |
| { |
| for (InlineStackEntry* inlineStackEntry = m_inlineStackTop; inlineStackEntry; inlineStackEntry = inlineStackEntry->m_caller) |
| flush(inlineStackEntry); |
| } |
| |
| void flushForReturn() |
| { |
| flush(m_inlineStackTop); |
| } |
| |
| void flushIfTerminal(SwitchData& data) |
| { |
| if (data.fallThrough.bytecodeIndex() > m_currentIndex) |
| return; |
| |
| for (unsigned i = data.cases.size(); i--;) { |
| if (data.cases[i].target.bytecodeIndex() > m_currentIndex) |
| return; |
| } |
| |
| flushForTerminal(); |
| } |
| |
| // Assumes that the constant should be strongly marked. |
| Node* jsConstant(JSValue constantValue) |
| { |
| return addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(constantValue))); |
| } |
| |
| Node* weakJSConstant(JSValue constantValue) |
| { |
| return addToGraph(JSConstant, OpInfo(m_graph.freeze(constantValue))); |
| } |
| |
| // Helper functions to get/set the this value. |
| Node* getThis() |
| { |
| return get(m_inlineStackTop->m_codeBlock->thisRegister()); |
| } |
| |
| void setThis(Node* value) |
| { |
| set(m_inlineStackTop->m_codeBlock->thisRegister(), value); |
| } |
| |
| InlineCallFrame* inlineCallFrame() |
| { |
| return m_inlineStackTop->m_inlineCallFrame; |
| } |
| |
| CodeOrigin currentCodeOrigin() |
| { |
| return CodeOrigin(m_currentIndex, inlineCallFrame()); |
| } |
| |
| NodeOrigin currentNodeOrigin() |
| { |
| CodeOrigin semantic; |
| CodeOrigin forExit; |
| |
| if (m_currentSemanticOrigin.isSet()) |
| semantic = m_currentSemanticOrigin; |
| else |
| semantic = currentCodeOrigin(); |
| |
| forExit = currentCodeOrigin(); |
| |
| return NodeOrigin(semantic, forExit, m_exitOK); |
| } |
| |
| BranchData* branchData(unsigned taken, unsigned notTaken) |
| { |
| // We assume that branches originating from bytecode always have a fall-through. We |
| // use this assumption to avoid checking for the creation of terminal blocks. |
| ASSERT((taken > m_currentIndex) || (notTaken > m_currentIndex)); |
| BranchData* data = m_graph.m_branchData.add(); |
| *data = BranchData::withBytecodeIndices(taken, notTaken); |
| return data; |
| } |
| |
| Node* addToGraph(Node* node) |
| { |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog(" appended ", node, " ", Graph::opName(node->op()), "\n"); |
| m_currentBlock->append(node); |
| if (clobbersExitState(m_graph, node)) |
| m_exitOK = false; |
| return node; |
| } |
| |
| Node* addToGraph(NodeType op, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, op, currentNodeOrigin(), Edge(child1), Edge(child2), |
| Edge(child3)); |
| return addToGraph(result); |
| } |
| Node* addToGraph(NodeType op, Edge child1, Edge child2 = Edge(), Edge child3 = Edge()) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, op, currentNodeOrigin(), child1, child2, child3); |
| return addToGraph(result); |
| } |
| Node* addToGraph(NodeType op, OpInfo info, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, op, currentNodeOrigin(), info, Edge(child1), Edge(child2), |
| Edge(child3)); |
| return addToGraph(result); |
| } |
| Node* addToGraph(NodeType op, OpInfo info1, OpInfo info2, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, op, currentNodeOrigin(), info1, info2, |
| Edge(child1), Edge(child2), Edge(child3)); |
| return addToGraph(result); |
| } |
| |
| Node* addToGraph(Node::VarArgTag, NodeType op, OpInfo info1, OpInfo info2) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, Node::VarArg, op, currentNodeOrigin(), info1, info2, |
| m_graph.m_varArgChildren.size() - m_numPassedVarArgs, m_numPassedVarArgs); |
| addToGraph(result); |
| |
| m_numPassedVarArgs = 0; |
| |
| return result; |
| } |
| |
| void addVarArgChild(Node* child) |
| { |
| m_graph.m_varArgChildren.append(Edge(child)); |
| m_numPassedVarArgs++; |
| } |
| |
| Node* addCallWithoutSettingResult( |
| NodeType op, OpInfo opInfo, Node* callee, int argCount, int registerOffset, |
| SpeculatedType prediction) |
| { |
| addVarArgChild(callee); |
| size_t parameterSlots = JSStack::CallFrameHeaderSize - JSStack::CallerFrameAndPCSize + argCount; |
| if (parameterSlots > m_parameterSlots) |
| m_parameterSlots = parameterSlots; |
| |
| for (int i = 0; i < argCount; ++i) |
| addVarArgChild(get(virtualRegisterForArgument(i, registerOffset))); |
| |
| return addToGraph(Node::VarArg, op, opInfo, OpInfo(prediction)); |
| } |
| |
| Node* addCall( |
| int result, NodeType op, OpInfo opInfo, Node* callee, int argCount, int registerOffset, |
| SpeculatedType prediction) |
| { |
| Node* call = addCallWithoutSettingResult( |
| op, opInfo, callee, argCount, registerOffset, prediction); |
| VirtualRegister resultReg(result); |
| if (resultReg.isValid()) |
| set(resultReg, call); |
| return call; |
| } |
| |
| Node* cellConstantWithStructureCheck(JSCell* object, Structure* structure) |
| { |
| // FIXME: This should route to emitPropertyCheck, not the other way around. But currently, |
| // this gets no profit from using emitPropertyCheck() since we'll non-adaptively watch the |
| // object's structure as soon as we make it a weakJSCosntant. |
| Node* objectNode = weakJSConstant(object); |
| addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(structure)), objectNode); |
| return objectNode; |
| } |
| |
| SpeculatedType getPredictionWithoutOSRExit(unsigned bytecodeIndex) |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| return m_inlineStackTop->m_profiledBlock->valueProfilePredictionForBytecodeOffset(locker, bytecodeIndex); |
| } |
| |
| SpeculatedType getPrediction(unsigned bytecodeIndex) |
| { |
| SpeculatedType prediction = getPredictionWithoutOSRExit(bytecodeIndex); |
| |
| if (prediction == SpecNone) { |
| // We have no information about what values this node generates. Give up |
| // on executing this code, since we're likely to do more damage than good. |
| addToGraph(ForceOSRExit); |
| } |
| |
| return prediction; |
| } |
| |
| SpeculatedType getPredictionWithoutOSRExit() |
| { |
| return getPredictionWithoutOSRExit(m_currentIndex); |
| } |
| |
| SpeculatedType getPrediction() |
| { |
| return getPrediction(m_currentIndex); |
| } |
| |
| ArrayMode getArrayMode(ArrayProfile* profile, Array::Action action) |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| profile->computeUpdatedPrediction(locker, m_inlineStackTop->m_profiledBlock); |
| bool makeSafe = profile->outOfBounds(locker); |
| return ArrayMode::fromObserved(locker, profile, action, makeSafe); |
| } |
| |
| ArrayMode getArrayMode(ArrayProfile* profile) |
| { |
| return getArrayMode(profile, Array::Read); |
| } |
| |
| Node* makeSafe(Node* node) |
| { |
| if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)) |
| node->mergeFlags(NodeMayOverflowInDFG); |
| if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero)) |
| node->mergeFlags(NodeMayNegZeroInDFG); |
| |
| if (!isX86() && node->op() == ArithMod) |
| return node; |
| |
| if (!m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex)) |
| return node; |
| |
| switch (node->op()) { |
| case UInt32ToNumber: |
| case ArithAdd: |
| case ArithSub: |
| case ValueAdd: |
| case ArithMod: // for ArithMod "MayOverflow" means we tried to divide by zero, or we saw double. |
| node->mergeFlags(NodeMayOverflowInBaseline); |
| break; |
| |
| case ArithNegate: |
| // Currently we can't tell the difference between a negation overflowing |
| // (i.e. -(1 << 31)) or generating negative zero (i.e. -0). If it took slow |
| // path then we assume that it did both of those things. |
| node->mergeFlags(NodeMayOverflowInBaseline); |
| node->mergeFlags(NodeMayNegZeroInBaseline); |
| break; |
| |
| case ArithMul: |
| // FIXME: We should detect cases where we only overflowed but never created |
| // negative zero. |
| // https://bugs.webkit.org/show_bug.cgi?id=132470 |
| if (m_inlineStackTop->m_profiledBlock->likelyToTakeDeepestSlowCase(m_currentIndex) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)) |
| node->mergeFlags(NodeMayOverflowInBaseline | NodeMayNegZeroInBaseline); |
| else if (m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero)) |
| node->mergeFlags(NodeMayNegZeroInBaseline); |
| break; |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| return node; |
| } |
| |
| Node* makeDivSafe(Node* node) |
| { |
| ASSERT(node->op() == ArithDiv); |
| |
| if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)) |
| node->mergeFlags(NodeMayOverflowInDFG); |
| if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero)) |
| node->mergeFlags(NodeMayNegZeroInDFG); |
| |
| // The main slow case counter for op_div in the old JIT counts only when |
| // the operands are not numbers. We don't care about that since we already |
| // have speculations in place that take care of that separately. We only |
| // care about when the outcome of the division is not an integer, which |
| // is what the special fast case counter tells us. |
| |
| if (!m_inlineStackTop->m_profiledBlock->couldTakeSpecialFastCase(m_currentIndex)) |
| return node; |
| |
| // FIXME: It might be possible to make this more granular. |
| node->mergeFlags(NodeMayOverflowInBaseline | NodeMayNegZeroInBaseline); |
| |
| return node; |
| } |
| |
| void noticeArgumentsUse() |
| { |
| // All of the arguments in this function need to be formatted as JSValues because we will |
| // load from them in a random-access fashion and we don't want to have to switch on |
| // format. |
| |
| for (ArgumentPosition* argument : m_inlineStackTop->m_argumentPositions) |
| argument->mergeShouldNeverUnbox(true); |
| } |
| |
| VM* m_vm; |
| CodeBlock* m_codeBlock; |
| CodeBlock* m_profiledBlock; |
| Graph& m_graph; |
| |
| // The current block being generated. |
| BasicBlock* m_currentBlock; |
| // The bytecode index of the current instruction being generated. |
| unsigned m_currentIndex; |
| // The semantic origin of the current node if different from the current Index. |
| CodeOrigin m_currentSemanticOrigin; |
| // True if it's OK to OSR exit right now. |
| bool m_exitOK { false }; |
| |
| FrozenValue* m_constantUndefined; |
| FrozenValue* m_constantNull; |
| FrozenValue* m_constantNaN; |
| FrozenValue* m_constantOne; |
| Vector<Node*, 16> m_constants; |
| |
| // The number of arguments passed to the function. |
| unsigned m_numArguments; |
| // The number of locals (vars + temporaries) used in the function. |
| unsigned m_numLocals; |
| // The number of slots (in units of sizeof(Register)) that we need to |
| // preallocate for arguments to outgoing calls from this frame. This |
| // number includes the CallFrame slots that we initialize for the callee |
| // (but not the callee-initialized CallerFrame and ReturnPC slots). |
| // This number is 0 if and only if this function is a leaf. |
| unsigned m_parameterSlots; |
| // The number of var args passed to the next var arg node. |
| unsigned m_numPassedVarArgs; |
| |
| HashMap<ConstantBufferKey, unsigned> m_constantBufferCache; |
| |
| struct InlineStackEntry { |
| ByteCodeParser* m_byteCodeParser; |
| |
| CodeBlock* m_codeBlock; |
| CodeBlock* m_profiledBlock; |
| InlineCallFrame* m_inlineCallFrame; |
| |
| ScriptExecutable* executable() { return m_codeBlock->ownerScriptExecutable(); } |
| |
| QueryableExitProfile m_exitProfile; |
| |
| // Remapping of identifier and constant numbers from the code block being |
| // inlined (inline callee) to the code block that we're inlining into |
| // (the machine code block, which is the transitive, though not necessarily |
| // direct, caller). |
| Vector<unsigned> m_identifierRemap; |
| Vector<unsigned> m_constantBufferRemap; |
| Vector<unsigned> m_switchRemap; |
| |
| // Blocks introduced by this code block, which need successor linking. |
| // May include up to one basic block that includes the continuation after |
| // the callsite in the caller. These must be appended in the order that they |
| // are created, but their bytecodeBegin values need not be in order as they |
| // are ignored. |
| Vector<UnlinkedBlock> m_unlinkedBlocks; |
| |
| // Potential block linking targets. Must be sorted by bytecodeBegin, and |
| // cannot have two blocks that have the same bytecodeBegin. |
| Vector<BasicBlock*> m_blockLinkingTargets; |
| |
| // If the callsite's basic block was split into two, then this will be |
| // the head of the callsite block. It needs its successors linked to the |
| // m_unlinkedBlocks, but not the other way around: there's no way for |
| // any blocks in m_unlinkedBlocks to jump back into this block. |
| BasicBlock* m_callsiteBlockHead; |
| |
| // Does the callsite block head need linking? This is typically true |
| // but will be false for the machine code block's inline stack entry |
| // (since that one is not inlined) and for cases where an inline callee |
| // did the linking for us. |
| bool m_callsiteBlockHeadNeedsLinking; |
| |
| VirtualRegister m_returnValue; |
| |
| // Speculations about variable types collected from the profiled code block, |
| // which are based on OSR exit profiles that past DFG compilatins of this |
| // code block had gathered. |
| LazyOperandValueProfileParser m_lazyOperands; |
| |
| CallLinkInfoMap m_callLinkInfos; |
| StubInfoMap m_stubInfos; |
| ByValInfoMap m_byValInfos; |
| |
| // Did we see any returns? We need to handle the (uncommon but necessary) |
| // case where a procedure that does not return was inlined. |
| bool m_didReturn; |
| |
| // Did we have any early returns? |
| bool m_didEarlyReturn; |
| |
| // Pointers to the argument position trackers for this slice of code. |
| Vector<ArgumentPosition*> m_argumentPositions; |
| |
| InlineStackEntry* m_caller; |
| |
| InlineStackEntry( |
| ByteCodeParser*, |
| CodeBlock*, |
| CodeBlock* profiledBlock, |
| BasicBlock* callsiteBlockHead, |
| JSFunction* callee, // Null if this is a closure call. |
| VirtualRegister returnValueVR, |
| VirtualRegister inlineCallFrameStart, |
| int argumentCountIncludingThis, |
| InlineCallFrame::Kind); |
| |
| ~InlineStackEntry() |
| { |
| m_byteCodeParser->m_inlineStackTop = m_caller; |
| } |
| |
| VirtualRegister remapOperand(VirtualRegister operand) const |
| { |
| if (!m_inlineCallFrame) |
| return operand; |
| |
| ASSERT(!operand.isConstant()); |
| |
| return VirtualRegister(operand.offset() + m_inlineCallFrame->stackOffset); |
| } |
| }; |
| |
| InlineStackEntry* m_inlineStackTop; |
| |
| struct DelayedSetLocal { |
| CodeOrigin m_origin; |
| VirtualRegister m_operand; |
| Node* m_value; |
| |
| DelayedSetLocal() { } |
| DelayedSetLocal(const CodeOrigin& origin, VirtualRegister operand, Node* value) |
| : m_origin(origin) |
| , m_operand(operand) |
| , m_value(value) |
| { |
| } |
| |
| Node* execute(ByteCodeParser* parser, SetMode setMode = NormalSet) |
| { |
| if (m_operand.isArgument()) |
| return parser->setArgument(m_origin, m_operand, m_value, setMode); |
| return parser->setLocal(m_origin, m_operand, m_value, setMode); |
| } |
| }; |
| |
| Vector<DelayedSetLocal, 2> m_setLocalQueue; |
| |
| CodeBlock* m_dfgCodeBlock; |
| CallLinkStatus::ContextMap m_callContextMap; |
| StubInfoMap m_dfgStubInfos; |
| |
| Instruction* m_currentInstruction; |
| bool m_hasDebuggerEnabled; |
| }; |
| |
| #define NEXT_OPCODE(name) \ |
| m_currentIndex += OPCODE_LENGTH(name); \ |
| continue |
| |
| #define LAST_OPCODE(name) \ |
| m_currentIndex += OPCODE_LENGTH(name); \ |
| m_exitOK = false; \ |
| return shouldContinueParsing |
| |
| void ByteCodeParser::handleCall(Instruction* pc, NodeType op, CodeSpecializationKind kind) |
| { |
| ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct)); |
| handleCall( |
| pc[1].u.operand, op, kind, OPCODE_LENGTH(op_call), |
| pc[2].u.operand, pc[3].u.operand, -pc[4].u.operand); |
| } |
| |
| void ByteCodeParser::handleCall( |
| int result, NodeType op, CodeSpecializationKind kind, unsigned instructionSize, |
| int callee, int argumentCountIncludingThis, int registerOffset) |
| { |
| Node* callTarget = get(VirtualRegister(callee)); |
| |
| CallLinkStatus callLinkStatus = CallLinkStatus::computeFor( |
| m_inlineStackTop->m_profiledBlock, currentCodeOrigin(), |
| m_inlineStackTop->m_callLinkInfos, m_callContextMap); |
| |
| handleCall( |
| result, op, InlineCallFrame::kindFor(kind), instructionSize, callTarget, |
| argumentCountIncludingThis, registerOffset, callLinkStatus); |
| } |
| |
| void ByteCodeParser::handleCall( |
| int result, NodeType op, InlineCallFrame::Kind kind, unsigned instructionSize, |
| Node* callTarget, int argumentCountIncludingThis, int registerOffset, |
| CallLinkStatus callLinkStatus) |
| { |
| handleCall( |
| result, op, kind, instructionSize, callTarget, argumentCountIncludingThis, |
| registerOffset, callLinkStatus, getPrediction()); |
| } |
| |
| void ByteCodeParser::handleCall( |
| int result, NodeType op, InlineCallFrame::Kind kind, unsigned instructionSize, |
| Node* callTarget, int argumentCountIncludingThis, int registerOffset, |
| CallLinkStatus callLinkStatus, SpeculatedType prediction) |
| { |
| ASSERT(registerOffset <= 0); |
| |
| if (callTarget->isCellConstant()) |
| callLinkStatus.setProvenConstantCallee(CallVariant(callTarget->asCell())); |
| |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog(" Handling call at ", currentCodeOrigin(), ": ", callLinkStatus, "\n"); |
| |
| if (!callLinkStatus.canOptimize()) { |
| // Oddly, this conflates calls that haven't executed with calls that behaved sufficiently polymorphically |
| // that we cannot optimize them. |
| |
| addCall(result, op, OpInfo(), callTarget, argumentCountIncludingThis, registerOffset, prediction); |
| return; |
| } |
| |
| unsigned nextOffset = m_currentIndex + instructionSize; |
| |
| OpInfo callOpInfo; |
| |
| if (handleInlining(callTarget, result, callLinkStatus, registerOffset, virtualRegisterForArgument(0, registerOffset), VirtualRegister(), 0, argumentCountIncludingThis, nextOffset, op, kind, prediction)) { |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedCall(); |
| return; |
| } |
| |
| addCall(result, op, callOpInfo, callTarget, argumentCountIncludingThis, registerOffset, prediction); |
| } |
| |
| void ByteCodeParser::handleVarargsCall(Instruction* pc, NodeType op, CodeSpecializationKind kind) |
| { |
| ASSERT(OPCODE_LENGTH(op_call_varargs) == OPCODE_LENGTH(op_construct_varargs)); |
| |
| int result = pc[1].u.operand; |
| int callee = pc[2].u.operand; |
| int thisReg = pc[3].u.operand; |
| int arguments = pc[4].u.operand; |
| int firstFreeReg = pc[5].u.operand; |
| int firstVarArgOffset = pc[6].u.operand; |
| |
| SpeculatedType prediction = getPrediction(); |
| |
| Node* callTarget = get(VirtualRegister(callee)); |
| |
| CallLinkStatus callLinkStatus = CallLinkStatus::computeFor( |
| m_inlineStackTop->m_profiledBlock, currentCodeOrigin(), |
| m_inlineStackTop->m_callLinkInfos, m_callContextMap); |
| if (callTarget->isCellConstant()) |
| callLinkStatus.setProvenConstantCallee(CallVariant(callTarget->asCell())); |
| |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog(" Varargs call link status at ", currentCodeOrigin(), ": ", callLinkStatus, "\n"); |
| |
| if (callLinkStatus.canOptimize() |
| && handleInlining(callTarget, result, callLinkStatus, firstFreeReg, VirtualRegister(thisReg), VirtualRegister(arguments), firstVarArgOffset, 0, m_currentIndex + OPCODE_LENGTH(op_call_varargs), op, InlineCallFrame::varargsKindFor(kind), prediction)) { |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedCall(); |
| return; |
| } |
| |
| CallVarargsData* data = m_graph.m_callVarargsData.add(); |
| data->firstVarArgOffset = firstVarArgOffset; |
| |
| Node* thisChild = get(VirtualRegister(thisReg)); |
| |
| Node* call = addToGraph(op, OpInfo(data), OpInfo(prediction), callTarget, get(VirtualRegister(arguments)), thisChild); |
| VirtualRegister resultReg(result); |
| if (resultReg.isValid()) |
| set(resultReg, call); |
| } |
| |
| void ByteCodeParser::emitFunctionChecks(CallVariant callee, Node* callTarget, VirtualRegister thisArgumentReg) |
| { |
| Node* thisArgument; |
| if (thisArgumentReg.isValid()) |
| thisArgument = get(thisArgumentReg); |
| else |
| thisArgument = 0; |
| |
| JSCell* calleeCell; |
| Node* callTargetForCheck; |
| if (callee.isClosureCall()) { |
| calleeCell = callee.executable(); |
| callTargetForCheck = addToGraph(GetExecutable, callTarget); |
| } else { |
| calleeCell = callee.nonExecutableCallee(); |
| callTargetForCheck = callTarget; |
| } |
| |
| ASSERT(calleeCell); |
| addToGraph(CheckCell, OpInfo(m_graph.freeze(calleeCell)), callTargetForCheck, thisArgument); |
| } |
| |
| void ByteCodeParser::emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis) |
| { |
| for (int i = 0; i < argumentCountIncludingThis; ++i) |
| addToGraph(Phantom, get(virtualRegisterForArgument(i, registerOffset))); |
| } |
| |
| unsigned ByteCodeParser::inliningCost(CallVariant callee, int argumentCountIncludingThis, CodeSpecializationKind kind) |
| { |
| if (verbose) |
| dataLog("Considering inlining ", callee, " into ", currentCodeOrigin(), "\n"); |
| |
| if (m_hasDebuggerEnabled) { |
| if (verbose) |
| dataLog(" Failing because the debugger is in use.\n"); |
| return UINT_MAX; |
| } |
| |
| FunctionExecutable* executable = callee.functionExecutable(); |
| if (!executable) { |
| if (verbose) |
| dataLog(" Failing because there is no function executable.\n"); |
| return UINT_MAX; |
| } |
| |
| // Does the number of arguments we're passing match the arity of the target? We currently |
| // inline only if the number of arguments passed is greater than or equal to the number |
| // arguments expected. |
| if (static_cast<int>(executable->parameterCount()) + 1 > argumentCountIncludingThis) { |
| if (verbose) |
| dataLog(" Failing because of arity mismatch.\n"); |
| return UINT_MAX; |
| } |
| |
| // Do we have a code block, and does the code block's size match the heuristics/requirements for |
| // being an inline candidate? We might not have a code block (1) if code was thrown away, |
| // (2) if we simply hadn't actually made this call yet or (3) code is a builtin function and |
| // specialization kind is construct. In the former 2 cases, we could still theoretically attempt |
| // to inline it if we had a static proof of what was being called; this might happen for example |
| // if you call a global function, where watchpointing gives us static information. Overall, |
| // it's a rare case because we expect that any hot callees would have already been compiled. |
| CodeBlock* codeBlock = executable->baselineCodeBlockFor(kind); |
| if (!codeBlock) { |
| if (verbose) |
| dataLog(" Failing because no code block available.\n"); |
| return UINT_MAX; |
| } |
| CapabilityLevel capabilityLevel = inlineFunctionForCapabilityLevel( |
| codeBlock, kind, callee.isClosureCall()); |
| if (verbose) { |
| dataLog(" Kind: ", kind, "\n"); |
| dataLog(" Is closure call: ", callee.isClosureCall(), "\n"); |
| dataLog(" Capability level: ", capabilityLevel, "\n"); |
| dataLog(" Might inline function: ", mightInlineFunctionFor(codeBlock, kind), "\n"); |
| dataLog(" Might compile function: ", mightCompileFunctionFor(codeBlock, kind), "\n"); |
| dataLog(" Is supported for inlining: ", isSupportedForInlining(codeBlock), "\n"); |
| dataLog(" Needs activation: ", codeBlock->ownerScriptExecutable()->needsActivation(), "\n"); |
| dataLog(" Is inlining candidate: ", codeBlock->ownerScriptExecutable()->isInliningCandidate(), "\n"); |
| } |
| if (!canInline(capabilityLevel)) { |
| if (verbose) |
| dataLog(" Failing because the function is not inlineable.\n"); |
| return UINT_MAX; |
| } |
| |
| // Check if the caller is already too large. We do this check here because that's just |
| // where we happen to also have the callee's code block, and we want that for the |
| // purpose of unsetting SABI. |
| if (!isSmallEnoughToInlineCodeInto(m_codeBlock)) { |
| codeBlock->m_shouldAlwaysBeInlined = false; |
| if (verbose) |
| dataLog(" Failing because the caller is too large.\n"); |
| return UINT_MAX; |
| } |
| |
| // FIXME: this should be better at predicting how much bloat we will introduce by inlining |
| // this function. |
| // https://bugs.webkit.org/show_bug.cgi?id=127627 |
| |
| // FIXME: We currently inline functions that have run in LLInt but not in Baseline. These |
| // functions have very low fidelity profiling, and presumably they weren't very hot if they |
| // haven't gotten to Baseline yet. Consider not inlining these functions. |
| // https://bugs.webkit.org/show_bug.cgi?id=145503 |
| |
| // Have we exceeded inline stack depth, or are we trying to inline a recursive call to |
| // too many levels? If either of these are detected, then don't inline. We adjust our |
| // heuristics if we are dealing with a function that cannot otherwise be compiled. |
| |
| unsigned depth = 0; |
| unsigned recursion = 0; |
| |
| for (InlineStackEntry* entry = m_inlineStackTop; entry; entry = entry->m_caller) { |
| ++depth; |
| if (depth >= Options::maximumInliningDepth()) { |
| if (verbose) |
| dataLog(" Failing because depth exceeded.\n"); |
| return UINT_MAX; |
| } |
| |
| if (entry->executable() == executable) { |
| ++recursion; |
| if (recursion >= Options::maximumInliningRecursion()) { |
| if (verbose) |
| dataLog(" Failing because recursion detected.\n"); |
| return UINT_MAX; |
| } |
| } |
| } |
| |
| if (verbose) |
| dataLog(" Inlining should be possible.\n"); |
| |
| // It might be possible to inline. |
| return codeBlock->instructionCount(); |
| } |
| |
| template<typename ChecksFunctor> |
| void ByteCodeParser::inlineCall(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind kind, CallerLinkability callerLinkability, const ChecksFunctor& insertChecks) |
| { |
| CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind); |
| |
| ASSERT(inliningCost(callee, argumentCountIncludingThis, specializationKind) != UINT_MAX); |
| |
| CodeBlock* codeBlock = callee.functionExecutable()->baselineCodeBlockFor(specializationKind); |
| insertChecks(codeBlock); |
| |
| // FIXME: Don't flush constants! |
| |
| int inlineCallFrameStart = m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset() + JSStack::CallFrameHeaderSize; |
| |
| ensureLocals( |
| VirtualRegister(inlineCallFrameStart).toLocal() + 1 + |
| JSStack::CallFrameHeaderSize + codeBlock->m_numCalleeRegisters); |
| |
| size_t argumentPositionStart = m_graph.m_argumentPositions.size(); |
| |
| VirtualRegister resultReg(resultOperand); |
| if (resultReg.isValid()) |
| resultReg = m_inlineStackTop->remapOperand(resultReg); |
| |
| VariableAccessData* calleeVariable = nullptr; |
| if (callee.isClosureCall()) { |
| Node* calleeSet = set( |
| VirtualRegister(registerOffset + JSStack::Callee), callTargetNode, ImmediateNakedSet); |
| |
| calleeVariable = calleeSet->variableAccessData(); |
| calleeVariable->mergeShouldNeverUnbox(true); |
| } |
| |
| InlineStackEntry inlineStackEntry( |
| this, codeBlock, codeBlock, m_graph.lastBlock(), callee.function(), resultReg, |
| (VirtualRegister)inlineCallFrameStart, argumentCountIncludingThis, kind); |
| |
| // This is where the actual inlining really happens. |
| unsigned oldIndex = m_currentIndex; |
| m_currentIndex = 0; |
| |
| // At this point, it's again OK to OSR exit. |
| m_exitOK = true; |
| |
| InlineVariableData inlineVariableData; |
| inlineVariableData.inlineCallFrame = m_inlineStackTop->m_inlineCallFrame; |
| inlineVariableData.argumentPositionStart = argumentPositionStart; |
| inlineVariableData.calleeVariable = 0; |
| |
| RELEASE_ASSERT( |
| m_inlineStackTop->m_inlineCallFrame->isClosureCall |
| == callee.isClosureCall()); |
| if (callee.isClosureCall()) { |
| RELEASE_ASSERT(calleeVariable); |
| inlineVariableData.calleeVariable = calleeVariable; |
| } |
| |
| m_graph.m_inlineVariableData.append(inlineVariableData); |
| |
| parseCodeBlock(); |
| clearCaches(); // Reset our state now that we're back to the outer code. |
| |
| m_currentIndex = oldIndex; |
| m_exitOK = false; |
| |
| // If the inlined code created some new basic blocks, then we have linking to do. |
| if (inlineStackEntry.m_callsiteBlockHead != m_graph.lastBlock()) { |
| |
| ASSERT(!inlineStackEntry.m_unlinkedBlocks.isEmpty()); |
| if (inlineStackEntry.m_callsiteBlockHeadNeedsLinking) |
| linkBlock(inlineStackEntry.m_callsiteBlockHead, inlineStackEntry.m_blockLinkingTargets); |
| else |
| ASSERT(inlineStackEntry.m_callsiteBlockHead->isLinked); |
| |
| if (callerLinkability == CallerDoesNormalLinking) |
| cancelLinkingForBlock(inlineStackEntry.m_caller, inlineStackEntry.m_callsiteBlockHead); |
| |
| linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets); |
| } else |
| ASSERT(inlineStackEntry.m_unlinkedBlocks.isEmpty()); |
| |
| BasicBlock* lastBlock = m_graph.lastBlock(); |
| // If there was a return, but no early returns, then we're done. We allow parsing of |
| // the caller to continue in whatever basic block we're in right now. |
| if (!inlineStackEntry.m_didEarlyReturn && inlineStackEntry.m_didReturn) { |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog(" Allowing parsing to continue in last inlined block.\n"); |
| |
| ASSERT(lastBlock->isEmpty() || !lastBlock->terminal()); |
| |
| // If we created new blocks then the last block needs linking, but in the |
| // caller. It doesn't need to be linked to, but it needs outgoing links. |
| if (!inlineStackEntry.m_unlinkedBlocks.isEmpty()) { |
| // For debugging purposes, set the bytecodeBegin. Note that this doesn't matter |
| // for release builds because this block will never serve as a potential target |
| // in the linker's binary search. |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog(" Repurposing last block from ", lastBlock->bytecodeBegin, " to ", m_currentIndex, "\n"); |
| lastBlock->bytecodeBegin = m_currentIndex; |
| if (callerLinkability == CallerDoesNormalLinking) { |
| if (verbose) |
| dataLog("Adding unlinked block ", RawPointer(m_graph.lastBlock()), " (one return)\n"); |
| m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.lastBlock())); |
| } |
| } |
| |
| m_currentBlock = m_graph.lastBlock(); |
| return; |
| } |
| |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog(" Creating new block after inlining.\n"); |
| |
| // If we get to this point then all blocks must end in some sort of terminals. |
| ASSERT(lastBlock->terminal()); |
| |
| // Need to create a new basic block for the continuation at the caller. |
| RefPtr<BasicBlock> block = adoptRef(new BasicBlock(nextOffset, m_numArguments, m_numLocals, PNaN)); |
| |
| // Link the early returns to the basic block we're about to create. |
| for (size_t i = 0; i < inlineStackEntry.m_unlinkedBlocks.size(); ++i) { |
| if (!inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking) |
| continue; |
| BasicBlock* blockToLink = inlineStackEntry.m_unlinkedBlocks[i].m_block; |
| ASSERT(!blockToLink->isLinked); |
| Node* node = blockToLink->terminal(); |
| ASSERT(node->op() == Jump); |
| ASSERT(!node->targetBlock()); |
| node->targetBlock() = block.get(); |
| inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking = false; |
| if (verbose) |
| dataLog("Marking ", RawPointer(blockToLink), " as linked (jumps to return)\n"); |
| blockToLink->didLink(); |
| } |
| |
| m_currentBlock = block.get(); |
| ASSERT(m_inlineStackTop->m_caller->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_caller->m_blockLinkingTargets.last()->bytecodeBegin < nextOffset); |
| if (verbose) |
| dataLog("Adding unlinked block ", RawPointer(block.get()), " (many returns)\n"); |
| if (callerLinkability == CallerDoesNormalLinking) { |
| m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(block.get())); |
| m_inlineStackTop->m_caller->m_blockLinkingTargets.append(block.get()); |
| } |
| m_graph.appendBlock(block); |
| prepareToParseBlock(); |
| } |
| |
| void ByteCodeParser::cancelLinkingForBlock(InlineStackEntry* inlineStackEntry, BasicBlock* block) |
| { |
| // It's possible that the callsite block head is not owned by the caller. |
| if (!inlineStackEntry->m_unlinkedBlocks.isEmpty()) { |
| // It's definitely owned by the caller, because the caller created new blocks. |
| // Assert that this all adds up. |
| ASSERT_UNUSED(block, inlineStackEntry->m_unlinkedBlocks.last().m_block == block); |
| ASSERT(inlineStackEntry->m_unlinkedBlocks.last().m_needsNormalLinking); |
| inlineStackEntry->m_unlinkedBlocks.last().m_needsNormalLinking = false; |
| } else { |
| // It's definitely not owned by the caller. Tell the caller that he does not |
| // need to link his callsite block head, because we did it for him. |
| ASSERT(inlineStackEntry->m_callsiteBlockHeadNeedsLinking); |
| ASSERT_UNUSED(block, inlineStackEntry->m_callsiteBlockHead == block); |
| inlineStackEntry->m_callsiteBlockHeadNeedsLinking = false; |
| } |
| } |
| |
| template<typename ChecksFunctor> |
| bool ByteCodeParser::attemptToInlineCall(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind kind, CallerLinkability callerLinkability, SpeculatedType prediction, unsigned& inliningBalance, const ChecksFunctor& insertChecks) |
| { |
| CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind); |
| |
| if (!inliningBalance) |
| return false; |
| |
| bool didInsertChecks = false; |
| auto insertChecksWithAccounting = [&] () { |
| insertChecks(nullptr); |
| didInsertChecks = true; |
| }; |
| |
| if (verbose) |
| dataLog(" Considering callee ", callee, "\n"); |
| |
| // Intrinsics and internal functions can only be inlined if we're not doing varargs. This is because |
| // we currently don't have any way of getting profiling information for arguments to non-JS varargs |
| // calls. The prediction propagator won't be of any help because LoadVarargs obscures the data flow, |
| // and there are no callsite value profiles and native function won't have callee value profiles for |
| // those arguments. Even worse, if the intrinsic decides to exit, it won't really have anywhere to |
| // exit to: LoadVarargs is effectful and it's part of the op_call_varargs, so we can't exit without |
| // calling LoadVarargs twice. |
| if (!InlineCallFrame::isVarargs(kind)) { |
| if (InternalFunction* function = callee.internalFunction()) { |
| if (handleConstantInternalFunction(resultOperand, function, registerOffset, argumentCountIncludingThis, specializationKind, insertChecksWithAccounting)) { |
| RELEASE_ASSERT(didInsertChecks); |
| addToGraph(Phantom, callTargetNode); |
| emitArgumentPhantoms(registerOffset, argumentCountIncludingThis); |
| inliningBalance--; |
| return true; |
| } |
| RELEASE_ASSERT(!didInsertChecks); |
| return false; |
| } |
| |
| Intrinsic intrinsic = callee.intrinsicFor(specializationKind); |
| if (intrinsic != NoIntrinsic) { |
| if (handleIntrinsic(resultOperand, intrinsic, registerOffset, argumentCountIncludingThis, prediction, insertChecksWithAccounting)) { |
| RELEASE_ASSERT(didInsertChecks); |
| addToGraph(Phantom, callTargetNode); |
| emitArgumentPhantoms(registerOffset, argumentCountIncludingThis); |
| inliningBalance--; |
| return true; |
| } |
| RELEASE_ASSERT(!didInsertChecks); |
| return false; |
| } |
| } |
| |
| unsigned myInliningCost = inliningCost(callee, argumentCountIncludingThis, specializationKind); |
| if (myInliningCost > inliningBalance) |
| return false; |
| |
| Instruction* savedCurrentInstruction = m_currentInstruction; |
| inlineCall(callTargetNode, resultOperand, callee, registerOffset, argumentCountIncludingThis, nextOffset, kind, callerLinkability, insertChecks); |
| inliningBalance -= myInliningCost; |
| m_currentInstruction = savedCurrentInstruction; |
| return true; |
| } |
| |
| bool ByteCodeParser::handleInlining( |
| Node* callTargetNode, int resultOperand, const CallLinkStatus& callLinkStatus, |
| int registerOffsetOrFirstFreeReg, VirtualRegister thisArgument, |
| VirtualRegister argumentsArgument, unsigned argumentsOffset, int argumentCountIncludingThis, |
| unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind kind, SpeculatedType prediction) |
| { |
| if (verbose) { |
| dataLog("Handling inlining...\n"); |
| dataLog("Stack: ", currentCodeOrigin(), "\n"); |
| } |
| CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind); |
| |
| if (!callLinkStatus.size()) { |
| if (verbose) |
| dataLog("Bailing inlining.\n"); |
| return false; |
| } |
| |
| if (InlineCallFrame::isVarargs(kind) |
| && callLinkStatus.maxNumArguments() > Options::maximumVarargsForInlining()) { |
| if (verbose) |
| dataLog("Bailing inlining because of varargs.\n"); |
| return false; |
| } |
| |
| unsigned inliningBalance = Options::maximumFunctionForCallInlineCandidateInstructionCount(); |
| if (specializationKind == CodeForConstruct) |
| inliningBalance = std::min(inliningBalance, Options::maximumFunctionForConstructInlineCandidateInstructionCount()); |
| if (callLinkStatus.isClosureCall()) |
| inliningBalance = std::min(inliningBalance, Options::maximumFunctionForClosureCallInlineCandidateInstructionCount()); |
| |
| // First check if we can avoid creating control flow. Our inliner does some CFG |
| // simplification on the fly and this helps reduce compile times, but we can only leverage |
| // this in cases where we don't need control flow diamonds to check the callee. |
| if (!callLinkStatus.couldTakeSlowPath() && callLinkStatus.size() == 1) { |
| int registerOffset; |
| |
| // Only used for varargs calls. |
| unsigned mandatoryMinimum = 0; |
| unsigned maxNumArguments = 0; |
| |
| if (InlineCallFrame::isVarargs(kind)) { |
| if (FunctionExecutable* functionExecutable = callLinkStatus[0].functionExecutable()) |
| mandatoryMinimum = functionExecutable->parameterCount(); |
| else |
| mandatoryMinimum = 0; |
| |
| // includes "this" |
| maxNumArguments = std::max( |
| callLinkStatus.maxNumArguments(), |
| mandatoryMinimum + 1); |
| |
| // We sort of pretend that this *is* the number of arguments that were passed. |
| argumentCountIncludingThis = maxNumArguments; |
| |
| registerOffset = registerOffsetOrFirstFreeReg + 1; |
| registerOffset -= maxNumArguments; // includes "this" |
| registerOffset -= JSStack::CallFrameHeaderSize; |
| registerOffset = -WTF::roundUpToMultipleOf( |
| stackAlignmentRegisters(), |
| -registerOffset); |
| } else |
| registerOffset = registerOffsetOrFirstFreeReg; |
| |
| bool result = attemptToInlineCall( |
| callTargetNode, resultOperand, callLinkStatus[0], registerOffset, |
| argumentCountIncludingThis, nextOffset, kind, CallerDoesNormalLinking, prediction, |
| inliningBalance, [&] (CodeBlock* codeBlock) { |
| emitFunctionChecks(callLinkStatus[0], callTargetNode, thisArgument); |
| |
| // If we have a varargs call, we want to extract the arguments right now. |
| if (InlineCallFrame::isVarargs(kind)) { |
| int remappedRegisterOffset = |
| m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset(); |
| |
| ensureLocals(VirtualRegister(remappedRegisterOffset).toLocal()); |
| |
| int argumentStart = registerOffset + JSStack::CallFrameHeaderSize; |
| int remappedArgumentStart = |
| m_inlineStackTop->remapOperand(VirtualRegister(argumentStart)).offset(); |
| |
| LoadVarargsData* data = m_graph.m_loadVarargsData.add(); |
| data->start = VirtualRegister(remappedArgumentStart + 1); |
| data->count = VirtualRegister(remappedRegisterOffset + JSStack::ArgumentCount); |
| data->offset = argumentsOffset; |
| data->limit = maxNumArguments; |
| data->mandatoryMinimum = mandatoryMinimum; |
| |
| addToGraph(LoadVarargs, OpInfo(data), get(argumentsArgument)); |
| |
| // LoadVarargs may OSR exit. Hence, we need to keep alive callTargetNode, thisArgument |
| // and argumentsArgument for the baseline JIT. However, we only need a Phantom for |
| // callTargetNode because the other 2 are still in use and alive at this point. |
| addToGraph(Phantom, callTargetNode); |
| |
| // In DFG IR before SSA, we cannot insert control flow between after the |
| // LoadVarargs and the last SetArgument. This isn't a problem once we get to DFG |
| // SSA. Fortunately, we also have other reasons for not inserting control flow |
| // before SSA. |
| |
| VariableAccessData* countVariable = newVariableAccessData( |
| VirtualRegister(remappedRegisterOffset + JSStack::ArgumentCount)); |
| // This is pretty lame, but it will force the count to be flushed as an int. This doesn't |
| // matter very much, since our use of a SetArgument and Flushes for this local slot is |
| // mostly just a formality. |
| countVariable->predict(SpecInt32); |
| countVariable->mergeIsProfitableToUnbox(true); |
| Node* setArgumentCount = addToGraph(SetArgument, OpInfo(countVariable)); |
| m_currentBlock->variablesAtTail.setOperand(countVariable->local(), setArgumentCount); |
| |
| set(VirtualRegister(argumentStart), get(thisArgument), ImmediateNakedSet); |
| for (unsigned argument = 1; argument < maxNumArguments; ++argument) { |
| VariableAccessData* variable = newVariableAccessData( |
| VirtualRegister(remappedArgumentStart + argument)); |
| variable->mergeShouldNeverUnbox(true); // We currently have nowhere to put the type check on the LoadVarargs. LoadVarargs is effectful, so after it finishes, we cannot exit. |
| |
| // For a while it had been my intention to do things like this inside the |
| // prediction injection phase. But in this case it's really best to do it here, |
| // because it's here that we have access to the variable access datas for the |
| // inlining we're about to do. |
| // |
| // Something else that's interesting here is that we'd really love to get |
| // predictions from the arguments loaded at the callsite, rather than the |
| // arguments received inside the callee. But that probably won't matter for most |
| // calls. |
| if (codeBlock && argument < static_cast<unsigned>(codeBlock->numParameters())) { |
| ConcurrentJITLocker locker(codeBlock->m_lock); |
| if (ValueProfile* profile = codeBlock->valueProfileForArgument(argument)) |
| variable->predict(profile->computeUpdatedPrediction(locker)); |
| } |
| |
| Node* setArgument = addToGraph(SetArgument, OpInfo(variable)); |
| m_currentBlock->variablesAtTail.setOperand(variable->local(), setArgument); |
| } |
| } |
| }); |
| if (verbose) { |
| dataLog("Done inlining (simple).\n"); |
| dataLog("Stack: ", currentCodeOrigin(), "\n"); |
| dataLog("Result: ", result, "\n"); |
| } |
| return result; |
| } |
| |
| // We need to create some kind of switch over callee. For now we only do this if we believe that |
| // we're in the top tier. We have two reasons for this: first, it provides us an opportunity to |
| // do more detailed polyvariant/polymorphic profiling; and second, it reduces compile times in |
| // the DFG. And by polyvariant profiling we mean polyvariant profiling of *this* call. Note that |
| // we could improve that aspect of this by doing polymorphic inlining but having the profiling |
| // also. |
| if (!isFTL(m_graph.m_plan.mode) || !Options::enablePolymorphicCallInlining() |
| || InlineCallFrame::isVarargs(kind)) { |
| if (verbose) { |
| dataLog("Bailing inlining (hard).\n"); |
| dataLog("Stack: ", currentCodeOrigin(), "\n"); |
| } |
| return false; |
| } |
| |
| unsigned oldOffset = m_currentIndex; |
| |
| bool allAreClosureCalls = true; |
| bool allAreDirectCalls = true; |
| for (unsigned i = callLinkStatus.size(); i--;) { |
| if (callLinkStatus[i].isClosureCall()) |
| allAreDirectCalls = false; |
| else |
| allAreClosureCalls = false; |
| } |
| |
| Node* thingToSwitchOn; |
| if (allAreDirectCalls) |
| thingToSwitchOn = callTargetNode; |
| else if (allAreClosureCalls) |
| thingToSwitchOn = addToGraph(GetExecutable, callTargetNode); |
| else { |
| // FIXME: We should be able to handle this case, but it's tricky and we don't know of cases |
| // where it would be beneficial. It might be best to handle these cases as if all calls were |
| // closure calls. |
| // https://bugs.webkit.org/show_bug.cgi?id=136020 |
| if (verbose) { |
| dataLog("Bailing inlining (mix).\n"); |
| dataLog("Stack: ", currentCodeOrigin(), "\n"); |
| } |
| return false; |
| } |
| |
| if (verbose) { |
| dataLog("Doing hard inlining...\n"); |
| dataLog("Stack: ", currentCodeOrigin(), "\n"); |
| } |
| |
| int registerOffset = registerOffsetOrFirstFreeReg; |
| |
| // This makes me wish that we were in SSA all the time. We need to pick a variable into which to |
| // store the callee so that it will be accessible to all of the blocks we're about to create. We |
| // get away with doing an immediate-set here because we wouldn't have performed any side effects |
| // yet. |
| if (verbose) |
| dataLog("Register offset: ", registerOffset); |
| VirtualRegister calleeReg(registerOffset + JSStack::Callee); |
| calleeReg = m_inlineStackTop->remapOperand(calleeReg); |
| if (verbose) |
| dataLog("Callee is going to be ", calleeReg, "\n"); |
| setDirect(calleeReg, callTargetNode, ImmediateSetWithFlush); |
| |
| // It's OK to exit right now, even though we set some locals. That's because those locals are not |
| // user-visible. |
| m_exitOK = true; |
| addToGraph(ExitOK); |
| |
| SwitchData& data = *m_graph.m_switchData.add(); |
| data.kind = SwitchCell; |
| addToGraph(Switch, OpInfo(&data), thingToSwitchOn); |
| |
| BasicBlock* originBlock = m_currentBlock; |
| if (verbose) |
| dataLog("Marking ", RawPointer(originBlock), " as linked (origin of poly inline)\n"); |
| originBlock->didLink(); |
| cancelLinkingForBlock(m_inlineStackTop, originBlock); |
| |
| // Each inlined callee will have a landing block that it returns at. They should all have jumps |
| // to the continuation block, which we create last. |
| Vector<BasicBlock*> landingBlocks; |
| |
| // We may force this true if we give up on inlining any of the edges. |
| bool couldTakeSlowPath = callLinkStatus.couldTakeSlowPath(); |
| |
| if (verbose) |
| dataLog("About to loop over functions at ", currentCodeOrigin(), ".\n"); |
| |
| for (unsigned i = 0; i < callLinkStatus.size(); ++i) { |
| m_currentIndex = oldOffset; |
| RefPtr<BasicBlock> block = adoptRef(new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, PNaN)); |
| m_currentBlock = block.get(); |
| m_graph.appendBlock(block); |
| prepareToParseBlock(); |
| |
| Node* myCallTargetNode = getDirect(calleeReg); |
| |
| bool inliningResult = attemptToInlineCall( |
| myCallTargetNode, resultOperand, callLinkStatus[i], registerOffset, |
| argumentCountIncludingThis, nextOffset, kind, CallerLinksManually, prediction, |
| inliningBalance, [&] (CodeBlock*) { }); |
| |
| if (!inliningResult) { |
| // That failed so we let the block die. Nothing interesting should have been added to |
| // the block. We also give up on inlining any of the (less frequent) callees. |
| ASSERT(m_currentBlock == block.get()); |
| ASSERT(m_graph.m_blocks.last() == block); |
| m_graph.killBlockAndItsContents(block.get()); |
| m_graph.m_blocks.removeLast(); |
| |
| // The fact that inlining failed means we need a slow path. |
| couldTakeSlowPath = true; |
| break; |
| } |
| |
| JSCell* thingToCaseOn; |
| if (allAreDirectCalls) |
| thingToCaseOn = callLinkStatus[i].nonExecutableCallee(); |
| else { |
| ASSERT(allAreClosureCalls); |
| thingToCaseOn = callLinkStatus[i].executable(); |
| } |
| data.cases.append(SwitchCase(m_graph.freeze(thingToCaseOn), block.get())); |
| m_currentIndex = nextOffset; |
| m_exitOK = true; |
| processSetLocalQueue(); // This only comes into play for intrinsics, since normal inlined code will leave an empty queue. |
| addToGraph(Jump); |
| if (verbose) |
| dataLog("Marking ", RawPointer(m_currentBlock), " as linked (tail of poly inlinee)\n"); |
| m_currentBlock->didLink(); |
| landingBlocks.append(m_currentBlock); |
| |
| if (verbose) |
| dataLog("Finished inlining ", callLinkStatus[i], " at ", currentCodeOrigin(), ".\n"); |
| } |
| |
| RefPtr<BasicBlock> slowPathBlock = adoptRef( |
| new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, PNaN)); |
| m_currentIndex = oldOffset; |
| m_exitOK = true; |
| data.fallThrough = BranchTarget(slowPathBlock.get()); |
| m_graph.appendBlock(slowPathBlock); |
| if (verbose) |
| dataLog("Marking ", RawPointer(slowPathBlock.get()), " as linked (slow path block)\n"); |
| slowPathBlock->didLink(); |
| prepareToParseBlock(); |
| m_currentBlock = slowPathBlock.get(); |
| Node* myCallTargetNode = getDirect(calleeReg); |
| if (couldTakeSlowPath) { |
| addCall( |
| resultOperand, callOp, OpInfo(), myCallTargetNode, argumentCountIncludingThis, |
| registerOffset, prediction); |
| } else { |
| addToGraph(CheckBadCell); |
| addToGraph(Phantom, myCallTargetNode); |
| emitArgumentPhantoms(registerOffset, argumentCountIncludingThis); |
| |
| set(VirtualRegister(resultOperand), addToGraph(BottomValue)); |
| } |
| |
| m_currentIndex = nextOffset; |
| m_exitOK = true; // Origin changed, so it's fine to exit again. |
| processSetLocalQueue(); |
| addToGraph(Jump); |
| landingBlocks.append(m_currentBlock); |
| |
| RefPtr<BasicBlock> continuationBlock = adoptRef( |
| new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, PNaN)); |
| m_graph.appendBlock(continuationBlock); |
| if (verbose) |
| dataLog("Adding unlinked block ", RawPointer(continuationBlock.get()), " (continuation)\n"); |
| m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(continuationBlock.get())); |
| prepareToParseBlock(); |
| m_currentBlock = continuationBlock.get(); |
| |
| for (unsigned i = landingBlocks.size(); i--;) |
| landingBlocks[i]->terminal()->targetBlock() = continuationBlock.get(); |
| |
| m_currentIndex = oldOffset; |
| m_exitOK = true; |
| |
| if (verbose) { |
| dataLog("Done inlining (hard).\n"); |
| dataLog("Stack: ", currentCodeOrigin(), "\n"); |
| } |
| return true; |
| } |
| |
| template<typename ChecksFunctor> |
| bool ByteCodeParser::handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks) |
| { |
| if (argumentCountIncludingThis == 1) { // Math.min() |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN))); |
| return true; |
| } |
| |
| if (argumentCountIncludingThis == 2) { // Math.min(x) |
| insertChecks(); |
| Node* result = get(VirtualRegister(virtualRegisterForArgument(1, registerOffset))); |
| addToGraph(Phantom, Edge(result, NumberUse)); |
| set(VirtualRegister(resultOperand), result); |
| return true; |
| } |
| |
| if (argumentCountIncludingThis == 3) { // Math.min(x, y) |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(op, get(virtualRegisterForArgument(1, registerOffset)), get(virtualRegisterForArgument(2, registerOffset)))); |
| return true; |
| } |
| |
| // Don't handle >=3 arguments for now. |
| return false; |
| } |
| |
| template<typename ChecksFunctor> |
| bool ByteCodeParser::handleIntrinsic(int resultOperand, Intrinsic intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks) |
| { |
| switch (intrinsic) { |
| case AbsIntrinsic: { |
| if (argumentCountIncludingThis == 1) { // Math.abs() |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN))); |
| return true; |
| } |
| |
| if (!MacroAssembler::supportsFloatingPointAbs()) |
| return false; |
| |
| insertChecks(); |
| Node* node = addToGraph(ArithAbs, get(virtualRegisterForArgument(1, registerOffset))); |
| if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)) |
| node->mergeFlags(NodeMayOverflowInDFG); |
| set(VirtualRegister(resultOperand), node); |
| return true; |
| } |
| |
| case MinIntrinsic: |
| return handleMinMax(resultOperand, ArithMin, registerOffset, argumentCountIncludingThis, insertChecks); |
| |
| case MaxIntrinsic: |
| return handleMinMax(resultOperand, ArithMax, registerOffset, argumentCountIncludingThis, insertChecks); |
| |
| case SqrtIntrinsic: |
| case CosIntrinsic: |
| case SinIntrinsic: |
| case LogIntrinsic: { |
| if (argumentCountIncludingThis == 1) { |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN))); |
| return true; |
| } |
| |
| switch (intrinsic) { |
| case SqrtIntrinsic: |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(ArithSqrt, get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| |
| case CosIntrinsic: |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(ArithCos, get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| |
| case SinIntrinsic: |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(ArithSin, get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| |
| case LogIntrinsic: |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(ArithLog, get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| return false; |
| } |
| } |
| |
| case PowIntrinsic: { |
| if (argumentCountIncludingThis < 3) { |
| // Math.pow() and Math.pow(x) return NaN. |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN))); |
| return true; |
| } |
| insertChecks(); |
| VirtualRegister xOperand = virtualRegisterForArgument(1, registerOffset); |
| VirtualRegister yOperand = virtualRegisterForArgument(2, registerOffset); |
| set(VirtualRegister(resultOperand), addToGraph(ArithPow, get(xOperand), get(yOperand))); |
| return true; |
| } |
| |
| case ArrayPushIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile); |
| if (!arrayMode.isJSArray()) |
| return false; |
| switch (arrayMode.type()) { |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::ArrayStorage: { |
| insertChecks(); |
| Node* arrayPush = addToGraph(ArrayPush, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset))); |
| set(VirtualRegister(resultOperand), arrayPush); |
| |
| return true; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| case ArrayPopIntrinsic: { |
| if (argumentCountIncludingThis != 1) |
| return false; |
| |
| ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile); |
| if (!arrayMode.isJSArray()) |
| return false; |
| switch (arrayMode.type()) { |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::ArrayStorage: { |
| insertChecks(); |
| Node* arrayPop = addToGraph(ArrayPop, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset))); |
| set(VirtualRegister(resultOperand), arrayPop); |
| return true; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| case CharCodeAtIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| insertChecks(); |
| VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset); |
| VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset); |
| Node* charCode = addToGraph(StringCharCodeAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand)); |
| |
| set(VirtualRegister(resultOperand), charCode); |
| return true; |
| } |
| |
| case CharAtIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| insertChecks(); |
| VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset); |
| VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset); |
| Node* charCode = addToGraph(StringCharAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand)); |
| |
| set(VirtualRegister(resultOperand), charCode); |
| return true; |
| } |
| case Clz32Intrinsic: { |
| insertChecks(); |
| if (argumentCountIncludingThis == 1) |
| set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_graph.freeze(jsNumber(32))))); |
| else { |
| Node* operand = get(virtualRegisterForArgument(1, registerOffset)); |
| set(VirtualRegister(resultOperand), addToGraph(ArithClz32, operand)); |
| } |
| return true; |
| } |
| case FromCharCodeIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| insertChecks(); |
| VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset); |
| Node* charCode = addToGraph(StringFromCharCode, get(indexOperand)); |
| |
| set(VirtualRegister(resultOperand), charCode); |
| |
| return true; |
| } |
| |
| case RegExpExecIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| insertChecks(); |
| Node* regExpExec = addToGraph(RegExpExec, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset))); |
| set(VirtualRegister(resultOperand), regExpExec); |
| |
| return true; |
| } |
| |
| case RegExpTestIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| insertChecks(); |
| Node* regExpExec = addToGraph(RegExpTest, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset))); |
| set(VirtualRegister(resultOperand), regExpExec); |
| |
| return true; |
| } |
| case RoundIntrinsic: { |
| if (argumentCountIncludingThis == 1) { |
| insertChecks(); |
| set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN))); |
| return true; |
| } |
| if (argumentCountIncludingThis == 2) { |
| insertChecks(); |
| Node* operand = get(virtualRegisterForArgument(1, registerOffset)); |
| Node* roundNode = addToGraph(ArithRound, OpInfo(0), OpInfo(prediction), operand); |
| set(VirtualRegister(resultOperand), roundNode); |
| return true; |
| } |
| return false; |
| } |
| case IMulIntrinsic: { |
| if (argumentCountIncludingThis != 3) |
| return false; |
| insertChecks(); |
| VirtualRegister leftOperand = virtualRegisterForArgument(1, registerOffset); |
| VirtualRegister rightOperand = virtualRegisterForArgument(2, registerOffset); |
| Node* left = get(leftOperand); |
| Node* right = get(rightOperand); |
| set(VirtualRegister(resultOperand), addToGraph(ArithIMul, left, right)); |
| return true; |
| } |
| |
| case FRoundIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| insertChecks(); |
| VirtualRegister operand = virtualRegisterForArgument(1, registerOffset); |
| set(VirtualRegister(resultOperand), addToGraph(ArithFRound, get(operand))); |
| return true; |
| } |
| |
| case DFGTrueIntrinsic: { |
| insertChecks(); |
| set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true))); |
| return true; |
| } |
| |
| case OSRExitIntrinsic: { |
| insertChecks(); |
| addToGraph(ForceOSRExit); |
| set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined))); |
| return true; |
| } |
| |
| case IsFinalTierIntrinsic: { |
| insertChecks(); |
| set(VirtualRegister(resultOperand), |
| jsConstant(jsBoolean(Options::useFTLJIT() ? isFTL(m_graph.m_plan.mode) : true))); |
| return true; |
| } |
| |
| case SetInt32HeapPredictionIntrinsic: { |
| insertChecks(); |
| for (int i = 1; i < argumentCountIncludingThis; ++i) { |
| Node* node = get(virtualRegisterForArgument(i, registerOffset)); |
| if (node->hasHeapPrediction()) |
| node->setHeapPrediction(SpecInt32); |
| } |
| set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined))); |
| return true; |
| } |
| |
| case CheckInt32Intrinsic: { |
| insertChecks(); |
| for (int i = 1; i < argumentCountIncludingThis; ++i) { |
| Node* node = get(virtualRegisterForArgument(i, registerOffset)); |
| addToGraph(Phantom, Edge(node, Int32Use)); |
| } |
| set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true))); |
| return true; |
| } |
| |
| case FiatInt52Intrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| insertChecks(); |
| VirtualRegister operand = virtualRegisterForArgument(1, registerOffset); |
| if (enableInt52()) |
| set(VirtualRegister(resultOperand), addToGraph(FiatInt52, get(operand))); |
| else |
| set(VirtualRegister(resultOperand), get(operand)); |
| return true; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| template<typename ChecksFunctor> |
| bool ByteCodeParser::handleTypedArrayConstructor( |
| int resultOperand, InternalFunction* function, int registerOffset, |
| int argumentCountIncludingThis, TypedArrayType type, const ChecksFunctor& insertChecks) |
| { |
| if (!isTypedView(type)) |
| return false; |
| |
| if (function->classInfo() != constructorClassInfoForType(type)) |
| return false; |
| |
| if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject()) |
| return false; |
| |
| // We only have an intrinsic for the case where you say: |
| // |
| // new FooArray(blah); |
| // |
| // Of course, 'blah' could be any of the following: |
| // |
| // - Integer, indicating that you want to allocate an array of that length. |
| // This is the thing we're hoping for, and what we can actually do meaningful |
| // optimizations for. |
| // |
| // - Array buffer, indicating that you want to create a view onto that _entire_ |
| // buffer. |
| // |
| // - Non-buffer object, indicating that you want to create a copy of that |
| // object by pretending that it quacks like an array. |
| // |
| // - Anything else, indicating that you want to have an exception thrown at |
| // you. |
| // |
| // The intrinsic, NewTypedArray, will behave as if it could do any of these |
| // things up until we do Fixup. Thereafter, if child1 (i.e. 'blah') is |
| // predicted Int32, then we lock it in as a normal typed array allocation. |
| // Otherwise, NewTypedArray turns into a totally opaque function call that |
| // may clobber the world - by virtue of it accessing properties on what could |
| // be an object. |
| // |
| // Note that although the generic form of NewTypedArray sounds sort of awful, |
| // it is actually quite likely to be more efficient than a fully generic |
| // Construct. So, we might want to think about making NewTypedArray variadic, |
| // or else making Construct not super slow. |
| |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| insertChecks(); |
| set(VirtualRegister(resultOperand), |
| addToGraph(NewTypedArray, OpInfo(type), get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| } |
| |
| template<typename ChecksFunctor> |
| bool ByteCodeParser::handleConstantInternalFunction( |
| int resultOperand, InternalFunction* function, int registerOffset, |
| int argumentCountIncludingThis, CodeSpecializationKind kind, const ChecksFunctor& insertChecks) |
| { |
| if (verbose) |
| dataLog(" Handling constant internal function ", JSValue(function), "\n"); |
| |
| // If we ever find that we have a lot of internal functions that we specialize for, |
| // then we should probably have some sort of hashtable dispatch, or maybe even |
| // dispatch straight through the MethodTable of the InternalFunction. But for now, |
| // it seems that this case is hit infrequently enough, and the number of functions |
| // we know about is small enough, that having just a linear cascade of if statements |
| // is good enough. |
| |
| if (function->classInfo() == ArrayConstructor::info()) { |
| if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject()) |
| return false; |
| |
| insertChecks(); |
| if (argumentCountIncludingThis == 2) { |
| set(VirtualRegister(resultOperand), |
| addToGraph(NewArrayWithSize, OpInfo(ArrayWithUndecided), get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| } |
| |
| // FIXME: Array constructor should use "this" as newTarget. |
| for (int i = 1; i < argumentCountIncludingThis; ++i) |
| addVarArgChild(get(virtualRegisterForArgument(i, registerOffset))); |
| set(VirtualRegister(resultOperand), |
| addToGraph(Node::VarArg, NewArray, OpInfo(ArrayWithUndecided), OpInfo(0))); |
| return true; |
| } |
| |
| if (function->classInfo() == StringConstructor::info()) { |
| insertChecks(); |
| |
| Node* result; |
| |
| if (argumentCountIncludingThis <= 1) |
| result = jsConstant(m_vm->smallStrings.emptyString()); |
| else |
| result = addToGraph(CallStringConstructor, get(virtualRegisterForArgument(1, registerOffset))); |
| |
| if (kind == CodeForConstruct) |
| result = addToGraph(NewStringObject, OpInfo(function->globalObject()->stringObjectStructure()), result); |
| |
| set(VirtualRegister(resultOperand), result); |
| return true; |
| } |
| |
| for (unsigned typeIndex = 0; typeIndex < NUMBER_OF_TYPED_ARRAY_TYPES; ++typeIndex) { |
| bool result = handleTypedArrayConstructor( |
| resultOperand, function, registerOffset, argumentCountIncludingThis, |
| indexToTypedArrayType(typeIndex), insertChecks); |
| if (result) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| Node* ByteCodeParser::handleGetByOffset(SpeculatedType prediction, Node* base, unsigned identifierNumber, PropertyOffset offset, NodeType op) |
| { |
| Node* propertyStorage; |
| if (isInlineOffset(offset)) |
| propertyStorage = base; |
| else |
| propertyStorage = addToGraph(GetButterfly, base); |
| |
| StorageAccessData* data = m_graph.m_storageAccessData.add(); |
| data->offset = offset; |
| data->identifierNumber = identifierNumber; |
| |
| Node* getByOffset = addToGraph(op, OpInfo(data), OpInfo(prediction), propertyStorage, base); |
| |
| return getByOffset; |
| } |
| |
| Node* ByteCodeParser::handlePutByOffset(Node* base, unsigned identifier, PropertyOffset offset, Node* value) |
| { |
| Node* propertyStorage; |
| if (isInlineOffset(offset)) |
| propertyStorage = base; |
| else |
| propertyStorage = addToGraph(GetButterfly, base); |
| |
| StorageAccessData* data = m_graph.m_storageAccessData.add(); |
| data->offset = offset; |
| data->identifierNumber = identifier; |
| |
| Node* result = addToGraph(PutByOffset, OpInfo(data), propertyStorage, base, value); |
| |
| return result; |
| } |
| |
| bool ByteCodeParser::check(const ObjectPropertyCondition& condition) |
| { |
| if (m_graph.watchCondition(condition)) |
| return true; |
| |
| Structure* structure = condition.object()->structure(); |
| if (!condition.structureEnsuresValidity(structure)) |
| return false; |
| |
| addToGraph( |
| CheckStructure, |
| OpInfo(m_graph.addStructureSet(structure)), |
| weakJSConstant(condition.object())); |
| return true; |
| } |
| |
| GetByOffsetMethod ByteCodeParser::promoteToConstant(GetByOffsetMethod method) |
| { |
| if (method.kind() == GetByOffsetMethod::LoadFromPrototype |
| && method.prototype()->structure()->dfgShouldWatch()) { |
| if (JSValue constant = m_graph.tryGetConstantProperty(method.prototype()->value(), method.prototype()->structure(), method.offset())) |
| return GetByOffsetMethod::constant(m_graph.freeze(constant)); |
| } |
| |
| return method; |
| } |
| |
| GetByOffsetMethod ByteCodeParser::planLoad(const ObjectPropertyCondition& condition) |
| { |
| if (verbose) |
| dataLog("Planning a load: ", condition, "\n"); |
| |
| // We might promote this to Equivalence, and a later DFG pass might also do such promotion |
| // even if we fail, but for simplicity this cannot be asked to load an equivalence condition. |
| // None of the clients of this method will request a load of an Equivalence condition anyway, |
| // and supporting it would complicate the heuristics below. |
| RELEASE_ASSERT(condition.kind() == PropertyCondition::Presence); |
| |
| // Here's the ranking of how to handle this, from most preferred to least preferred: |
| // |
| // 1) Watchpoint on an equivalence condition and return a constant node for the loaded value. |
| // No other code is emitted, and the structure of the base object is never registered. |
| // Hence this results in zero code and we won't jettison this compilation if the object |
| // transitions, even if the structure is watchable right now. |
| // |
| // 2) Need to emit a load, and the current structure of the base is going to be watched by the |
| // DFG anyway (i.e. dfgShouldWatch). Watch the structure and emit the load. Don't watch the |
| // condition, since the act of turning the base into a constant in IR will cause the DFG to |
| // watch the structure anyway and doing so would subsume watching the condition. |
| // |
| // 3) Need to emit a load, and the current structure of the base is watchable but not by the |
| // DFG (i.e. transitionWatchpointSetIsStillValid() and !dfgShouldWatchIfPossible()). Watch |
| // the condition, and emit a load. |
| // |
| // 4) Need to emit a load, and the current structure of the base is not watchable. Emit a |
| // structure check, and emit a load. |
| // |
| // 5) The condition does not hold. Give up and return null. |
| |
| // First, try to promote Presence to Equivalence. We do this before doing anything else |
| // because it's the most profitable. Also, there are cases where the presence is watchable but |
| // we don't want to watch it unless it became an equivalence (see the relationship between |
| // (1), (2), and (3) above). |
| ObjectPropertyCondition equivalenceCondition = condition.attemptToMakeEquivalenceWithoutBarrier(); |
| if (m_graph.watchCondition(equivalenceCondition)) |
| return GetByOffsetMethod::constant(m_graph.freeze(equivalenceCondition.requiredValue())); |
| |
| // At this point, we'll have to materialize the condition's base as a constant in DFG IR. Once |
| // we do this, the frozen value will have its own idea of what the structure is. Use that from |
| // now on just because it's less confusing. |
| FrozenValue* base = m_graph.freeze(condition.object()); |
| Structure* structure = base->structure(); |
| |
| // Check if the structure that we've registered makes the condition hold. If not, just give |
| // up. This is case (5) above. |
| if (!condition.structureEnsuresValidity(structure)) |
| return GetByOffsetMethod(); |
| |
| // If the structure is watched by the DFG already, then just use this fact to emit the load. |
| // This is case (2) above. |
| if (structure->dfgShouldWatch()) |
| return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset())); |
| |
| // If we can watch the condition right now, then we can emit the load after watching it. This |
| // is case (3) above. |
| if (m_graph.watchCondition(condition)) |
| return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset())); |
| |
| // We can't watch anything but we know that the current structure satisfies the condition. So, |
| // check for that structure and then emit the load. |
| addToGraph( |
| CheckStructure, |
| OpInfo(m_graph.addStructureSet(structure)), |
| addToGraph(JSConstant, OpInfo(base))); |
| return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset())); |
| } |
| |
| Node* ByteCodeParser::load( |
| SpeculatedType prediction, unsigned identifierNumber, const GetByOffsetMethod& method, |
| NodeType op) |
| { |
| switch (method.kind()) { |
| case GetByOffsetMethod::Invalid: |
| return nullptr; |
| case GetByOffsetMethod::Constant: |
| return addToGraph(JSConstant, OpInfo(method.constant())); |
| case GetByOffsetMethod::LoadFromPrototype: { |
| Node* baseNode = addToGraph(JSConstant, OpInfo(method.prototype())); |
| return handleGetByOffset(prediction, baseNode, identifierNumber, method.offset(), op); |
| } |
| case GetByOffsetMethod::Load: |
| // Will never see this from planLoad(). |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| } |
| |
| Node* ByteCodeParser::load( |
| SpeculatedType prediction, const ObjectPropertyCondition& condition, NodeType op) |
| { |
| GetByOffsetMethod method = planLoad(condition); |
| return load(prediction, m_graph.identifiers().ensure(condition.uid()), method, op); |
| } |
| |
| bool ByteCodeParser::check(const ObjectPropertyConditionSet& conditionSet) |
| { |
| for (const ObjectPropertyCondition condition : conditionSet) { |
| if (!check(condition)) |
| return false; |
| } |
| return true; |
| } |
| |
| GetByOffsetMethod ByteCodeParser::planLoad(const ObjectPropertyConditionSet& conditionSet) |
| { |
| if (verbose) |
| dataLog("conditionSet = ", conditionSet, "\n"); |
| |
| GetByOffsetMethod result; |
| for (const ObjectPropertyCondition condition : conditionSet) { |
| switch (condition.kind()) { |
| case PropertyCondition::Presence: |
| RELEASE_ASSERT(!result); // Should only see exactly one of these. |
| result = planLoad(condition); |
| if (!result) |
| return GetByOffsetMethod(); |
| break; |
| default: |
| if (!check(condition)) |
| return GetByOffsetMethod(); |
| break; |
| } |
| } |
| RELEASE_ASSERT(!!result); |
| return result; |
| } |
| |
| Node* ByteCodeParser::load( |
| SpeculatedType prediction, const ObjectPropertyConditionSet& conditionSet, NodeType op) |
| { |
| GetByOffsetMethod method = planLoad(conditionSet); |
| return load( |
| prediction, |
| m_graph.identifiers().ensure(conditionSet.slotBaseCondition().uid()), |
| method, op); |
| } |
| |
| ObjectPropertyCondition ByteCodeParser::presenceLike( |
| JSObject* knownBase, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set) |
| { |
| if (set.isEmpty()) |
| return ObjectPropertyCondition(); |
| unsigned attributes; |
| PropertyOffset firstOffset = set[0]->getConcurrently(uid, attributes); |
| if (firstOffset != offset) |
| return ObjectPropertyCondition(); |
| for (unsigned i = 1; i < set.size(); ++i) { |
| unsigned otherAttributes; |
| PropertyOffset otherOffset = set[i]->getConcurrently(uid, otherAttributes); |
| if (otherOffset != offset || otherAttributes != attributes) |
| return ObjectPropertyCondition(); |
| } |
| return ObjectPropertyCondition::presenceWithoutBarrier(knownBase, uid, offset, attributes); |
| } |
| |
| bool ByteCodeParser::checkPresenceLike( |
| JSObject* knownBase, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set) |
| { |
| return check(presenceLike(knownBase, uid, offset, set)); |
| } |
| |
| void ByteCodeParser::checkPresenceLike( |
| Node* base, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set) |
| { |
| if (JSObject* knownBase = base->dynamicCastConstant<JSObject*>()) { |
| if (checkPresenceLike(knownBase, uid, offset, set)) |
| return; |
| } |
| |
| addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(set)), base); |
| } |
| |
| template<typename VariantType> |
| Node* ByteCodeParser::load( |
| SpeculatedType prediction, Node* base, unsigned identifierNumber, const VariantType& variant) |
| { |
| // Make sure backwards propagation knows that we've used base. |
| addToGraph(Phantom, base); |
| |
| bool needStructureCheck = true; |
| |
| if (JSObject* knownBase = base->dynamicCastConstant<JSObject*>()) { |
| // Try to optimize away the structure check. Note that it's not worth doing anything about this |
| // if the base's structure is watched. |
| Structure* structure = base->constant()->structure(); |
| if (!structure->dfgShouldWatch()) { |
| UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber]; |
| |
| if (!variant.conditionSet().isEmpty()) { |
| // This means that we're loading from a prototype. We expect the base not to have the |
| // property. We can only use ObjectPropertyCondition if all of the structures in the |
| // variant.structureSet() agree on the prototype (it would be hilariously rare if they |
| // didn't). Note that we are relying on structureSet() having at least one element. That |
| // will always be true here because of how GetByIdStatus/PutByIdStatus work. |
| JSObject* prototype = variant.structureSet()[0]->storedPrototypeObject(); |
| bool allAgree = true; |
| for (unsigned i = 1; i < variant.structureSet().size(); ++i) { |
| if (variant.structureSet()[i]->storedPrototypeObject() != prototype) { |
| allAgree = false; |
| break; |
| } |
| } |
| if (allAgree) { |
| ObjectPropertyCondition condition = ObjectPropertyCondition::absenceWithoutBarrier( |
| knownBase, uid, prototype); |
| if (check(condition)) |
| needStructureCheck = false; |
| } |
| } else { |
| // This means we're loading directly from base. We can avoid all of the code that follows |
| // if we can prove that the property is a constant. Otherwise, we try to prove that the |
| // property is watchably present, in which case we get rid of the structure check. |
| |
| ObjectPropertyCondition presenceCondition = |
| presenceLike(knownBase, uid, variant.offset(), variant.structureSet()); |
| |
| ObjectPropertyCondition equivalenceCondition = |
| presenceCondition.attemptToMakeEquivalenceWithoutBarrier(); |
| if (m_graph.watchCondition(equivalenceCondition)) |
| return weakJSConstant(equivalenceCondition.requiredValue()); |
| |
| if (check(presenceCondition)) |
| needStructureCheck = false; |
| } |
| } |
| } |
| |
| if (needStructureCheck) |
| addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.structureSet())), base); |
| |
| SpeculatedType loadPrediction; |
| NodeType loadOp; |
| if (variant.callLinkStatus()) { |
| loadPrediction = SpecCellOther; |
| loadOp = GetGetterSetterByOffset; |
| } else { |
| loadPrediction = prediction; |
| loadOp = GetByOffset; |
| } |
| |
| Node* loadedValue; |
| if (!variant.conditionSet().isEmpty()) |
| loadedValue = load(loadPrediction, variant.conditionSet(), loadOp); |
| else { |
| if (needStructureCheck && base->hasConstant()) { |
| // We did emit a structure check. That means that we have an opportunity to do constant folding |
| // here, since we didn't do it above. |
| JSValue constant = m_graph.tryGetConstantProperty( |
| base->asJSValue(), variant.structureSet(), variant.offset()); |
| if (constant) |
| return weakJSConstant(constant); |
| } |
| |
| loadedValue = handleGetByOffset( |
| loadPrediction, base, identifierNumber, variant.offset(), loadOp); |
| } |
| |
| return loadedValue; |
| } |
| |
| Node* ByteCodeParser::store(Node* base, unsigned identifier, const PutByIdVariant& variant, Node* value) |
| { |
| RELEASE_ASSERT(variant.kind() == PutByIdVariant::Replace); |
| |
| checkPresenceLike(base, m_graph.identifiers()[identifier], variant.offset(), variant.structure()); |
| return handlePutByOffset(base, identifier, variant.offset(), value); |
| } |
| |
| void ByteCodeParser::handleGetById( |
| int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber, |
| const GetByIdStatus& getByIdStatus) |
| { |
| NodeType getById = getByIdStatus.makesCalls() ? GetByIdFlush : GetById; |
| |
| if (!getByIdStatus.isSimple() || !getByIdStatus.numVariants() || !Options::enableAccessInlining()) { |
| set(VirtualRegister(destinationOperand), |
| addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base)); |
| return; |
| } |
| |
| if (getByIdStatus.numVariants() > 1) { |
| if (getByIdStatus.makesCalls() || !isFTL(m_graph.m_plan.mode) |
| || !Options::enablePolymorphicAccessInlining()) { |
| set(VirtualRegister(destinationOperand), |
| addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base)); |
| return; |
| } |
| |
| Vector<MultiGetByOffsetCase, 2> cases; |
| |
| // 1) Emit prototype structure checks for all chains. This could sort of maybe not be |
| // optimal, if there is some rarely executed case in the chain that requires a lot |
| // of checks and those checks are not watchpointable. |
| for (const GetByIdVariant& variant : getByIdStatus.variants()) { |
| if (variant.conditionSet().isEmpty()) { |
| cases.append( |
| MultiGetByOffsetCase( |
| variant.structureSet(), |
| GetByOffsetMethod::load(variant.offset()))); |
| continue; |
| } |
| |
| GetByOffsetMethod method = planLoad(variant.conditionSet()); |
| if (!method) { |
| set(VirtualRegister(destinationOperand), |
| addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base)); |
| return; |
| } |
| |
| cases.append(MultiGetByOffsetCase(variant.structureSet(), method)); |
| } |
| |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedGetById(); |
| |
| // 2) Emit a MultiGetByOffset |
| MultiGetByOffsetData* data = m_graph.m_multiGetByOffsetData.add(); |
| data->cases = cases; |
| data->identifierNumber = identifierNumber; |
| set(VirtualRegister(destinationOperand), |
| addToGraph(MultiGetByOffset, OpInfo(data), OpInfo(prediction), base)); |
| return; |
| } |
| |
| ASSERT(getByIdStatus.numVariants() == 1); |
| GetByIdVariant variant = getByIdStatus[0]; |
| |
| Node* loadedValue = load(prediction, base, identifierNumber, variant); |
| if (!loadedValue) { |
| set(VirtualRegister(destinationOperand), |
| addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base)); |
| return; |
| } |
| |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedGetById(); |
| |
| if (!variant.callLinkStatus()) { |
| set(VirtualRegister(destinationOperand), loadedValue); |
| return; |
| } |
| |
| Node* getter = addToGraph(GetGetter, loadedValue); |
| |
| // Make a call. We don't try to get fancy with using the smallest operand number because |
| // the stack layout phase should compress the stack anyway. |
| |
| unsigned numberOfParameters = 0; |
| numberOfParameters++; // The 'this' argument. |
| numberOfParameters++; // True return PC. |
| |
| // Start with a register offset that corresponds to the last in-use register. |
| int registerOffset = virtualRegisterForLocal( |
| m_inlineStackTop->m_profiledBlock->m_numCalleeRegisters - 1).offset(); |
| registerOffset -= numberOfParameters; |
| registerOffset -= JSStack::CallFrameHeaderSize; |
| |
| // Get the alignment right. |
| registerOffset = -WTF::roundUpToMultipleOf( |
| stackAlignmentRegisters(), |
| -registerOffset); |
| |
| ensureLocals( |
| m_inlineStackTop->remapOperand( |
| VirtualRegister(registerOffset)).toLocal()); |
| |
| // Issue SetLocals. This has two effects: |
| // 1) That's how handleCall() sees the arguments. |
| // 2) If we inline then this ensures that the arguments are flushed so that if you use |
| // the dreaded arguments object on the getter, the right things happen. Well, sort of - |
| // since we only really care about 'this' in this case. But we're not going to take that |
| // shortcut. |
| int nextRegister = registerOffset + JSStack::CallFrameHeaderSize; |
| set(VirtualRegister(nextRegister++), base, ImmediateNakedSet); |
| |
| // We've set some locals, but they are not user-visible. It's still OK to exit from here. |
| m_exitOK = true; |
| addToGraph(ExitOK); |
| |
| handleCall( |
| destinationOperand, Call, InlineCallFrame::GetterCall, OPCODE_LENGTH(op_get_by_id), |
| getter, numberOfParameters - 1, registerOffset, *variant.callLinkStatus(), prediction); |
| } |
| |
| void ByteCodeParser::emitPutById( |
| Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus& putByIdStatus, bool isDirect) |
| { |
| if (isDirect) |
| addToGraph(PutByIdDirect, OpInfo(identifierNumber), base, value); |
| else |
| addToGraph(putByIdStatus.makesCalls() ? PutByIdFlush : PutById, OpInfo(identifierNumber), base, value); |
| } |
| |
| void ByteCodeParser::handlePutById( |
| Node* base, unsigned identifierNumber, Node* value, |
| const PutByIdStatus& putByIdStatus, bool isDirect) |
| { |
| if (!putByIdStatus.isSimple() || !putByIdStatus.numVariants() || !Options::enableAccessInlining()) { |
| if (!putByIdStatus.isSet()) |
| addToGraph(ForceOSRExit); |
| emitPutById(base, identifierNumber, value, putByIdStatus, isDirect); |
| return; |
| } |
| |
| if (putByIdStatus.numVariants() > 1) { |
| if (!isFTL(m_graph.m_plan.mode) || putByIdStatus.makesCalls() |
| || !Options::enablePolymorphicAccessInlining()) { |
| emitPutById(base, identifierNumber, value, putByIdStatus, isDirect); |
| return; |
| } |
| |
| if (!isDirect) { |
| for (unsigned variantIndex = putByIdStatus.numVariants(); variantIndex--;) { |
| if (putByIdStatus[variantIndex].kind() != PutByIdVariant::Transition) |
| continue; |
| if (!check(putByIdStatus[variantIndex].conditionSet())) { |
| emitPutById(base, identifierNumber, value, putByIdStatus, isDirect); |
| return; |
| } |
| } |
| } |
| |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedPutById(); |
| |
| MultiPutByOffsetData* data = m_graph.m_multiPutByOffsetData.add(); |
| data->variants = putByIdStatus.variants(); |
| data->identifierNumber = identifierNumber; |
| addToGraph(MultiPutByOffset, OpInfo(data), base, value); |
| return; |
| } |
| |
| ASSERT(putByIdStatus.numVariants() == 1); |
| const PutByIdVariant& variant = putByIdStatus[0]; |
| |
| switch (variant.kind()) { |
| case PutByIdVariant::Replace: { |
| store(base, identifierNumber, variant, value); |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedPutById(); |
| return; |
| } |
| |
| case PutByIdVariant::Transition: { |
| addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.oldStructure())), base); |
| if (!check(variant.conditionSet())) { |
| emitPutById(base, identifierNumber, value, putByIdStatus, isDirect); |
| return; |
| } |
| |
| ASSERT(variant.oldStructureForTransition()->transitionWatchpointSetHasBeenInvalidated()); |
| |
| Node* propertyStorage; |
| Transition* transition = m_graph.m_transitions.add( |
| variant.oldStructureForTransition(), variant.newStructure()); |
| |
| if (variant.reallocatesStorage()) { |
| |
| // If we're growing the property storage then it must be because we're |
| // storing into the out-of-line storage. |
| ASSERT(!isInlineOffset(variant.offset())); |
| |
| if (!variant.oldStructureForTransition()->outOfLineCapacity()) { |
| propertyStorage = addToGraph( |
| AllocatePropertyStorage, OpInfo(transition), base); |
| } else { |
| propertyStorage = addToGraph( |
| ReallocatePropertyStorage, OpInfo(transition), |
| base, addToGraph(GetButterfly, base)); |
| } |
| } else { |
| if (isInlineOffset(variant.offset())) |
| propertyStorage = base; |
| else |
| propertyStorage = addToGraph(GetButterfly, base); |
| } |
| |
| StorageAccessData* data = m_graph.m_storageAccessData.add(); |
| data->offset = variant.offset(); |
| data->identifierNumber = identifierNumber; |
| |
| addToGraph( |
| PutByOffset, |
| OpInfo(data), |
| propertyStorage, |
| base, |
| value); |
| |
| // FIXME: PutStructure goes last until we fix either |
| // https://bugs.webkit.org/show_bug.cgi?id=142921 or |
| // https://bugs.webkit.org/show_bug.cgi?id=142924. |
| addToGraph(PutStructure, OpInfo(transition), base); |
| |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedPutById(); |
| return; |
| } |
| |
| case PutByIdVariant::Setter: { |
| Node* loadedValue = load(SpecCellOther, base, identifierNumber, variant); |
| if (!loadedValue) { |
| emitPutById(base, identifierNumber, value, putByIdStatus, isDirect); |
| return; |
| } |
| |
| Node* setter = addToGraph(GetSetter, loadedValue); |
| |
| // Make a call. We don't try to get fancy with using the smallest operand number because |
| // the stack layout phase should compress the stack anyway. |
| |
| unsigned numberOfParameters = 0; |
| numberOfParameters++; // The 'this' argument. |
| numberOfParameters++; // The new value. |
| numberOfParameters++; // True return PC. |
| |
| // Start with a register offset that corresponds to the last in-use register. |
| int registerOffset = virtualRegisterForLocal( |
| m_inlineStackTop->m_profiledBlock->m_numCalleeRegisters - 1).offset(); |
| registerOffset -= numberOfParameters; |
| registerOffset -= JSStack::CallFrameHeaderSize; |
| |
| // Get the alignment right. |
| registerOffset = -WTF::roundUpToMultipleOf( |
| stackAlignmentRegisters(), |
| -registerOffset); |
| |
| ensureLocals( |
| m_inlineStackTop->remapOperand( |
| VirtualRegister(registerOffset)).toLocal()); |
| |
| int nextRegister = registerOffset + JSStack::CallFrameHeaderSize; |
| set(VirtualRegister(nextRegister++), base, ImmediateNakedSet); |
| set(VirtualRegister(nextRegister++), value, ImmediateNakedSet); |
| |
| // We've set some locals, but they are not user-visible. It's still OK to exit from here. |
| m_exitOK = true; |
| addToGraph(ExitOK); |
| |
| handleCall( |
| VirtualRegister().offset(), Call, InlineCallFrame::SetterCall, |
| OPCODE_LENGTH(op_put_by_id), setter, numberOfParameters - 1, registerOffset, |
| *variant.callLinkStatus(), SpecOther); |
| return; |
| } |
| |
| default: { |
| emitPutById(base, identifierNumber, value, putByIdStatus, isDirect); |
| return; |
| } } |
| } |
| |
| void ByteCodeParser::prepareToParseBlock() |
| { |
| clearCaches(); |
| ASSERT(m_setLocalQueue.isEmpty()); |
| } |
| |
| void ByteCodeParser::clearCaches() |
| { |
| m_constants.resize(0); |
| } |
| |
| bool ByteCodeParser::parseBlock(unsigned limit) |
| { |
| bool shouldContinueParsing = true; |
| |
| Interpreter* interpreter = m_vm->interpreter; |
| Instruction* instructionsBegin = m_inlineStackTop->m_codeBlock->instructions().begin(); |
| unsigned blockBegin = m_currentIndex; |
| |
| // If we are the first basic block, introduce markers for arguments. This allows |
| // us to track if a use of an argument may use the actual argument passed, as |
| // opposed to using a value we set explicitly. |
| if (m_currentBlock == m_graph.block(0) && !inlineCallFrame()) { |
| m_graph.m_arguments.resize(m_numArguments); |
| // We will emit SetArgument nodes. They don't exit, but we're at the top of an op_enter so |
| // exitOK = true. |
| m_exitOK = true; |
| for (unsigned argument = 0; argument < m_numArguments; ++argument) { |
| VariableAccessData* variable = newVariableAccessData( |
| virtualRegisterForArgument(argument)); |
| variable->mergeStructureCheckHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)); |
| variable->mergeCheckArrayHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType)); |
| |
| Node* setArgument = addToGraph(SetArgument, OpInfo(variable)); |
| m_graph.m_arguments[argument] = setArgument; |
| m_currentBlock->variablesAtTail.setArgumentFirstTime(argument, setArgument); |
| } |
| } |
| |
| while (true) { |
| // We're staring a new bytecode instruction. Hence, we once again have a place that we can exit |
| // to. |
| m_exitOK = true; |
| |
| processSetLocalQueue(); |
| |
| // Don't extend over jump destinations. |
| if (m_currentIndex == limit) { |
| // Ordinarily we want to plant a jump. But refuse to do this if the block is |
| // empty. This is a special case for inlining, which might otherwise create |
| // some empty blocks in some cases. When parseBlock() returns with an empty |
| // block, it will get repurposed instead of creating a new one. Note that this |
| // logic relies on every bytecode resulting in one or more nodes, which would |
| // be true anyway except for op_loop_hint, which emits a Phantom to force this |
| // to be true. |
| if (!m_currentBlock->isEmpty()) |
| addToGraph(Jump, OpInfo(m_currentIndex)); |
| return shouldContinueParsing; |
| } |
| |
| // Switch on the current bytecode opcode. |
| Instruction* currentInstruction = instructionsBegin + m_currentIndex; |
| m_currentInstruction = currentInstruction; // Some methods want to use this, and we'd rather not thread it through calls. |
| OpcodeID opcodeID = interpreter->getOpcodeID(currentInstruction->u.opcode); |
| |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog(" parsing ", currentCodeOrigin(), "\n"); |
| |
| if (m_graph.compilation()) { |
| addToGraph(CountExecution, OpInfo(m_graph.compilation()->executionCounterFor( |
| Profiler::OriginStack(*m_vm->m_perBytecodeProfiler, m_codeBlock, currentCodeOrigin())))); |
| } |
| |
| switch (opcodeID) { |
| |
| // === Function entry opcodes === |
| |
| case op_enter: { |
| Node* undefined = addToGraph(JSConstant, OpInfo(m_constantUndefined)); |
| // Initialize all locals to undefined. |
| for (int i = 0; i < m_inlineStackTop->m_codeBlock->m_numVars; ++i) |
| set(virtualRegisterForLocal(i), undefined, ImmediateNakedSet); |
| NEXT_OPCODE(op_enter); |
| } |
| |
| case op_to_this: { |
| Node* op1 = getThis(); |
| if (op1->op() != ToThis) { |
| Structure* cachedStructure = currentInstruction[2].u.structure.get(); |
| if (currentInstruction[2].u.toThisStatus != ToThisOK |
| || !cachedStructure |
| || cachedStructure->classInfo()->methodTable.toThis != JSObject::info()->methodTable.toThis |
| || m_inlineStackTop->m_profiledBlock->couldTakeSlowCase(m_currentIndex) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache) |
| || (op1->op() == GetLocal && op1->variableAccessData()->structureCheckHoistingFailed())) { |
| setThis(addToGraph(ToThis, op1)); |
| } else { |
| addToGraph( |
| CheckStructure, |
| OpInfo(m_graph.addStructureSet(cachedStructure)), |
| op1); |
| } |
| } |
| NEXT_OPCODE(op_to_this); |
| } |
| |
| case op_create_this: { |
| int calleeOperand = currentInstruction[2].u.operand; |
| Node* callee = get(VirtualRegister(calleeOperand)); |
| |
| JSFunction* function = callee->dynamicCastConstant<JSFunction*>(); |
| if (!function) { |
| JSCell* cachedFunction = currentInstruction[4].u.jsCell.unvalidatedGet(); |
| if (cachedFunction |
| && cachedFunction != JSCell::seenMultipleCalleeObjects() |
| && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell)) { |
| ASSERT(cachedFunction->inherits(JSFunction::info())); |
| |
| FrozenValue* frozen = m_graph.freeze(cachedFunction); |
| addToGraph(CheckCell, OpInfo(frozen), callee); |
| |
| function = static_cast<JSFunction*>(cachedFunction); |
| } |
| } |
| |
| bool alreadyEmitted = false; |
| if (function) { |
| if (FunctionRareData* rareData = function->rareData()) { |
| if (Structure* structure = rareData->allocationStructure()) { |
| m_graph.freeze(rareData); |
| m_graph.watchpoints().addLazily(rareData->allocationProfileWatchpointSet()); |
| // The callee is still live up to this point. |
| addToGraph(Phantom, callee); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewObject, OpInfo(structure))); |
| alreadyEmitted = true; |
| } |
| } |
| } |
| if (!alreadyEmitted) { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(CreateThis, OpInfo(currentInstruction[3].u.operand), callee)); |
| } |
| NEXT_OPCODE(op_create_this); |
| } |
| |
| case op_new_object: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(NewObject, |
| OpInfo(currentInstruction[3].u.objectAllocationProfile->structure()))); |
| NEXT_OPCODE(op_new_object); |
| } |
| |
| case op_new_array: { |
| int startOperand = currentInstruction[2].u.operand; |
| int numOperands = currentInstruction[3].u.operand; |
| ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile; |
| for (int operandIdx = startOperand; operandIdx > startOperand - numOperands; --operandIdx) |
| addVarArgChild(get(VirtualRegister(operandIdx))); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(Node::VarArg, NewArray, OpInfo(profile->selectIndexingType()), OpInfo(0))); |
| NEXT_OPCODE(op_new_array); |
| } |
| |
| case op_new_array_with_size: { |
| int lengthOperand = currentInstruction[2].u.operand; |
| ArrayAllocationProfile* profile = currentInstruction[3].u.arrayAllocationProfile; |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayWithSize, OpInfo(profile->selectIndexingType()), get(VirtualRegister(lengthOperand)))); |
| NEXT_OPCODE(op_new_array_with_size); |
| } |
| |
| case op_new_array_buffer: { |
| int startConstant = currentInstruction[2].u.operand; |
| int numConstants = currentInstruction[3].u.operand; |
| ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile; |
| NewArrayBufferData data; |
| data.startConstant = m_inlineStackTop->m_constantBufferRemap[startConstant]; |
| data.numConstants = numConstants; |
| data.indexingType = profile->selectIndexingType(); |
| |
| // If this statement has never executed, we'll have the wrong indexing type in the profile. |
| for (int i = 0; i < numConstants; ++i) { |
| data.indexingType = |
| leastUpperBoundOfIndexingTypeAndValue( |
| data.indexingType, |
| m_codeBlock->constantBuffer(data.startConstant)[i]); |
| } |
| |
| m_graph.m_newArrayBufferData.append(data); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayBuffer, OpInfo(&m_graph.m_newArrayBufferData.last()))); |
| NEXT_OPCODE(op_new_array_buffer); |
| } |
| |
| case op_new_regexp: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewRegexp, OpInfo(currentInstruction[2].u.operand))); |
| NEXT_OPCODE(op_new_regexp); |
| } |
| |
| // === Bitwise operations === |
| |
| case op_bitand: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitAnd, op1, op2)); |
| NEXT_OPCODE(op_bitand); |
| } |
| |
| case op_bitor: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitOr, op1, op2)); |
| NEXT_OPCODE(op_bitor); |
| } |
| |
| case op_bitxor: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitXor, op1, op2)); |
| NEXT_OPCODE(op_bitxor); |
| } |
| |
| case op_rshift: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(BitRShift, op1, op2)); |
| NEXT_OPCODE(op_rshift); |
| } |
| |
| case op_lshift: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(BitLShift, op1, op2)); |
| NEXT_OPCODE(op_lshift); |
| } |
| |
| case op_urshift: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(BitURShift, op1, op2)); |
| NEXT_OPCODE(op_urshift); |
| } |
| |
| case op_unsigned: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| makeSafe(addToGraph(UInt32ToNumber, get(VirtualRegister(currentInstruction[2].u.operand))))); |
| NEXT_OPCODE(op_unsigned); |
| } |
| |
| // === Increment/Decrement opcodes === |
| |
| case op_inc: { |
| int srcDst = currentInstruction[1].u.operand; |
| VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst); |
| Node* op = get(srcDstVirtualRegister); |
| set(srcDstVirtualRegister, makeSafe(addToGraph(ArithAdd, op, addToGraph(JSConstant, OpInfo(m_constantOne))))); |
| NEXT_OPCODE(op_inc); |
| } |
| |
| case op_dec: { |
| int srcDst = currentInstruction[1].u.operand; |
| VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst); |
| Node* op = get(srcDstVirtualRegister); |
| set(srcDstVirtualRegister, makeSafe(addToGraph(ArithSub, op, addToGraph(JSConstant, OpInfo(m_constantOne))))); |
| NEXT_OPCODE(op_dec); |
| } |
| |
| // === Arithmetic operations === |
| |
| case op_add: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (op1->hasNumberResult() && op2->hasNumberResult()) |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithAdd, op1, op2))); |
| else |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ValueAdd, op1, op2))); |
| NEXT_OPCODE(op_add); |
| } |
| |
| case op_sub: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithSub, op1, op2))); |
| NEXT_OPCODE(op_sub); |
| } |
| |
| case op_negate: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithNegate, op1))); |
| NEXT_OPCODE(op_negate); |
| } |
| |
| case op_mul: { |
| // Multiply requires that the inputs are not truncated, unfortunately. |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMul, op1, op2))); |
| NEXT_OPCODE(op_mul); |
| } |
| |
| case op_mod: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMod, op1, op2))); |
| NEXT_OPCODE(op_mod); |
| } |
| |
| case op_div: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeDivSafe(addToGraph(ArithDiv, op1, op2))); |
| NEXT_OPCODE(op_div); |
| } |
| |
| // === Misc operations === |
| |
| case op_debug: |
| addToGraph(Breakpoint); |
| NEXT_OPCODE(op_debug); |
| |
| case op_profile_will_call: { |
| addToGraph(ProfileWillCall); |
| NEXT_OPCODE(op_profile_will_call); |
| } |
| |
| case op_profile_did_call: { |
| addToGraph(ProfileDidCall); |
| NEXT_OPCODE(op_profile_did_call); |
| } |
| |
| case op_mov: { |
| Node* op = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), op); |
| NEXT_OPCODE(op_mov); |
| } |
| |
| case op_check_tdz: { |
| addToGraph(CheckNotEmpty, get(VirtualRegister(currentInstruction[1].u.operand))); |
| NEXT_OPCODE(op_check_tdz); |
| } |
| |
| case op_check_has_instance: |
| addToGraph(CheckHasInstance, get(VirtualRegister(currentInstruction[3].u.operand))); |
| NEXT_OPCODE(op_check_has_instance); |
| |
| case op_instanceof: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* prototype = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(InstanceOf, value, prototype)); |
| NEXT_OPCODE(op_instanceof); |
| } |
| |
| case op_is_undefined: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsUndefined, value)); |
| NEXT_OPCODE(op_is_undefined); |
| } |
| |
| case op_is_boolean: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsBoolean, value)); |
| NEXT_OPCODE(op_is_boolean); |
| } |
| |
| case op_is_number: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsNumber, value)); |
| NEXT_OPCODE(op_is_number); |
| } |
| |
| case op_is_string: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsString, value)); |
| NEXT_OPCODE(op_is_string); |
| } |
| |
| case op_is_object: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObject, value)); |
| NEXT_OPCODE(op_is_object); |
| } |
| |
| case op_is_object_or_null: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObjectOrNull, value)); |
| NEXT_OPCODE(op_is_object_or_null); |
| } |
| |
| case op_is_function: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsFunction, value)); |
| NEXT_OPCODE(op_is_function); |
| } |
| |
| case op_not: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, value)); |
| NEXT_OPCODE(op_not); |
| } |
| |
| case op_to_primitive: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToPrimitive, value)); |
| NEXT_OPCODE(op_to_primitive); |
| } |
| |
| case op_strcat: { |
| int startOperand = currentInstruction[2].u.operand; |
| int numOperands = currentInstruction[3].u.operand; |
| #if CPU(X86) |
| // X86 doesn't have enough registers to compile MakeRope with three arguments. The |
| // StrCat we emit here may be turned into a MakeRope. Rather than try to be clever, |
| // we just make StrCat dumber on this processor. |
| const unsigned maxArguments = 2; |
| #else |
| const unsigned maxArguments = 3; |
| #endif |
| Node* operands[AdjacencyList::Size]; |
| unsigned indexInOperands = 0; |
| for (unsigned i = 0; i < AdjacencyList::Size; ++i) |
| operands[i] = 0; |
| for (int operandIdx = 0; operandIdx < numOperands; ++operandIdx) { |
| if (indexInOperands == maxArguments) { |
| operands[0] = addToGraph(StrCat, operands[0], operands[1], operands[2]); |
| for (unsigned i = 1; i < AdjacencyList::Size; ++i) |
| operands[i] = 0; |
| indexInOperands = 1; |
| } |
| |
| ASSERT(indexInOperands < AdjacencyList::Size); |
| ASSERT(indexInOperands < maxArguments); |
| operands[indexInOperands++] = get(VirtualRegister(startOperand - operandIdx)); |
| } |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(StrCat, operands[0], operands[1], operands[2])); |
| NEXT_OPCODE(op_strcat); |
| } |
| |
| case op_less: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLess, op1, op2)); |
| NEXT_OPCODE(op_less); |
| } |
| |
| case op_lesseq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLessEq, op1, op2)); |
| NEXT_OPCODE(op_lesseq); |
| } |
| |
| case op_greater: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreater, op1, op2)); |
| NEXT_OPCODE(op_greater); |
| } |
| |
| case op_greatereq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreaterEq, op1, op2)); |
| NEXT_OPCODE(op_greatereq); |
| } |
| |
| case op_eq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEq, op1, op2)); |
| NEXT_OPCODE(op_eq); |
| } |
| |
| case op_eq_null: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEq, value, nullConstant)); |
| NEXT_OPCODE(op_eq_null); |
| } |
| |
| case op_stricteq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareStrictEq, op1, op2)); |
| NEXT_OPCODE(op_stricteq); |
| } |
| |
| case op_neq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEq, op1, op2))); |
| NEXT_OPCODE(op_neq); |
| } |
| |
| case op_neq_null: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEq, value, nullConstant))); |
| NEXT_OPCODE(op_neq_null); |
| } |
| |
| case op_nstricteq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| Node* invertedResult; |
| invertedResult = addToGraph(CompareStrictEq, op1, op2); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, invertedResult)); |
| NEXT_OPCODE(op_nstricteq); |
| } |
| |
| // === Property access operations === |
| |
| case op_get_by_val: { |
| SpeculatedType prediction = getPredictionWithoutOSRExit(); |
| |
| Node* base = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* property = get(VirtualRegister(currentInstruction[3].u.operand)); |
| bool compiledAsGetById = false; |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| ByValInfo* byValInfo = m_inlineStackTop->m_byValInfos.get(CodeOrigin(currentCodeOrigin().bytecodeIndex)); |
| // FIXME: When the bytecode is not compiled in the baseline JIT, byValInfo becomes null. |
| // At that time, there is no information. |
| if (byValInfo && byValInfo->stubInfo && !byValInfo->tookSlowPath && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIdent)) { |
| compiledAsGetById = true; |
| unsigned identifierNumber = m_graph.identifiers().ensure(byValInfo->cachedId.impl()); |
| UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber]; |
| |
| addToGraph(CheckIdent, OpInfo(uid), property); |
| |
| GetByIdStatus getByIdStatus = GetByIdStatus::computeForStubInfo( |
| locker, m_inlineStackTop->m_profiledBlock, |
| byValInfo->stubInfo, currentCodeOrigin(), uid); |
| |
| handleGetById(currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus); |
| } |
| } |
| |
| if (!compiledAsGetById) { |
| ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read); |
| Node* getByVal = addToGraph(GetByVal, OpInfo(arrayMode.asWord()), OpInfo(prediction), base, property); |
| m_exitOK = false; // GetByVal must be treated as if it clobbers exit state, since FixupPhase may make it generic. |
| set(VirtualRegister(currentInstruction[1].u.operand), getByVal); |
| } |
| |
| NEXT_OPCODE(op_get_by_val); |
| } |
| |
| case op_put_by_val_direct: |
| case op_put_by_val: { |
| Node* base = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* property = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* value = get(VirtualRegister(currentInstruction[3].u.operand)); |
| bool isDirect = opcodeID == op_put_by_val_direct; |
| bool compiledAsPutById = false; |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| ByValInfo* byValInfo = m_inlineStackTop->m_byValInfos.get(CodeOrigin(currentCodeOrigin().bytecodeIndex)); |
| // FIXME: When the bytecode is not compiled in the baseline JIT, byValInfo becomes null. |
| // At that time, there is no information. |
| if (byValInfo && byValInfo->stubInfo && !byValInfo->tookSlowPath && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIdent)) { |
| compiledAsPutById = true; |
| unsigned identifierNumber = m_graph.identifiers().ensure(byValInfo->cachedId.impl()); |
| UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber]; |
| |
| addToGraph(CheckIdent, OpInfo(uid), property); |
| |
| PutByIdStatus putByIdStatus = PutByIdStatus::computeForStubInfo( |
| locker, m_inlineStackTop->m_profiledBlock, |
| byValInfo->stubInfo, currentCodeOrigin(), uid); |
| |
| handlePutById(base, identifierNumber, value, putByIdStatus, isDirect); |
| } |
| } |
| |
| if (!compiledAsPutById) { |
| ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Write); |
| |
| addVarArgChild(base); |
| addVarArgChild(property); |
| addVarArgChild(value); |
| addVarArgChild(0); // Leave room for property storage. |
| addVarArgChild(0); // Leave room for length. |
| addToGraph(Node::VarArg, isDirect ? PutByValDirect : PutByVal, OpInfo(arrayMode.asWord()), OpInfo(0)); |
| } |
| |
| NEXT_OPCODE(op_put_by_val); |
| } |
| |
| case op_get_by_id: |
| case op_get_array_length: { |
| SpeculatedType prediction = getPrediction(); |
| |
| Node* base = get(VirtualRegister(currentInstruction[2].u.operand)); |
| unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand]; |
| |
| UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber]; |
| GetByIdStatus getByIdStatus = GetByIdStatus::computeFor( |
| m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock, |
| m_inlineStackTop->m_stubInfos, m_dfgStubInfos, |
| currentCodeOrigin(), uid); |
| |
| handleGetById( |
| currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus); |
| |
| NEXT_OPCODE(op_get_by_id); |
| } |
| case op_put_by_id: { |
| Node* value = get(VirtualRegister(currentInstruction[3].u.operand)); |
| Node* base = get(VirtualRegister(currentInstruction[1].u.operand)); |
| unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand]; |
| bool direct = currentInstruction[8].u.putByIdFlags & PutByIdIsDirect; |
| |
| PutByIdStatus putByIdStatus = PutByIdStatus::computeFor( |
| m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock, |
| m_inlineStackTop->m_stubInfos, m_dfgStubInfos, |
| currentCodeOrigin(), m_graph.identifiers()[identifierNumber]); |
| |
| handlePutById(base, identifierNumber, value, putByIdStatus, direct); |
| NEXT_OPCODE(op_put_by_id); |
| } |
| |
| case op_profile_type: { |
| Node* valueToProfile = get(VirtualRegister(currentInstruction[1].u.operand)); |
| addToGraph(ProfileType, OpInfo(currentInstruction[2].u.location), valueToProfile); |
| NEXT_OPCODE(op_profile_type); |
| } |
| |
| case op_profile_control_flow: { |
| BasicBlockLocation* basicBlockLocation = currentInstruction[1].u.basicBlockLocation; |
| addToGraph(ProfileControlFlow, OpInfo(basicBlockLocation)); |
| NEXT_OPCODE(op_profile_control_flow); |
| } |
| |
| // === Block terminators. === |
| |
| case op_jmp: { |
| int relativeOffset = currentInstruction[1].u.operand; |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| if (relativeOffset <= 0) |
| flushForTerminal(); |
| LAST_OPCODE(op_jmp); |
| } |
| |
| case op_jtrue: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| Node* condition = get(VirtualRegister(currentInstruction[1].u.operand)); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jtrue))), condition); |
| LAST_OPCODE(op_jtrue); |
| } |
| |
| case op_jfalse: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| Node* condition = get(VirtualRegister(currentInstruction[1].u.operand)); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jfalse), m_currentIndex + relativeOffset)), condition); |
| LAST_OPCODE(op_jfalse); |
| } |
| |
| case op_jeq_null: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| Node* value = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull)); |
| Node* condition = addToGraph(CompareEq, value, nullConstant); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jeq_null))), condition); |
| LAST_OPCODE(op_jeq_null); |
| } |
| |
| case op_jneq_null: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| Node* value = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull)); |
| Node* condition = addToGraph(CompareEq, value, nullConstant); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jneq_null), m_currentIndex + relativeOffset)), condition); |
| LAST_OPCODE(op_jneq_null); |
| } |
| |
| case op_jless: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* condition = addToGraph(CompareLess, op1, op2); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jless))), condition); |
| LAST_OPCODE(op_jless); |
| } |
| |
| case op_jlesseq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* condition = addToGraph(CompareLessEq, op1, op2); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jlesseq))), condition); |
| LAST_OPCODE(op_jlesseq); |
| } |
| |
| case op_jgreater: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* condition = addToGraph(CompareGreater, op1, op2); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jgreater))), condition); |
| LAST_OPCODE(op_jgreater); |
| } |
| |
| case op_jgreatereq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* condition = addToGraph(CompareGreaterEq, op1, op2); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jgreatereq))), condition); |
| LAST_OPCODE(op_jgreatereq); |
| } |
| |
| case op_jnless: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* condition = addToGraph(CompareLess, op1, op2); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jnless), m_currentIndex + relativeOffset)), condition); |
| LAST_OPCODE(op_jnless); |
| } |
| |
| case op_jnlesseq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* condition = addToGraph(CompareLessEq, op1, op2); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jnlesseq), m_currentIndex + relativeOffset)), condition); |
| LAST_OPCODE(op_jnlesseq); |
| } |
| |
| case op_jngreater: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* condition = addToGraph(CompareGreater, op1, op2); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jngreater), m_currentIndex + relativeOffset)), condition); |
| LAST_OPCODE(op_jngreater); |
| } |
| |
| case op_jngreatereq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* condition = addToGraph(CompareGreaterEq, op1, op2); |
| addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jngreatereq), m_currentIndex + relativeOffset)), condition); |
| LAST_OPCODE(op_jngreatereq); |
| } |
| |
| case op_switch_imm: { |
| SwitchData& data = *m_graph.m_switchData.add(); |
| data.kind = SwitchImm; |
| data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand]; |
| data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand); |
| SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex); |
| for (unsigned i = 0; i < table.branchOffsets.size(); ++i) { |
| if (!table.branchOffsets[i]) |
| continue; |
| unsigned target = m_currentIndex + table.branchOffsets[i]; |
| if (target == data.fallThrough.bytecodeIndex()) |
| continue; |
| data.cases.append(SwitchCase::withBytecodeIndex(m_graph.freeze(jsNumber(static_cast<int32_t>(table.min + i))), target)); |
| } |
| addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand))); |
| flushIfTerminal(data); |
| LAST_OPCODE(op_switch_imm); |
| } |
| |
| case op_switch_char: { |
| SwitchData& data = *m_graph.m_switchData.add(); |
| data.kind = SwitchChar; |
| data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand]; |
| data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand); |
| SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex); |
| for (unsigned i = 0; i < table.branchOffsets.size(); ++i) { |
| if (!table.branchOffsets[i]) |
| continue; |
| unsigned target = m_currentIndex + table.branchOffsets[i]; |
| if (target == data.fallThrough.bytecodeIndex()) |
| continue; |
| data.cases.append( |
| SwitchCase::withBytecodeIndex(LazyJSValue::singleCharacterString(table.min + i), target)); |
| } |
| addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand))); |
| flushIfTerminal(data); |
| LAST_OPCODE(op_switch_char); |
| } |
| |
| case op_switch_string: { |
| SwitchData& data = *m_graph.m_switchData.add(); |
| data.kind = SwitchString; |
| data.switchTableIndex = currentInstruction[1].u.operand; |
| data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand); |
| StringJumpTable& table = m_codeBlock->stringSwitchJumpTable(data.switchTableIndex); |
| StringJumpTable::StringOffsetTable::iterator iter; |
| StringJumpTable::StringOffsetTable::iterator end = table.offsetTable.end(); |
| for (iter = table.offsetTable.begin(); iter != end; ++iter) { |
| unsigned target = m_currentIndex + iter->value.branchOffset; |
| if (target == data.fallThrough.bytecodeIndex()) |
| continue; |
| data.cases.append( |
| SwitchCase::withBytecodeIndex(LazyJSValue::knownStringImpl(iter->key.get()), target)); |
| } |
| addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand))); |
| flushIfTerminal(data); |
| LAST_OPCODE(op_switch_string); |
| } |
| |
| case op_ret: |
| if (inlineCallFrame()) { |
| flushForReturn(); |
| if (m_inlineStackTop->m_returnValue.isValid()) |
| setDirect(m_inlineStackTop->m_returnValue, get(VirtualRegister(currentInstruction[1].u.operand)), ImmediateSetWithFlush); |
| m_inlineStackTop->m_didReturn = true; |
| if (m_inlineStackTop->m_unlinkedBlocks.isEmpty()) { |
| // If we're returning from the first block, then we're done parsing. |
| ASSERT(m_inlineStackTop->m_callsiteBlockHead == m_graph.lastBlock()); |
| shouldContinueParsing = false; |
| LAST_OPCODE(op_ret); |
| } else { |
| // If inlining created blocks, and we're doing a return, then we need some |
| // special linking. |
| ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_block == m_graph.lastBlock()); |
| m_inlineStackTop->m_unlinkedBlocks.last().m_needsNormalLinking = false; |
| } |
| if (m_currentIndex + OPCODE_LENGTH(op_ret) != m_inlineStackTop->m_codeBlock->instructions().size() || m_inlineStackTop->m_didEarlyReturn) { |
| ASSERT(m_currentIndex + OPCODE_LENGTH(op_ret) <= m_inlineStackTop->m_codeBlock->instructions().size()); |
| addToGraph(Jump, OpInfo(0)); |
| m_inlineStackTop->m_unlinkedBlocks.last().m_needsEarlyReturnLinking = true; |
| m_inlineStackTop->m_didEarlyReturn = true; |
| } |
| LAST_OPCODE(op_ret); |
| } |
| addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand))); |
| flushForReturn(); |
| LAST_OPCODE(op_ret); |
| |
| case op_end: |
| ASSERT(!inlineCallFrame()); |
| addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand))); |
| flushForReturn(); |
| LAST_OPCODE(op_end); |
| |
| case op_throw: |
| addToGraph(Throw, get(VirtualRegister(currentInstruction[1].u.operand))); |
| flushForTerminal(); |
| addToGraph(Unreachable); |
| LAST_OPCODE(op_throw); |
| |
| case op_throw_static_error: |
| addToGraph(ThrowReferenceError); |
| flushForTerminal(); |
| addToGraph(Unreachable); |
| LAST_OPCODE(op_throw_static_error); |
| |
| case op_call: |
| handleCall(currentInstruction, Call, CodeForCall); |
| // Verify that handleCall(), which could have inlined the callee, didn't trash m_currentInstruction |
| ASSERT(m_currentInstruction == currentInstruction); |
| NEXT_OPCODE(op_call); |
| |
| case op_construct: |
| handleCall(currentInstruction, Construct, CodeForConstruct); |
| NEXT_OPCODE(op_construct); |
| |
| case op_call_varargs: { |
| handleVarargsCall(currentInstruction, CallVarargs, CodeForCall); |
| NEXT_OPCODE(op_call_varargs); |
| } |
| |
| case op_construct_varargs: { |
| handleVarargsCall(currentInstruction, ConstructVarargs, CodeForConstruct); |
| NEXT_OPCODE(op_construct_varargs); |
| } |
| |
| case op_jneq_ptr: |
| // Statically speculate for now. It makes sense to let speculate-only jneq_ptr |
| // support simmer for a while before making it more general, since it's |
| // already gnarly enough as it is. |
| ASSERT(pointerIsFunction(currentInstruction[2].u.specialPointer)); |
| addToGraph( |
| CheckCell, |
| OpInfo(m_graph.freeze(static_cast<JSCell*>(actualPointerFor( |
| m_inlineStackTop->m_codeBlock, currentInstruction[2].u.specialPointer)))), |
| get(VirtualRegister(currentInstruction[1].u.operand))); |
| addToGraph(Jump, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_ptr))); |
| LAST_OPCODE(op_jneq_ptr); |
| |
| case op_resolve_scope: { |
| int dst = currentInstruction[1].u.operand; |
| ResolveType resolveType = static_cast<ResolveType>(currentInstruction[4].u.operand); |
| unsigned depth = currentInstruction[5].u.operand; |
| int scope = currentInstruction[2].u.operand; |
| |
| // get_from_scope and put_to_scope depend on this watchpoint forcing OSR exit, so they don't add their own watchpoints. |
| if (needsVarInjectionChecks(resolveType)) |
| addToGraph(VarInjectionWatchpoint); |
| |
| switch (resolveType) { |
| case GlobalProperty: |
| case GlobalVar: |
| case GlobalPropertyWithVarInjectionChecks: |
| case GlobalVarWithVarInjectionChecks: |
| case GlobalLexicalVar: |
| case GlobalLexicalVarWithVarInjectionChecks: { |
| JSScope* constantScope = JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock); |
| RELEASE_ASSERT(constantScope); |
| RELEASE_ASSERT(static_cast<JSScope*>(currentInstruction[6].u.pointer) == constantScope); |
| set(VirtualRegister(dst), weakJSConstant(constantScope)); |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| break; |
| } |
| case ModuleVar: { |
| // Since the value of the "scope" virtual register is not used in LLInt / baseline op_resolve_scope with ModuleVar, |
| // we need not to keep it alive by the Phantom node. |
| JSModuleEnvironment* moduleEnvironment = jsCast<JSModuleEnvironment*>(currentInstruction[6].u.jsCell.get()); |
| // Module environment is already strongly referenced by the CodeBlock. |
| set(VirtualRegister(dst), weakJSConstant(moduleEnvironment)); |
| break; |
| } |
| case LocalClosureVar: |
| case ClosureVar: |
| case ClosureVarWithVarInjectionChecks: { |
| Node* localBase = get(VirtualRegister(scope)); |
| addToGraph(Phantom, localBase); // OSR exit cannot handle resolve_scope on a DCE'd scope. |
| |
| // We have various forms of constant folding here. This is necessary to avoid |
| // spurious recompiles in dead-but-foldable code. |
| if (SymbolTable* symbolTable = currentInstruction[6].u.symbolTable.get()) { |
| InferredValue* singleton = symbolTable->singletonScope(); |
| if (JSValue value = singleton->inferredValue()) { |
| m_graph.watchpoints().addLazily(singleton); |
| set(VirtualRegister(dst), weakJSConstant(value)); |
| break; |
| } |
| } |
| if (JSScope* scope = localBase->dynamicCastConstant<JSScope*>()) { |
| for (unsigned n = depth; n--;) |
| scope = scope->next(); |
| set(VirtualRegister(dst), weakJSConstant(scope)); |
| break; |
| } |
| for (unsigned n = depth; n--;) |
| localBase = addToGraph(SkipScope, localBase); |
| set(VirtualRegister(dst), localBase); |
| break; |
| } |
| case UnresolvedProperty: |
| case UnresolvedPropertyWithVarInjectionChecks: { |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| addToGraph(ForceOSRExit); |
| set(VirtualRegister(dst), addToGraph(JSConstant, OpInfo(m_constantNull))); |
| break; |
| } |
| case Dynamic: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| NEXT_OPCODE(op_resolve_scope); |
| } |
| |
| case op_get_from_scope: { |
| int dst = currentInstruction[1].u.operand; |
| int scope = currentInstruction[2].u.operand; |
| unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand]; |
| UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber]; |
| ResolveType resolveType = GetPutInfo(currentInstruction[4].u.operand).resolveType(); |
| |
| Structure* structure = 0; |
| WatchpointSet* watchpoints = 0; |
| uintptr_t operand; |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks || resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks) |
| watchpoints = currentInstruction[5].u.watchpointSet; |
| else if (resolveType != UnresolvedProperty && resolveType != UnresolvedPropertyWithVarInjectionChecks) |
| structure = currentInstruction[5].u.structure.get(); |
| operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer); |
| } |
| |
| UNUSED_PARAM(watchpoints); // We will use this in the future. For now we set it as a way of documenting the fact that that's what index 5 is in GlobalVar mode. |
| |
| JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject(); |
| |
| switch (resolveType) { |
| case GlobalProperty: |
| case GlobalPropertyWithVarInjectionChecks: { |
| SpeculatedType prediction = getPrediction(); |
| |
| GetByIdStatus status = GetByIdStatus::computeFor(structure, uid); |
| if (status.state() != GetByIdStatus::Simple |
| || status.numVariants() != 1 |
| || status[0].structureSet().size() != 1) { |
| set(VirtualRegister(dst), addToGraph(GetByIdFlush, OpInfo(identifierNumber), OpInfo(prediction), get(VirtualRegister(scope)))); |
| break; |
| } |
| |
| Node* base = weakJSConstant(globalObject); |
| Node* result = load(prediction, base, identifierNumber, status[0]); |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| set(VirtualRegister(dst), result); |
| break; |
| } |
| case GlobalVar: |
| case GlobalVarWithVarInjectionChecks: |
| case GlobalLexicalVar: |
| case GlobalLexicalVarWithVarInjectionChecks: { |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| WatchpointSet* watchpointSet; |
| ScopeOffset offset; |
| JSSegmentedVariableObject* scopeObject = jsCast<JSSegmentedVariableObject*>(JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock)); |
| { |
| ConcurrentJITLocker locker(scopeObject->symbolTable()->m_lock); |
| SymbolTableEntry entry = scopeObject->symbolTable()->get(locker, uid); |
| watchpointSet = entry.watchpointSet(); |
| offset = entry.scopeOffset(); |
| } |
| if (watchpointSet && watchpointSet->state() == IsWatched) { |
| // This has a fun concurrency story. There is the possibility of a race in two |
| // directions: |
| // |
| // We see that the set IsWatched, but in the meantime it gets invalidated: this is |
| // fine because if we saw that it IsWatched then we add a watchpoint. If it gets |
| // invalidated, then this compilation is invalidated. Note that in the meantime we |
| // may load an absurd value from the global object. It's fine to load an absurd |
| // value if the compilation is invalidated anyway. |
| // |
| // We see that the set IsWatched, but the value isn't yet initialized: this isn't |
| // possible because of the ordering of operations. |
| // |
| // Here's how we order operations: |
| // |
| // Main thread stores to the global object: always store a value first, and only |
| // after that do we touch the watchpoint set. There is a fence in the touch, that |
| // ensures that the store to the global object always happens before the touch on the |
| // set. |
| // |
| // Compilation thread: always first load the state of the watchpoint set, and then |
| // load the value. The WatchpointSet::state() method does fences for us to ensure |
| // that the load of the state happens before our load of the value. |
| // |
| // Finalizing compilation: this happens on the main thread and synchronously checks |
| // validity of all watchpoint sets. |
| // |
| // We will only perform optimizations if the load of the state yields IsWatched. That |
| // means that at least one store would have happened to initialize the original value |
| // of the variable (that is, the value we'd like to constant fold to). There may be |
| // other stores that happen after that, but those stores will invalidate the |
| // watchpoint set and also the compilation. |
| |
| // Note that we need to use the operand, which is a direct pointer at the global, |
| // rather than looking up the global by doing variableAt(offset). That's because the |
| // internal data structures of JSSegmentedVariableObject are not thread-safe even |
| // though accessing the global itself is. The segmentation involves a vector spine |
| // that resizes with malloc/free, so if new globals unrelated to the one we are |
| // reading are added, we might access freed memory if we do variableAt(). |
| WriteBarrier<Unknown>* pointer = bitwise_cast<WriteBarrier<Unknown>*>(operand); |
| |
| ASSERT(scopeObject->findVariableIndex(pointer) == offset); |
| |
| JSValue value = pointer->get(); |
| if (value) { |
| m_graph.watchpoints().addLazily(watchpointSet); |
| set(VirtualRegister(dst), weakJSConstant(value)); |
| break; |
| } |
| } |
| |
| SpeculatedType prediction = getPrediction(); |
| NodeType nodeType; |
| if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks) |
| nodeType = GetGlobalVar; |
| else |
| nodeType = GetGlobalLexicalVariable; |
| Node* value = addToGraph(nodeType, OpInfo(operand), OpInfo(prediction)); |
| if (resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks) |
| addToGraph(CheckNotEmpty, value); |
| set(VirtualRegister(dst), value); |
| break; |
| } |
| case LocalClosureVar: |
| case ClosureVar: |
| case ClosureVarWithVarInjectionChecks: { |
| Node* scopeNode = get(VirtualRegister(scope)); |
| |
| // Ideally we wouldn't have to do this Phantom. But: |
| // |
| // For the constant case: we must do it because otherwise we would have no way of knowing |
| // that the scope is live at OSR here. |
| // |
| // For the non-constant case: GetClosureVar could be DCE'd, but baseline's implementation |
| // won't be able to handle an Undefined scope. |
| addToGraph(Phantom, scopeNode); |
| |
| // Constant folding in the bytecode parser is important for performance. This may not |
| // have executed yet. If it hasn't, then we won't have a prediction. Lacking a |
| // prediction, we'd otherwise think that it has to exit. Then when it did execute, we |
| // would recompile. But if we can fold it here, we avoid the exit. |
| if (JSValue value = m_graph.tryGetConstantClosureVar(scopeNode, ScopeOffset(operand))) { |
| set(VirtualRegister(dst), weakJSConstant(value)); |
| break; |
| } |
| SpeculatedType prediction = getPrediction(); |
| set(VirtualRegister(dst), |
| addToGraph(GetClosureVar, OpInfo(operand), OpInfo(prediction), scopeNode)); |
| break; |
| } |
| case UnresolvedProperty: |
| case UnresolvedPropertyWithVarInjectionChecks: { |
| addToGraph(ForceOSRExit); |
| Node* scopeNode = get(VirtualRegister(scope)); |
| addToGraph(Phantom, scopeNode); |
| set(VirtualRegister(dst), addToGraph(JSConstant, OpInfo(m_constantUndefined))); |
| break; |
| } |
| case ModuleVar: |
| case Dynamic: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| NEXT_OPCODE(op_get_from_scope); |
| } |
| |
| case op_put_to_scope: { |
| unsigned scope = currentInstruction[1].u.operand; |
| unsigned identifierNumber = currentInstruction[2].u.operand; |
| if (identifierNumber != UINT_MAX) |
| identifierNumber = m_inlineStackTop->m_identifierRemap[identifierNumber]; |
| unsigned value = currentInstruction[3].u.operand; |
| GetPutInfo getPutInfo = GetPutInfo(currentInstruction[4].u.operand); |
| ResolveType resolveType = getPutInfo.resolveType(); |
| UniquedStringImpl* uid; |
| if (identifierNumber != UINT_MAX) |
| uid = m_graph.identifiers()[identifierNumber]; |
| else |
| uid = nullptr; |
| |
| Structure* structure = nullptr; |
| WatchpointSet* watchpoints = nullptr; |
| uintptr_t operand; |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks || resolveType == LocalClosureVar || resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks) |
| watchpoints = currentInstruction[5].u.watchpointSet; |
| else if (resolveType != UnresolvedProperty && resolveType != UnresolvedPropertyWithVarInjectionChecks) |
| structure = currentInstruction[5].u.structure.get(); |
| operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer); |
| } |
| |
| JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject(); |
| |
| switch (resolveType) { |
| case GlobalProperty: |
| case GlobalPropertyWithVarInjectionChecks: { |
| PutByIdStatus status; |
| if (uid) |
| status = PutByIdStatus::computeFor(globalObject, structure, uid, false); |
| else |
| status = PutByIdStatus(PutByIdStatus::TakesSlowPath); |
| if (status.numVariants() != 1 |
| || status[0].kind() != PutByIdVariant::Replace |
| || status[0].structure().size() != 1) { |
| addToGraph(PutById, OpInfo(identifierNumber), get(VirtualRegister(scope)), get(VirtualRegister(value))); |
| break; |
| } |
| Node* base = weakJSConstant(globalObject); |
| store(base, identifierNumber, status[0], get(VirtualRegister(value))); |
| // Keep scope alive until after put. |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| break; |
| } |
| case GlobalLexicalVar: |
| case GlobalLexicalVarWithVarInjectionChecks: |
| case GlobalVar: |
| case GlobalVarWithVarInjectionChecks: { |
| if (getPutInfo.initializationMode() != Initialization && (resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)) { |
| SpeculatedType prediction = SpecEmpty; |
| Node* value = addToGraph(GetGlobalLexicalVariable, OpInfo(operand), OpInfo(prediction)); |
| addToGraph(CheckNotEmpty, value); |
| } |
| |
| JSSegmentedVariableObject* scopeObject = jsCast<JSSegmentedVariableObject*>(JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock)); |
| if (watchpoints) { |
| SymbolTableEntry entry = scopeObject->symbolTable()->get(uid); |
| ASSERT_UNUSED(entry, watchpoints == entry.watchpointSet()); |
| } |
| Node* valueNode = get(VirtualRegister(value)); |
| addToGraph(PutGlobalVariable, OpInfo(operand), weakJSConstant(scopeObject), valueNode); |
| if (watchpoints && watchpoints->state() != IsInvalidated) { |
| // Must happen after the store. See comment for GetGlobalVar. |
| addToGraph(NotifyWrite, OpInfo(watchpoints)); |
| } |
| // Keep scope alive until after put. |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| break; |
| } |
| case LocalClosureVar: |
| case ClosureVar: |
| case ClosureVarWithVarInjectionChecks: { |
| Node* scopeNode = get(VirtualRegister(scope)); |
| Node* valueNode = get(VirtualRegister(value)); |
| |
| addToGraph(PutClosureVar, OpInfo(operand), scopeNode, valueNode); |
| |
| if (watchpoints && watchpoints->state() != IsInvalidated) { |
| // Must happen after the store. See comment for GetGlobalVar. |
| addToGraph(NotifyWrite, OpInfo(watchpoints)); |
| } |
| break; |
| } |
| |
| case UnresolvedProperty: |
| case UnresolvedPropertyWithVarInjectionChecks: { |
| addToGraph(ForceOSRExit); |
| Node* scopeNode = get(VirtualRegister(scope)); |
| addToGraph(Phantom, scopeNode); |
| break; |
| } |
| |
| case ModuleVar: |
| // Need not to keep "scope" and "value" register values here by Phantom because |
| // they are not used in LLInt / baseline op_put_to_scope with ModuleVar. |
| addToGraph(ForceOSRExit); |
| break; |
| |
| case Dynamic: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| NEXT_OPCODE(op_put_to_scope); |
| } |
| |
| case op_loop_hint: { |
| // Baseline->DFG OSR jumps between loop hints. The DFG assumes that Baseline->DFG |
| // OSR can only happen at basic block boundaries. Assert that these two statements |
| // are compatible. |
| RELEASE_ASSERT(m_currentIndex == blockBegin); |
| |
| // We never do OSR into an inlined code block. That could not happen, since OSR |
| // looks up the code block that is the replacement for the baseline JIT code |
| // block. Hence, machine code block = true code block = not inline code block. |
| if (!m_inlineStackTop->m_caller) |
| m_currentBlock->isOSRTarget = true; |
| |
| addToGraph(LoopHint); |
| |
| if (m_vm->watchdog) |
| addToGraph(CheckWatchdogTimer); |
| |
| NEXT_OPCODE(op_loop_hint); |
| } |
| |
| case op_create_lexical_environment: { |
| VirtualRegister symbolTableRegister(currentInstruction[3].u.operand); |
| VirtualRegister initialValueRegister(currentInstruction[4].u.operand); |
| ASSERT(symbolTableRegister.isConstant() && initialValueRegister.isConstant()); |
| FrozenValue* symbolTable = m_graph.freezeStrong(m_inlineStackTop->m_codeBlock->getConstant(symbolTableRegister.offset())); |
| FrozenValue* initialValue = m_graph.freezeStrong(m_inlineStackTop->m_codeBlock->getConstant(initialValueRegister.offset())); |
| Node* scope = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* lexicalEnvironment = addToGraph(CreateActivation, OpInfo(symbolTable), OpInfo(initialValue), scope); |
| set(VirtualRegister(currentInstruction[1].u.operand), lexicalEnvironment); |
| NEXT_OPCODE(op_create_lexical_environment); |
| } |
| |
| case op_get_parent_scope: { |
| Node* currentScope = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* newScope = addToGraph(SkipScope, currentScope); |
| set(VirtualRegister(currentInstruction[1].u.operand), newScope); |
| addToGraph(Phantom, currentScope); |
| NEXT_OPCODE(op_get_parent_scope); |
| } |
| |
| case op_get_scope: { |
| // Help the later stages a bit by doing some small constant folding here. Note that this |
| // only helps for the first basic block. It's extremely important not to constant fold |
| // loads from the scope register later, as that would prevent the DFG from tracking the |
| // bytecode-level liveness of the scope register. |
| Node* callee = get(VirtualRegister(JSStack::Callee)); |
| Node* result; |
| if (JSFunction* function = callee->dynamicCastConstant<JSFunction*>()) |
| result = weakJSConstant(function->scope()); |
| else |
| result = addToGraph(GetScope, callee); |
| set(VirtualRegister(currentInstruction[1].u.operand), result); |
| NEXT_OPCODE(op_get_scope); |
| } |
| |
| case op_load_arrowfunction_this: { |
| Node* callee = get(VirtualRegister(JSStack::Callee)); |
| Node* result; |
| if (JSArrowFunction* function = callee->dynamicCastConstant<JSArrowFunction*>()) |
| result = jsConstant(function->boundThis()); |
| else |
| result = addToGraph(LoadArrowFunctionThis, callee); |
| set(VirtualRegister(currentInstruction[1].u.operand), result); |
| NEXT_OPCODE(op_load_arrowfunction_this); |
| } |
| |
| case op_create_direct_arguments: { |
| noticeArgumentsUse(); |
| Node* createArguments = addToGraph(CreateDirectArguments); |
| set(VirtualRegister(currentInstruction[1].u.operand), createArguments); |
| NEXT_OPCODE(op_create_direct_arguments); |
| } |
| |
| case op_create_scoped_arguments: { |
| noticeArgumentsUse(); |
| Node* createArguments = addToGraph(CreateScopedArguments, get(VirtualRegister(currentInstruction[2].u.operand))); |
| set(VirtualRegister(currentInstruction[1].u.operand), createArguments); |
| NEXT_OPCODE(op_create_scoped_arguments); |
| } |
| |
| case op_create_out_of_band_arguments: { |
| noticeArgumentsUse(); |
| Node* createArguments = addToGraph(CreateClonedArguments); |
| set(VirtualRegister(currentInstruction[1].u.operand), createArguments); |
| NEXT_OPCODE(op_create_out_of_band_arguments); |
| } |
| |
| case op_get_from_arguments: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph( |
| GetFromArguments, |
| OpInfo(currentInstruction[3].u.operand), |
| OpInfo(getPrediction()), |
| get(VirtualRegister(currentInstruction[2].u.operand)))); |
| NEXT_OPCODE(op_get_from_arguments); |
| } |
| |
| case op_put_to_arguments: { |
| addToGraph( |
| PutToArguments, |
| OpInfo(currentInstruction[2].u.operand), |
| get(VirtualRegister(currentInstruction[1].u.operand)), |
| get(VirtualRegister(currentInstruction[3].u.operand))); |
| NEXT_OPCODE(op_put_to_arguments); |
| } |
| |
| case op_new_func: { |
| FunctionExecutable* decl = m_inlineStackTop->m_profiledBlock->functionDecl(currentInstruction[3].u.operand); |
| FrozenValue* frozen = m_graph.freezeStrong(decl); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(NewFunction, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand)))); |
| NEXT_OPCODE(op_new_func); |
| } |
| |
| case op_new_func_exp: { |
| FunctionExecutable* expr = m_inlineStackTop->m_profiledBlock->functionExpr(currentInstruction[3].u.operand); |
| FrozenValue* frozen = m_graph.freezeStrong(expr); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(NewFunction, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand)))); |
| NEXT_OPCODE(op_new_func_exp); |
| } |
| |
| case op_new_arrow_func_exp: { |
| FunctionExecutable* expr = m_inlineStackTop->m_profiledBlock->functionExpr(currentInstruction[3].u.operand); |
| FrozenValue* frozen = m_graph.freezeStrong(expr); |
| |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(NewArrowFunction, OpInfo(frozen), |
| get(VirtualRegister(currentInstruction[2].u.operand)), |
| get(VirtualRegister(currentInstruction[4].u.operand)))); |
| |
| NEXT_OPCODE(op_new_arrow_func_exp); |
| } |
| |
| case op_typeof: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(TypeOf, get(VirtualRegister(currentInstruction[2].u.operand)))); |
| NEXT_OPCODE(op_typeof); |
| } |
| |
| case op_to_number: { |
| Node* node = get(VirtualRegister(currentInstruction[2].u.operand)); |
| addToGraph(Phantom, Edge(node, NumberUse)); |
| set(VirtualRegister(currentInstruction[1].u.operand), node); |
| NEXT_OPCODE(op_to_number); |
| } |
| |
| case op_to_string: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToString, value)); |
| NEXT_OPCODE(op_to_string); |
| } |
| |
| case op_in: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(In, get(VirtualRegister(currentInstruction[2].u.operand)), get(VirtualRegister(currentInstruction[3].u.operand)))); |
| NEXT_OPCODE(op_in); |
| } |
| |
| case op_get_enumerable_length: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumerableLength, |
| get(VirtualRegister(currentInstruction[2].u.operand)))); |
| NEXT_OPCODE(op_get_enumerable_length); |
| } |
| |
| case op_has_generic_property: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasGenericProperty, |
| get(VirtualRegister(currentInstruction[2].u.operand)), |
| get(VirtualRegister(currentInstruction[3].u.operand)))); |
| NEXT_OPCODE(op_has_generic_property); |
| } |
| |
| case op_has_structure_property: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasStructureProperty, |
| get(VirtualRegister(currentInstruction[2].u.operand)), |
| get(VirtualRegister(currentInstruction[3].u.operand)), |
| get(VirtualRegister(currentInstruction[4].u.operand)))); |
| NEXT_OPCODE(op_has_structure_property); |
| } |
| |
| case op_has_indexed_property: { |
| Node* base = get(VirtualRegister(currentInstruction[2].u.operand)); |
| ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read); |
| Node* property = get(VirtualRegister(currentInstruction[3].u.operand)); |
| Node* hasIterableProperty = addToGraph(HasIndexedProperty, OpInfo(arrayMode.asWord()), base, property); |
| set(VirtualRegister(currentInstruction[1].u.operand), hasIterableProperty); |
| NEXT_OPCODE(op_has_indexed_property); |
| } |
| |
| case op_get_direct_pname: { |
| SpeculatedType prediction = getPredictionWithoutOSRExit(); |
| |
| Node* base = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* property = get(VirtualRegister(currentInstruction[3].u.operand)); |
| Node* index = get(VirtualRegister(currentInstruction[4].u.operand)); |
| Node* enumerator = get(VirtualRegister(currentInstruction[5].u.operand)); |
| |
| addVarArgChild(base); |
| addVarArgChild(property); |
| addVarArgChild(index); |
| addVarArgChild(enumerator); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(Node::VarArg, GetDirectPname, OpInfo(0), OpInfo(prediction))); |
| |
| NEXT_OPCODE(op_get_direct_pname); |
| } |
| |
| case op_get_property_enumerator: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetPropertyEnumerator, |
| get(VirtualRegister(currentInstruction[2].u.operand)))); |
| NEXT_OPCODE(op_get_property_enumerator); |
| } |
| |
| case op_enumerator_structure_pname: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorStructurePname, |
| get(VirtualRegister(currentInstruction[2].u.operand)), |
| get(VirtualRegister(currentInstruction[3].u.operand)))); |
| NEXT_OPCODE(op_enumerator_structure_pname); |
| } |
| |
| case op_enumerator_generic_pname: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorGenericPname, |
| get(VirtualRegister(currentInstruction[2].u.operand)), |
| get(VirtualRegister(currentInstruction[3].u.operand)))); |
| NEXT_OPCODE(op_enumerator_generic_pname); |
| } |
| |
| case op_to_index_string: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToIndexString, |
| get(VirtualRegister(currentInstruction[2].u.operand)))); |
| NEXT_OPCODE(op_to_index_string); |
| } |
| |
| default: |
| // Parse failed! This should not happen because the capabilities checker |
| // should have caught it. |
| RELEASE_ASSERT_NOT_REACHED(); |
| return false; |
| } |
| } |
| } |
| |
| void ByteCodeParser::linkBlock(BasicBlock* block, Vector<BasicBlock*>& possibleTargets) |
| { |
| ASSERT(!block->isLinked); |
| ASSERT(!block->isEmpty()); |
| Node* node = block->terminal(); |
| ASSERT(node->isTerminal()); |
| |
| switch (node->op()) { |
| case Jump: |
| node->targetBlock() = blockForBytecodeOffset(possibleTargets, node->targetBytecodeOffsetDuringParsing()); |
| break; |
| |
| case Branch: { |
| BranchData* data = node->branchData(); |
| data->taken.block = blockForBytecodeOffset(possibleTargets, data->takenBytecodeIndex()); |
| data->notTaken.block = blockForBytecodeOffset(possibleTargets, data->notTakenBytecodeIndex()); |
| break; |
| } |
| |
| case Switch: { |
| SwitchData* data = node->switchData(); |
| for (unsigned i = node->switchData()->cases.size(); i--;) |
| data->cases[i].target.block = blockForBytecodeOffset(possibleTargets, data->cases[i].target.bytecodeIndex()); |
| data->fallThrough.block = blockForBytecodeOffset(possibleTargets, data->fallThrough.bytecodeIndex()); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| if (verbose) |
| dataLog("Marking ", RawPointer(block), " as linked (actually did linking)\n"); |
| block->didLink(); |
| } |
| |
| void ByteCodeParser::linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets) |
| { |
| for (size_t i = 0; i < unlinkedBlocks.size(); ++i) { |
| if (verbose) |
| dataLog("Attempting to link ", RawPointer(unlinkedBlocks[i].m_block), "\n"); |
| if (unlinkedBlocks[i].m_needsNormalLinking) { |
| if (verbose) |
| dataLog(" Does need normal linking.\n"); |
| linkBlock(unlinkedBlocks[i].m_block, possibleTargets); |
| unlinkedBlocks[i].m_needsNormalLinking = false; |
| } |
| } |
| } |
| |
| ByteCodeParser::InlineStackEntry::InlineStackEntry( |
| ByteCodeParser* byteCodeParser, |
| CodeBlock* codeBlock, |
| CodeBlock* profiledBlock, |
| BasicBlock* callsiteBlockHead, |
| JSFunction* callee, // Null if this is a closure call. |
| VirtualRegister returnValueVR, |
| VirtualRegister inlineCallFrameStart, |
| int argumentCountIncludingThis, |
| InlineCallFrame::Kind kind) |
| : m_byteCodeParser(byteCodeParser) |
| , m_codeBlock(codeBlock) |
| , m_profiledBlock(profiledBlock) |
| , m_callsiteBlockHead(callsiteBlockHead) |
| , m_returnValue(returnValueVR) |
| , m_didReturn(false) |
| , m_didEarlyReturn(false) |
| , m_caller(byteCodeParser->m_inlineStackTop) |
| { |
| { |
| ConcurrentJITLocker locker(m_profiledBlock->m_lock); |
| m_lazyOperands.initialize(locker, m_profiledBlock->lazyOperandValueProfiles()); |
| m_exitProfile.initialize(locker, profiledBlock->exitProfile()); |
| |
| // We do this while holding the lock because we want to encourage StructureStubInfo's |
| // to be potentially added to operations and because the profiled block could be in the |
| // middle of LLInt->JIT tier-up in which case we would be adding the info's right now. |
| if (m_profiledBlock->hasBaselineJITProfiling()) { |
| m_profiledBlock->getStubInfoMap(locker, m_stubInfos); |
| m_profiledBlock->getCallLinkInfoMap(locker, m_callLinkInfos); |
| m_profiledBlock->getByValInfoMap(locker, m_byValInfos); |
| } |
| } |
| |
| m_argumentPositions.resize(argumentCountIncludingThis); |
| for (int i = 0; i < argumentCountIncludingThis; ++i) { |
| byteCodeParser->m_graph.m_argumentPositions.append(ArgumentPosition()); |
| ArgumentPosition* argumentPosition = &byteCodeParser->m_graph.m_argumentPositions.last(); |
| m_argumentPositions[i] = argumentPosition; |
| } |
| |
| if (m_caller) { |
| // Inline case. |
| ASSERT(codeBlock != byteCodeParser->m_codeBlock); |
| ASSERT(inlineCallFrameStart.isValid()); |
| ASSERT(callsiteBlockHead); |
| |
| m_inlineCallFrame = byteCodeParser->m_graph.m_plan.inlineCallFrames->add(); |
| byteCodeParser->m_graph.freeze(codeBlock->ownerExecutable()); |
| // The owner is the machine code block, and we already have a barrier on that when the |
| // plan finishes. |
| m_inlineCallFrame->executable.setWithoutWriteBarrier(codeBlock->ownerScriptExecutable()); |
| m_inlineCallFrame->setStackOffset(inlineCallFrameStart.offset() - JSStack::CallFrameHeaderSize); |
| if (callee) { |
| m_inlineCallFrame->calleeRecovery = ValueRecovery::constant(callee); |
| m_inlineCallFrame->isClosureCall = false; |
| } else |
| m_inlineCallFrame->isClosureCall = true; |
| m_inlineCallFrame->caller = byteCodeParser->currentCodeOrigin(); |
| m_inlineCallFrame->arguments.resizeToFit(argumentCountIncludingThis); // Set the number of arguments including this, but don't configure the value recoveries, yet. |
| m_inlineCallFrame->kind = kind; |
| |
| m_identifierRemap.resize(codeBlock->numberOfIdentifiers()); |
| m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers()); |
| m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables()); |
| |
| for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i) { |
| UniquedStringImpl* rep = codeBlock->identifier(i).impl(); |
| unsigned index = byteCodeParser->m_graph.identifiers().ensure(rep); |
| m_identifierRemap[i] = index; |
| } |
| for (unsigned i = 0; i < codeBlock->numberOfConstantBuffers(); ++i) { |
| // If we inline the same code block multiple times, we don't want to needlessly |
| // duplicate its constant buffers. |
| HashMap<ConstantBufferKey, unsigned>::iterator iter = |
| byteCodeParser->m_constantBufferCache.find(ConstantBufferKey(codeBlock, i)); |
| if (iter != byteCodeParser->m_constantBufferCache.end()) { |
| m_constantBufferRemap[i] = iter->value; |
| continue; |
| } |
| Vector<JSValue>& buffer = codeBlock->constantBufferAsVector(i); |
| unsigned newIndex = byteCodeParser->m_codeBlock->addConstantBuffer(buffer); |
| m_constantBufferRemap[i] = newIndex; |
| byteCodeParser->m_constantBufferCache.add(ConstantBufferKey(codeBlock, i), newIndex); |
| } |
| for (unsigned i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i) { |
| m_switchRemap[i] = byteCodeParser->m_codeBlock->numberOfSwitchJumpTables(); |
| byteCodeParser->m_codeBlock->addSwitchJumpTable() = codeBlock->switchJumpTable(i); |
| } |
| m_callsiteBlockHeadNeedsLinking = true; |
| } else { |
| // Machine code block case. |
| ASSERT(codeBlock == byteCodeParser->m_codeBlock); |
| ASSERT(!callee); |
| ASSERT(!returnValueVR.isValid()); |
| ASSERT(!inlineCallFrameStart.isValid()); |
| ASSERT(!callsiteBlockHead); |
| |
| m_inlineCallFrame = 0; |
| |
| m_identifierRemap.resize(codeBlock->numberOfIdentifiers()); |
| m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers()); |
| m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables()); |
| for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i) |
| m_identifierRemap[i] = i; |
| for (size_t i = 0; i < codeBlock->numberOfConstantBuffers(); ++i) |
| m_constantBufferRemap[i] = i; |
| for (size_t i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i) |
| m_switchRemap[i] = i; |
| m_callsiteBlockHeadNeedsLinking = false; |
| } |
| |
| byteCodeParser->m_inlineStackTop = this; |
| } |
| |
| void ByteCodeParser::parseCodeBlock() |
| { |
| clearCaches(); |
| |
| CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock; |
| |
| if (m_graph.compilation()) { |
| m_graph.compilation()->addProfiledBytecodes( |
| *m_vm->m_perBytecodeProfiler, m_inlineStackTop->m_profiledBlock); |
| } |
| |
| if (UNLIKELY(Options::dumpSourceAtDFGTime())) { |
| Vector<DeferredSourceDump>& deferredSourceDump = m_graph.m_plan.callback->ensureDeferredSourceDump(); |
| if (inlineCallFrame()) { |
| DeferredSourceDump dump(codeBlock->baselineVersion(), m_codeBlock, JITCode::DFGJIT, inlineCallFrame()->caller); |
| deferredSourceDump.append(dump); |
| } else |
| deferredSourceDump.append(DeferredSourceDump(codeBlock->baselineVersion())); |
| } |
| |
| if (Options::dumpBytecodeAtDFGTime()) { |
| dataLog("Parsing ", *codeBlock); |
| if (inlineCallFrame()) { |
| dataLog( |
| " for inlining at ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT), |
| " ", inlineCallFrame()->caller); |
| } |
| dataLog( |
| ": needsActivation = ", codeBlock->needsActivation(), |
| ", isStrictMode = ", codeBlock->ownerScriptExecutable()->isStrictMode(), "\n"); |
| codeBlock->baselineVersion()->dumpBytecode(); |
| } |
| |
| Vector<unsigned, 32> jumpTargets; |
| computePreciseJumpTargets(codeBlock, jumpTargets); |
| if (Options::dumpBytecodeAtDFGTime()) { |
| dataLog("Jump targets: "); |
| CommaPrinter comma; |
| for (unsigned i = 0; i < jumpTargets.size(); ++i) |
| dataLog(comma, jumpTargets[i]); |
| dataLog("\n"); |
| } |
| |
| for (unsigned jumpTargetIndex = 0; jumpTargetIndex <= jumpTargets.size(); ++jumpTargetIndex) { |
| // The maximum bytecode offset to go into the current basicblock is either the next jump target, or the end of the instructions. |
| unsigned limit = jumpTargetIndex < jumpTargets.size() ? jumpTargets[jumpTargetIndex] : codeBlock->instructions().size(); |
| ASSERT(m_currentIndex < limit); |
| |
| // Loop until we reach the current limit (i.e. next jump target). |
| do { |
| if (!m_currentBlock) { |
| // Check if we can use the last block. |
| if (m_graph.numBlocks() && m_graph.lastBlock()->isEmpty()) { |
| // This must be a block belonging to us. |
| ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_block == m_graph.lastBlock()); |
| // Either the block is linkable or it isn't. If it's linkable then it's the last |
| // block in the blockLinkingTargets list. If it's not then the last block will |
| // have a lower bytecode index that the one we're about to give to this block. |
| if (m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_blockLinkingTargets.last()->bytecodeBegin != m_currentIndex) { |
| // Make the block linkable. |
| ASSERT(m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_blockLinkingTargets.last()->bytecodeBegin < m_currentIndex); |
| m_inlineStackTop->m_blockLinkingTargets.append(m_graph.lastBlock()); |
| } |
| // Change its bytecode begin and continue. |
| m_currentBlock = m_graph.lastBlock(); |
| m_currentBlock->bytecodeBegin = m_currentIndex; |
| } else { |
| RefPtr<BasicBlock> block = adoptRef(new BasicBlock(m_currentIndex, m_numArguments, m_numLocals, PNaN)); |
| m_currentBlock = block.get(); |
| // This assertion checks two things: |
| // 1) If the bytecodeBegin is greater than currentIndex, then something has gone |
| // horribly wrong. So, we're probably generating incorrect code. |
| // 2) If the bytecodeBegin is equal to the currentIndex, then we failed to do |
| // a peephole coalescing of this block in the if statement above. So, we're |
| // generating suboptimal code and leaving more work for the CFG simplifier. |
| if (!m_inlineStackTop->m_unlinkedBlocks.isEmpty()) { |
| unsigned lastBegin = |
| m_inlineStackTop->m_unlinkedBlocks.last().m_block->bytecodeBegin; |
| ASSERT_UNUSED( |
| lastBegin, lastBegin == UINT_MAX || lastBegin < m_currentIndex); |
| } |
| m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(block.get())); |
| m_inlineStackTop->m_blockLinkingTargets.append(block.get()); |
| // The first block is definitely an OSR target. |
| if (!m_graph.numBlocks()) |
| block->isOSRTarget = true; |
| m_graph.appendBlock(block); |
| prepareToParseBlock(); |
| } |
| } |
| |
| bool shouldContinueParsing = parseBlock(limit); |
| |
| // We should not have gone beyond the limit. |
| ASSERT(m_currentIndex <= limit); |
| |
| // We should have planted a terminal, or we just gave up because |
| // we realized that the jump target information is imprecise, or we |
| // are at the end of an inline function, or we realized that we |
| // should stop parsing because there was a return in the first |
| // basic block. |
| ASSERT(m_currentBlock->isEmpty() || m_currentBlock->terminal() || (m_currentIndex == codeBlock->instructions().size() && inlineCallFrame()) || !shouldContinueParsing); |
| |
| if (!shouldContinueParsing) { |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog("Done parsing ", *codeBlock, "\n"); |
| return; |
| } |
| |
| m_currentBlock = 0; |
| } while (m_currentIndex < limit); |
| } |
| |
| // Should have reached the end of the instructions. |
| ASSERT(m_currentIndex == codeBlock->instructions().size()); |
| |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog("Done parsing ", *codeBlock, " (fell off end)\n"); |
| } |
| |
| bool ByteCodeParser::parse() |
| { |
| // Set during construction. |
| ASSERT(!m_currentIndex); |
| |
| if (Options::verboseDFGByteCodeParsing()) |
| dataLog("Parsing ", *m_codeBlock, "\n"); |
| |
| m_dfgCodeBlock = m_graph.m_plan.profiledDFGCodeBlock.get(); |
| if (isFTL(m_graph.m_plan.mode) && m_dfgCodeBlock |
| && Options::enablePolyvariantDevirtualization()) { |
| if (Options::enablePolyvariantCallInlining()) |
| CallLinkStatus::computeDFGStatuses(m_dfgCodeBlock, m_callContextMap); |
| if (Options::enablePolyvariantByIdInlining()) |
| m_dfgCodeBlock->getStubInfoMap(m_dfgStubInfos); |
| } |
| |
| InlineStackEntry inlineStackEntry( |
| this, m_codeBlock, m_profiledBlock, 0, 0, VirtualRegister(), VirtualRegister(), |
| m_codeBlock->numParameters(), InlineCallFrame::Call); |
| |
| parseCodeBlock(); |
| |
| linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets); |
| m_graph.determineReachability(); |
| m_graph.killUnreachableBlocks(); |
| |
| for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| BasicBlock* block = m_graph.block(blockIndex); |
| if (!block) |
| continue; |
| ASSERT(block->variablesAtHead.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals()); |
| ASSERT(block->variablesAtHead.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments()); |
| ASSERT(block->variablesAtTail.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals()); |
| ASSERT(block->variablesAtTail.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments()); |
| } |
| |
| m_graph.m_localVars = m_numLocals; |
| m_graph.m_parameterSlots = m_parameterSlots; |
| |
| return true; |
| } |
| |
| bool parse(Graph& graph) |
| { |
| SamplingRegion samplingRegion("DFG Parsing"); |
| return ByteCodeParser(graph).parse(); |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif |