blob: ac1912b797543f61a9377836cc72b6eea223bfd5 [file] [log] [blame]
/*
* Copyright (C) 2008, 2012, 2014, 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MacroAssemblerX86_64_h
#define MacroAssemblerX86_64_h
#if ENABLE(ASSEMBLER) && CPU(X86_64)
#include "MacroAssemblerX86Common.h"
#define REPATCH_OFFSET_CALL_R11 3
inline bool CAN_SIGN_EXTEND_32_64(int64_t value) { return value == (int64_t)(int32_t)value; }
namespace JSC {
class MacroAssemblerX86_64 : public MacroAssemblerX86Common {
public:
static const Scale ScalePtr = TimesEight;
using MacroAssemblerX86Common::add32;
using MacroAssemblerX86Common::and32;
using MacroAssemblerX86Common::branchAdd32;
using MacroAssemblerX86Common::or32;
using MacroAssemblerX86Common::sub32;
using MacroAssemblerX86Common::load8;
using MacroAssemblerX86Common::load32;
using MacroAssemblerX86Common::store32;
using MacroAssemblerX86Common::store8;
using MacroAssemblerX86Common::call;
using MacroAssemblerX86Common::jump;
using MacroAssemblerX86Common::addDouble;
using MacroAssemblerX86Common::loadDouble;
using MacroAssemblerX86Common::convertInt32ToDouble;
void add32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
add32(imm, Address(scratchRegister));
}
void and32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
and32(imm, Address(scratchRegister));
}
void add32(AbsoluteAddress address, RegisterID dest)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
add32(Address(scratchRegister), dest);
}
void or32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
or32(imm, Address(scratchRegister));
}
void or32(RegisterID reg, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
or32(reg, Address(scratchRegister));
}
void sub32(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
sub32(imm, Address(scratchRegister));
}
void load8(const void* address, RegisterID dest)
{
move(TrustedImmPtr(address), dest);
load8(dest, dest);
}
void load32(const void* address, RegisterID dest)
{
if (dest == X86Registers::eax)
m_assembler.movl_mEAX(address);
else {
move(TrustedImmPtr(address), dest);
load32(dest, dest);
}
}
void addDouble(AbsoluteAddress address, FPRegisterID dest)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
m_assembler.addsd_mr(0, scratchRegister, dest);
}
void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest)
{
move(imm, scratchRegister);
m_assembler.cvtsi2sd_rr(scratchRegister, dest);
}
void store32(TrustedImm32 imm, void* address)
{
move(TrustedImmPtr(address), scratchRegister);
store32(imm, scratchRegister);
}
void store32(RegisterID source, void* address)
{
if (source == X86Registers::eax)
m_assembler.movl_EAXm(address);
else {
move(TrustedImmPtr(address), scratchRegister);
store32(source, scratchRegister);
}
}
void store8(TrustedImm32 imm, void* address)
{
move(TrustedImmPtr(address), scratchRegister);
store8(imm, Address(scratchRegister));
}
void store8(RegisterID reg, void* address)
{
move(TrustedImmPtr(address), scratchRegister);
store8(reg, Address(scratchRegister));
}
#if OS(WINDOWS)
Call callWithSlowPathReturnType()
{
// On Win64, when the return type is larger than 8 bytes, we need to allocate space on the stack for the return value.
// On entry, rcx should contain a pointer to this stack space. The other parameters are shifted to the right,
// rdx should contain the first argument, r8 should contain the second argument, and r9 should contain the third argument.
// On return, rax contains a pointer to this stack value. See http://msdn.microsoft.com/en-us/library/7572ztz4.aspx.
// We then need to copy the 16 byte return value into rax and rdx, since JIT expects the return value to be split between the two.
// It is assumed that the parameters are already shifted to the right, when entering this method.
// Note: this implementation supports up to 3 parameters.
// JIT relies on the CallerFrame (frame pointer) being put on the stack,
// On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
// See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
store64(X86Registers::ebp, Address(X86Registers::esp, -16));
// We also need to allocate the shadow space on the stack for the 4 parameter registers.
// In addition, we need to allocate 16 bytes for the return value.
// Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
// The first parameter register should contain a pointer to the stack allocated space for the return value.
move(X86Registers::esp, X86Registers::ecx);
add64(TrustedImm32(4 * sizeof(int64_t)), X86Registers::ecx);
DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
Call result = Call(m_assembler.call(scratchRegister), Call::Linkable);
add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
// Copy the return value into rax and rdx.
load64(Address(X86Registers::eax, sizeof(int64_t)), X86Registers::edx);
load64(Address(X86Registers::eax), X86Registers::eax);
ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11);
return result;
}
#endif
Call call()
{
#if OS(WINDOWS)
// JIT relies on the CallerFrame (frame pointer) being put on the stack,
// On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
// See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
store64(X86Registers::ebp, Address(X86Registers::esp, -16));
// On Windows we need to copy the arguments that don't fit in registers to the stack location where the callee expects to find them.
// We don't know the number of arguments at this point, so the arguments (5, 6, ...) should always be copied.
// Copy argument 5
load64(Address(X86Registers::esp, 4 * sizeof(int64_t)), scratchRegister);
store64(scratchRegister, Address(X86Registers::esp, -4 * static_cast<int32_t>(sizeof(int64_t))));
// Copy argument 6
load64(Address(X86Registers::esp, 5 * sizeof(int64_t)), scratchRegister);
store64(scratchRegister, Address(X86Registers::esp, -3 * static_cast<int32_t>(sizeof(int64_t))));
// We also need to allocate the shadow space on the stack for the 4 parameter registers.
// Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
// In addition, we need to allocate 16 bytes for two more parameters, since the call can have up to 6 parameters.
sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
Call result = Call(m_assembler.call(scratchRegister), Call::Linkable);
#if OS(WINDOWS)
add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11);
return result;
}
// Address is a memory location containing the address to jump to
void jump(AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
jump(Address(scratchRegister));
}
Call tailRecursiveCall()
{
DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11);
return Call::fromTailJump(newJump);
}
Call makeTailRecursiveCall(Jump oldJump)
{
oldJump.link(this);
DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11);
return Call::fromTailJump(newJump);
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 src, AbsoluteAddress dest)
{
move(TrustedImmPtr(dest.m_ptr), scratchRegister);
add32(src, Address(scratchRegister));
return Jump(m_assembler.jCC(x86Condition(cond)));
}
void add64(RegisterID src, RegisterID dest)
{
m_assembler.addq_rr(src, dest);
}
void add64(Address src, RegisterID dest)
{
m_assembler.addq_mr(src.offset, src.base, dest);
}
void add64(AbsoluteAddress src, RegisterID dest)
{
move(TrustedImmPtr(src.m_ptr), scratchRegister);
add64(Address(scratchRegister), dest);
}
void add64(TrustedImm32 imm, RegisterID srcDest)
{
if (imm.m_value == 1)
m_assembler.incq_r(srcDest);
else
m_assembler.addq_ir(imm.m_value, srcDest);
}
void add64(TrustedImm64 imm, RegisterID dest)
{
if (imm.m_value == 1)
m_assembler.incq_r(dest);
else {
move(imm, scratchRegister);
add64(scratchRegister, dest);
}
}
void add64(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
m_assembler.leaq_mr(imm.m_value, src, dest);
}
void add64(TrustedImm32 imm, Address address)
{
if (imm.m_value == 1)
m_assembler.incq_m(address.offset, address.base);
else
m_assembler.addq_im(imm.m_value, address.offset, address.base);
}
void add64(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), scratchRegister);
add64(imm, Address(scratchRegister));
}
void addPtrNoFlags(TrustedImm32 imm, RegisterID srcDest)
{
m_assembler.leaq_mr(imm.m_value, srcDest, srcDest);
}
void and64(RegisterID src, RegisterID dest)
{
m_assembler.andq_rr(src, dest);
}
void and64(TrustedImm32 imm, RegisterID srcDest)
{
m_assembler.andq_ir(imm.m_value, srcDest);
}
void and64(TrustedImmPtr imm, RegisterID srcDest)
{
move(imm, scratchRegister);
and64(scratchRegister, srcDest);
}
void lshift64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.shlq_i8r(imm.m_value, dest);
}
void rshift64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.sarq_i8r(imm.m_value, dest);
}
void urshift64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.shrq_i8r(imm.m_value, dest);
}
void mul64(RegisterID src, RegisterID dest)
{
m_assembler.imulq_rr(src, dest);
}
void neg64(RegisterID dest)
{
m_assembler.negq_r(dest);
}
void or64(RegisterID src, RegisterID dest)
{
m_assembler.orq_rr(src, dest);
}
void or64(TrustedImm64 imm, RegisterID dest)
{
move(imm, scratchRegister);
or64(scratchRegister, dest);
}
void or64(TrustedImm32 imm, RegisterID dest)
{
m_assembler.orq_ir(imm.m_value, dest);
}
void or64(RegisterID op1, RegisterID op2, RegisterID dest)
{
if (op1 == op2)
move(op1, dest);
else if (op1 == dest)
or64(op2, dest);
else {
move(op2, dest);
or64(op1, dest);
}
}
void or64(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
move(src, dest);
or64(imm, dest);
}
void rotateRight64(TrustedImm32 imm, RegisterID srcDst)
{
m_assembler.rorq_i8r(imm.m_value, srcDst);
}
void sub64(RegisterID src, RegisterID dest)
{
m_assembler.subq_rr(src, dest);
}
void sub64(TrustedImm32 imm, RegisterID dest)
{
if (imm.m_value == 1)
m_assembler.decq_r(dest);
else
m_assembler.subq_ir(imm.m_value, dest);
}
void sub64(TrustedImm64 imm, RegisterID dest)
{
if (imm.m_value == 1)
m_assembler.decq_r(dest);
else {
move(imm, scratchRegister);
sub64(scratchRegister, dest);
}
}
void xor64(RegisterID src, RegisterID dest)
{
m_assembler.xorq_rr(src, dest);
}
void xor64(RegisterID src, Address dest)
{
m_assembler.xorq_rm(src, dest.offset, dest.base);
}
void xor64(TrustedImm32 imm, RegisterID srcDest)
{
m_assembler.xorq_ir(imm.m_value, srcDest);
}
void load64(ImplicitAddress address, RegisterID dest)
{
m_assembler.movq_mr(address.offset, address.base, dest);
}
void load64(BaseIndex address, RegisterID dest)
{
m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest);
}
void load64(const void* address, RegisterID dest)
{
if (dest == X86Registers::eax)
m_assembler.movq_mEAX(address);
else {
move(TrustedImmPtr(address), dest);
load64(dest, dest);
}
}
DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_mr_disp32(address.offset, address.base, dest);
return DataLabel32(this);
}
DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_mr_disp8(address.offset, address.base, dest);
return DataLabelCompact(this);
}
void store64(RegisterID src, ImplicitAddress address)
{
m_assembler.movq_rm(src, address.offset, address.base);
}
void store64(RegisterID src, BaseIndex address)
{
m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale);
}
void store64(RegisterID src, void* address)
{
if (src == X86Registers::eax)
m_assembler.movq_EAXm(address);
else {
move(TrustedImmPtr(address), scratchRegister);
store64(src, scratchRegister);
}
}
void store64(TrustedImm64 imm, ImplicitAddress address)
{
if (CAN_SIGN_EXTEND_32_64(imm.m_value))
m_assembler.movq_i32m(static_cast<int>(imm.m_value), address.offset, address.base);
else {
move(imm, scratchRegister);
store64(scratchRegister, address);
}
}
void store64(TrustedImm64 imm, BaseIndex address)
{
move(imm, scratchRegister);
m_assembler.movq_rm(scratchRegister, address.offset, address.base, address.index, address.scale);
}
DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address)
{
padBeforePatch();
m_assembler.movq_rm_disp32(src, address.offset, address.base);
return DataLabel32(this);
}
void move64ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.movq_rr(src, dest);
}
void moveDoubleTo64(FPRegisterID src, RegisterID dest)
{
m_assembler.movq_rr(src, dest);
}
void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
{
if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
m_assembler.testq_rr(left, left);
else
m_assembler.cmpq_ir(right.m_value, left);
m_assembler.setCC_r(x86Condition(cond), dest);
m_assembler.movzbl_rr(dest, dest);
}
void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.cmpq_rr(right, left);
m_assembler.setCC_r(x86Condition(cond), dest);
m_assembler.movzbl_rr(dest, dest);
}
Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right)
{
m_assembler.cmpq_rr(right, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right)
{
if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) {
m_assembler.testq_rr(left, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
move(right, scratchRegister);
return branch64(cond, left, scratchRegister);
}
Jump branch64(RelationalCondition cond, RegisterID left, Address right)
{
m_assembler.cmpq_mr(right.offset, right.base, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
move(TrustedImmPtr(left.m_ptr), scratchRegister);
return branch64(cond, Address(scratchRegister), right);
}
Jump branch64(RelationalCondition cond, Address left, RegisterID right)
{
m_assembler.cmpq_rm(right, left.offset, left.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right)
{
move(right, scratchRegister);
return branch64(cond, left, scratchRegister);
}
Jump branch64(RelationalCondition cond, BaseIndex address, RegisterID right)
{
m_assembler.cmpq_rm(right, address.offset, address.base, address.index, address.scale);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchPtr(RelationalCondition cond, BaseIndex left, RegisterID right)
{
return branch64(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, BaseIndex left, TrustedImmPtr right)
{
move(right, scratchRegister);
return branchPtr(cond, left, scratchRegister);
}
Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask)
{
m_assembler.testq_rr(reg, mask);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
// if we are only interested in the low seven bits, this can be tested with a testb
if (mask.m_value == -1)
m_assembler.testq_rr(reg, reg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, reg);
else
m_assembler.testq_i32r(mask.m_value, reg);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
void test64(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest)
{
if (mask.m_value == -1)
m_assembler.testq_rr(reg, reg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, reg);
else
m_assembler.testq_i32r(mask.m_value, reg);
set32(x86Condition(cond), dest);
}
void test64(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest)
{
m_assembler.testq_rr(reg, mask);
set32(x86Condition(cond), dest);
}
Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
load64(address.m_ptr, scratchRegister);
return branchTest64(cond, scratchRegister, mask);
}
Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, Address address, RegisterID reg)
{
m_assembler.testq_rm(reg, address.offset, address.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
add64(imm, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest)
{
add64(src, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchMul64(ResultCondition cond, RegisterID src, RegisterID dest)
{
mul64(src, dest);
if (cond != Overflow)
m_assembler.testq_rr(dest, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
sub64(imm, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest)
{
sub64(src, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSub64(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
{
move(src1, dest);
return branchSub64(cond, src2, dest);
}
Jump branchNeg64(ResultCondition cond, RegisterID srcDest)
{
neg64(srcDest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
void abortWithReason(AbortReason reason)
{
move(TrustedImm32(reason), X86Registers::r11);
breakpoint();
}
void abortWithReason(AbortReason reason, intptr_t misc)
{
move(TrustedImm64(misc), X86Registers::r10);
abortWithReason(reason);
}
ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
{
ConvertibleLoadLabel result = ConvertibleLoadLabel(this);
m_assembler.movq_mr(address.offset, address.base, dest);
return result;
}
DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_i64r(initialValue.asIntptr(), dest);
return DataLabelPtr(this);
}
DataLabelPtr moveWithPatch(TrustedImm32 initialValue, RegisterID dest)
{
padBeforePatch();
m_assembler.movq_i64r(initialValue.m_value, dest);
return DataLabelPtr(this);
}
Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
{
dataLabel = moveWithPatch(initialRightValue, scratchRegister);
return branch64(cond, left, scratchRegister);
}
Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
{
dataLabel = moveWithPatch(initialRightValue, scratchRegister);
return branch64(cond, left, scratchRegister);
}
Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
{
padBeforePatch();
m_assembler.movl_i32r(initialRightValue.m_value, scratchRegister);
dataLabel = DataLabel32(this);
return branch32(cond, left, scratchRegister);
}
DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
{
DataLabelPtr label = moveWithPatch(initialValue, scratchRegister);
store64(scratchRegister, address);
return label;
}
PatchableJump patchableBranch64(RelationalCondition cond, RegisterID reg, TrustedImm64 imm)
{
return PatchableJump(branch64(cond, reg, imm));
}
PatchableJump patchableBranch64(RelationalCondition cond, RegisterID left, RegisterID right)
{
return PatchableJump(branch64(cond, left, right));
}
using MacroAssemblerX86Common::branch8;
Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
MacroAssemblerX86Common::move(TrustedImmPtr(left.m_ptr), scratchRegister);
return MacroAssemblerX86Common::branch8(cond, Address(scratchRegister), right);
}
using MacroAssemblerX86Common::branchTest8;
Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImmPtr addr(reinterpret_cast<void*>(address.offset));
MacroAssemblerX86Common::move(addr, scratchRegister);
return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister, address.base, TimesOne), mask);
}
Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
MacroAssemblerX86Common::move(TrustedImmPtr(address.m_ptr), scratchRegister);
return MacroAssemblerX86Common::branchTest8(cond, Address(scratchRegister), mask);
}
void convertInt64ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.cvtsi2sdq_rr(src, dest);
}
static bool supportsFloatingPoint() { return true; }
static bool supportsFloatingPointTruncate() { return true; }
static bool supportsFloatingPointSqrt() { return true; }
static bool supportsFloatingPointAbs() { return true; }
static FunctionPtr readCallTarget(CodeLocationCall call)
{
return FunctionPtr(X86Assembler::readPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation()));
}
static bool haveScratchRegisterForBlinding() { return true; }
static RegisterID scratchRegisterForBlinding() { return scratchRegister; }
static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; }
static bool canJumpReplacePatchableBranch32WithPatch() { return true; }
static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label)
{
const int rexBytes = 1;
const int opcodeBytes = 1;
const int immediateBytes = 8;
const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
ASSERT(totalBytes >= maxJumpReplacementSize());
return label.labelAtOffset(-totalBytes);
}
static CodeLocationLabel startOfBranch32WithPatchOnRegister(CodeLocationDataLabel32 label)
{
const int rexBytes = 1;
const int opcodeBytes = 1;
const int immediateBytes = 4;
const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
ASSERT(totalBytes >= maxJumpReplacementSize());
return label.labelAtOffset(-totalBytes);
}
static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr label)
{
return startOfBranchPtrWithPatchOnRegister(label);
}
static CodeLocationLabel startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32 label)
{
return startOfBranch32WithPatchOnRegister(label);
}
static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel instructionStart, Address, void* initialValue)
{
X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), scratchRegister);
}
static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel instructionStart, Address, int32_t initialValue)
{
X86Assembler::revertJumpTo_movl_i32r(instructionStart.executableAddress(), initialValue, scratchRegister);
}
static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID, void* initialValue)
{
X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), scratchRegister);
}
static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
{
X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
}
static void repatchCall(CodeLocationCall call, FunctionPtr destination)
{
X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
}
private:
friend class LinkBuffer;
friend class RepatchBuffer;
static void linkCall(void* code, Call call, FunctionPtr function)
{
if (!call.isFlagSet(Call::Near))
X86Assembler::linkPointer(code, call.m_label.labelAtOffset(-REPATCH_OFFSET_CALL_R11), function.value());
else
X86Assembler::linkCall(code, call.m_label, function.value());
}
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)
#endif // MacroAssemblerX86_64_h