| /* |
| * Copyright (C) 2011 Apple Inc. All rights reserved. |
| * Copyright (C) 2013-2017 Igalia S.L. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RenderGrid.h" |
| |
| #include "GridArea.h" |
| #include "GridLayoutFunctions.h" |
| #include "GridPositionsResolver.h" |
| #include "GridTrackSizingAlgorithm.h" |
| #include "LayoutRepainter.h" |
| #include "LayoutState.h" |
| #include "RenderChildIterator.h" |
| #include "RenderLayer.h" |
| #include "RenderTreeBuilder.h" |
| #include "RenderView.h" |
| #include <cstdlib> |
| #include <wtf/IsoMallocInlines.h> |
| |
| namespace WebCore { |
| |
| WTF_MAKE_ISO_ALLOCATED_IMPL(RenderGrid); |
| |
| enum TrackSizeRestriction { |
| AllowInfinity, |
| ForbidInfinity, |
| }; |
| |
| struct ContentAlignmentData { |
| WTF_MAKE_FAST_ALLOCATED; |
| public: |
| bool isValid() { return positionOffset >= 0 && distributionOffset >= 0; } |
| static ContentAlignmentData defaultOffsets() { return {-1, -1}; } |
| |
| LayoutUnit positionOffset; |
| LayoutUnit distributionOffset; |
| }; |
| |
| RenderGrid::RenderGrid(Element& element, RenderStyle&& style) |
| : RenderBlock(element, WTFMove(style), 0) |
| , m_grid(*this) |
| , m_trackSizingAlgorithm(this, m_grid) |
| { |
| // All of our children must be block level. |
| setChildrenInline(false); |
| } |
| |
| RenderGrid::~RenderGrid() = default; |
| |
| StyleSelfAlignmentData RenderGrid::selfAlignmentForChild(GridAxis axis, const RenderBox& child, const RenderStyle* gridStyle) const |
| { |
| return axis == GridRowAxis ? justifySelfForChild(child, gridStyle) : alignSelfForChild(child, gridStyle); |
| } |
| |
| bool RenderGrid::selfAlignmentChangedToStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const |
| { |
| return selfAlignmentForChild(axis, child, &oldStyle).position() != ItemPositionStretch |
| && selfAlignmentForChild(axis, child, &newStyle).position() == ItemPositionStretch; |
| } |
| |
| bool RenderGrid::selfAlignmentChangedFromStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const |
| { |
| return selfAlignmentForChild(axis, child, &oldStyle).position() == ItemPositionStretch |
| && selfAlignmentForChild(axis, child, &newStyle).position() != ItemPositionStretch; |
| } |
| |
| void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) |
| { |
| RenderBlock::styleDidChange(diff, oldStyle); |
| if (!oldStyle || diff != StyleDifferenceLayout) |
| return; |
| |
| const RenderStyle& newStyle = this->style(); |
| if (oldStyle->resolvedAlignItems(selfAlignmentNormalBehavior(this)).position() == ItemPositionStretch) { |
| // Style changes on the grid container implying stretching (to-stretch) or |
| // shrinking (from-stretch) require the affected items to be laid out again. |
| // These logic only applies to 'stretch' since the rest of the alignment |
| // values don't change the size of the box. |
| // In any case, the items' overrideSize will be cleared and recomputed (if |
| // necessary) as part of the Grid layout logic, triggered by this style |
| // change. |
| for (auto& child : childrenOfType<RenderBox>(*this)) { |
| if (child.isOutOfFlowPositioned()) |
| continue; |
| if (selfAlignmentChangedToStretch(GridRowAxis, *oldStyle, newStyle, child) |
| || selfAlignmentChangedFromStretch(GridRowAxis, *oldStyle, newStyle, child) |
| || selfAlignmentChangedToStretch(GridColumnAxis, *oldStyle, newStyle, child) |
| || selfAlignmentChangedFromStretch(GridColumnAxis, *oldStyle, newStyle, child)) { |
| child.setNeedsLayout(); |
| } |
| } |
| } |
| |
| if (explicitGridDidResize(*oldStyle) || namedGridLinesDefinitionDidChange(*oldStyle) || oldStyle->gridAutoFlow() != style().gridAutoFlow() |
| || (style().gridAutoRepeatColumns().size() || style().gridAutoRepeatRows().size())) |
| dirtyGrid(); |
| } |
| |
| bool RenderGrid::explicitGridDidResize(const RenderStyle& oldStyle) const |
| { |
| return oldStyle.gridColumns().size() != style().gridColumns().size() |
| || oldStyle.gridRows().size() != style().gridRows().size() |
| || oldStyle.namedGridAreaColumnCount() != style().namedGridAreaColumnCount() |
| || oldStyle.namedGridAreaRowCount() != style().namedGridAreaRowCount() |
| || oldStyle.gridAutoRepeatColumns().size() != style().gridAutoRepeatColumns().size() |
| || oldStyle.gridAutoRepeatRows().size() != style().gridAutoRepeatRows().size(); |
| } |
| |
| bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle& oldStyle) const |
| { |
| return oldStyle.namedGridRowLines() != style().namedGridRowLines() |
| || oldStyle.namedGridColumnLines() != style().namedGridColumnLines(); |
| } |
| |
| // This method optimizes the gutters computation by skiping the available size |
| // call if gaps are fixed size (it's only needed for percentages). |
| std::optional<LayoutUnit> RenderGrid::availableSpaceForGutters(GridTrackSizingDirection direction) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| const GapLength& gapLength = isRowAxis ? style().columnGap() : style().rowGap(); |
| if (gapLength.isNormal() || !gapLength.length().isPercent()) |
| return std::nullopt; |
| |
| return isRowAxis ? availableLogicalWidth() : availableLogicalHeightForPercentageComputation(); |
| } |
| |
| LayoutUnit RenderGrid::computeTrackBasedLogicalHeight() const |
| { |
| LayoutUnit logicalHeight; |
| |
| auto& allRows = m_trackSizingAlgorithm.tracks(ForRows); |
| for (const auto& row : allRows) |
| logicalHeight += row.baseSize(); |
| |
| logicalHeight += guttersSize(m_grid, ForRows, 0, allRows.size(), availableSpaceForGutters(ForRows)); |
| |
| return logicalHeight; |
| } |
| |
| void RenderGrid::computeTrackSizesForDefiniteSize(GridTrackSizingDirection direction, LayoutUnit availableSpace) |
| { |
| LayoutUnit totalGuttersSize = guttersSize(m_grid, direction, 0, m_grid.numTracks(direction), availableSpace); |
| LayoutUnit freeSpace = availableSpace - totalGuttersSize; |
| |
| m_trackSizingAlgorithm.setup(direction, numTracks(direction, m_grid), TrackSizing, availableSpace, freeSpace); |
| m_trackSizingAlgorithm.run(); |
| |
| ASSERT(m_trackSizingAlgorithm.tracksAreWiderThanMinTrackBreadth()); |
| } |
| |
| void RenderGrid::repeatTracksSizingIfNeeded(LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows) |
| { |
| // In orthogonal flow cases column track's size is determined by using the computed |
| // row track's size, which it was estimated during the first cycle of the sizing |
| // algorithm. Hence we need to repeat computeUsedBreadthOfGridTracks for both, |
| // columns and rows, to determine the final values. |
| // TODO (lajava): orthogonal flows is just one of the cases which may require |
| // a new cycle of the sizing algorithm; there may be more. In addition, not all the |
| // cases with orthogonal flows require this extra cycle; we need a more specific |
| // condition to detect whether child's min-content contribution has changed or not. |
| if (m_grid.hasAnyOrthogonalGridItem()) { |
| computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); |
| computeTrackSizesForDefiniteSize(ForRows, availableSpaceForRows); |
| } |
| } |
| |
| bool RenderGrid::canPerformSimplifiedLayout() const |
| { |
| // We cannot perform a simplified layout if we need to position the items and we have some |
| // positioned items to be laid out. |
| if (m_grid.needsItemsPlacement() && posChildNeedsLayout()) |
| return false; |
| |
| return RenderBlock::canPerformSimplifiedLayout(); |
| } |
| |
| void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit) |
| { |
| ASSERT(needsLayout()); |
| |
| if (!relayoutChildren && simplifiedLayout()) |
| return; |
| |
| LayoutRepainter repainter(*this, checkForRepaintDuringLayout()); |
| { |
| LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode()); |
| |
| preparePaginationBeforeBlockLayout(relayoutChildren); |
| |
| LayoutSize previousSize = size(); |
| // FIXME: We should use RenderBlock::hasDefiniteLogicalHeight() but it does not work for positioned stuff. |
| // FIXME: Consider caching the hasDefiniteLogicalHeight value throughout the layout. |
| bool hasDefiniteLogicalHeight = hasOverrideLogicalContentHeight() || computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt); |
| |
| // We need to clear both own and containingBlock override sizes of orthogonal items to ensure we get the |
| // same result when grid's intrinsic size is computed again in the updateLogicalWidth call bellow. |
| if (sizesLogicalWidthToFitContent(MaxSize) || style().logicalWidth().isIntrinsicOrAuto()) { |
| for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (child->isOutOfFlowPositioned() || !GridLayoutFunctions::isOrthogonalChild(*this, *child)) |
| continue; |
| child->clearOverrideSize(); |
| child->clearContainingBlockOverrideSize(); |
| child->setNeedsLayout(); |
| child->layoutIfNeeded(); |
| } |
| } |
| |
| setLogicalHeight(0); |
| updateLogicalWidth(); |
| |
| // Fieldsets need to find their legend and position it inside the border of the object. |
| // The legend then gets skipped during normal layout. The same is true for ruby text. |
| // It doesn't get included in the normal layout process but is instead skipped. |
| layoutExcludedChildren(relayoutChildren); |
| |
| LayoutUnit availableSpaceForColumns = availableLogicalWidth(); |
| placeItemsOnGrid(m_grid, availableSpaceForColumns); |
| |
| // At this point the logical width is always definite as the above call to updateLogicalWidth() |
| // properly resolves intrinsic sizes. We cannot do the same for heights though because many code |
| // paths inside updateLogicalHeight() require a previous call to setLogicalHeight() to resolve |
| // heights properly (like for positioned items for example). |
| computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); |
| |
| if (!hasDefiniteLogicalHeight) { |
| m_minContentHeight = LayoutUnit(); |
| m_maxContentHeight = LayoutUnit(); |
| computeTrackSizesForIndefiniteSize(m_trackSizingAlgorithm, ForRows, m_grid, *m_minContentHeight, *m_maxContentHeight); |
| // FIXME: This should be really added to the intrinsic height in RenderBox::computeContentAndScrollbarLogicalHeightUsing(). |
| // Remove this when that is fixed. |
| ASSERT(m_minContentHeight); |
| ASSERT(m_maxContentHeight); |
| LayoutUnit scrollbarHeight = scrollbarLogicalHeight(); |
| *m_minContentHeight += scrollbarHeight; |
| *m_maxContentHeight += scrollbarHeight; |
| } else |
| computeTrackSizesForDefiniteSize(ForRows, availableLogicalHeight(ExcludeMarginBorderPadding)); |
| LayoutUnit trackBasedLogicalHeight = computeTrackBasedLogicalHeight() + borderAndPaddingLogicalHeight() + scrollbarLogicalHeight(); |
| setLogicalHeight(trackBasedLogicalHeight); |
| |
| LayoutUnit oldClientAfterEdge = clientLogicalBottom(); |
| updateLogicalHeight(); |
| |
| // Once grid's indefinite height is resolved, we can compute the |
| // available free space for Content Alignment. |
| if (!hasDefiniteLogicalHeight) |
| m_trackSizingAlgorithm.setFreeSpace(ForRows, logicalHeight() - trackBasedLogicalHeight); |
| |
| // 3- If the min-content contribution of any grid items have changed based on the row |
| // sizes calculated in step 2, steps 1 and 2 are repeated with the new min-content |
| // contribution (once only). |
| repeatTracksSizingIfNeeded(availableSpaceForColumns, contentLogicalHeight()); |
| |
| // Grid container should have the minimum height of a line if it's editable. That does not affect track sizing though. |
| if (hasLineIfEmpty()) { |
| LayoutUnit minHeightForEmptyLine = borderAndPaddingLogicalHeight() |
| + lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes) |
| + scrollbarLogicalHeight(); |
| setLogicalHeight(std::max(logicalHeight(), minHeightForEmptyLine)); |
| } |
| |
| layoutGridItems(); |
| m_trackSizingAlgorithm.reset(); |
| |
| if (size() != previousSize) |
| relayoutChildren = true; |
| |
| m_outOfFlowItemColumn.clear(); |
| m_outOfFlowItemRow.clear(); |
| |
| layoutPositionedObjects(relayoutChildren || isDocumentElementRenderer()); |
| |
| computeOverflow(oldClientAfterEdge); |
| } |
| |
| updateLayerTransform(); |
| |
| // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if |
| // we overflow or not. |
| updateScrollInfoAfterLayout(); |
| |
| repainter.repaintAfterLayout(); |
| |
| clearNeedsLayout(); |
| } |
| |
| LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction, std::optional<LayoutUnit> availableSize) const |
| { |
| const GapLength& gapLength = direction == ForColumns? style().columnGap() : style().rowGap(); |
| if (gapLength.isNormal()) |
| return LayoutUnit(); |
| |
| return valueForLength(gapLength.length(), availableSize.value_or(0)); |
| } |
| |
| LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction) const |
| { |
| return gridGap(direction, availableSpaceForGutters(direction)); |
| } |
| |
| LayoutUnit RenderGrid::gridItemOffset(GridTrackSizingDirection direction) const |
| { |
| return direction == ForRows ? m_offsetBetweenRows : m_offsetBetweenColumns; |
| } |
| |
| LayoutUnit RenderGrid::guttersSize(const Grid& grid, GridTrackSizingDirection direction, unsigned startLine, unsigned span, std::optional<LayoutUnit> availableSize) const |
| { |
| if (span <= 1) |
| return { }; |
| |
| LayoutUnit gap = gridGap(direction, availableSize); |
| |
| // Fast path, no collapsing tracks. |
| if (!grid.hasAutoRepeatEmptyTracks(direction)) |
| return gap * (span - 1); |
| |
| // If there are collapsing tracks we need to be sure that gutters are properly collapsed. Apart |
| // from that, if we have a collapsed track in the edges of the span we're considering, we need |
| // to move forward (or backwards) in order to know whether the collapsed tracks reach the end of |
| // the grid (so the gap becomes 0) or there is a non empty track before that. |
| |
| LayoutUnit gapAccumulator; |
| unsigned endLine = startLine + span; |
| |
| for (unsigned line = startLine; line < endLine - 1; ++line) { |
| if (!grid.isEmptyAutoRepeatTrack(direction, line)) |
| gapAccumulator += gap; |
| } |
| |
| // The above loop adds one extra gap for trailing collapsed tracks. |
| if (gapAccumulator && grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { |
| ASSERT(gapAccumulator >= gap); |
| gapAccumulator -= gap; |
| } |
| |
| // If the startLine is the start line of a collapsed track we need to go backwards till we reach |
| // a non collapsed track. If we find a non collapsed track we need to add that gap. |
| if (startLine && grid.isEmptyAutoRepeatTrack(direction, startLine)) { |
| unsigned nonEmptyTracksBeforeStartLine = startLine; |
| auto begin = grid.autoRepeatEmptyTracks(direction)->begin(); |
| for (auto it = begin; *it != startLine; ++it) { |
| ASSERT(nonEmptyTracksBeforeStartLine); |
| --nonEmptyTracksBeforeStartLine; |
| } |
| if (nonEmptyTracksBeforeStartLine) |
| gapAccumulator += gap; |
| } |
| |
| // If the endLine is the end line of a collapsed track we need to go forward till we reach a non |
| // collapsed track. If we find a non collapsed track we need to add that gap. |
| if (grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { |
| unsigned nonEmptyTracksAfterEndLine = grid.numTracks(direction) - endLine; |
| auto currentEmptyTrack = grid.autoRepeatEmptyTracks(direction)->find(endLine - 1); |
| auto endEmptyTrack = grid.autoRepeatEmptyTracks(direction)->end(); |
| // HashSet iterators do not implement operator- so we have to manually iterate to know the number of remaining empty tracks. |
| for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) { |
| ASSERT(nonEmptyTracksAfterEndLine >= 1); |
| --nonEmptyTracksAfterEndLine; |
| } |
| if (nonEmptyTracksAfterEndLine) |
| gapAccumulator += gap; |
| } |
| |
| return gapAccumulator; |
| } |
| |
| void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
| { |
| LayoutUnit childMinWidth; |
| LayoutUnit childMaxWidth; |
| bool hadExcludedChildren = computePreferredWidthsForExcludedChildren(childMinWidth, childMaxWidth); |
| |
| Grid grid(const_cast<RenderGrid&>(*this)); |
| placeItemsOnGrid(grid, std::nullopt); |
| |
| GridTrackSizingAlgorithm algorithm(this, grid); |
| computeTrackSizesForIndefiniteSize(algorithm, ForColumns, grid, minLogicalWidth, maxLogicalWidth); |
| |
| if (hadExcludedChildren) { |
| minLogicalWidth = std::max(minLogicalWidth, childMinWidth); |
| maxLogicalWidth = std::max(maxLogicalWidth, childMaxWidth); |
| } |
| |
| LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth(); |
| minLogicalWidth += scrollbarWidth; |
| maxLogicalWidth += scrollbarWidth; |
| } |
| |
| void RenderGrid::computeTrackSizesForIndefiniteSize(GridTrackSizingAlgorithm& algorithm, GridTrackSizingDirection direction, Grid& grid, LayoutUnit& minIntrinsicSize, LayoutUnit& maxIntrinsicSize) const |
| { |
| algorithm.setup(direction, numTracks(direction, grid), IntrinsicSizeComputation, std::nullopt, std::nullopt); |
| algorithm.run(); |
| |
| size_t numberOfTracks = algorithm.tracks(direction).size(); |
| LayoutUnit totalGuttersSize = guttersSize(grid, direction, 0, numberOfTracks, std::nullopt); |
| |
| minIntrinsicSize = algorithm.minContentSize() + totalGuttersSize; |
| maxIntrinsicSize = algorithm.maxContentSize() + totalGuttersSize; |
| |
| ASSERT(algorithm.tracksAreWiderThanMinTrackBreadth()); |
| } |
| |
| std::optional<LayoutUnit> RenderGrid::computeIntrinsicLogicalContentHeightUsing(Length logicalHeightLength, std::optional<LayoutUnit> intrinsicLogicalHeight, LayoutUnit borderAndPadding) const |
| { |
| if (!intrinsicLogicalHeight) |
| return std::nullopt; |
| |
| if (logicalHeightLength.isMinContent()) |
| return m_minContentHeight; |
| |
| if (logicalHeightLength.isMaxContent()) |
| return m_maxContentHeight; |
| |
| if (logicalHeightLength.isFitContent()) { |
| LayoutUnit fillAvailableExtent = containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding); |
| return std::min(m_maxContentHeight.value_or(0), std::max(m_minContentHeight.value_or(0), fillAvailableExtent)); |
| } |
| |
| if (logicalHeightLength.isFillAvailable()) |
| return containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding) - borderAndPadding; |
| ASSERT_NOT_REACHED(); |
| return std::nullopt; |
| } |
| |
| unsigned RenderGrid::computeAutoRepeatTracksCount(GridTrackSizingDirection direction, std::optional<LayoutUnit> availableSize) const |
| { |
| ASSERT(!availableSize || availableSize.value() != -1); |
| bool isRowAxis = direction == ForColumns; |
| const auto& autoRepeatTracks = isRowAxis ? style().gridAutoRepeatColumns() : style().gridAutoRepeatRows(); |
| unsigned autoRepeatTrackListLength = autoRepeatTracks.size(); |
| |
| if (!autoRepeatTrackListLength) |
| return 0; |
| |
| if (!isRowAxis && !availableSize) { |
| const Length& maxLength = style().logicalMaxHeight(); |
| if (!maxLength.isUndefined()) { |
| availableSize = computeContentLogicalHeight(MaxSize, maxLength, std::nullopt); |
| if (availableSize) |
| availableSize = constrainContentBoxLogicalHeightByMinMax(availableSize.value(), std::nullopt); |
| } |
| } |
| |
| bool needsToFulfillMinimumSize = false; |
| if (!availableSize) { |
| const Length& minSize = isRowAxis ? style().logicalMinWidth() : style().logicalMinHeight(); |
| if (!minSize.isSpecified()) |
| return autoRepeatTrackListLength; |
| |
| LayoutUnit containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); |
| availableSize = valueForLength(minSize, containingBlockAvailableSize); |
| needsToFulfillMinimumSize = true; |
| } |
| |
| LayoutUnit autoRepeatTracksSize; |
| for (auto& autoTrackSize : autoRepeatTracks) { |
| ASSERT(autoTrackSize.minTrackBreadth().isLength()); |
| ASSERT(!autoTrackSize.minTrackBreadth().isFlex()); |
| bool hasDefiniteMaxTrackSizingFunction = autoTrackSize.maxTrackBreadth().isLength() && !autoTrackSize.maxTrackBreadth().isContentSized(); |
| auto trackLength = hasDefiniteMaxTrackSizingFunction ? autoTrackSize.maxTrackBreadth().length() : autoTrackSize.minTrackBreadth().length(); |
| autoRepeatTracksSize += valueForLength(trackLength, availableSize.value()); |
| } |
| // For the purpose of finding the number of auto-repeated tracks, the UA must floor the track size to a UA-specified |
| // value to avoid division by zero. It is suggested that this floor be 1px. |
| autoRepeatTracksSize = std::max<LayoutUnit>(LayoutUnit(1), autoRepeatTracksSize); |
| |
| // There will be always at least 1 auto-repeat track, so take it already into account when computing the total track size. |
| LayoutUnit tracksSize = autoRepeatTracksSize; |
| auto& trackSizes = isRowAxis ? style().gridColumns() : style().gridRows(); |
| |
| for (const auto& track : trackSizes) { |
| bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() && !track.maxTrackBreadth().isContentSized(); |
| ASSERT(hasDefiniteMaxTrackBreadth || (track.minTrackBreadth().isLength() && !track.minTrackBreadth().isContentSized())); |
| tracksSize += valueForLength(hasDefiniteMaxTrackBreadth ? track.maxTrackBreadth().length() : track.minTrackBreadth().length(), availableSize.value()); |
| } |
| |
| // Add gutters as if there where only 1 auto repeat track. Gaps between auto repeat tracks will be added later when |
| // computing the repetitions. |
| LayoutUnit gapSize = gridGap(direction, availableSize); |
| tracksSize += gapSize * trackSizes.size(); |
| |
| LayoutUnit freeSpace = availableSize.value() - tracksSize; |
| if (freeSpace <= 0) |
| return autoRepeatTrackListLength; |
| |
| LayoutUnit autoRepeatSizeWithGap = autoRepeatTracksSize + gapSize; |
| unsigned repetitions = 1 + (freeSpace / autoRepeatSizeWithGap).toUnsigned(); |
| freeSpace -= autoRepeatSizeWithGap * (repetitions - 1); |
| ASSERT(freeSpace >= 0); |
| |
| // Provided the grid container does not have a definite size or max-size in the relevant axis, |
| // if the min size is definite then the number of repetitions is the largest possible positive |
| // integer that fulfills that minimum requirement. |
| if (needsToFulfillMinimumSize && freeSpace) |
| ++repetitions; |
| |
| return repetitions * autoRepeatTrackListLength; |
| } |
| |
| |
| std::unique_ptr<OrderedTrackIndexSet> RenderGrid::computeEmptyTracksForAutoRepeat(Grid& grid, GridTrackSizingDirection direction) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| if ((isRowAxis && style().gridAutoRepeatColumnsType() != AutoFit) |
| || (!isRowAxis && style().gridAutoRepeatRowsType() != AutoFit)) |
| return nullptr; |
| |
| std::unique_ptr<OrderedTrackIndexSet> emptyTrackIndexes; |
| unsigned insertionPoint = isRowAxis ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); |
| unsigned firstAutoRepeatTrack = insertionPoint + std::abs(grid.smallestTrackStart(direction)); |
| unsigned lastAutoRepeatTrack = firstAutoRepeatTrack + grid.autoRepeatTracks(direction); |
| |
| if (!grid.hasGridItems()) { |
| emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>(); |
| for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) |
| emptyTrackIndexes->add(trackIndex); |
| } else { |
| for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) { |
| GridIterator iterator(grid, direction, trackIndex); |
| if (!iterator.nextGridItem()) { |
| if (!emptyTrackIndexes) |
| emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>(); |
| emptyTrackIndexes->add(trackIndex); |
| } |
| } |
| } |
| return emptyTrackIndexes; |
| } |
| |
| unsigned RenderGrid::clampAutoRepeatTracks(GridTrackSizingDirection direction, unsigned autoRepeatTracks) const |
| { |
| if (!autoRepeatTracks) |
| return 0; |
| |
| unsigned insertionPoint = direction == ForColumns ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); |
| unsigned maxTracks = static_cast<unsigned>(GridPosition::max()); |
| |
| if (!insertionPoint) |
| return std::min(autoRepeatTracks, maxTracks); |
| |
| if (insertionPoint >= maxTracks) |
| return 0; |
| |
| return std::min(autoRepeatTracks, maxTracks - insertionPoint); |
| } |
| |
| // FIXME): We shouldn't have to pass the available logical width as argument. The problem is that |
| // availableLogicalWidth() does always return a value even if we cannot resolve it like when |
| // computing the intrinsic size (preferred widths). That's why we pass the responsibility to the |
| // caller who does know whether the available logical width is indefinite or not. |
| void RenderGrid::placeItemsOnGrid(Grid& grid, std::optional<LayoutUnit> availableSpace) const |
| { |
| unsigned autoRepeatColumns = computeAutoRepeatTracksCount(ForColumns, availableSpace); |
| unsigned autoRepeatRows = computeAutoRepeatTracksCount(ForRows, availableLogicalHeightForPercentageComputation()); |
| |
| autoRepeatRows = clampAutoRepeatTracks(ForRows, autoRepeatRows); |
| autoRepeatColumns = clampAutoRepeatTracks(ForColumns, autoRepeatColumns); |
| |
| if (autoRepeatColumns != grid.autoRepeatTracks(ForColumns) || autoRepeatRows != grid.autoRepeatTracks(ForRows)) { |
| grid.setNeedsItemsPlacement(true); |
| grid.setAutoRepeatTracks(autoRepeatRows, autoRepeatColumns); |
| } |
| |
| if (!grid.needsItemsPlacement()) |
| return; |
| |
| ASSERT(!grid.hasGridItems()); |
| populateExplicitGridAndOrderIterator(grid); |
| |
| Vector<RenderBox*> autoMajorAxisAutoGridItems; |
| Vector<RenderBox*> specifiedMajorAxisAutoGridItems; |
| bool hasAnyOrthogonalGridItem = false; |
| for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { |
| if (grid.orderIterator().shouldSkipChild(*child)) |
| continue; |
| |
| hasAnyOrthogonalGridItem = hasAnyOrthogonalGridItem || GridLayoutFunctions::isOrthogonalChild(*this, *child); |
| |
| GridArea area = grid.gridItemArea(*child); |
| if (!area.rows.isIndefinite()) |
| area.rows.translate(std::abs(grid.smallestTrackStart(ForRows))); |
| if (!area.columns.isIndefinite()) |
| area.columns.translate(std::abs(grid.smallestTrackStart(ForColumns))); |
| |
| if (area.rows.isIndefinite() || area.columns.isIndefinite()) { |
| grid.setGridItemArea(*child, area); |
| bool majorAxisDirectionIsForColumns = autoPlacementMajorAxisDirection() == ForColumns; |
| if ((majorAxisDirectionIsForColumns && area.columns.isIndefinite()) |
| || (!majorAxisDirectionIsForColumns && area.rows.isIndefinite())) |
| autoMajorAxisAutoGridItems.append(child); |
| else |
| specifiedMajorAxisAutoGridItems.append(child); |
| continue; |
| } |
| grid.insert(*child, { area.rows, area.columns }); |
| } |
| grid.setHasAnyOrthogonalGridItem(hasAnyOrthogonalGridItem); |
| |
| #if ENABLE(ASSERT) |
| if (grid.hasGridItems()) { |
| ASSERT(grid.numTracks(ForRows) >= GridPositionsResolver::explicitGridRowCount(style(), grid.autoRepeatTracks(ForRows))); |
| ASSERT(grid.numTracks(ForColumns) >= GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns))); |
| } |
| #endif |
| |
| placeSpecifiedMajorAxisItemsOnGrid(grid, specifiedMajorAxisAutoGridItems); |
| placeAutoMajorAxisItemsOnGrid(grid, autoMajorAxisAutoGridItems); |
| |
| // Compute collapsible tracks for auto-fit. |
| grid.setAutoRepeatEmptyColumns(computeEmptyTracksForAutoRepeat(grid, ForColumns)); |
| grid.setAutoRepeatEmptyRows(computeEmptyTracksForAutoRepeat(grid, ForRows)); |
| |
| grid.setNeedsItemsPlacement(false); |
| |
| #if ENABLE(ASSERT) |
| for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { |
| if (grid.orderIterator().shouldSkipChild(*child)) |
| continue; |
| |
| GridArea area = grid.gridItemArea(*child); |
| ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite()); |
| } |
| #endif |
| } |
| |
| void RenderGrid::populateExplicitGridAndOrderIterator(Grid& grid) const |
| { |
| OrderIteratorPopulator populator(grid.orderIterator()); |
| int smallestRowStart = 0; |
| int smallestColumnStart = 0; |
| unsigned autoRepeatRows = grid.autoRepeatTracks(ForRows); |
| unsigned autoRepeatColumns = grid.autoRepeatTracks(ForColumns); |
| unsigned maximumRowIndex = GridPositionsResolver::explicitGridRowCount(style(), autoRepeatRows); |
| unsigned maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(style(), autoRepeatColumns); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (!populator.collectChild(*child)) |
| continue; |
| |
| GridSpan rowPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForRows, autoRepeatRows); |
| if (!rowPositions.isIndefinite()) { |
| smallestRowStart = std::min(smallestRowStart, rowPositions.untranslatedStartLine()); |
| maximumRowIndex = std::max<int>(maximumRowIndex, rowPositions.untranslatedEndLine()); |
| } else { |
| // Grow the grid for items with a definite row span, getting the largest such span. |
| unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForRows); |
| maximumRowIndex = std::max(maximumRowIndex, spanSize); |
| } |
| |
| GridSpan columnPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForColumns, autoRepeatColumns); |
| if (!columnPositions.isIndefinite()) { |
| smallestColumnStart = std::min(smallestColumnStart, columnPositions.untranslatedStartLine()); |
| maximumColumnIndex = std::max<int>(maximumColumnIndex, columnPositions.untranslatedEndLine()); |
| } else { |
| // Grow the grid for items with a definite column span, getting the largest such span. |
| unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForColumns); |
| maximumColumnIndex = std::max(maximumColumnIndex, spanSize); |
| } |
| |
| grid.setGridItemArea(*child, { rowPositions, columnPositions }); |
| } |
| |
| grid.setSmallestTracksStart(smallestRowStart, smallestColumnStart); |
| grid.ensureGridSize(maximumRowIndex + std::abs(smallestRowStart), maximumColumnIndex + std::abs(smallestColumnStart)); |
| } |
| |
| std::unique_ptr<GridArea> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(Grid& grid, const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const |
| { |
| GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns; |
| const unsigned endOfCrossDirection = grid.numTracks(crossDirection); |
| unsigned crossDirectionSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, crossDirection); |
| GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize); |
| return std::make_unique<GridArea>(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions); |
| } |
| |
| void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const |
| { |
| bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns; |
| bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); |
| |
| // Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on |
| // that track. This is needed to implement "sparse" packing for items locked to a given track. |
| // See http://dev.w3.org/csswg/css-grid/#auto-placement-algorithm |
| HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors; |
| |
| for (auto& autoGridItem : autoGridItems) { |
| GridSpan majorAxisPositions = grid.gridItemSpan(*autoGridItem, autoPlacementMajorAxisDirection()); |
| ASSERT(majorAxisPositions.isTranslatedDefinite()); |
| ASSERT(grid.gridItemSpan(*autoGridItem, autoPlacementMinorAxisDirection()).isIndefinite()); |
| unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *autoGridItem, autoPlacementMinorAxisDirection()); |
| unsigned majorAxisInitialPosition = majorAxisPositions.startLine(); |
| |
| GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition)); |
| std::unique_ptr<GridArea> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisSpanSize); |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, *autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions); |
| |
| grid.insert(*autoGridItem, *emptyGridArea); |
| |
| if (!isGridAutoFlowDense) |
| minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.startLine() : emptyGridArea->columns.startLine()); |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const |
| { |
| AutoPlacementCursor autoPlacementCursor = {0, 0}; |
| bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); |
| |
| for (auto& autoGridItem : autoGridItems) { |
| placeAutoMajorAxisItemOnGrid(grid, *autoGridItem, autoPlacementCursor); |
| |
| if (isGridAutoFlowDense) { |
| autoPlacementCursor.first = 0; |
| autoPlacementCursor.second = 0; |
| } |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemOnGrid(Grid& grid, RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor) const |
| { |
| ASSERT(grid.gridItemSpan(gridItem, autoPlacementMajorAxisDirection()).isIndefinite()); |
| unsigned majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMajorAxisDirection()); |
| |
| const unsigned endOfMajorAxis = grid.numTracks(autoPlacementMajorAxisDirection()); |
| unsigned majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first; |
| unsigned minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second; |
| |
| std::unique_ptr<GridArea> emptyGridArea; |
| GridSpan minorAxisPositions = grid.gridItemSpan(gridItem, autoPlacementMinorAxisDirection()); |
| if (minorAxisPositions.isTranslatedDefinite()) { |
| // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor. |
| if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor) |
| majorAxisAutoPlacementCursor++; |
| |
| if (majorAxisAutoPlacementCursor < endOfMajorAxis) { |
| GridIterator iterator(grid, autoPlacementMinorAxisDirection(), minorAxisPositions.startLine(), majorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisSpanSize); |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions); |
| } else { |
| unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMinorAxisDirection()); |
| |
| for (unsigned majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) { |
| GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize); |
| |
| if (emptyGridArea) { |
| // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()). |
| unsigned minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.endLine() : emptyGridArea->rows.endLine(); |
| const unsigned endOfMinorAxis = grid.numTracks(autoPlacementMinorAxisDirection()); |
| if (minorAxisFinalPositionIndex <= endOfMinorAxis) |
| break; |
| |
| // Discard empty grid area as it does not fit in the minor axis direction. |
| // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration. |
| emptyGridArea = nullptr; |
| } |
| |
| // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis. |
| minorAxisAutoPlacementCursor = 0; |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize)); |
| } |
| |
| grid.insert(gridItem, *emptyGridArea); |
| autoPlacementCursor.first = emptyGridArea->rows.startLine(); |
| autoPlacementCursor.second = emptyGridArea->columns.startLine(); |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const |
| { |
| return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows; |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const |
| { |
| return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns; |
| } |
| |
| void RenderGrid::dirtyGrid() |
| { |
| if (m_grid.needsItemsPlacement()) |
| return; |
| |
| m_grid.setNeedsItemsPlacement(true); |
| } |
| |
| Vector<LayoutUnit> RenderGrid::trackSizesForComputedStyle(GridTrackSizingDirection direction) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| size_t numPositions = positions.size(); |
| LayoutUnit offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; |
| |
| Vector<LayoutUnit> tracks; |
| if (numPositions < 2) |
| return tracks; |
| |
| ASSERT(!m_grid.needsItemsPlacement()); |
| bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); |
| LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : LayoutUnit(); |
| tracks.reserveCapacity(numPositions - 1); |
| for (size_t i = 0; i < numPositions - 2; ++i) |
| tracks.append(positions[i + 1] - positions[i] - offsetBetweenTracks - gap); |
| tracks.append(positions[numPositions - 1] - positions[numPositions - 2]); |
| |
| if (!hasCollapsedTracks) |
| return tracks; |
| |
| size_t remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size(); |
| size_t lastLine = tracks.size(); |
| gap = gridGap(direction); |
| for (size_t i = 1; i < lastLine; ++i) { |
| if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) |
| --remainingEmptyTracks; |
| else { |
| // Remove the gap between consecutive non empty tracks. Remove it also just once for an |
| // arbitrary number of empty tracks between two non empty ones. |
| bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); |
| if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) |
| tracks[i - 1] -= gap; |
| } |
| } |
| |
| return tracks; |
| } |
| |
| static const StyleContentAlignmentData& contentAlignmentNormalBehaviorGrid() |
| { |
| static const StyleContentAlignmentData normalBehavior = {ContentPositionNormal, ContentDistributionStretch}; |
| return normalBehavior; |
| } |
| |
| void RenderGrid::layoutGridItems() |
| { |
| populateGridPositionsForDirection(ForColumns); |
| populateGridPositionsForDirection(ForRows); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| |
| if (m_grid.orderIterator().shouldSkipChild(*child)) { |
| if (child->isOutOfFlowPositioned()) |
| prepareChildForPositionedLayout(*child); |
| continue; |
| } |
| |
| // Because the grid area cannot be styled, we don't need to adjust |
| // the grid breadth to account for 'box-sizing'. |
| std::optional<LayoutUnit> oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit(); |
| std::optional<LayoutUnit> oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit(); |
| |
| LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns); |
| LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows); |
| if (!oldOverrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalWidth.value() != overrideContainingBlockContentLogicalWidth |
| || ((!oldOverrideContainingBlockContentLogicalHeight || oldOverrideContainingBlockContentLogicalHeight.value() != overrideContainingBlockContentLogicalHeight) |
| && child->hasRelativeLogicalHeight())) |
| child->setNeedsLayout(MarkOnlyThis); |
| |
| child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth); |
| child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight); |
| |
| LayoutRect oldChildRect = child->frameRect(); |
| |
| // Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded |
| // call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly |
| // determine the available space before stretching, are not set yet. |
| applyStretchAlignmentToChildIfNeeded(*child); |
| |
| child->layoutIfNeeded(); |
| |
| // We need pending layouts to be done in order to compute auto-margins properly. |
| updateAutoMarginsInColumnAxisIfNeeded(*child); |
| updateAutoMarginsInRowAxisIfNeeded(*child); |
| |
| child->setLogicalLocation(findChildLogicalPosition(*child)); |
| |
| // If the child moved, we have to repaint it as well as any floating/positioned |
| // descendants. An exception is if we need a layout. In this case, we know we're going to |
| // repaint ourselves (and the child) anyway. |
| if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) |
| child->repaintDuringLayoutIfMoved(oldChildRect); |
| } |
| } |
| |
| void RenderGrid::prepareChildForPositionedLayout(RenderBox& child) |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| child.containingBlock()->insertPositionedObject(child); |
| |
| RenderLayer* childLayer = child.layer(); |
| childLayer->setStaticInlinePosition(borderStart()); |
| childLayer->setStaticBlockPosition(borderBefore()); |
| } |
| |
| bool RenderGrid::hasStaticPositionForChild(const RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| return direction == ForColumns ? child.style().hasStaticInlinePosition(isHorizontalWritingMode()) : child.style().hasStaticBlockPosition(isHorizontalWritingMode()); |
| } |
| |
| void RenderGrid::layoutPositionedObject(RenderBox& child, bool relayoutChildren, bool fixedPositionObjectsOnly) |
| { |
| LayoutUnit columnBreadth = gridAreaBreadthForOutOfFlowChild(child, ForColumns); |
| LayoutUnit rowBreadth = gridAreaBreadthForOutOfFlowChild(child, ForRows); |
| |
| child.setOverrideContainingBlockContentLogicalWidth(columnBreadth); |
| child.setOverrideContainingBlockContentLogicalHeight(rowBreadth); |
| |
| // Mark for layout as we're resetting the position before and we relay in generic layout logic |
| // for positioned items in order to get the offsets properly resolved. |
| child.setChildNeedsLayout(MarkOnlyThis); |
| |
| RenderBlock::layoutPositionedObject(child, relayoutChildren, fixedPositionObjectsOnly); |
| |
| if (child.isGridItem() || !hasStaticPositionForChild(child, ForColumns) || !hasStaticPositionForChild(child, ForRows)) |
| child.setLogicalLocation(findChildLogicalPosition(child)); |
| } |
| |
| LayoutUnit RenderGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(const RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| // We need the cached value when available because Content Distribution alignment properties |
| // may have some influence in the final grid area breadth. |
| const auto& tracks = m_trackSizingAlgorithm.tracks(direction); |
| const auto& span = m_grid.gridItemSpan(child, direction); |
| const auto& linePositions = (direction == ForColumns) ? m_columnPositions : m_rowPositions; |
| |
| LayoutUnit initialTrackPosition = linePositions[span.startLine()]; |
| LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1]; |
| |
| // Track Positions vector stores the 'start' grid line of each track, so we have to add last track's baseSize. |
| return finalTrackPosition - initialTrackPosition + tracks[span.endLine() - 1].baseSize(); |
| } |
| |
| void RenderGrid::populateGridPositionsForDirection(GridTrackSizingDirection direction) |
| { |
| // Since we add alignment offsets and track gutters, grid lines are not always adjacent. Hence we will have to |
| // assume from now on that we just store positions of the initial grid lines of each track, |
| // except the last one, which is the only one considered as a final grid line of a track. |
| |
| // The grid container's frame elements (border, padding and <content-position> offset) are sensible to the |
| // inline-axis flow direction. However, column lines positions are 'direction' unaware. This simplification |
| // allows us to use the same indexes to identify the columns independently on the inline-axis direction. |
| bool isRowAxis = direction == ForColumns; |
| auto& tracks = m_trackSizingAlgorithm.tracks(direction); |
| unsigned numberOfTracks = tracks.size(); |
| unsigned numberOfLines = numberOfTracks + 1; |
| unsigned lastLine = numberOfLines - 1; |
| bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); |
| size_t numberOfCollapsedTracks = hasCollapsedTracks ? m_grid.autoRepeatEmptyTracks(direction)->size() : 0; |
| ContentAlignmentData offset = computeContentPositionAndDistributionOffset(direction, m_trackSizingAlgorithm.freeSpace(direction).value(), numberOfTracks - numberOfCollapsedTracks); |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| positions.resize(numberOfLines); |
| auto borderAndPadding = isRowAxis ? borderAndPaddingLogicalLeft() : borderAndPaddingBefore(); |
| positions[0] = borderAndPadding + offset.positionOffset; |
| if (numberOfLines > 1) { |
| // If we have collapsed tracks we just ignore gaps here and add them later as we might not |
| // compute the gap between two consecutive tracks without examining the surrounding ones. |
| LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : LayoutUnit(); |
| unsigned nextToLastLine = numberOfLines - 2; |
| for (unsigned i = 0; i < nextToLastLine; ++i) |
| positions[i + 1] = positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap; |
| positions[lastLine] = positions[nextToLastLine] + tracks[nextToLastLine].baseSize(); |
| |
| // Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to collapse (they |
| // coincide exactly) except on the edges of the grid where they become 0. |
| if (hasCollapsedTracks) { |
| gap = gridGap(direction); |
| unsigned remainingEmptyTracks = numberOfCollapsedTracks; |
| LayoutUnit offsetAccumulator; |
| LayoutUnit gapAccumulator; |
| for (unsigned i = 1; i < lastLine; ++i) { |
| if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) { |
| --remainingEmptyTracks; |
| offsetAccumulator += offset.distributionOffset; |
| } else { |
| // Add gap between consecutive non empty tracks. Add it also just once for an |
| // arbitrary number of empty tracks between two non empty ones. |
| bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); |
| if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) |
| gapAccumulator += gap; |
| } |
| positions[i] += gapAccumulator - offsetAccumulator; |
| } |
| positions[lastLine] += gapAccumulator - offsetAccumulator; |
| } |
| } |
| auto& offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; |
| offsetBetweenTracks = offset.distributionOffset; |
| } |
| |
| static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackSize, LayoutUnit childSize) |
| { |
| LayoutUnit offset = trackSize - childSize; |
| switch (overflow) { |
| case OverflowAlignmentSafe: |
| // If overflow is 'safe', we have to make sure we don't overflow the 'start' |
| // edge (potentially cause some data loss as the overflow is unreachable). |
| return std::max<LayoutUnit>(0, offset); |
| case OverflowAlignmentUnsafe: |
| case OverflowAlignmentDefault: |
| // If we overflow our alignment container and overflow is 'true' (default), we |
| // ignore the overflow and just return the value regardless (which may cause data |
| // loss as we overflow the 'start' edge). |
| return offset; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const |
| { |
| // Because we want to avoid multiple layouts, stretching logic might be performed before |
| // children are laid out, so we can't use the child cached values. Hence, we need to |
| // compute margins in order to determine the available height before stretching. |
| GridTrackSizingDirection childBlockFlowDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows); |
| return gridAreaBreadthForChild - GridLayoutFunctions::marginLogicalSizeForChild(*this, childBlockFlowDirection, child); |
| } |
| |
| StyleSelfAlignmentData RenderGrid::alignSelfForChild(const RenderBox& child, const RenderStyle* gridStyle) const |
| { |
| if (!gridStyle) |
| gridStyle = &style(); |
| return child.style().resolvedAlignSelf(gridStyle, selfAlignmentNormalBehavior(&child)); |
| } |
| |
| StyleSelfAlignmentData RenderGrid::justifySelfForChild(const RenderBox& child, const RenderStyle* gridStyle) const |
| { |
| if (!gridStyle) |
| gridStyle = &style(); |
| return child.style().resolvedJustifySelf(gridStyle, selfAlignmentNormalBehavior(&child)); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child) |
| { |
| ASSERT(child.overrideContainingBlockContentLogicalHeight()); |
| |
| // We clear height override values because we will decide now whether it's allowed or |
| // not, evaluating the conditions which might have changed since the old values were set. |
| child.clearOverrideLogicalContentHeight(); |
| |
| GridTrackSizingDirection childBlockDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows); |
| bool blockFlowIsColumnAxis = childBlockDirection == ForRows; |
| bool allowedToStretchChildBlockSize = blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child) : allowedToStretchChildAlongRowAxis(child); |
| if (allowedToStretchChildBlockSize) { |
| LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(GridLayoutFunctions::overrideContainingBlockContentSizeForChild(child, childBlockDirection).value(), child); |
| LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, LayoutUnit(-1)); |
| child.setOverrideLogicalContentHeight(desiredLogicalHeight - child.borderAndPaddingLogicalHeight()); |
| if (desiredLogicalHeight != child.logicalHeight()) { |
| // FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905. |
| child.setLogicalHeight(LayoutUnit()); |
| child.setNeedsLayout(); |
| } |
| } |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| bool RenderGrid::hasAutoMarginsInColumnAxis(const RenderBox& child) const |
| { |
| if (isHorizontalWritingMode()) |
| return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); |
| return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| bool RenderGrid::hasAutoMarginsInRowAxis(const RenderBox& child) const |
| { |
| if (isHorizontalWritingMode()) |
| return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); |
| return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::updateAutoMarginsInRowAxisIfNeeded(RenderBox& child) |
| { |
| ASSERT(!child.isOutOfFlowPositioned()); |
| |
| LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalWidth().value() - child.logicalWidth() - child.marginLogicalWidth(); |
| if (availableAlignmentSpace <= 0) |
| return; |
| |
| const RenderStyle& parentStyle = style(); |
| Length marginStart = child.style().marginStartUsing(&parentStyle); |
| Length marginEnd = child.style().marginEndUsing(&parentStyle); |
| if (marginStart.isAuto() && marginEnd.isAuto()) { |
| child.setMarginStart(availableAlignmentSpace / 2, &parentStyle); |
| child.setMarginEnd(availableAlignmentSpace / 2, &parentStyle); |
| } else if (marginStart.isAuto()) { |
| child.setMarginStart(availableAlignmentSpace, &parentStyle); |
| } else if (marginEnd.isAuto()) { |
| child.setMarginEnd(availableAlignmentSpace, &parentStyle); |
| } |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::updateAutoMarginsInColumnAxisIfNeeded(RenderBox& child) |
| { |
| ASSERT(!child.isOutOfFlowPositioned()); |
| |
| LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalHeight().value() - child.logicalHeight() - child.marginLogicalHeight(); |
| if (availableAlignmentSpace <= 0) |
| return; |
| |
| const RenderStyle& parentStyle = style(); |
| Length marginBefore = child.style().marginBeforeUsing(&parentStyle); |
| Length marginAfter = child.style().marginAfterUsing(&parentStyle); |
| if (marginBefore.isAuto() && marginAfter.isAuto()) { |
| child.setMarginBefore(availableAlignmentSpace / 2, &parentStyle); |
| child.setMarginAfter(availableAlignmentSpace / 2, &parentStyle); |
| } else if (marginBefore.isAuto()) { |
| child.setMarginBefore(availableAlignmentSpace, &parentStyle); |
| } else if (marginAfter.isAuto()) { |
| child.setMarginAfter(availableAlignmentSpace, &parentStyle); |
| } |
| } |
| |
| // FIXME: This logic could be refactored somehow and defined in RenderBox. |
| static int synthesizedBaselineFromBorderBox(const RenderBox& box, LineDirectionMode direction) |
| { |
| return (direction == HorizontalLine ? box.size().height() : box.size().width()).toInt(); |
| } |
| |
| bool RenderGrid::isInlineBaselineAlignedChild(const RenderBox& child) const |
| { |
| return alignSelfForChild(child).position() == ItemPositionBaseline && !GridLayoutFunctions::isOrthogonalChild(*this, child) && !hasAutoMarginsInColumnAxis(child); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it might be refactored somehow. |
| int RenderGrid::baselinePosition(FontBaseline, bool, LineDirectionMode direction, LinePositionMode mode) const |
| { |
| #if ENABLE(ASSERT) |
| ASSERT(mode == PositionOnContainingLine); |
| #else |
| UNUSED_PARAM(mode); |
| #endif |
| int baseline = firstLineBaseline().value_or(synthesizedBaselineFromBorderBox(*this, direction)); |
| |
| int marginSize = direction == HorizontalLine ? verticalMarginExtent() : horizontalMarginExtent(); |
| return baseline + marginSize; |
| } |
| |
| std::optional<int> RenderGrid::firstLineBaseline() const |
| { |
| if (isWritingModeRoot() || !m_grid.hasGridItems()) |
| return std::nullopt; |
| |
| const RenderBox* baselineChild = nullptr; |
| // Finding the first grid item in grid order. |
| unsigned numColumns = m_grid.numTracks(ForColumns); |
| for (size_t column = 0; column < numColumns; column++) { |
| for (const auto* child : m_grid.cell(0, column)) { |
| // If an item participates in baseline alignment, we select such item. |
| if (isInlineBaselineAlignedChild(*child)) { |
| // FIXME: self-baseline and content-baseline alignment not implemented yet. |
| baselineChild = child; |
| break; |
| } |
| if (!baselineChild) |
| baselineChild = child; |
| } |
| } |
| |
| if (!baselineChild) |
| return std::nullopt; |
| |
| auto baseline = GridLayoutFunctions::isOrthogonalChild(*this, *baselineChild) ? std::nullopt : baselineChild->firstLineBaseline(); |
| // We take border-box's bottom if no valid baseline. |
| if (!baseline) { |
| // FIXME: We should pass |direction| into firstLineBaseline and stop bailing out if we're a writing |
| // mode root. This would also fix some cases where the grid is orthogonal to its container. |
| LineDirectionMode direction = isHorizontalWritingMode() ? HorizontalLine : VerticalLine; |
| return synthesizedBaselineFromBorderBox(*baselineChild, direction) + baselineChild->logicalTop().toInt(); |
| } |
| return baseline.value() + baselineChild->logicalTop().toInt(); |
| } |
| |
| std::optional<int> RenderGrid::inlineBlockBaseline(LineDirectionMode direction) const |
| { |
| if (std::optional<int> baseline = firstLineBaseline()) |
| return baseline; |
| |
| int marginAscent = direction == HorizontalLine ? marginTop() : marginRight(); |
| return synthesizedBaselineFromBorderBox(*this, direction) + marginAscent; |
| } |
| |
| GridAxisPosition RenderGrid::columnAxisPositionForChild(const RenderBox& child) const |
| { |
| bool hasSameWritingMode = child.style().writingMode() == style().writingMode(); |
| bool childIsLTR = child.style().isLeftToRightDirection(); |
| if (!hasStaticPositionForChild(child, ForRows)) |
| return GridAxisStart; |
| |
| switch (alignSelfForChild(child).position()) { |
| case ItemPositionSelfStart: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'start' side in the column axis. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
| // If orthogonal writing-modes, self-start will be based on the child's inline-axis |
| // direction (inline-start), because it's the one parallel to the column axis. |
| if (style().isFlippedBlocksWritingMode()) |
| return childIsLTR ? GridAxisEnd : GridAxisStart; |
| return childIsLTR ? GridAxisStart : GridAxisEnd; |
| } |
| // self-start is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. |
| return hasSameWritingMode ? GridAxisStart : GridAxisEnd; |
| case ItemPositionSelfEnd: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'end' side in the column axis. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
| // If orthogonal writing-modes, self-end will be based on the child's inline-axis |
| // direction, (inline-end) because it's the one parallel to the column axis. |
| if (style().isFlippedBlocksWritingMode()) |
| return childIsLTR ? GridAxisStart : GridAxisEnd; |
| return childIsLTR ? GridAxisEnd : GridAxisStart; |
| } |
| // self-end is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. |
| return hasSameWritingMode ? GridAxisEnd : GridAxisStart; |
| case ItemPositionLeft: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. |
| // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. |
| return GridAxisStart; |
| case ItemPositionRight: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. |
| // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. |
| return GridAxisStart; |
| case ItemPositionCenter: |
| return GridAxisCenter; |
| case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'. |
| // Aligns the alignment subject to be flush with the alignment container's 'start' edge (block-start) in the column axis. |
| case ItemPositionStart: |
| return GridAxisStart; |
| case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. |
| // Aligns the alignment subject to be flush with the alignment container's 'end' edge (block-end) in the column axis. |
| case ItemPositionEnd: |
| return GridAxisEnd; |
| case ItemPositionStretch: |
| return GridAxisStart; |
| case ItemPositionBaseline: |
| case ItemPositionLastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align the child. |
| return GridAxisStart; |
| case ItemPositionLegacy: |
| case ItemPositionAuto: |
| case ItemPositionNormal: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return GridAxisStart; |
| } |
| |
| GridAxisPosition RenderGrid::rowAxisPositionForChild(const RenderBox& child) const |
| { |
| bool hasSameDirection = child.style().direction() == style().direction(); |
| bool gridIsLTR = style().isLeftToRightDirection(); |
| if (!hasStaticPositionForChild(child, ForColumns)) |
| return GridAxisStart; |
| |
| switch (justifySelfForChild(child).position()) { |
| case ItemPositionSelfStart: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'start' side in the row axis. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
| // If orthogonal writing-modes, self-start will be based on the child's block-axis |
| // direction, because it's the one parallel to the row axis. |
| if (child.style().isFlippedBlocksWritingMode()) |
| return gridIsLTR ? GridAxisEnd : GridAxisStart; |
| return gridIsLTR ? GridAxisStart : GridAxisEnd; |
| } |
| // self-start is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. |
| return hasSameDirection ? GridAxisStart : GridAxisEnd; |
| case ItemPositionSelfEnd: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'end' side in the row axis. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
| // If orthogonal writing-modes, self-end will be based on the child's block-axis |
| // direction, because it's the one parallel to the row axis. |
| if (child.style().isFlippedBlocksWritingMode()) |
| return gridIsLTR ? GridAxisStart : GridAxisEnd; |
| return gridIsLTR ? GridAxisEnd : GridAxisStart; |
| } |
| // self-end is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. |
| return hasSameDirection ? GridAxisEnd : GridAxisStart; |
| case ItemPositionLeft: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. |
| // We want the physical 'left' side, so we have to take account, container's inline-flow direction. |
| return gridIsLTR ? GridAxisStart : GridAxisEnd; |
| case ItemPositionRight: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. |
| // We want the physical 'right' side, so we have to take account, container's inline-flow direction. |
| return gridIsLTR ? GridAxisEnd : GridAxisStart; |
| case ItemPositionCenter: |
| return GridAxisCenter; |
| case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'. |
| // Aligns the alignment subject to be flush with the alignment container's 'start' edge (inline-start) in the row axis. |
| case ItemPositionStart: |
| return GridAxisStart; |
| case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. |
| // Aligns the alignment subject to be flush with the alignment container's 'end' edge (inline-end) in the row axis. |
| case ItemPositionEnd: |
| return GridAxisEnd; |
| case ItemPositionStretch: |
| return GridAxisStart; |
| case ItemPositionBaseline: |
| case ItemPositionLastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align the child. |
| return GridAxisStart; |
| case ItemPositionLegacy: |
| case ItemPositionAuto: |
| case ItemPositionNormal: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return GridAxisStart; |
| } |
| |
| LayoutUnit RenderGrid::columnAxisOffsetForChild(const RenderBox& child) const |
| { |
| LayoutUnit startOfRow; |
| LayoutUnit endOfRow; |
| gridAreaPositionForChild(child, ForRows, startOfRow, endOfRow); |
| LayoutUnit startPosition = startOfRow + marginBeforeForChild(child); |
| if (hasAutoMarginsInColumnAxis(child)) |
| return startPosition; |
| GridAxisPosition axisPosition = columnAxisPositionForChild(child); |
| switch (axisPosition) { |
| case GridAxisStart: |
| return startPosition; |
| case GridAxisEnd: |
| case GridAxisCenter: { |
| LayoutUnit columnAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); |
| auto overflow = alignSelfForChild(child).overflow(); |
| LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfRow - startOfRow, columnAxisChildSize); |
| return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); |
| } |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| LayoutUnit RenderGrid::rowAxisOffsetForChild(const RenderBox& child) const |
| { |
| LayoutUnit startOfColumn; |
| LayoutUnit endOfColumn; |
| gridAreaPositionForChild(child, ForColumns, startOfColumn, endOfColumn); |
| LayoutUnit startPosition = startOfColumn + marginStartForChild(child); |
| if (hasAutoMarginsInRowAxis(child)) |
| return startPosition; |
| GridAxisPosition axisPosition = rowAxisPositionForChild(child); |
| switch (axisPosition) { |
| case GridAxisStart: |
| return startPosition; |
| case GridAxisEnd: |
| case GridAxisCenter: { |
| LayoutUnit rowAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalHeight() + child.marginLogicalHeight() : child.logicalWidth() + child.marginLogicalWidth(); |
| auto overflow = justifySelfForChild(child).overflow(); |
| LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfColumn - startOfColumn, rowAxisChildSize); |
| return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); |
| } |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| bool RenderGrid::gridPositionIsAutoForOutOfFlow(GridPosition position, GridTrackSizingDirection direction) const |
| { |
| return position.isAuto() || (position.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(position.namedGridLine(), style(), GridPositionsResolver::initialPositionSide(direction))); |
| } |
| |
| LayoutUnit RenderGrid::resolveAutoStartGridPosition(GridTrackSizingDirection direction) const |
| { |
| if (direction == ForRows || style().isLeftToRightDirection()) |
| return LayoutUnit(); |
| |
| int lastLine = numTracks(ForColumns, m_grid); |
| ContentPosition position = style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid()); |
| if (position == ContentPositionEnd) |
| return m_columnPositions[lastLine] - clientLogicalWidth(); |
| if (position == ContentPositionStart || style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) == ContentDistributionStretch) |
| return m_columnPositions[0] - borderAndPaddingLogicalLeft(); |
| return LayoutUnit(); |
| } |
| |
| LayoutUnit RenderGrid::resolveAutoEndGridPosition(GridTrackSizingDirection direction) const |
| { |
| if (direction == ForRows) |
| return clientLogicalHeight(); |
| if (style().isLeftToRightDirection()) |
| return clientLogicalWidth(); |
| |
| int lastLine = numTracks(ForColumns, m_grid); |
| ContentPosition position = style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid()); |
| if (position == ContentPositionEnd) |
| return m_columnPositions[lastLine]; |
| if (position == ContentPositionStart || style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) == ContentDistributionStretch) |
| return m_columnPositions[0] - borderAndPaddingLogicalLeft() + clientLogicalWidth(); |
| return clientLogicalWidth(); |
| } |
| |
| LayoutUnit RenderGrid::gridAreaBreadthForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction) |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| bool isRowAxis = direction == ForColumns; |
| GridSpan span = GridPositionsResolver::resolveGridPositionsFromStyle(style(), child, direction, autoRepeatCountForDirection(direction)); |
| if (span.isIndefinite()) |
| return isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); |
| |
| int smallestStart = abs(m_grid.smallestTrackStart(direction)); |
| int startLine = span.untranslatedStartLine() + smallestStart; |
| int endLine = span.untranslatedEndLine() + smallestStart; |
| int lastLine = numTracks(direction, m_grid); |
| GridPosition startPosition = direction == ForColumns ? child.style().gridItemColumnStart() : child.style().gridItemRowStart(); |
| GridPosition endPosition = direction == ForColumns ? child.style().gridItemColumnEnd() : child.style().gridItemRowEnd(); |
| |
| bool startIsAuto = gridPositionIsAutoForOutOfFlow(startPosition, direction) || startLine < 0 || startLine > lastLine; |
| bool endIsAuto = gridPositionIsAutoForOutOfFlow(endPosition, direction) || endLine < 0 || endLine > lastLine; |
| |
| if (startIsAuto && endIsAuto) |
| return isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); |
| |
| LayoutUnit start; |
| LayoutUnit end; |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow; |
| LayoutUnit borderEdge = isRowAxis ? borderLogicalLeft() : borderBefore(); |
| if (startIsAuto) |
| start = resolveAutoStartGridPosition(direction) + borderEdge; |
| else { |
| outOfFlowItemLine.set(&child, startLine); |
| start = positions[startLine]; |
| } |
| if (endIsAuto) |
| end = resolveAutoEndGridPosition(direction) + borderEdge; |
| else { |
| end = positions[endLine]; |
| // These vectors store line positions including gaps, but we shouldn't consider them for the edges of the grid. |
| std::optional<LayoutUnit> availableSizeForGutters = availableSpaceForGutters(direction); |
| if (endLine > 0 && endLine < lastLine) { |
| ASSERT(!m_grid.needsItemsPlacement()); |
| end -= guttersSize(m_grid, direction, endLine - 1, 2, availableSizeForGutters); |
| end -= isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; |
| } |
| } |
| return std::max(end - start, LayoutUnit()); |
| } |
| |
| LayoutUnit RenderGrid::logicalOffsetForChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit trackBreadth) const |
| { |
| if (hasStaticPositionForChild(child, direction)) |
| return LayoutUnit(); |
| |
| bool isRowAxis = direction == ForColumns; |
| bool isFlowAwareRowAxis = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, direction) == ForColumns; |
| LayoutUnit childPosition = isFlowAwareRowAxis ? child.logicalLeft() : child.logicalTop(); |
| LayoutUnit gridBorder = isRowAxis ? borderLogicalLeft() : borderBefore(); |
| LayoutUnit childMargin = isFlowAwareRowAxis ? child.marginLogicalLeft() : child.marginBefore(); |
| LayoutUnit offset = childPosition - gridBorder - childMargin; |
| if (!isRowAxis || style().isLeftToRightDirection()) |
| return offset; |
| |
| LayoutUnit childBreadth = isFlowAwareRowAxis ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); |
| return trackBreadth - offset - childBreadth; |
| } |
| |
| void RenderGrid::gridAreaPositionForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| ASSERT(GridLayoutFunctions::hasOverrideContainingBlockContentSizeForChild(child, direction)); |
| LayoutUnit trackBreadth = GridLayoutFunctions::overrideContainingBlockContentSizeForChild(child, direction).value(); |
| bool isRowAxis = direction == ForColumns; |
| auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow; |
| start = isRowAxis ? borderLogicalLeft() : borderBefore(); |
| if (auto line = outOfFlowItemLine.get(&child)) { |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| start = positions[line.value()]; |
| } |
| start += logicalOffsetForChild(child, direction, trackBreadth); |
| end = start + trackBreadth; |
| } |
| |
| void RenderGrid::gridAreaPositionForInFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const |
| { |
| ASSERT(!child.isOutOfFlowPositioned()); |
| const GridSpan& span = m_grid.gridItemSpan(child, direction); |
| // FIXME (lajava): This is a common pattern, why not defining a function like |
| // positions(direction) ? |
| auto& positions = direction == ForColumns ? m_columnPositions : m_rowPositions; |
| start = positions[span.startLine()]; |
| end = positions[span.endLine()]; |
| // The 'positions' vector includes distribution offset (because of content |
| // alignment) and gutters so we need to subtract them to get the actual |
| // end position for a given track (this does not have to be done for the |
| // last track as there are no more positions's elements after it). |
| if (span.endLine() < positions.size() - 1) |
| end -= gridGap(direction) + gridItemOffset(direction); |
| } |
| |
| void RenderGrid::gridAreaPositionForChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const |
| { |
| if (child.isOutOfFlowPositioned()) |
| gridAreaPositionForOutOfFlowChild(child, direction, start, end); |
| else |
| gridAreaPositionForInFlowChild(child, direction, start, end); |
| } |
| |
| ContentPosition static resolveContentDistributionFallback(ContentDistributionType distribution) |
| { |
| switch (distribution) { |
| case ContentDistributionSpaceBetween: |
| return ContentPositionStart; |
| case ContentDistributionSpaceAround: |
| return ContentPositionCenter; |
| case ContentDistributionSpaceEvenly: |
| return ContentPositionCenter; |
| case ContentDistributionStretch: |
| return ContentPositionStart; |
| case ContentDistributionDefault: |
| return ContentPositionNormal; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return ContentPositionNormal; |
| } |
| |
| static ContentAlignmentData contentDistributionOffset(const LayoutUnit& availableFreeSpace, ContentPosition& fallbackPosition, ContentDistributionType distribution, unsigned numberOfGridTracks) |
| { |
| if (distribution != ContentDistributionDefault && fallbackPosition == ContentPositionNormal) |
| fallbackPosition = resolveContentDistributionFallback(distribution); |
| |
| if (availableFreeSpace <= 0) |
| return ContentAlignmentData::defaultOffsets(); |
| |
| LayoutUnit distributionOffset; |
| switch (distribution) { |
| case ContentDistributionSpaceBetween: |
| if (numberOfGridTracks < 2) |
| return ContentAlignmentData::defaultOffsets(); |
| return {0, availableFreeSpace / (numberOfGridTracks - 1)}; |
| case ContentDistributionSpaceAround: |
| if (numberOfGridTracks < 1) |
| return ContentAlignmentData::defaultOffsets(); |
| distributionOffset = availableFreeSpace / numberOfGridTracks; |
| return {distributionOffset / 2, distributionOffset}; |
| case ContentDistributionSpaceEvenly: |
| distributionOffset = availableFreeSpace / (numberOfGridTracks + 1); |
| return {distributionOffset, distributionOffset}; |
| case ContentDistributionStretch: |
| case ContentDistributionDefault: |
| return ContentAlignmentData::defaultOffsets(); |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return ContentAlignmentData::defaultOffsets(); |
| } |
| |
| StyleContentAlignmentData RenderGrid::contentAlignment(GridTrackSizingDirection direction) const |
| { |
| return direction == ForColumns ? style().resolvedJustifyContent(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContent(contentAlignmentNormalBehaviorGrid()); |
| } |
| |
| ContentAlignmentData RenderGrid::computeContentPositionAndDistributionOffset(GridTrackSizingDirection direction, const LayoutUnit& availableFreeSpace, unsigned numberOfGridTracks) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| auto contentAlignmentData = contentAlignment(direction); |
| auto position = contentAlignmentData.position(); |
| // If <content-distribution> value can't be applied, 'position' will become the associated |
| // <content-position> fallback value. |
| auto contentAlignment = contentDistributionOffset(availableFreeSpace, position, contentAlignmentData.distribution(), numberOfGridTracks); |
| if (contentAlignment.isValid()) |
| return contentAlignment; |
| |
| if (availableFreeSpace <= 0 && contentAlignmentData.overflow() == OverflowAlignmentSafe) |
| return {0, 0}; |
| |
| switch (position) { |
| case ContentPositionLeft: |
| // The align-content's axis is always orthogonal to the inline-axis. |
| return {0, 0}; |
| case ContentPositionRight: |
| if (isRowAxis) |
| return {availableFreeSpace, 0}; |
| // The align-content's axis is always orthogonal to the inline-axis. |
| return {0, 0}; |
| case ContentPositionCenter: |
| return {availableFreeSpace / 2, 0}; |
| case ContentPositionFlexEnd: // Only used in flex layout, for other layout, it's equivalent to 'end'. |
| case ContentPositionEnd: |
| if (isRowAxis) |
| return {style().isLeftToRightDirection() ? availableFreeSpace : LayoutUnit(), LayoutUnit()}; |
| return {availableFreeSpace, 0}; |
| case ContentPositionFlexStart: // Only used in flex layout, for other layout, it's equivalent to 'start'. |
| case ContentPositionStart: |
| if (isRowAxis) |
| return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()}; |
| return {0, 0}; |
| case ContentPositionBaseline: |
| case ContentPositionLastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align. |
| // http://webkit.org/b/145566 |
| if (isRowAxis) |
| return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()}; |
| return {0, 0}; |
| case ContentPositionNormal: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return {0, 0}; |
| } |
| |
| LayoutUnit RenderGrid::translateOutOfFlowRTLCoordinate(const RenderBox& child, LayoutUnit coordinate) const |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| ASSERT(!style().isLeftToRightDirection()); |
| |
| if (m_outOfFlowItemColumn.get(&child)) |
| return translateRTLCoordinate(coordinate); |
| |
| return borderLogicalLeft() + borderLogicalRight() + clientLogicalWidth() - coordinate; |
| } |
| |
| LayoutUnit RenderGrid::translateRTLCoordinate(LayoutUnit coordinate) const |
| { |
| ASSERT(!style().isLeftToRightDirection()); |
| |
| LayoutUnit alignmentOffset = m_columnPositions[0]; |
| LayoutUnit rightGridEdgePosition = m_columnPositions[m_columnPositions.size() - 1]; |
| return rightGridEdgePosition + alignmentOffset - coordinate; |
| } |
| |
| LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox& child) const |
| { |
| LayoutUnit columnAxisOffset = columnAxisOffsetForChild(child); |
| LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child); |
| bool isOrthogonalChild = GridLayoutFunctions::isOrthogonalChild(*this, child); |
| |
| // We stored m_columnPositions's data ignoring the direction, hence we might need now |
| // to translate positions from RTL to LTR, as it's more convenient for painting. |
| if (!style().isLeftToRightDirection()) |
| rowAxisOffset = (child.isOutOfFlowPositioned() ? translateOutOfFlowRTLCoordinate(child, rowAxisOffset) : translateRTLCoordinate(rowAxisOffset)) - (isOrthogonalChild ? child.logicalHeight() : child.logicalWidth()); |
| |
| // "In the positioning phase [...] calculations are performed according to the writing mode |
| // of the containing block of the box establishing the orthogonal flow." However, the |
| // resulting LayoutPoint will be used in 'setLogicalPosition' in order to set the child's |
| // logical position, which will only take into account the child's writing-mode. |
| LayoutPoint childLocation(rowAxisOffset, columnAxisOffset); |
| return isOrthogonalChild ? childLocation.transposedPoint() : childLocation; |
| } |
| |
| unsigned RenderGrid::numTracks(GridTrackSizingDirection direction, const Grid& grid) const |
| { |
| // Due to limitations in our internal representation, we cannot know the number of columns from |
| // m_grid *if* there is no row (because m_grid would be empty). That's why in that case we need |
| // to get it from the style. Note that we know for sure that there are't any implicit tracks, |
| // because not having rows implies that there are no "normal" children (out-of-flow children are |
| // not stored in m_grid). |
| ASSERT(!grid.needsItemsPlacement()); |
| if (direction == ForRows) |
| return grid.numTracks(ForRows); |
| |
| // FIXME: This still requires knowledge about m_grid internals. |
| return grid.numTracks(ForRows) ? grid.numTracks(ForColumns) : GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns)); |
| } |
| |
| void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect) |
| { |
| ASSERT(!m_grid.needsItemsPlacement()); |
| for (RenderBox* child = m_grid.orderIterator().first(); child; child = m_grid.orderIterator().next()) |
| paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect, PaintAsInlineBlock); |
| } |
| |
| const char* RenderGrid::renderName() const |
| { |
| if (isFloating()) |
| return "RenderGrid (floating)"; |
| if (isOutOfFlowPositioned()) |
| return "RenderGrid (positioned)"; |
| if (isAnonymous()) |
| return "RenderGrid (generated)"; |
| if (isRelativelyPositioned()) |
| return "RenderGrid (relative positioned)"; |
| return "RenderGrid"; |
| } |
| |
| } // namespace WebCore |