blob: e835219b31ac7efa48d8195a70541180fd6bef10 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
* Copyright (C) 2013-2017 Igalia S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RenderGrid.h"
#include "GridArea.h"
#include "GridLayoutFunctions.h"
#include "GridPositionsResolver.h"
#include "GridTrackSizingAlgorithm.h"
#include "LayoutRepainter.h"
#include "LayoutState.h"
#include "RenderChildIterator.h"
#include "RenderLayer.h"
#include "RenderTreeBuilder.h"
#include "RenderView.h"
#include <cstdlib>
#include <wtf/IsoMallocInlines.h>
namespace WebCore {
WTF_MAKE_ISO_ALLOCATED_IMPL(RenderGrid);
enum TrackSizeRestriction {
AllowInfinity,
ForbidInfinity,
};
struct ContentAlignmentData {
WTF_MAKE_FAST_ALLOCATED;
public:
bool isValid() { return positionOffset >= 0 && distributionOffset >= 0; }
static ContentAlignmentData defaultOffsets() { return {-1, -1}; }
LayoutUnit positionOffset;
LayoutUnit distributionOffset;
};
RenderGrid::RenderGrid(Element& element, RenderStyle&& style)
: RenderBlock(element, WTFMove(style), 0)
, m_grid(*this)
, m_trackSizingAlgorithm(this, m_grid)
{
// All of our children must be block level.
setChildrenInline(false);
}
RenderGrid::~RenderGrid() = default;
StyleSelfAlignmentData RenderGrid::selfAlignmentForChild(GridAxis axis, const RenderBox& child, const RenderStyle* gridStyle) const
{
return axis == GridRowAxis ? justifySelfForChild(child, gridStyle) : alignSelfForChild(child, gridStyle);
}
bool RenderGrid::selfAlignmentChangedToStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const
{
return selfAlignmentForChild(axis, child, &oldStyle).position() != ItemPositionStretch
&& selfAlignmentForChild(axis, child, &newStyle).position() == ItemPositionStretch;
}
bool RenderGrid::selfAlignmentChangedFromStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const
{
return selfAlignmentForChild(axis, child, &oldStyle).position() == ItemPositionStretch
&& selfAlignmentForChild(axis, child, &newStyle).position() != ItemPositionStretch;
}
void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBlock::styleDidChange(diff, oldStyle);
if (!oldStyle || diff != StyleDifferenceLayout)
return;
const RenderStyle& newStyle = this->style();
if (oldStyle->resolvedAlignItems(selfAlignmentNormalBehavior(this)).position() == ItemPositionStretch) {
// Style changes on the grid container implying stretching (to-stretch) or
// shrinking (from-stretch) require the affected items to be laid out again.
// These logic only applies to 'stretch' since the rest of the alignment
// values don't change the size of the box.
// In any case, the items' overrideSize will be cleared and recomputed (if
// necessary) as part of the Grid layout logic, triggered by this style
// change.
for (auto& child : childrenOfType<RenderBox>(*this)) {
if (child.isOutOfFlowPositioned())
continue;
if (selfAlignmentChangedToStretch(GridRowAxis, *oldStyle, newStyle, child)
|| selfAlignmentChangedFromStretch(GridRowAxis, *oldStyle, newStyle, child)
|| selfAlignmentChangedToStretch(GridColumnAxis, *oldStyle, newStyle, child)
|| selfAlignmentChangedFromStretch(GridColumnAxis, *oldStyle, newStyle, child)) {
child.setNeedsLayout();
}
}
}
if (explicitGridDidResize(*oldStyle) || namedGridLinesDefinitionDidChange(*oldStyle) || oldStyle->gridAutoFlow() != style().gridAutoFlow()
|| (style().gridAutoRepeatColumns().size() || style().gridAutoRepeatRows().size()))
dirtyGrid();
}
bool RenderGrid::explicitGridDidResize(const RenderStyle& oldStyle) const
{
return oldStyle.gridColumns().size() != style().gridColumns().size()
|| oldStyle.gridRows().size() != style().gridRows().size()
|| oldStyle.namedGridAreaColumnCount() != style().namedGridAreaColumnCount()
|| oldStyle.namedGridAreaRowCount() != style().namedGridAreaRowCount()
|| oldStyle.gridAutoRepeatColumns().size() != style().gridAutoRepeatColumns().size()
|| oldStyle.gridAutoRepeatRows().size() != style().gridAutoRepeatRows().size();
}
bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle& oldStyle) const
{
return oldStyle.namedGridRowLines() != style().namedGridRowLines()
|| oldStyle.namedGridColumnLines() != style().namedGridColumnLines();
}
// This method optimizes the gutters computation by skiping the available size
// call if gaps are fixed size (it's only needed for percentages).
std::optional<LayoutUnit> RenderGrid::availableSpaceForGutters(GridTrackSizingDirection direction) const
{
bool isRowAxis = direction == ForColumns;
const GapLength& gapLength = isRowAxis ? style().columnGap() : style().rowGap();
if (gapLength.isNormal() || !gapLength.length().isPercent())
return std::nullopt;
return isRowAxis ? availableLogicalWidth() : availableLogicalHeightForPercentageComputation();
}
LayoutUnit RenderGrid::computeTrackBasedLogicalHeight() const
{
LayoutUnit logicalHeight;
auto& allRows = m_trackSizingAlgorithm.tracks(ForRows);
for (const auto& row : allRows)
logicalHeight += row.baseSize();
logicalHeight += guttersSize(m_grid, ForRows, 0, allRows.size(), availableSpaceForGutters(ForRows));
return logicalHeight;
}
void RenderGrid::computeTrackSizesForDefiniteSize(GridTrackSizingDirection direction, LayoutUnit availableSpace)
{
LayoutUnit totalGuttersSize = guttersSize(m_grid, direction, 0, m_grid.numTracks(direction), availableSpace);
LayoutUnit freeSpace = availableSpace - totalGuttersSize;
m_trackSizingAlgorithm.setup(direction, numTracks(direction, m_grid), TrackSizing, availableSpace, freeSpace);
m_trackSizingAlgorithm.run();
ASSERT(m_trackSizingAlgorithm.tracksAreWiderThanMinTrackBreadth());
}
void RenderGrid::repeatTracksSizingIfNeeded(LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows)
{
// In orthogonal flow cases column track's size is determined by using the computed
// row track's size, which it was estimated during the first cycle of the sizing
// algorithm. Hence we need to repeat computeUsedBreadthOfGridTracks for both,
// columns and rows, to determine the final values.
// TODO (lajava): orthogonal flows is just one of the cases which may require
// a new cycle of the sizing algorithm; there may be more. In addition, not all the
// cases with orthogonal flows require this extra cycle; we need a more specific
// condition to detect whether child's min-content contribution has changed or not.
if (m_grid.hasAnyOrthogonalGridItem()) {
computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns);
computeTrackSizesForDefiniteSize(ForRows, availableSpaceForRows);
}
}
bool RenderGrid::canPerformSimplifiedLayout() const
{
// We cannot perform a simplified layout if we need to position the items and we have some
// positioned items to be laid out.
if (m_grid.needsItemsPlacement() && posChildNeedsLayout())
return false;
return RenderBlock::canPerformSimplifiedLayout();
}
void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
{
LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode());
preparePaginationBeforeBlockLayout(relayoutChildren);
LayoutSize previousSize = size();
// FIXME: We should use RenderBlock::hasDefiniteLogicalHeight() but it does not work for positioned stuff.
// FIXME: Consider caching the hasDefiniteLogicalHeight value throughout the layout.
bool hasDefiniteLogicalHeight = hasOverrideLogicalContentHeight() || computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt);
// We need to clear both own and containingBlock override sizes of orthogonal items to ensure we get the
// same result when grid's intrinsic size is computed again in the updateLogicalWidth call bellow.
if (sizesLogicalWidthToFitContent(MaxSize) || style().logicalWidth().isIntrinsicOrAuto()) {
for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isOutOfFlowPositioned() || !GridLayoutFunctions::isOrthogonalChild(*this, *child))
continue;
child->clearOverrideSize();
child->clearContainingBlockOverrideSize();
child->setNeedsLayout();
child->layoutIfNeeded();
}
}
setLogicalHeight(0);
updateLogicalWidth();
// Fieldsets need to find their legend and position it inside the border of the object.
// The legend then gets skipped during normal layout. The same is true for ruby text.
// It doesn't get included in the normal layout process but is instead skipped.
layoutExcludedChildren(relayoutChildren);
LayoutUnit availableSpaceForColumns = availableLogicalWidth();
placeItemsOnGrid(m_grid, availableSpaceForColumns);
// At this point the logical width is always definite as the above call to updateLogicalWidth()
// properly resolves intrinsic sizes. We cannot do the same for heights though because many code
// paths inside updateLogicalHeight() require a previous call to setLogicalHeight() to resolve
// heights properly (like for positioned items for example).
computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns);
if (!hasDefiniteLogicalHeight) {
m_minContentHeight = LayoutUnit();
m_maxContentHeight = LayoutUnit();
computeTrackSizesForIndefiniteSize(m_trackSizingAlgorithm, ForRows, m_grid, *m_minContentHeight, *m_maxContentHeight);
// FIXME: This should be really added to the intrinsic height in RenderBox::computeContentAndScrollbarLogicalHeightUsing().
// Remove this when that is fixed.
ASSERT(m_minContentHeight);
ASSERT(m_maxContentHeight);
LayoutUnit scrollbarHeight = scrollbarLogicalHeight();
*m_minContentHeight += scrollbarHeight;
*m_maxContentHeight += scrollbarHeight;
} else
computeTrackSizesForDefiniteSize(ForRows, availableLogicalHeight(ExcludeMarginBorderPadding));
LayoutUnit trackBasedLogicalHeight = computeTrackBasedLogicalHeight() + borderAndPaddingLogicalHeight() + scrollbarLogicalHeight();
setLogicalHeight(trackBasedLogicalHeight);
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
// Once grid's indefinite height is resolved, we can compute the
// available free space for Content Alignment.
if (!hasDefiniteLogicalHeight)
m_trackSizingAlgorithm.setFreeSpace(ForRows, logicalHeight() - trackBasedLogicalHeight);
// 3- If the min-content contribution of any grid items have changed based on the row
// sizes calculated in step 2, steps 1 and 2 are repeated with the new min-content
// contribution (once only).
repeatTracksSizingIfNeeded(availableSpaceForColumns, contentLogicalHeight());
// Grid container should have the minimum height of a line if it's editable. That does not affect track sizing though.
if (hasLineIfEmpty()) {
LayoutUnit minHeightForEmptyLine = borderAndPaddingLogicalHeight()
+ lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes)
+ scrollbarLogicalHeight();
setLogicalHeight(std::max(logicalHeight(), minHeightForEmptyLine));
}
layoutGridItems();
m_trackSizingAlgorithm.reset();
if (size() != previousSize)
relayoutChildren = true;
m_outOfFlowItemColumn.clear();
m_outOfFlowItemRow.clear();
layoutPositionedObjects(relayoutChildren || isDocumentElementRenderer());
computeOverflow(oldClientAfterEdge);
}
updateLayerTransform();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
repainter.repaintAfterLayout();
clearNeedsLayout();
}
LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction, std::optional<LayoutUnit> availableSize) const
{
const GapLength& gapLength = direction == ForColumns? style().columnGap() : style().rowGap();
if (gapLength.isNormal())
return LayoutUnit();
return valueForLength(gapLength.length(), availableSize.value_or(0));
}
LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction) const
{
return gridGap(direction, availableSpaceForGutters(direction));
}
LayoutUnit RenderGrid::gridItemOffset(GridTrackSizingDirection direction) const
{
return direction == ForRows ? m_offsetBetweenRows : m_offsetBetweenColumns;
}
LayoutUnit RenderGrid::guttersSize(const Grid& grid, GridTrackSizingDirection direction, unsigned startLine, unsigned span, std::optional<LayoutUnit> availableSize) const
{
if (span <= 1)
return { };
LayoutUnit gap = gridGap(direction, availableSize);
// Fast path, no collapsing tracks.
if (!grid.hasAutoRepeatEmptyTracks(direction))
return gap * (span - 1);
// If there are collapsing tracks we need to be sure that gutters are properly collapsed. Apart
// from that, if we have a collapsed track in the edges of the span we're considering, we need
// to move forward (or backwards) in order to know whether the collapsed tracks reach the end of
// the grid (so the gap becomes 0) or there is a non empty track before that.
LayoutUnit gapAccumulator;
unsigned endLine = startLine + span;
for (unsigned line = startLine; line < endLine - 1; ++line) {
if (!grid.isEmptyAutoRepeatTrack(direction, line))
gapAccumulator += gap;
}
// The above loop adds one extra gap for trailing collapsed tracks.
if (gapAccumulator && grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) {
ASSERT(gapAccumulator >= gap);
gapAccumulator -= gap;
}
// If the startLine is the start line of a collapsed track we need to go backwards till we reach
// a non collapsed track. If we find a non collapsed track we need to add that gap.
if (startLine && grid.isEmptyAutoRepeatTrack(direction, startLine)) {
unsigned nonEmptyTracksBeforeStartLine = startLine;
auto begin = grid.autoRepeatEmptyTracks(direction)->begin();
for (auto it = begin; *it != startLine; ++it) {
ASSERT(nonEmptyTracksBeforeStartLine);
--nonEmptyTracksBeforeStartLine;
}
if (nonEmptyTracksBeforeStartLine)
gapAccumulator += gap;
}
// If the endLine is the end line of a collapsed track we need to go forward till we reach a non
// collapsed track. If we find a non collapsed track we need to add that gap.
if (grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) {
unsigned nonEmptyTracksAfterEndLine = grid.numTracks(direction) - endLine;
auto currentEmptyTrack = grid.autoRepeatEmptyTracks(direction)->find(endLine - 1);
auto endEmptyTrack = grid.autoRepeatEmptyTracks(direction)->end();
// HashSet iterators do not implement operator- so we have to manually iterate to know the number of remaining empty tracks.
for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) {
ASSERT(nonEmptyTracksAfterEndLine >= 1);
--nonEmptyTracksAfterEndLine;
}
if (nonEmptyTracksAfterEndLine)
gapAccumulator += gap;
}
return gapAccumulator;
}
void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
LayoutUnit childMinWidth;
LayoutUnit childMaxWidth;
bool hadExcludedChildren = computePreferredWidthsForExcludedChildren(childMinWidth, childMaxWidth);
Grid grid(const_cast<RenderGrid&>(*this));
placeItemsOnGrid(grid, std::nullopt);
GridTrackSizingAlgorithm algorithm(this, grid);
computeTrackSizesForIndefiniteSize(algorithm, ForColumns, grid, minLogicalWidth, maxLogicalWidth);
if (hadExcludedChildren) {
minLogicalWidth = std::max(minLogicalWidth, childMinWidth);
maxLogicalWidth = std::max(maxLogicalWidth, childMaxWidth);
}
LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth();
minLogicalWidth += scrollbarWidth;
maxLogicalWidth += scrollbarWidth;
}
void RenderGrid::computeTrackSizesForIndefiniteSize(GridTrackSizingAlgorithm& algorithm, GridTrackSizingDirection direction, Grid& grid, LayoutUnit& minIntrinsicSize, LayoutUnit& maxIntrinsicSize) const
{
algorithm.setup(direction, numTracks(direction, grid), IntrinsicSizeComputation, std::nullopt, std::nullopt);
algorithm.run();
size_t numberOfTracks = algorithm.tracks(direction).size();
LayoutUnit totalGuttersSize = guttersSize(grid, direction, 0, numberOfTracks, std::nullopt);
minIntrinsicSize = algorithm.minContentSize() + totalGuttersSize;
maxIntrinsicSize = algorithm.maxContentSize() + totalGuttersSize;
ASSERT(algorithm.tracksAreWiderThanMinTrackBreadth());
}
std::optional<LayoutUnit> RenderGrid::computeIntrinsicLogicalContentHeightUsing(Length logicalHeightLength, std::optional<LayoutUnit> intrinsicLogicalHeight, LayoutUnit borderAndPadding) const
{
if (!intrinsicLogicalHeight)
return std::nullopt;
if (logicalHeightLength.isMinContent())
return m_minContentHeight;
if (logicalHeightLength.isMaxContent())
return m_maxContentHeight;
if (logicalHeightLength.isFitContent()) {
LayoutUnit fillAvailableExtent = containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding);
return std::min(m_maxContentHeight.value_or(0), std::max(m_minContentHeight.value_or(0), fillAvailableExtent));
}
if (logicalHeightLength.isFillAvailable())
return containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding) - borderAndPadding;
ASSERT_NOT_REACHED();
return std::nullopt;
}
unsigned RenderGrid::computeAutoRepeatTracksCount(GridTrackSizingDirection direction, std::optional<LayoutUnit> availableSize) const
{
ASSERT(!availableSize || availableSize.value() != -1);
bool isRowAxis = direction == ForColumns;
const auto& autoRepeatTracks = isRowAxis ? style().gridAutoRepeatColumns() : style().gridAutoRepeatRows();
unsigned autoRepeatTrackListLength = autoRepeatTracks.size();
if (!autoRepeatTrackListLength)
return 0;
if (!isRowAxis && !availableSize) {
const Length& maxLength = style().logicalMaxHeight();
if (!maxLength.isUndefined()) {
availableSize = computeContentLogicalHeight(MaxSize, maxLength, std::nullopt);
if (availableSize)
availableSize = constrainContentBoxLogicalHeightByMinMax(availableSize.value(), std::nullopt);
}
}
bool needsToFulfillMinimumSize = false;
if (!availableSize) {
const Length& minSize = isRowAxis ? style().logicalMinWidth() : style().logicalMinHeight();
if (!minSize.isSpecified())
return autoRepeatTrackListLength;
LayoutUnit containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding);
availableSize = valueForLength(minSize, containingBlockAvailableSize);
needsToFulfillMinimumSize = true;
}
LayoutUnit autoRepeatTracksSize;
for (auto& autoTrackSize : autoRepeatTracks) {
ASSERT(autoTrackSize.minTrackBreadth().isLength());
ASSERT(!autoTrackSize.minTrackBreadth().isFlex());
bool hasDefiniteMaxTrackSizingFunction = autoTrackSize.maxTrackBreadth().isLength() && !autoTrackSize.maxTrackBreadth().isContentSized();
auto trackLength = hasDefiniteMaxTrackSizingFunction ? autoTrackSize.maxTrackBreadth().length() : autoTrackSize.minTrackBreadth().length();
autoRepeatTracksSize += valueForLength(trackLength, availableSize.value());
}
// For the purpose of finding the number of auto-repeated tracks, the UA must floor the track size to a UA-specified
// value to avoid division by zero. It is suggested that this floor be 1px.
autoRepeatTracksSize = std::max<LayoutUnit>(LayoutUnit(1), autoRepeatTracksSize);
// There will be always at least 1 auto-repeat track, so take it already into account when computing the total track size.
LayoutUnit tracksSize = autoRepeatTracksSize;
auto& trackSizes = isRowAxis ? style().gridColumns() : style().gridRows();
for (const auto& track : trackSizes) {
bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() && !track.maxTrackBreadth().isContentSized();
ASSERT(hasDefiniteMaxTrackBreadth || (track.minTrackBreadth().isLength() && !track.minTrackBreadth().isContentSized()));
tracksSize += valueForLength(hasDefiniteMaxTrackBreadth ? track.maxTrackBreadth().length() : track.minTrackBreadth().length(), availableSize.value());
}
// Add gutters as if there where only 1 auto repeat track. Gaps between auto repeat tracks will be added later when
// computing the repetitions.
LayoutUnit gapSize = gridGap(direction, availableSize);
tracksSize += gapSize * trackSizes.size();
LayoutUnit freeSpace = availableSize.value() - tracksSize;
if (freeSpace <= 0)
return autoRepeatTrackListLength;
LayoutUnit autoRepeatSizeWithGap = autoRepeatTracksSize + gapSize;
unsigned repetitions = 1 + (freeSpace / autoRepeatSizeWithGap).toUnsigned();
freeSpace -= autoRepeatSizeWithGap * (repetitions - 1);
ASSERT(freeSpace >= 0);
// Provided the grid container does not have a definite size or max-size in the relevant axis,
// if the min size is definite then the number of repetitions is the largest possible positive
// integer that fulfills that minimum requirement.
if (needsToFulfillMinimumSize && freeSpace)
++repetitions;
return repetitions * autoRepeatTrackListLength;
}
std::unique_ptr<OrderedTrackIndexSet> RenderGrid::computeEmptyTracksForAutoRepeat(Grid& grid, GridTrackSizingDirection direction) const
{
bool isRowAxis = direction == ForColumns;
if ((isRowAxis && style().gridAutoRepeatColumnsType() != AutoFit)
|| (!isRowAxis && style().gridAutoRepeatRowsType() != AutoFit))
return nullptr;
std::unique_ptr<OrderedTrackIndexSet> emptyTrackIndexes;
unsigned insertionPoint = isRowAxis ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint();
unsigned firstAutoRepeatTrack = insertionPoint + std::abs(grid.smallestTrackStart(direction));
unsigned lastAutoRepeatTrack = firstAutoRepeatTrack + grid.autoRepeatTracks(direction);
if (!grid.hasGridItems()) {
emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>();
for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex)
emptyTrackIndexes->add(trackIndex);
} else {
for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) {
GridIterator iterator(grid, direction, trackIndex);
if (!iterator.nextGridItem()) {
if (!emptyTrackIndexes)
emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>();
emptyTrackIndexes->add(trackIndex);
}
}
}
return emptyTrackIndexes;
}
unsigned RenderGrid::clampAutoRepeatTracks(GridTrackSizingDirection direction, unsigned autoRepeatTracks) const
{
if (!autoRepeatTracks)
return 0;
unsigned insertionPoint = direction == ForColumns ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint();
unsigned maxTracks = static_cast<unsigned>(GridPosition::max());
if (!insertionPoint)
return std::min(autoRepeatTracks, maxTracks);
if (insertionPoint >= maxTracks)
return 0;
return std::min(autoRepeatTracks, maxTracks - insertionPoint);
}
// FIXME): We shouldn't have to pass the available logical width as argument. The problem is that
// availableLogicalWidth() does always return a value even if we cannot resolve it like when
// computing the intrinsic size (preferred widths). That's why we pass the responsibility to the
// caller who does know whether the available logical width is indefinite or not.
void RenderGrid::placeItemsOnGrid(Grid& grid, std::optional<LayoutUnit> availableSpace) const
{
unsigned autoRepeatColumns = computeAutoRepeatTracksCount(ForColumns, availableSpace);
unsigned autoRepeatRows = computeAutoRepeatTracksCount(ForRows, availableLogicalHeightForPercentageComputation());
autoRepeatRows = clampAutoRepeatTracks(ForRows, autoRepeatRows);
autoRepeatColumns = clampAutoRepeatTracks(ForColumns, autoRepeatColumns);
if (autoRepeatColumns != grid.autoRepeatTracks(ForColumns) || autoRepeatRows != grid.autoRepeatTracks(ForRows)) {
grid.setNeedsItemsPlacement(true);
grid.setAutoRepeatTracks(autoRepeatRows, autoRepeatColumns);
}
if (!grid.needsItemsPlacement())
return;
ASSERT(!grid.hasGridItems());
populateExplicitGridAndOrderIterator(grid);
Vector<RenderBox*> autoMajorAxisAutoGridItems;
Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
bool hasAnyOrthogonalGridItem = false;
for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) {
if (grid.orderIterator().shouldSkipChild(*child))
continue;
hasAnyOrthogonalGridItem = hasAnyOrthogonalGridItem || GridLayoutFunctions::isOrthogonalChild(*this, *child);
GridArea area = grid.gridItemArea(*child);
if (!area.rows.isIndefinite())
area.rows.translate(std::abs(grid.smallestTrackStart(ForRows)));
if (!area.columns.isIndefinite())
area.columns.translate(std::abs(grid.smallestTrackStart(ForColumns)));
if (area.rows.isIndefinite() || area.columns.isIndefinite()) {
grid.setGridItemArea(*child, area);
bool majorAxisDirectionIsForColumns = autoPlacementMajorAxisDirection() == ForColumns;
if ((majorAxisDirectionIsForColumns && area.columns.isIndefinite())
|| (!majorAxisDirectionIsForColumns && area.rows.isIndefinite()))
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
grid.insert(*child, { area.rows, area.columns });
}
grid.setHasAnyOrthogonalGridItem(hasAnyOrthogonalGridItem);
#if ENABLE(ASSERT)
if (grid.hasGridItems()) {
ASSERT(grid.numTracks(ForRows) >= GridPositionsResolver::explicitGridRowCount(style(), grid.autoRepeatTracks(ForRows)));
ASSERT(grid.numTracks(ForColumns) >= GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns)));
}
#endif
placeSpecifiedMajorAxisItemsOnGrid(grid, specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(grid, autoMajorAxisAutoGridItems);
// Compute collapsible tracks for auto-fit.
grid.setAutoRepeatEmptyColumns(computeEmptyTracksForAutoRepeat(grid, ForColumns));
grid.setAutoRepeatEmptyRows(computeEmptyTracksForAutoRepeat(grid, ForRows));
grid.setNeedsItemsPlacement(false);
#if ENABLE(ASSERT)
for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) {
if (grid.orderIterator().shouldSkipChild(*child))
continue;
GridArea area = grid.gridItemArea(*child);
ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite());
}
#endif
}
void RenderGrid::populateExplicitGridAndOrderIterator(Grid& grid) const
{
OrderIteratorPopulator populator(grid.orderIterator());
int smallestRowStart = 0;
int smallestColumnStart = 0;
unsigned autoRepeatRows = grid.autoRepeatTracks(ForRows);
unsigned autoRepeatColumns = grid.autoRepeatTracks(ForColumns);
unsigned maximumRowIndex = GridPositionsResolver::explicitGridRowCount(style(), autoRepeatRows);
unsigned maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(style(), autoRepeatColumns);
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (!populator.collectChild(*child))
continue;
GridSpan rowPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForRows, autoRepeatRows);
if (!rowPositions.isIndefinite()) {
smallestRowStart = std::min(smallestRowStart, rowPositions.untranslatedStartLine());
maximumRowIndex = std::max<int>(maximumRowIndex, rowPositions.untranslatedEndLine());
} else {
// Grow the grid for items with a definite row span, getting the largest such span.
unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForRows);
maximumRowIndex = std::max(maximumRowIndex, spanSize);
}
GridSpan columnPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForColumns, autoRepeatColumns);
if (!columnPositions.isIndefinite()) {
smallestColumnStart = std::min(smallestColumnStart, columnPositions.untranslatedStartLine());
maximumColumnIndex = std::max<int>(maximumColumnIndex, columnPositions.untranslatedEndLine());
} else {
// Grow the grid for items with a definite column span, getting the largest such span.
unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForColumns);
maximumColumnIndex = std::max(maximumColumnIndex, spanSize);
}
grid.setGridItemArea(*child, { rowPositions, columnPositions });
}
grid.setSmallestTracksStart(smallestRowStart, smallestColumnStart);
grid.ensureGridSize(maximumRowIndex + std::abs(smallestRowStart), maximumColumnIndex + std::abs(smallestColumnStart));
}
std::unique_ptr<GridArea> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(Grid& grid, const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
{
GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
const unsigned endOfCrossDirection = grid.numTracks(crossDirection);
unsigned crossDirectionSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, crossDirection);
GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize);
return std::make_unique<GridArea>(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions);
}
void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const
{
bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns;
bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense();
// Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on
// that track. This is needed to implement "sparse" packing for items locked to a given track.
// See http://dev.w3.org/csswg/css-grid/#auto-placement-algorithm
HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors;
for (auto& autoGridItem : autoGridItems) {
GridSpan majorAxisPositions = grid.gridItemSpan(*autoGridItem, autoPlacementMajorAxisDirection());
ASSERT(majorAxisPositions.isTranslatedDefinite());
ASSERT(grid.gridItemSpan(*autoGridItem, autoPlacementMinorAxisDirection()).isIndefinite());
unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *autoGridItem, autoPlacementMinorAxisDirection());
unsigned majorAxisInitialPosition = majorAxisPositions.startLine();
GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition));
std::unique_ptr<GridArea> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisSpanSize);
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, *autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions);
grid.insert(*autoGridItem, *emptyGridArea);
if (!isGridAutoFlowDense)
minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.startLine() : emptyGridArea->columns.startLine());
}
}
void RenderGrid::placeAutoMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const
{
AutoPlacementCursor autoPlacementCursor = {0, 0};
bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense();
for (auto& autoGridItem : autoGridItems) {
placeAutoMajorAxisItemOnGrid(grid, *autoGridItem, autoPlacementCursor);
if (isGridAutoFlowDense) {
autoPlacementCursor.first = 0;
autoPlacementCursor.second = 0;
}
}
}
void RenderGrid::placeAutoMajorAxisItemOnGrid(Grid& grid, RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor) const
{
ASSERT(grid.gridItemSpan(gridItem, autoPlacementMajorAxisDirection()).isIndefinite());
unsigned majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMajorAxisDirection());
const unsigned endOfMajorAxis = grid.numTracks(autoPlacementMajorAxisDirection());
unsigned majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first;
unsigned minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second;
std::unique_ptr<GridArea> emptyGridArea;
GridSpan minorAxisPositions = grid.gridItemSpan(gridItem, autoPlacementMinorAxisDirection());
if (minorAxisPositions.isTranslatedDefinite()) {
// Move to the next track in major axis if initial position in minor axis is before auto-placement cursor.
if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor)
majorAxisAutoPlacementCursor++;
if (majorAxisAutoPlacementCursor < endOfMajorAxis) {
GridIterator iterator(grid, autoPlacementMinorAxisDirection(), minorAxisPositions.startLine(), majorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisSpanSize);
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
} else {
unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMinorAxisDirection());
for (unsigned majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize);
if (emptyGridArea) {
// Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
unsigned minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.endLine() : emptyGridArea->rows.endLine();
const unsigned endOfMinorAxis = grid.numTracks(autoPlacementMinorAxisDirection());
if (minorAxisFinalPositionIndex <= endOfMinorAxis)
break;
// Discard empty grid area as it does not fit in the minor axis direction.
// We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
emptyGridArea = nullptr;
}
// As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis.
minorAxisAutoPlacementCursor = 0;
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize));
}
grid.insert(gridItem, *emptyGridArea);
autoPlacementCursor.first = emptyGridArea->rows.startLine();
autoPlacementCursor.second = emptyGridArea->columns.startLine();
}
GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows;
}
GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns;
}
void RenderGrid::dirtyGrid()
{
if (m_grid.needsItemsPlacement())
return;
m_grid.setNeedsItemsPlacement(true);
}
Vector<LayoutUnit> RenderGrid::trackSizesForComputedStyle(GridTrackSizingDirection direction) const
{
bool isRowAxis = direction == ForColumns;
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
size_t numPositions = positions.size();
LayoutUnit offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
Vector<LayoutUnit> tracks;
if (numPositions < 2)
return tracks;
ASSERT(!m_grid.needsItemsPlacement());
bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction);
LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : LayoutUnit();
tracks.reserveCapacity(numPositions - 1);
for (size_t i = 0; i < numPositions - 2; ++i)
tracks.append(positions[i + 1] - positions[i] - offsetBetweenTracks - gap);
tracks.append(positions[numPositions - 1] - positions[numPositions - 2]);
if (!hasCollapsedTracks)
return tracks;
size_t remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size();
size_t lastLine = tracks.size();
gap = gridGap(direction);
for (size_t i = 1; i < lastLine; ++i) {
if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1))
--remainingEmptyTracks;
else {
// Remove the gap between consecutive non empty tracks. Remove it also just once for an
// arbitrary number of empty tracks between two non empty ones.
bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i);
if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i))
tracks[i - 1] -= gap;
}
}
return tracks;
}
static const StyleContentAlignmentData& contentAlignmentNormalBehaviorGrid()
{
static const StyleContentAlignmentData normalBehavior = {ContentPositionNormal, ContentDistributionStretch};
return normalBehavior;
}
void RenderGrid::layoutGridItems()
{
populateGridPositionsForDirection(ForColumns);
populateGridPositionsForDirection(ForRows);
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (m_grid.orderIterator().shouldSkipChild(*child)) {
if (child->isOutOfFlowPositioned())
prepareChildForPositionedLayout(*child);
continue;
}
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
std::optional<LayoutUnit> oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
std::optional<LayoutUnit> oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows);
if (!oldOverrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalWidth.value() != overrideContainingBlockContentLogicalWidth
|| ((!oldOverrideContainingBlockContentLogicalHeight || oldOverrideContainingBlockContentLogicalHeight.value() != overrideContainingBlockContentLogicalHeight)
&& child->hasRelativeLogicalHeight()))
child->setNeedsLayout(MarkOnlyThis);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
LayoutRect oldChildRect = child->frameRect();
// Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded
// call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly
// determine the available space before stretching, are not set yet.
applyStretchAlignmentToChildIfNeeded(*child);
child->layoutIfNeeded();
// We need pending layouts to be done in order to compute auto-margins properly.
updateAutoMarginsInColumnAxisIfNeeded(*child);
updateAutoMarginsInRowAxisIfNeeded(*child);
child->setLogicalLocation(findChildLogicalPosition(*child));
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!selfNeedsLayout() && child->checkForRepaintDuringLayout())
child->repaintDuringLayoutIfMoved(oldChildRect);
}
}
void RenderGrid::prepareChildForPositionedLayout(RenderBox& child)
{
ASSERT(child.isOutOfFlowPositioned());
child.containingBlock()->insertPositionedObject(child);
RenderLayer* childLayer = child.layer();
childLayer->setStaticInlinePosition(borderStart());
childLayer->setStaticBlockPosition(borderBefore());
}
bool RenderGrid::hasStaticPositionForChild(const RenderBox& child, GridTrackSizingDirection direction) const
{
return direction == ForColumns ? child.style().hasStaticInlinePosition(isHorizontalWritingMode()) : child.style().hasStaticBlockPosition(isHorizontalWritingMode());
}
void RenderGrid::layoutPositionedObject(RenderBox& child, bool relayoutChildren, bool fixedPositionObjectsOnly)
{
LayoutUnit columnBreadth = gridAreaBreadthForOutOfFlowChild(child, ForColumns);
LayoutUnit rowBreadth = gridAreaBreadthForOutOfFlowChild(child, ForRows);
child.setOverrideContainingBlockContentLogicalWidth(columnBreadth);
child.setOverrideContainingBlockContentLogicalHeight(rowBreadth);
// Mark for layout as we're resetting the position before and we relay in generic layout logic
// for positioned items in order to get the offsets properly resolved.
child.setChildNeedsLayout(MarkOnlyThis);
RenderBlock::layoutPositionedObject(child, relayoutChildren, fixedPositionObjectsOnly);
if (child.isGridItem() || !hasStaticPositionForChild(child, ForColumns) || !hasStaticPositionForChild(child, ForRows))
child.setLogicalLocation(findChildLogicalPosition(child));
}
LayoutUnit RenderGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(const RenderBox& child, GridTrackSizingDirection direction) const
{
// We need the cached value when available because Content Distribution alignment properties
// may have some influence in the final grid area breadth.
const auto& tracks = m_trackSizingAlgorithm.tracks(direction);
const auto& span = m_grid.gridItemSpan(child, direction);
const auto& linePositions = (direction == ForColumns) ? m_columnPositions : m_rowPositions;
LayoutUnit initialTrackPosition = linePositions[span.startLine()];
LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1];
// Track Positions vector stores the 'start' grid line of each track, so we have to add last track's baseSize.
return finalTrackPosition - initialTrackPosition + tracks[span.endLine() - 1].baseSize();
}
void RenderGrid::populateGridPositionsForDirection(GridTrackSizingDirection direction)
{
// Since we add alignment offsets and track gutters, grid lines are not always adjacent. Hence we will have to
// assume from now on that we just store positions of the initial grid lines of each track,
// except the last one, which is the only one considered as a final grid line of a track.
// The grid container's frame elements (border, padding and <content-position> offset) are sensible to the
// inline-axis flow direction. However, column lines positions are 'direction' unaware. This simplification
// allows us to use the same indexes to identify the columns independently on the inline-axis direction.
bool isRowAxis = direction == ForColumns;
auto& tracks = m_trackSizingAlgorithm.tracks(direction);
unsigned numberOfTracks = tracks.size();
unsigned numberOfLines = numberOfTracks + 1;
unsigned lastLine = numberOfLines - 1;
bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction);
size_t numberOfCollapsedTracks = hasCollapsedTracks ? m_grid.autoRepeatEmptyTracks(direction)->size() : 0;
ContentAlignmentData offset = computeContentPositionAndDistributionOffset(direction, m_trackSizingAlgorithm.freeSpace(direction).value(), numberOfTracks - numberOfCollapsedTracks);
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
positions.resize(numberOfLines);
auto borderAndPadding = isRowAxis ? borderAndPaddingLogicalLeft() : borderAndPaddingBefore();
positions[0] = borderAndPadding + offset.positionOffset;
if (numberOfLines > 1) {
// If we have collapsed tracks we just ignore gaps here and add them later as we might not
// compute the gap between two consecutive tracks without examining the surrounding ones.
LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : LayoutUnit();
unsigned nextToLastLine = numberOfLines - 2;
for (unsigned i = 0; i < nextToLastLine; ++i)
positions[i + 1] = positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap;
positions[lastLine] = positions[nextToLastLine] + tracks[nextToLastLine].baseSize();
// Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to collapse (they
// coincide exactly) except on the edges of the grid where they become 0.
if (hasCollapsedTracks) {
gap = gridGap(direction);
unsigned remainingEmptyTracks = numberOfCollapsedTracks;
LayoutUnit offsetAccumulator;
LayoutUnit gapAccumulator;
for (unsigned i = 1; i < lastLine; ++i) {
if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) {
--remainingEmptyTracks;
offsetAccumulator += offset.distributionOffset;
} else {
// Add gap between consecutive non empty tracks. Add it also just once for an
// arbitrary number of empty tracks between two non empty ones.
bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i);
if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i))
gapAccumulator += gap;
}
positions[i] += gapAccumulator - offsetAccumulator;
}
positions[lastLine] += gapAccumulator - offsetAccumulator;
}
}
auto& offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
offsetBetweenTracks = offset.distributionOffset;
}
static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackSize, LayoutUnit childSize)
{
LayoutUnit offset = trackSize - childSize;
switch (overflow) {
case OverflowAlignmentSafe:
// If overflow is 'safe', we have to make sure we don't overflow the 'start'
// edge (potentially cause some data loss as the overflow is unreachable).
return std::max<LayoutUnit>(0, offset);
case OverflowAlignmentUnsafe:
case OverflowAlignmentDefault:
// If we overflow our alignment container and overflow is 'true' (default), we
// ignore the overflow and just return the value regardless (which may cause data
// loss as we overflow the 'start' edge).
return offset;
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const
{
// Because we want to avoid multiple layouts, stretching logic might be performed before
// children are laid out, so we can't use the child cached values. Hence, we need to
// compute margins in order to determine the available height before stretching.
GridTrackSizingDirection childBlockFlowDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows);
return gridAreaBreadthForChild - GridLayoutFunctions::marginLogicalSizeForChild(*this, childBlockFlowDirection, child);
}
StyleSelfAlignmentData RenderGrid::alignSelfForChild(const RenderBox& child, const RenderStyle* gridStyle) const
{
if (!gridStyle)
gridStyle = &style();
return child.style().resolvedAlignSelf(gridStyle, selfAlignmentNormalBehavior(&child));
}
StyleSelfAlignmentData RenderGrid::justifySelfForChild(const RenderBox& child, const RenderStyle* gridStyle) const
{
if (!gridStyle)
gridStyle = &style();
return child.style().resolvedJustifySelf(gridStyle, selfAlignmentNormalBehavior(&child));
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child)
{
ASSERT(child.overrideContainingBlockContentLogicalHeight());
// We clear height override values because we will decide now whether it's allowed or
// not, evaluating the conditions which might have changed since the old values were set.
child.clearOverrideLogicalContentHeight();
GridTrackSizingDirection childBlockDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows);
bool blockFlowIsColumnAxis = childBlockDirection == ForRows;
bool allowedToStretchChildBlockSize = blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child) : allowedToStretchChildAlongRowAxis(child);
if (allowedToStretchChildBlockSize) {
LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(GridLayoutFunctions::overrideContainingBlockContentSizeForChild(child, childBlockDirection).value(), child);
LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, LayoutUnit(-1));
child.setOverrideLogicalContentHeight(desiredLogicalHeight - child.borderAndPaddingLogicalHeight());
if (desiredLogicalHeight != child.logicalHeight()) {
// FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905.
child.setLogicalHeight(LayoutUnit());
child.setNeedsLayout();
}
}
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::hasAutoMarginsInColumnAxis(const RenderBox& child) const
{
if (isHorizontalWritingMode())
return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto();
return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::hasAutoMarginsInRowAxis(const RenderBox& child) const
{
if (isHorizontalWritingMode())
return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto();
return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::updateAutoMarginsInRowAxisIfNeeded(RenderBox& child)
{
ASSERT(!child.isOutOfFlowPositioned());
LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalWidth().value() - child.logicalWidth() - child.marginLogicalWidth();
if (availableAlignmentSpace <= 0)
return;
const RenderStyle& parentStyle = style();
Length marginStart = child.style().marginStartUsing(&parentStyle);
Length marginEnd = child.style().marginEndUsing(&parentStyle);
if (marginStart.isAuto() && marginEnd.isAuto()) {
child.setMarginStart(availableAlignmentSpace / 2, &parentStyle);
child.setMarginEnd(availableAlignmentSpace / 2, &parentStyle);
} else if (marginStart.isAuto()) {
child.setMarginStart(availableAlignmentSpace, &parentStyle);
} else if (marginEnd.isAuto()) {
child.setMarginEnd(availableAlignmentSpace, &parentStyle);
}
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::updateAutoMarginsInColumnAxisIfNeeded(RenderBox& child)
{
ASSERT(!child.isOutOfFlowPositioned());
LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalHeight().value() - child.logicalHeight() - child.marginLogicalHeight();
if (availableAlignmentSpace <= 0)
return;
const RenderStyle& parentStyle = style();
Length marginBefore = child.style().marginBeforeUsing(&parentStyle);
Length marginAfter = child.style().marginAfterUsing(&parentStyle);
if (marginBefore.isAuto() && marginAfter.isAuto()) {
child.setMarginBefore(availableAlignmentSpace / 2, &parentStyle);
child.setMarginAfter(availableAlignmentSpace / 2, &parentStyle);
} else if (marginBefore.isAuto()) {
child.setMarginBefore(availableAlignmentSpace, &parentStyle);
} else if (marginAfter.isAuto()) {
child.setMarginAfter(availableAlignmentSpace, &parentStyle);
}
}
// FIXME: This logic could be refactored somehow and defined in RenderBox.
static int synthesizedBaselineFromBorderBox(const RenderBox& box, LineDirectionMode direction)
{
return (direction == HorizontalLine ? box.size().height() : box.size().width()).toInt();
}
bool RenderGrid::isInlineBaselineAlignedChild(const RenderBox& child) const
{
return alignSelfForChild(child).position() == ItemPositionBaseline && !GridLayoutFunctions::isOrthogonalChild(*this, child) && !hasAutoMarginsInColumnAxis(child);
}
// FIXME: This logic is shared by RenderFlexibleBox, so it might be refactored somehow.
int RenderGrid::baselinePosition(FontBaseline, bool, LineDirectionMode direction, LinePositionMode mode) const
{
#if ENABLE(ASSERT)
ASSERT(mode == PositionOnContainingLine);
#else
UNUSED_PARAM(mode);
#endif
int baseline = firstLineBaseline().value_or(synthesizedBaselineFromBorderBox(*this, direction));
int marginSize = direction == HorizontalLine ? verticalMarginExtent() : horizontalMarginExtent();
return baseline + marginSize;
}
std::optional<int> RenderGrid::firstLineBaseline() const
{
if (isWritingModeRoot() || !m_grid.hasGridItems())
return std::nullopt;
const RenderBox* baselineChild = nullptr;
// Finding the first grid item in grid order.
unsigned numColumns = m_grid.numTracks(ForColumns);
for (size_t column = 0; column < numColumns; column++) {
for (const auto* child : m_grid.cell(0, column)) {
// If an item participates in baseline alignment, we select such item.
if (isInlineBaselineAlignedChild(*child)) {
// FIXME: self-baseline and content-baseline alignment not implemented yet.
baselineChild = child;
break;
}
if (!baselineChild)
baselineChild = child;
}
}
if (!baselineChild)
return std::nullopt;
auto baseline = GridLayoutFunctions::isOrthogonalChild(*this, *baselineChild) ? std::nullopt : baselineChild->firstLineBaseline();
// We take border-box's bottom if no valid baseline.
if (!baseline) {
// FIXME: We should pass |direction| into firstLineBaseline and stop bailing out if we're a writing
// mode root. This would also fix some cases where the grid is orthogonal to its container.
LineDirectionMode direction = isHorizontalWritingMode() ? HorizontalLine : VerticalLine;
return synthesizedBaselineFromBorderBox(*baselineChild, direction) + baselineChild->logicalTop().toInt();
}
return baseline.value() + baselineChild->logicalTop().toInt();
}
std::optional<int> RenderGrid::inlineBlockBaseline(LineDirectionMode direction) const
{
if (std::optional<int> baseline = firstLineBaseline())
return baseline;
int marginAscent = direction == HorizontalLine ? marginTop() : marginRight();
return synthesizedBaselineFromBorderBox(*this, direction) + marginAscent;
}
GridAxisPosition RenderGrid::columnAxisPositionForChild(const RenderBox& child) const
{
bool hasSameWritingMode = child.style().writingMode() == style().writingMode();
bool childIsLTR = child.style().isLeftToRightDirection();
if (!hasStaticPositionForChild(child, ForRows))
return GridAxisStart;
switch (alignSelfForChild(child).position()) {
case ItemPositionSelfStart:
// FIXME: Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'start' side in the column axis.
if (GridLayoutFunctions::isOrthogonalChild(*this, child)) {
// If orthogonal writing-modes, self-start will be based on the child's inline-axis
// direction (inline-start), because it's the one parallel to the column axis.
if (style().isFlippedBlocksWritingMode())
return childIsLTR ? GridAxisEnd : GridAxisStart;
return childIsLTR ? GridAxisStart : GridAxisEnd;
}
// self-start is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction.
return hasSameWritingMode ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// FIXME: Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'end' side in the column axis.
if (GridLayoutFunctions::isOrthogonalChild(*this, child)) {
// If orthogonal writing-modes, self-end will be based on the child's inline-axis
// direction, (inline-end) because it's the one parallel to the column axis.
if (style().isFlippedBlocksWritingMode())
return childIsLTR ? GridAxisStart : GridAxisEnd;
return childIsLTR ? GridAxisEnd : GridAxisStart;
}
// self-end is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction.
return hasSameWritingMode ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
// Aligns the alignment subject to be flush with the alignment container's 'line-left' edge.
// The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'.
return GridAxisStart;
case ItemPositionRight:
// Aligns the alignment subject to be flush with the alignment container's 'line-right' edge.
// The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'.
return GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'.
// Aligns the alignment subject to be flush with the alignment container's 'start' edge (block-start) in the column axis.
case ItemPositionStart:
return GridAxisStart;
case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'.
// Aligns the alignment subject to be flush with the alignment container's 'end' edge (block-end) in the column axis.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align the child.
return GridAxisStart;
case ItemPositionLegacy:
case ItemPositionAuto:
case ItemPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
GridAxisPosition RenderGrid::rowAxisPositionForChild(const RenderBox& child) const
{
bool hasSameDirection = child.style().direction() == style().direction();
bool gridIsLTR = style().isLeftToRightDirection();
if (!hasStaticPositionForChild(child, ForColumns))
return GridAxisStart;
switch (justifySelfForChild(child).position()) {
case ItemPositionSelfStart:
// FIXME: Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'start' side in the row axis.
if (GridLayoutFunctions::isOrthogonalChild(*this, child)) {
// If orthogonal writing-modes, self-start will be based on the child's block-axis
// direction, because it's the one parallel to the row axis.
if (child.style().isFlippedBlocksWritingMode())
return gridIsLTR ? GridAxisEnd : GridAxisStart;
return gridIsLTR ? GridAxisStart : GridAxisEnd;
}
// self-start is based on the child's inline-flow direction. That's why we need to check against the grid container's direction.
return hasSameDirection ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// FIXME: Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'end' side in the row axis.
if (GridLayoutFunctions::isOrthogonalChild(*this, child)) {
// If orthogonal writing-modes, self-end will be based on the child's block-axis
// direction, because it's the one parallel to the row axis.
if (child.style().isFlippedBlocksWritingMode())
return gridIsLTR ? GridAxisStart : GridAxisEnd;
return gridIsLTR ? GridAxisEnd : GridAxisStart;
}
// self-end is based on the child's inline-flow direction. That's why we need to check against the grid container's direction.
return hasSameDirection ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
// Aligns the alignment subject to be flush with the alignment container's 'line-left' edge.
// We want the physical 'left' side, so we have to take account, container's inline-flow direction.
return gridIsLTR ? GridAxisStart : GridAxisEnd;
case ItemPositionRight:
// Aligns the alignment subject to be flush with the alignment container's 'line-right' edge.
// We want the physical 'right' side, so we have to take account, container's inline-flow direction.
return gridIsLTR ? GridAxisEnd : GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'.
// Aligns the alignment subject to be flush with the alignment container's 'start' edge (inline-start) in the row axis.
case ItemPositionStart:
return GridAxisStart;
case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'.
// Aligns the alignment subject to be flush with the alignment container's 'end' edge (inline-end) in the row axis.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align the child.
return GridAxisStart;
case ItemPositionLegacy:
case ItemPositionAuto:
case ItemPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
LayoutUnit RenderGrid::columnAxisOffsetForChild(const RenderBox& child) const
{
LayoutUnit startOfRow;
LayoutUnit endOfRow;
gridAreaPositionForChild(child, ForRows, startOfRow, endOfRow);
LayoutUnit startPosition = startOfRow + marginBeforeForChild(child);
if (hasAutoMarginsInColumnAxis(child))
return startPosition;
GridAxisPosition axisPosition = columnAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
LayoutUnit columnAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight();
auto overflow = alignSelfForChild(child).overflow();
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfRow - startOfRow, columnAxisChildSize);
return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderGrid::rowAxisOffsetForChild(const RenderBox& child) const
{
LayoutUnit startOfColumn;
LayoutUnit endOfColumn;
gridAreaPositionForChild(child, ForColumns, startOfColumn, endOfColumn);
LayoutUnit startPosition = startOfColumn + marginStartForChild(child);
if (hasAutoMarginsInRowAxis(child))
return startPosition;
GridAxisPosition axisPosition = rowAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
LayoutUnit rowAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalHeight() + child.marginLogicalHeight() : child.logicalWidth() + child.marginLogicalWidth();
auto overflow = justifySelfForChild(child).overflow();
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfColumn - startOfColumn, rowAxisChildSize);
return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return 0;
}
bool RenderGrid::gridPositionIsAutoForOutOfFlow(GridPosition position, GridTrackSizingDirection direction) const
{
return position.isAuto() || (position.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(position.namedGridLine(), style(), GridPositionsResolver::initialPositionSide(direction)));
}
LayoutUnit RenderGrid::resolveAutoStartGridPosition(GridTrackSizingDirection direction) const
{
if (direction == ForRows || style().isLeftToRightDirection())
return LayoutUnit();
int lastLine = numTracks(ForColumns, m_grid);
ContentPosition position = style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid());
if (position == ContentPositionEnd)
return m_columnPositions[lastLine] - clientLogicalWidth();
if (position == ContentPositionStart || style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) == ContentDistributionStretch)
return m_columnPositions[0] - borderAndPaddingLogicalLeft();
return LayoutUnit();
}
LayoutUnit RenderGrid::resolveAutoEndGridPosition(GridTrackSizingDirection direction) const
{
if (direction == ForRows)
return clientLogicalHeight();
if (style().isLeftToRightDirection())
return clientLogicalWidth();
int lastLine = numTracks(ForColumns, m_grid);
ContentPosition position = style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid());
if (position == ContentPositionEnd)
return m_columnPositions[lastLine];
if (position == ContentPositionStart || style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) == ContentDistributionStretch)
return m_columnPositions[0] - borderAndPaddingLogicalLeft() + clientLogicalWidth();
return clientLogicalWidth();
}
LayoutUnit RenderGrid::gridAreaBreadthForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction)
{
ASSERT(child.isOutOfFlowPositioned());
bool isRowAxis = direction == ForColumns;
GridSpan span = GridPositionsResolver::resolveGridPositionsFromStyle(style(), child, direction, autoRepeatCountForDirection(direction));
if (span.isIndefinite())
return isRowAxis ? clientLogicalWidth() : clientLogicalHeight();
int smallestStart = abs(m_grid.smallestTrackStart(direction));
int startLine = span.untranslatedStartLine() + smallestStart;
int endLine = span.untranslatedEndLine() + smallestStart;
int lastLine = numTracks(direction, m_grid);
GridPosition startPosition = direction == ForColumns ? child.style().gridItemColumnStart() : child.style().gridItemRowStart();
GridPosition endPosition = direction == ForColumns ? child.style().gridItemColumnEnd() : child.style().gridItemRowEnd();
bool startIsAuto = gridPositionIsAutoForOutOfFlow(startPosition, direction) || startLine < 0 || startLine > lastLine;
bool endIsAuto = gridPositionIsAutoForOutOfFlow(endPosition, direction) || endLine < 0 || endLine > lastLine;
if (startIsAuto && endIsAuto)
return isRowAxis ? clientLogicalWidth() : clientLogicalHeight();
LayoutUnit start;
LayoutUnit end;
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow;
LayoutUnit borderEdge = isRowAxis ? borderLogicalLeft() : borderBefore();
if (startIsAuto)
start = resolveAutoStartGridPosition(direction) + borderEdge;
else {
outOfFlowItemLine.set(&child, startLine);
start = positions[startLine];
}
if (endIsAuto)
end = resolveAutoEndGridPosition(direction) + borderEdge;
else {
end = positions[endLine];
// These vectors store line positions including gaps, but we shouldn't consider them for the edges of the grid.
std::optional<LayoutUnit> availableSizeForGutters = availableSpaceForGutters(direction);
if (endLine > 0 && endLine < lastLine) {
ASSERT(!m_grid.needsItemsPlacement());
end -= guttersSize(m_grid, direction, endLine - 1, 2, availableSizeForGutters);
end -= isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
}
}
return std::max(end - start, LayoutUnit());
}
LayoutUnit RenderGrid::logicalOffsetForChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit trackBreadth) const
{
if (hasStaticPositionForChild(child, direction))
return LayoutUnit();
bool isRowAxis = direction == ForColumns;
bool isFlowAwareRowAxis = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, direction) == ForColumns;
LayoutUnit childPosition = isFlowAwareRowAxis ? child.logicalLeft() : child.logicalTop();
LayoutUnit gridBorder = isRowAxis ? borderLogicalLeft() : borderBefore();
LayoutUnit childMargin = isFlowAwareRowAxis ? child.marginLogicalLeft() : child.marginBefore();
LayoutUnit offset = childPosition - gridBorder - childMargin;
if (!isRowAxis || style().isLeftToRightDirection())
return offset;
LayoutUnit childBreadth = isFlowAwareRowAxis ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight();
return trackBreadth - offset - childBreadth;
}
void RenderGrid::gridAreaPositionForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const
{
ASSERT(child.isOutOfFlowPositioned());
ASSERT(GridLayoutFunctions::hasOverrideContainingBlockContentSizeForChild(child, direction));
LayoutUnit trackBreadth = GridLayoutFunctions::overrideContainingBlockContentSizeForChild(child, direction).value();
bool isRowAxis = direction == ForColumns;
auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow;
start = isRowAxis ? borderLogicalLeft() : borderBefore();
if (auto line = outOfFlowItemLine.get(&child)) {
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
start = positions[line.value()];
}
start += logicalOffsetForChild(child, direction, trackBreadth);
end = start + trackBreadth;
}
void RenderGrid::gridAreaPositionForInFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const
{
ASSERT(!child.isOutOfFlowPositioned());
const GridSpan& span = m_grid.gridItemSpan(child, direction);
// FIXME (lajava): This is a common pattern, why not defining a function like
// positions(direction) ?
auto& positions = direction == ForColumns ? m_columnPositions : m_rowPositions;
start = positions[span.startLine()];
end = positions[span.endLine()];
// The 'positions' vector includes distribution offset (because of content
// alignment) and gutters so we need to subtract them to get the actual
// end position for a given track (this does not have to be done for the
// last track as there are no more positions's elements after it).
if (span.endLine() < positions.size() - 1)
end -= gridGap(direction) + gridItemOffset(direction);
}
void RenderGrid::gridAreaPositionForChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const
{
if (child.isOutOfFlowPositioned())
gridAreaPositionForOutOfFlowChild(child, direction, start, end);
else
gridAreaPositionForInFlowChild(child, direction, start, end);
}
ContentPosition static resolveContentDistributionFallback(ContentDistributionType distribution)
{
switch (distribution) {
case ContentDistributionSpaceBetween:
return ContentPositionStart;
case ContentDistributionSpaceAround:
return ContentPositionCenter;
case ContentDistributionSpaceEvenly:
return ContentPositionCenter;
case ContentDistributionStretch:
return ContentPositionStart;
case ContentDistributionDefault:
return ContentPositionNormal;
}
ASSERT_NOT_REACHED();
return ContentPositionNormal;
}
static ContentAlignmentData contentDistributionOffset(const LayoutUnit& availableFreeSpace, ContentPosition& fallbackPosition, ContentDistributionType distribution, unsigned numberOfGridTracks)
{
if (distribution != ContentDistributionDefault && fallbackPosition == ContentPositionNormal)
fallbackPosition = resolveContentDistributionFallback(distribution);
if (availableFreeSpace <= 0)
return ContentAlignmentData::defaultOffsets();
LayoutUnit distributionOffset;
switch (distribution) {
case ContentDistributionSpaceBetween:
if (numberOfGridTracks < 2)
return ContentAlignmentData::defaultOffsets();
return {0, availableFreeSpace / (numberOfGridTracks - 1)};
case ContentDistributionSpaceAround:
if (numberOfGridTracks < 1)
return ContentAlignmentData::defaultOffsets();
distributionOffset = availableFreeSpace / numberOfGridTracks;
return {distributionOffset / 2, distributionOffset};
case ContentDistributionSpaceEvenly:
distributionOffset = availableFreeSpace / (numberOfGridTracks + 1);
return {distributionOffset, distributionOffset};
case ContentDistributionStretch:
case ContentDistributionDefault:
return ContentAlignmentData::defaultOffsets();
}
ASSERT_NOT_REACHED();
return ContentAlignmentData::defaultOffsets();
}
StyleContentAlignmentData RenderGrid::contentAlignment(GridTrackSizingDirection direction) const
{
return direction == ForColumns ? style().resolvedJustifyContent(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContent(contentAlignmentNormalBehaviorGrid());
}
ContentAlignmentData RenderGrid::computeContentPositionAndDistributionOffset(GridTrackSizingDirection direction, const LayoutUnit& availableFreeSpace, unsigned numberOfGridTracks) const
{
bool isRowAxis = direction == ForColumns;
auto contentAlignmentData = contentAlignment(direction);
auto position = contentAlignmentData.position();
// If <content-distribution> value can't be applied, 'position' will become the associated
// <content-position> fallback value.
auto contentAlignment = contentDistributionOffset(availableFreeSpace, position, contentAlignmentData.distribution(), numberOfGridTracks);
if (contentAlignment.isValid())
return contentAlignment;
if (availableFreeSpace <= 0 && contentAlignmentData.overflow() == OverflowAlignmentSafe)
return {0, 0};
switch (position) {
case ContentPositionLeft:
// The align-content's axis is always orthogonal to the inline-axis.
return {0, 0};
case ContentPositionRight:
if (isRowAxis)
return {availableFreeSpace, 0};
// The align-content's axis is always orthogonal to the inline-axis.
return {0, 0};
case ContentPositionCenter:
return {availableFreeSpace / 2, 0};
case ContentPositionFlexEnd: // Only used in flex layout, for other layout, it's equivalent to 'end'.
case ContentPositionEnd:
if (isRowAxis)
return {style().isLeftToRightDirection() ? availableFreeSpace : LayoutUnit(), LayoutUnit()};
return {availableFreeSpace, 0};
case ContentPositionFlexStart: // Only used in flex layout, for other layout, it's equivalent to 'start'.
case ContentPositionStart:
if (isRowAxis)
return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()};
return {0, 0};
case ContentPositionBaseline:
case ContentPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align.
// http://webkit.org/b/145566
if (isRowAxis)
return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()};
return {0, 0};
case ContentPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return {0, 0};
}
LayoutUnit RenderGrid::translateOutOfFlowRTLCoordinate(const RenderBox& child, LayoutUnit coordinate) const
{
ASSERT(child.isOutOfFlowPositioned());
ASSERT(!style().isLeftToRightDirection());
if (m_outOfFlowItemColumn.get(&child))
return translateRTLCoordinate(coordinate);
return borderLogicalLeft() + borderLogicalRight() + clientLogicalWidth() - coordinate;
}
LayoutUnit RenderGrid::translateRTLCoordinate(LayoutUnit coordinate) const
{
ASSERT(!style().isLeftToRightDirection());
LayoutUnit alignmentOffset = m_columnPositions[0];
LayoutUnit rightGridEdgePosition = m_columnPositions[m_columnPositions.size() - 1];
return rightGridEdgePosition + alignmentOffset - coordinate;
}
LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox& child) const
{
LayoutUnit columnAxisOffset = columnAxisOffsetForChild(child);
LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child);
bool isOrthogonalChild = GridLayoutFunctions::isOrthogonalChild(*this, child);
// We stored m_columnPositions's data ignoring the direction, hence we might need now
// to translate positions from RTL to LTR, as it's more convenient for painting.
if (!style().isLeftToRightDirection())
rowAxisOffset = (child.isOutOfFlowPositioned() ? translateOutOfFlowRTLCoordinate(child, rowAxisOffset) : translateRTLCoordinate(rowAxisOffset)) - (isOrthogonalChild ? child.logicalHeight() : child.logicalWidth());
// "In the positioning phase [...] calculations are performed according to the writing mode
// of the containing block of the box establishing the orthogonal flow." However, the
// resulting LayoutPoint will be used in 'setLogicalPosition' in order to set the child's
// logical position, which will only take into account the child's writing-mode.
LayoutPoint childLocation(rowAxisOffset, columnAxisOffset);
return isOrthogonalChild ? childLocation.transposedPoint() : childLocation;
}
unsigned RenderGrid::numTracks(GridTrackSizingDirection direction, const Grid& grid) const
{
// Due to limitations in our internal representation, we cannot know the number of columns from
// m_grid *if* there is no row (because m_grid would be empty). That's why in that case we need
// to get it from the style. Note that we know for sure that there are't any implicit tracks,
// because not having rows implies that there are no "normal" children (out-of-flow children are
// not stored in m_grid).
ASSERT(!grid.needsItemsPlacement());
if (direction == ForRows)
return grid.numTracks(ForRows);
// FIXME: This still requires knowledge about m_grid internals.
return grid.numTracks(ForRows) ? grid.numTracks(ForColumns) : GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns));
}
void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect)
{
ASSERT(!m_grid.needsItemsPlacement());
for (RenderBox* child = m_grid.orderIterator().first(); child; child = m_grid.orderIterator().next())
paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect, PaintAsInlineBlock);
}
const char* RenderGrid::renderName() const
{
if (isFloating())
return "RenderGrid (floating)";
if (isOutOfFlowPositioned())
return "RenderGrid (positioned)";
if (isAnonymous())
return "RenderGrid (generated)";
if (isRelativelyPositioned())
return "RenderGrid (relative positioned)";
return "RenderGrid";
}
} // namespace WebCore