blob: 795d326041811a054a9410986e927ce1204b1540 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libANGLE/Program.h"
#include <algorithm>
#include "common/bitset_utils.h"
#include "common/debug.h"
#include "common/platform.h"
#include "common/string_utils.h"
#include "common/utilities.h"
#include "compiler/translator/blocklayout.h"
#include "libANGLE/Context.h"
#include "libANGLE/MemoryProgramCache.h"
#include "libANGLE/ProgramLinkedResources.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/Uniform.h"
#include "libANGLE/VaryingPacking.h"
#include "libANGLE/features.h"
#include "libANGLE/histogram_macros.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/renderer/GLImplFactory.h"
#include "libANGLE/renderer/ProgramImpl.h"
#include "platform/Platform.h"
namespace gl
{
namespace
{
// This simplified cast function doesn't need to worry about advanced concepts like
// depth range values, or casting to bool.
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value);
// From-Float-To-Integer Casts
template <>
GLint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLint>(roundf(value));
}
template <>
GLuint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLuint>(roundf(value));
}
// From-Integer-to-Integer Casts
template <>
GLint UniformStateQueryCast(GLuint value)
{
return clampCast<GLint>(value);
}
template <>
GLuint UniformStateQueryCast(GLint value)
{
return clampCast<GLuint>(value);
}
// From-Boolean-to-Anything Casts
template <>
GLfloat UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1.0f : 0.0f);
}
template <>
GLint UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1 : 0);
}
template <>
GLuint UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1u : 0u);
}
// Default to static_cast
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value)
{
return static_cast<DestT>(value);
}
template <typename SrcT, typename DestT>
void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components)
{
for (int comp = 0; comp < components; ++comp)
{
// We only work with strides of 4 bytes for uniform components. (GLfloat/GLint)
// Don't use SrcT stride directly since GLboolean has a stride of 1 byte.
size_t offset = comp * 4;
const SrcT *typedSrcPointer = reinterpret_cast<const SrcT *>(&srcPointer[offset]);
dataOut[comp] = UniformStateQueryCast<DestT>(*typedSrcPointer);
}
}
template <typename VarT>
GLuint GetResourceIndexFromName(const std::vector<VarT> &list, const std::string &name)
{
std::string nameAsArrayName = name + "[0]";
for (size_t index = 0; index < list.size(); index++)
{
const VarT &resource = list[index];
if (resource.name == name || (resource.isArray() && resource.name == nameAsArrayName))
{
return static_cast<GLuint>(index);
}
}
return GL_INVALID_INDEX;
}
template <typename VarT>
GLint GetVariableLocation(const std::vector<VarT> &list,
const std::vector<VariableLocation> &locationList,
const std::string &name)
{
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
for (size_t location = 0u; location < locationList.size(); ++location)
{
const VariableLocation &variableLocation = locationList[location];
if (!variableLocation.used())
{
continue;
}
const VarT &variable = list[variableLocation.index];
if (angle::BeginsWith(variable.name, name))
{
if (name.length() == variable.name.length())
{
ASSERT(name == variable.name);
// GLES 3.1 November 2016 page 87.
// The string exactly matches the name of the active variable.
return static_cast<GLint>(location);
}
if (name.length() + 3u == variable.name.length() && variable.isArray())
{
ASSERT(name + "[0]" == variable.name);
// The string identifies the base name of an active array, where the string would
// exactly match the name of the variable if the suffix "[0]" were appended to the
// string.
return static_cast<GLint>(location);
}
}
if (variable.isArray() && variableLocation.arrayIndex == arrayIndex &&
nameLengthWithoutArrayIndex + 3u == variable.name.length() &&
angle::BeginsWith(variable.name, name, nameLengthWithoutArrayIndex))
{
ASSERT(name.substr(0u, nameLengthWithoutArrayIndex) + "[0]" == variable.name);
// The string identifies an active element of the array, where the string ends with the
// concatenation of the "[" character, an integer (with no "+" sign, extra leading
// zeroes, or whitespace) identifying an array element, and the "]" character, the
// integer is less than the number of active elements of the array variable, and where
// the string would exactly match the enumerated name of the array if the decimal
// integer were replaced with zero.
return static_cast<GLint>(location);
}
}
return -1;
}
void CopyStringToBuffer(GLchar *buffer, const std::string &string, GLsizei bufSize, GLsizei *length)
{
ASSERT(bufSize > 0);
strncpy(buffer, string.c_str(), bufSize);
buffer[bufSize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(buffer));
}
}
bool IncludeSameArrayElement(const std::set<std::string> &nameSet, const std::string &name)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(name, &subscripts);
for (auto nameInSet : nameSet)
{
std::vector<unsigned int> arrayIndices;
std::string arrayName = ParseResourceName(nameInSet, &arrayIndices);
if (baseName == arrayName &&
(subscripts.empty() || arrayIndices.empty() || subscripts == arrayIndices))
{
return true;
}
}
return false;
}
bool validateInterfaceBlocksCount(GLuint maxInterfaceBlocks,
const std::vector<sh::InterfaceBlock> &interfaceBlocks,
const std::string &errorMessage,
InfoLog &infoLog)
{
GLuint blockCount = 0;
for (const sh::InterfaceBlock &block : interfaceBlocks)
{
if (block.staticUse || block.layout != sh::BLOCKLAYOUT_PACKED)
{
blockCount += (block.arraySize ? block.arraySize : 1);
if (blockCount > maxInterfaceBlocks)
{
infoLog << errorMessage << maxInterfaceBlocks << ")";
return false;
}
}
}
return true;
}
GLuint GetInterfaceBlockIndex(const std::vector<InterfaceBlock> &list, const std::string &name)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(name, &subscripts);
unsigned int numBlocks = static_cast<unsigned int>(list.size());
for (unsigned int blockIndex = 0; blockIndex < numBlocks; blockIndex++)
{
const auto &block = list[blockIndex];
if (block.name == baseName)
{
const bool arrayElementZero =
(subscripts.empty() && (!block.isArray || block.arrayElement == 0));
const bool arrayElementMatches =
(subscripts.size() == 1 && subscripts[0] == block.arrayElement);
if (arrayElementMatches || arrayElementZero)
{
return blockIndex;
}
}
}
return GL_INVALID_INDEX;
}
void GetInterfaceBlockName(const GLuint index,
const std::vector<InterfaceBlock> &list,
GLsizei bufSize,
GLsizei *length,
GLchar *name)
{
ASSERT(index < list.size());
const auto &block = list[index];
if (bufSize > 0)
{
std::string blockName = block.name;
if (block.isArray)
{
blockName += ArrayString(block.arrayElement);
}
CopyStringToBuffer(name, blockName, bufSize, length);
}
}
void InitUniformBlockLinker(const gl::Context *context,
const ProgramState &state,
UniformBlockLinker *blockLinker)
{
if (state.getAttachedVertexShader())
{
blockLinker->addShaderBlocks(GL_VERTEX_SHADER,
&state.getAttachedVertexShader()->getUniformBlocks(context));
}
if (state.getAttachedFragmentShader())
{
blockLinker->addShaderBlocks(GL_FRAGMENT_SHADER,
&state.getAttachedFragmentShader()->getUniformBlocks(context));
}
if (state.getAttachedComputeShader())
{
blockLinker->addShaderBlocks(GL_COMPUTE_SHADER,
&state.getAttachedComputeShader()->getUniformBlocks(context));
}
}
void InitShaderStorageBlockLinker(const gl::Context *context,
const ProgramState &state,
ShaderStorageBlockLinker *blockLinker)
{
if (state.getAttachedVertexShader())
{
blockLinker->addShaderBlocks(
GL_VERTEX_SHADER, &state.getAttachedVertexShader()->getShaderStorageBlocks(context));
}
if (state.getAttachedFragmentShader())
{
blockLinker->addShaderBlocks(
GL_FRAGMENT_SHADER,
&state.getAttachedFragmentShader()->getShaderStorageBlocks(context));
}
if (state.getAttachedComputeShader())
{
blockLinker->addShaderBlocks(
GL_COMPUTE_SHADER, &state.getAttachedComputeShader()->getShaderStorageBlocks(context));
}
}
} // anonymous namespace
const char *const g_fakepath = "C:\\fakepath";
InfoLog::InfoLog()
{
}
InfoLog::~InfoLog()
{
}
size_t InfoLog::getLength() const
{
if (!mLazyStream)
{
return 0;
}
const std::string &logString = mLazyStream->str();
return logString.empty() ? 0 : logString.length() + 1;
}
void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
size_t index = 0;
if (bufSize > 0)
{
const std::string logString(str());
if (!logString.empty())
{
index = std::min(static_cast<size_t>(bufSize) - 1, logString.length());
memcpy(infoLog, logString.c_str(), index);
}
infoLog[index] = '\0';
}
if (length)
{
*length = static_cast<GLsizei>(index);
}
}
// append a santized message to the program info log.
// The D3D compiler includes a fake file path in some of the warning or error
// messages, so lets remove all occurrences of this fake file path from the log.
void InfoLog::appendSanitized(const char *message)
{
ensureInitialized();
std::string msg(message);
size_t found;
do
{
found = msg.find(g_fakepath);
if (found != std::string::npos)
{
msg.erase(found, strlen(g_fakepath));
}
}
while (found != std::string::npos);
*mLazyStream << message << std::endl;
}
void InfoLog::reset()
{
}
VariableLocation::VariableLocation() : arrayIndex(0), index(kUnused), ignored(false)
{
}
VariableLocation::VariableLocation(unsigned int arrayIndex, unsigned int index)
: arrayIndex(arrayIndex), index(index), ignored(false)
{
ASSERT(arrayIndex != GL_INVALID_INDEX);
}
SamplerBinding::SamplerBinding(GLenum textureTypeIn, size_t elementCount, bool unreferenced)
: textureType(textureTypeIn), boundTextureUnits(elementCount, 0), unreferenced(unreferenced)
{
}
SamplerBinding::SamplerBinding(const SamplerBinding &other) = default;
SamplerBinding::~SamplerBinding() = default;
Program::Bindings::Bindings()
{
}
Program::Bindings::~Bindings()
{
}
void Program::Bindings::bindLocation(GLuint index, const std::string &name)
{
mBindings[name] = index;
}
int Program::Bindings::getBinding(const std::string &name) const
{
auto iter = mBindings.find(name);
return (iter != mBindings.end()) ? iter->second : -1;
}
Program::Bindings::const_iterator Program::Bindings::begin() const
{
return mBindings.begin();
}
Program::Bindings::const_iterator Program::Bindings::end() const
{
return mBindings.end();
}
ImageBinding::ImageBinding(size_t count) : boundImageUnits(count, 0)
{
}
ImageBinding::ImageBinding(GLuint imageUnit, size_t count)
{
for (size_t index = 0; index < count; ++index)
{
boundImageUnits.push_back(imageUnit + static_cast<GLuint>(index));
}
}
ImageBinding::ImageBinding(const ImageBinding &other) = default;
ImageBinding::~ImageBinding() = default;
ProgramState::ProgramState()
: mLabel(),
mAttachedFragmentShader(nullptr),
mAttachedVertexShader(nullptr),
mAttachedComputeShader(nullptr),
mAttachedGeometryShader(nullptr),
mTransformFeedbackBufferMode(GL_INTERLEAVED_ATTRIBS),
mMaxActiveAttribLocation(0),
mSamplerUniformRange(0, 0),
mImageUniformRange(0, 0),
mAtomicCounterUniformRange(0, 0),
mBinaryRetrieveableHint(false),
mNumViews(-1)
{
mComputeShaderLocalSize.fill(1);
}
ProgramState::~ProgramState()
{
ASSERT(!mAttachedVertexShader && !mAttachedFragmentShader && !mAttachedComputeShader &&
!mAttachedGeometryShader);
}
const std::string &ProgramState::getLabel()
{
return mLabel;
}
GLuint ProgramState::getUniformIndexFromName(const std::string &name) const
{
return GetResourceIndexFromName(mUniforms, name);
}
GLuint ProgramState::getBufferVariableIndexFromName(const std::string &name) const
{
return GetResourceIndexFromName(mBufferVariables, name);
}
GLuint ProgramState::getUniformIndexFromLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mUniformLocations.size());
return mUniformLocations[location].index;
}
Optional<GLuint> ProgramState::getSamplerIndex(GLint location) const
{
GLuint index = getUniformIndexFromLocation(location);
if (!isSamplerUniformIndex(index))
{
return Optional<GLuint>::Invalid();
}
return getSamplerIndexFromUniformIndex(index);
}
bool ProgramState::isSamplerUniformIndex(GLuint index) const
{
return mSamplerUniformRange.contains(index);
}
GLuint ProgramState::getSamplerIndexFromUniformIndex(GLuint uniformIndex) const
{
ASSERT(isSamplerUniformIndex(uniformIndex));
return uniformIndex - mSamplerUniformRange.low();
}
GLuint ProgramState::getAttributeLocation(const std::string &name) const
{
for (const sh::Attribute &attribute : mAttributes)
{
if (attribute.name == name)
{
return attribute.location;
}
}
return static_cast<GLuint>(-1);
}
Program::Program(rx::GLImplFactory *factory, ShaderProgramManager *manager, GLuint handle)
: mProgram(factory->createProgram(mState)),
mValidated(false),
mLinked(false),
mDeleteStatus(false),
mRefCount(0),
mResourceManager(manager),
mHandle(handle)
{
ASSERT(mProgram);
unlink();
}
Program::~Program()
{
ASSERT(!mProgram);
}
void Program::onDestroy(const Context *context)
{
if (mState.mAttachedVertexShader != nullptr)
{
mState.mAttachedVertexShader->release(context);
mState.mAttachedVertexShader = nullptr;
}
if (mState.mAttachedFragmentShader != nullptr)
{
mState.mAttachedFragmentShader->release(context);
mState.mAttachedFragmentShader = nullptr;
}
if (mState.mAttachedComputeShader != nullptr)
{
mState.mAttachedComputeShader->release(context);
mState.mAttachedComputeShader = nullptr;
}
if (mState.mAttachedGeometryShader != nullptr)
{
mState.mAttachedGeometryShader->release(context);
mState.mAttachedGeometryShader = nullptr;
}
mProgram->destroy(context);
ASSERT(!mState.mAttachedVertexShader && !mState.mAttachedFragmentShader &&
!mState.mAttachedComputeShader && !mState.mAttachedGeometryShader);
SafeDelete(mProgram);
delete this;
}
void Program::setLabel(const std::string &label)
{
mState.mLabel = label;
}
const std::string &Program::getLabel() const
{
return mState.mLabel;
}
void Program::attachShader(Shader *shader)
{
switch (shader->getType())
{
case GL_VERTEX_SHADER:
{
ASSERT(!mState.mAttachedVertexShader);
mState.mAttachedVertexShader = shader;
mState.mAttachedVertexShader->addRef();
break;
}
case GL_FRAGMENT_SHADER:
{
ASSERT(!mState.mAttachedFragmentShader);
mState.mAttachedFragmentShader = shader;
mState.mAttachedFragmentShader->addRef();
break;
}
case GL_COMPUTE_SHADER:
{
ASSERT(!mState.mAttachedComputeShader);
mState.mAttachedComputeShader = shader;
mState.mAttachedComputeShader->addRef();
break;
}
case GL_GEOMETRY_SHADER_EXT:
{
ASSERT(!mState.mAttachedGeometryShader);
mState.mAttachedGeometryShader = shader;
mState.mAttachedGeometryShader->addRef();
break;
}
default:
UNREACHABLE();
}
}
void Program::detachShader(const Context *context, Shader *shader)
{
switch (shader->getType())
{
case GL_VERTEX_SHADER:
{
ASSERT(mState.mAttachedVertexShader == shader);
shader->release(context);
mState.mAttachedVertexShader = nullptr;
break;
}
case GL_FRAGMENT_SHADER:
{
ASSERT(mState.mAttachedFragmentShader == shader);
shader->release(context);
mState.mAttachedFragmentShader = nullptr;
break;
}
case GL_COMPUTE_SHADER:
{
ASSERT(mState.mAttachedComputeShader == shader);
shader->release(context);
mState.mAttachedComputeShader = nullptr;
break;
}
case GL_GEOMETRY_SHADER_EXT:
{
ASSERT(mState.mAttachedGeometryShader == shader);
shader->release(context);
mState.mAttachedGeometryShader = nullptr;
break;
}
default:
UNREACHABLE();
}
}
int Program::getAttachedShadersCount() const
{
return (mState.mAttachedVertexShader ? 1 : 0) + (mState.mAttachedFragmentShader ? 1 : 0) +
(mState.mAttachedComputeShader ? 1 : 0) + (mState.mAttachedGeometryShader ? 1 : 0);
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
mAttributeBindings.bindLocation(index, name);
}
void Program::bindUniformLocation(GLuint index, const char *name)
{
mUniformLocationBindings.bindLocation(index, name);
}
void Program::bindFragmentInputLocation(GLint index, const char *name)
{
mFragmentInputBindings.bindLocation(index, name);
}
BindingInfo Program::getFragmentInputBindingInfo(const Context *context, GLint index) const
{
BindingInfo ret;
ret.type = GL_NONE;
ret.valid = false;
Shader *fragmentShader = mState.getAttachedFragmentShader();
ASSERT(fragmentShader);
// Find the actual fragment shader varying we're interested in
const std::vector<sh::Varying> &inputs = fragmentShader->getInputVaryings(context);
for (const auto &binding : mFragmentInputBindings)
{
if (binding.second != static_cast<GLuint>(index))
continue;
ret.valid = true;
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(binding.first, &nameLengthWithoutArrayIndex);
for (const auto &in : inputs)
{
if (in.name.length() == nameLengthWithoutArrayIndex &&
angle::BeginsWith(in.name, binding.first, nameLengthWithoutArrayIndex))
{
if (in.isArray())
{
// The client wants to bind either "name" or "name[0]".
// GL ES 3.1 spec refers to active array names with language such as:
// "if the string identifies the base name of an active array, where the
// string would exactly match the name of the variable if the suffix "[0]"
// were appended to the string".
if (arrayIndex == GL_INVALID_INDEX)
arrayIndex = 0;
ret.name = in.mappedName + "[" + ToString(arrayIndex) + "]";
}
else
{
ret.name = in.mappedName;
}
ret.type = in.type;
return ret;
}
}
}
return ret;
}
void Program::pathFragmentInputGen(const Context *context,
GLint index,
GLenum genMode,
GLint components,
const GLfloat *coeffs)
{
// If the location is -1 then the command is silently ignored
if (index == -1)
return;
const auto &binding = getFragmentInputBindingInfo(context, index);
// If the input doesn't exist then then the command is silently ignored
// This could happen through optimization for example, the shader translator
// decides that a variable is not actually being used and optimizes it away.
if (binding.name.empty())
return;
mProgram->setPathFragmentInputGen(binding.name, genMode, components, coeffs);
}
// The attached shaders are checked for linking errors by matching up their variables.
// Uniform, input and output variables get collected.
// The code gets compiled into binaries.
Error Program::link(const gl::Context *context)
{
const auto &data = context->getContextState();
auto *platform = ANGLEPlatformCurrent();
double startTime = platform->currentTime(platform);
unlink();
ProgramHash programHash;
auto *cache = context->getMemoryProgramCache();
if (cache)
{
ANGLE_TRY_RESULT(cache->getProgram(context, this, &mState, &programHash), mLinked);
ANGLE_HISTOGRAM_BOOLEAN("GPU.ANGLE.ProgramCache.LoadBinarySuccess", mLinked);
}
if (mLinked)
{
double delta = platform->currentTime(platform) - startTime;
int us = static_cast<int>(delta * 1000000.0);
ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheHitTimeUS", us);
return NoError();
}
// Cache load failed, fall through to normal linking.
unlink();
mInfoLog.reset();
const Caps &caps = data.getCaps();
Shader *vertexShader = mState.mAttachedVertexShader;
Shader *fragmentShader = mState.mAttachedFragmentShader;
Shader *computeShader = mState.mAttachedComputeShader;
bool isComputeShaderAttached = (computeShader != nullptr);
bool nonComputeShadersAttached = (vertexShader != nullptr || fragmentShader != nullptr);
// Check whether we both have a compute and non-compute shaders attached.
// If there are of both types attached, then linking should fail.
// OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram
if (isComputeShaderAttached == true && nonComputeShadersAttached == true)
{
mInfoLog << "Both a compute and non-compute shaders are attached to the same program.";
return NoError();
}
if (computeShader)
{
if (!computeShader->isCompiled(context))
{
mInfoLog << "Attached compute shader is not compiled.";
return NoError();
}
ASSERT(computeShader->getType() == GL_COMPUTE_SHADER);
mState.mComputeShaderLocalSize = computeShader->getWorkGroupSize(context);
// GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs
// If the work group size is not specified, a link time error should occur.
if (!mState.mComputeShaderLocalSize.isDeclared())
{
mInfoLog << "Work group size is not specified.";
return NoError();
}
if (!linkUniforms(context, mInfoLog, mUniformLocationBindings))
{
return NoError();
}
if (!linkInterfaceBlocks(context, mInfoLog))
{
return NoError();
}
ProgramLinkedResources resources = {
{0, PackMode::ANGLE_RELAXED},
{&mState.mUniformBlocks, &mState.mUniforms},
{&mState.mShaderStorageBlocks, &mState.mBufferVariables}};
InitUniformBlockLinker(context, mState, &resources.uniformBlockLinker);
InitShaderStorageBlockLinker(context, mState, &resources.shaderStorageBlockLinker);
ANGLE_TRY_RESULT(mProgram->link(context, resources, mInfoLog), mLinked);
if (!mLinked)
{
return NoError();
}
}
else
{
if (!fragmentShader || !fragmentShader->isCompiled(context))
{
return NoError();
}
ASSERT(fragmentShader->getType() == GL_FRAGMENT_SHADER);
if (!vertexShader || !vertexShader->isCompiled(context))
{
return NoError();
}
ASSERT(vertexShader->getType() == GL_VERTEX_SHADER);
if (fragmentShader->getShaderVersion(context) != vertexShader->getShaderVersion(context))
{
mInfoLog << "Fragment shader version does not match vertex shader version.";
return NoError();
}
if (!linkAttributes(context, mInfoLog))
{
return NoError();
}
if (!linkVaryings(context, mInfoLog))
{
return NoError();
}
if (!linkUniforms(context, mInfoLog, mUniformLocationBindings))
{
return NoError();
}
if (!linkInterfaceBlocks(context, mInfoLog))
{
return NoError();
}
if (!linkValidateGlobalNames(context, mInfoLog))
{
return NoError();
}
const auto &mergedVaryings = getMergedVaryings(context);
mState.mNumViews = vertexShader->getNumViews(context);
linkOutputVariables(context);
// Map the varyings to the register file
// In WebGL, we use a slightly different handling for packing variables.
auto packMode = data.getExtensions().webglCompatibility ? PackMode::WEBGL_STRICT
: PackMode::ANGLE_RELAXED;
ProgramLinkedResources resources = {
{data.getCaps().maxVaryingVectors, packMode},
{&mState.mUniformBlocks, &mState.mUniforms},
{&mState.mShaderStorageBlocks, &mState.mBufferVariables}};
InitUniformBlockLinker(context, mState, &resources.uniformBlockLinker);
InitShaderStorageBlockLinker(context, mState, &resources.shaderStorageBlockLinker);
if (!linkValidateTransformFeedback(context, mInfoLog, mergedVaryings, caps))
{
return NoError();
}
if (!resources.varyingPacking.collectAndPackUserVaryings(
mInfoLog, mergedVaryings, mState.getTransformFeedbackVaryingNames()))
{
return NoError();
}
ANGLE_TRY_RESULT(mProgram->link(context, resources, mInfoLog), mLinked);
if (!mLinked)
{
return NoError();
}
gatherTransformFeedbackVaryings(mergedVaryings);
}
gatherAtomicCounterBuffers();
initInterfaceBlockBindings();
setUniformValuesFromBindingQualifiers();
ASSERT(mLinked);
updateLinkedShaderStages();
// Mark implementation-specific unreferenced uniforms as ignored.
mProgram->markUnusedUniformLocations(&mState.mUniformLocations, &mState.mSamplerBindings);
// Save to the program cache.
if (cache && (mState.mLinkedTransformFeedbackVaryings.empty() ||
!context->getWorkarounds().disableProgramCachingForTransformFeedback))
{
cache->putProgram(programHash, context, this);
}
double delta = platform->currentTime(platform) - startTime;
int us = static_cast<int>(delta * 1000000.0);
ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheMissTimeUS", us);
return NoError();
}
void Program::updateLinkedShaderStages()
{
if (mState.mAttachedVertexShader)
{
mState.mLinkedShaderStages.set(SHADER_VERTEX);
}
if (mState.mAttachedFragmentShader)
{
mState.mLinkedShaderStages.set(SHADER_FRAGMENT);
}
if (mState.mAttachedComputeShader)
{
mState.mLinkedShaderStages.set(SHADER_COMPUTE);
}
}
// Returns the program object to an unlinked state, before re-linking, or at destruction
void Program::unlink()
{
mState.mAttributes.clear();
mState.mActiveAttribLocationsMask.reset();
mState.mMaxActiveAttribLocation = 0;
mState.mLinkedTransformFeedbackVaryings.clear();
mState.mUniforms.clear();
mState.mUniformLocations.clear();
mState.mUniformBlocks.clear();
mState.mActiveUniformBlockBindings.reset();
mState.mAtomicCounterBuffers.clear();
mState.mOutputVariables.clear();
mState.mOutputLocations.clear();
mState.mOutputVariableTypes.clear();
mState.mActiveOutputVariables.reset();
mState.mComputeShaderLocalSize.fill(1);
mState.mSamplerBindings.clear();
mState.mImageBindings.clear();
mState.mNumViews = -1;
mState.mLinkedShaderStages.reset();
mValidated = false;
mLinked = false;
}
bool Program::isLinked() const
{
return mLinked;
}
Error Program::loadBinary(const Context *context,
GLenum binaryFormat,
const void *binary,
GLsizei length)
{
unlink();
#if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED
return NoError();
#else
ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE);
if (binaryFormat != GL_PROGRAM_BINARY_ANGLE)
{
mInfoLog << "Invalid program binary format.";
return NoError();
}
const uint8_t *bytes = reinterpret_cast<const uint8_t *>(binary);
ANGLE_TRY_RESULT(
MemoryProgramCache::Deserialize(context, this, &mState, bytes, length, mInfoLog), mLinked);
// Currently we require the full shader text to compute the program hash.
// TODO(jmadill): Store the binary in the internal program cache.
return NoError();
#endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED
}
Error Program::saveBinary(const Context *context,
GLenum *binaryFormat,
void *binary,
GLsizei bufSize,
GLsizei *length) const
{
if (binaryFormat)
{
*binaryFormat = GL_PROGRAM_BINARY_ANGLE;
}
angle::MemoryBuffer memoryBuf;
MemoryProgramCache::Serialize(context, this, &memoryBuf);
GLsizei streamLength = static_cast<GLsizei>(memoryBuf.size());
const uint8_t *streamState = memoryBuf.data();
if (streamLength > bufSize)
{
if (length)
{
*length = 0;
}
// TODO: This should be moved to the validation layer but computing the size of the binary before saving
// it causes the save to happen twice. It may be possible to write the binary to a separate buffer, validate
// sizes and then copy it.
return InternalError();
}
if (binary)
{
char *ptr = reinterpret_cast<char*>(binary);
memcpy(ptr, streamState, streamLength);
ptr += streamLength;
ASSERT(ptr - streamLength == binary);
}
if (length)
{
*length = streamLength;
}
return NoError();
}
GLint Program::getBinaryLength(const Context *context) const
{
GLint length;
Error error = saveBinary(context, nullptr, nullptr, std::numeric_limits<GLint>::max(), &length);
if (error.isError())
{
return 0;
}
return length;
}
void Program::setBinaryRetrievableHint(bool retrievable)
{
// TODO(jmadill) : replace with dirty bits
mProgram->setBinaryRetrievableHint(retrievable);
mState.mBinaryRetrieveableHint = retrievable;
}
bool Program::getBinaryRetrievableHint() const
{
return mState.mBinaryRetrieveableHint;
}
void Program::setSeparable(bool separable)
{
// TODO(yunchao) : replace with dirty bits
if (mState.mSeparable != separable)
{
mProgram->setSeparable(separable);
mState.mSeparable = separable;
}
}
bool Program::isSeparable() const
{
return mState.mSeparable;
}
void Program::release(const Context *context)
{
mRefCount--;
if (mRefCount == 0 && mDeleteStatus)
{
mResourceManager->deleteProgram(context, mHandle);
}
}
void Program::addRef()
{
mRefCount++;
}
unsigned int Program::getRefCount() const
{
return mRefCount;
}
int Program::getInfoLogLength() const
{
return static_cast<int>(mInfoLog.getLength());
}
void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
return mInfoLog.getLog(bufSize, length, infoLog);
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) const
{
int total = 0;
if (mState.mAttachedComputeShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedComputeShader->getHandle();
total++;
}
}
if (mState.mAttachedVertexShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedVertexShader->getHandle();
total++;
}
}
if (mState.mAttachedFragmentShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedFragmentShader->getHandle();
total++;
}
}
if (mState.mAttachedGeometryShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedGeometryShader->getHandle();
total++;
}
}
if (count)
{
*count = total;
}
}
GLuint Program::getAttributeLocation(const std::string &name) const
{
return mState.getAttributeLocation(name);
}
bool Program::isAttribLocationActive(size_t attribLocation) const
{
ASSERT(attribLocation < mState.mActiveAttribLocationsMask.size());
return mState.mActiveAttribLocationsMask[attribLocation];
}
void Program::getActiveAttribute(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
if (!mLinked)
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*type = GL_NONE;
*size = 1;
return;
}
ASSERT(index < mState.mAttributes.size());
const sh::Attribute &attrib = mState.mAttributes[index];
if (bufsize > 0)
{
CopyStringToBuffer(name, attrib.name, bufsize, length);
}
// Always a single 'type' instance
*size = 1;
*type = attrib.type;
}
GLint Program::getActiveAttributeCount() const
{
if (!mLinked)
{
return 0;
}
return static_cast<GLint>(mState.mAttributes.size());
}
GLint Program::getActiveAttributeMaxLength() const
{
if (!mLinked)
{
return 0;
}
size_t maxLength = 0;
for (const sh::Attribute &attrib : mState.mAttributes)
{
maxLength = std::max(attrib.name.length() + 1, maxLength);
}
return static_cast<GLint>(maxLength);
}
GLuint Program::getInputResourceIndex(const GLchar *name) const
{
return GetResourceIndexFromName(mState.mAttributes, std::string(name));
}
GLuint Program::getOutputResourceIndex(const GLchar *name) const
{
return GetResourceIndexFromName(mState.mOutputVariables, std::string(name));
}
size_t Program::getOutputResourceCount() const
{
return (mLinked ? mState.mOutputVariables.size() : 0);
}
template <typename T>
void Program::getResourceName(GLuint index,
const std::vector<T> &resources,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
if (length)
{
*length = 0;
}
if (!mLinked)
{
if (bufSize > 0)
{
name[0] = '\0';
}
return;
}
ASSERT(index < resources.size());
const auto &resource = resources[index];
if (bufSize > 0)
{
CopyStringToBuffer(name, resource.name, bufSize, length);
}
}
void Program::getInputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
getResourceName(index, mState.mAttributes, bufSize, length, name);
}
void Program::getOutputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
getResourceName(index, mState.mOutputVariables, bufSize, length, name);
}
void Program::getUniformResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
getResourceName(index, mState.mUniforms, bufSize, length, name);
}
void Program::getBufferVariableResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
getResourceName(index, mState.mBufferVariables, bufSize, length, name);
}
const sh::Attribute &Program::getInputResource(GLuint index) const
{
ASSERT(index < mState.mAttributes.size());
return mState.mAttributes[index];
}
const sh::OutputVariable &Program::getOutputResource(GLuint index) const
{
ASSERT(index < mState.mOutputVariables.size());
return mState.mOutputVariables[index];
}
GLint Program::getFragDataLocation(const std::string &name) const
{
return GetVariableLocation(mState.mOutputVariables, mState.mOutputLocations, name);
}
void Program::getActiveUniform(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
if (mLinked)
{
// index must be smaller than getActiveUniformCount()
ASSERT(index < mState.mUniforms.size());
const LinkedUniform &uniform = mState.mUniforms[index];
if (bufsize > 0)
{
std::string string = uniform.name;
CopyStringToBuffer(name, string, bufsize, length);
}
*size = clampCast<GLint>(uniform.getBasicTypeElementCount());
*type = uniform.type;
}
else
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*size = 0;
*type = GL_NONE;
}
}
GLint Program::getActiveUniformCount() const
{
if (mLinked)
{
return static_cast<GLint>(mState.mUniforms.size());
}
else
{
return 0;
}
}
size_t Program::getActiveBufferVariableCount() const
{
return mLinked ? mState.mBufferVariables.size() : 0;
}
GLint Program::getActiveUniformMaxLength() const
{
size_t maxLength = 0;
if (mLinked)
{
for (const LinkedUniform &uniform : mState.mUniforms)
{
if (!uniform.name.empty())
{
size_t length = uniform.name.length() + 1u;
if (uniform.isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
}
return static_cast<GLint>(maxLength);
}
bool Program::isValidUniformLocation(GLint location) const
{
ASSERT(angle::IsValueInRangeForNumericType<GLint>(mState.mUniformLocations.size()));
return (location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size() &&
mState.mUniformLocations[static_cast<size_t>(location)].used());
}
const LinkedUniform &Program::getUniformByLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size());
return mState.mUniforms[mState.getUniformIndexFromLocation(location)];
}
const VariableLocation &Program::getUniformLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size());
return mState.mUniformLocations[location];
}
const std::vector<VariableLocation> &Program::getUniformLocations() const
{
return mState.mUniformLocations;
}
const LinkedUniform &Program::getUniformByIndex(GLuint index) const
{
ASSERT(index < static_cast<size_t>(mState.mUniforms.size()));
return mState.mUniforms[index];
}
const BufferVariable &Program::getBufferVariableByIndex(GLuint index) const
{
ASSERT(index < static_cast<size_t>(mState.mBufferVariables.size()));
return mState.mBufferVariables[index];
}
GLint Program::getUniformLocation(const std::string &name) const
{
return GetVariableLocation(mState.mUniforms, mState.mUniformLocations, name);
}
GLuint Program::getUniformIndex(const std::string &name) const
{
return mState.getUniformIndexFromName(name);
}
void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1fv(location, clampedCount, v);
}
void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2fv(location, clampedCount, v);
}
void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3fv(location, clampedCount, v);
}
void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4fv(location, clampedCount, v);
}
Program::SetUniformResult Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1iv(location, clampedCount, v);
if (mState.isSamplerUniformIndex(locationInfo.index))
{
updateSamplerUniform(locationInfo, clampedCount, v);
return SetUniformResult::SamplerChanged;
}
return SetUniformResult::NoSamplerChange;
}
void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2iv(location, clampedCount, v);
}
void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3iv(location, clampedCount, v);
}
void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4iv(location, clampedCount, v);
}
void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1uiv(location, clampedCount, v);
}
void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2uiv(location, clampedCount, v);
}
void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3uiv(location, clampedCount, v);
}
void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4uiv(location, clampedCount, v);
}
void Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<2, 2>(location, count, transpose, v);
mProgram->setUniformMatrix2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<3, 3>(location, count, transpose, v);
mProgram->setUniformMatrix3fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<4, 4>(location, count, transpose, v);
mProgram->setUniformMatrix4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<2, 3>(location, count, transpose, v);
mProgram->setUniformMatrix2x3fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<2, 4>(location, count, transpose, v);
mProgram->setUniformMatrix2x4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<3, 2>(location, count, transpose, v);
mProgram->setUniformMatrix3x2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<3, 4>(location, count, transpose, v);
mProgram->setUniformMatrix3x4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<4, 2>(location, count, transpose, v);
mProgram->setUniformMatrix4x2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = clampMatrixUniformCount<4, 3>(location, count, transpose, v);
mProgram->setUniformMatrix4x3fv(location, clampedCount, transpose, v);
}
void Program::getUniformfv(const Context *context, GLint location, GLfloat *v) const
{
const auto &uniformLocation = mState.getUniformLocations()[location];
const auto &uniform = mState.getUniforms()[uniformLocation.index];
GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_FLOAT)
{
mProgram->getUniformfv(context, location, v);
}
else
{
getUniformInternal(context, v, location, nativeType,
gl::VariableComponentCount(uniform.type));
}
}
void Program::getUniformiv(const Context *context, GLint location, GLint *v) const
{
const auto &uniformLocation = mState.getUniformLocations()[location];
const auto &uniform = mState.getUniforms()[uniformLocation.index];
GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_INT || nativeType == GL_BOOL)
{
mProgram->getUniformiv(context, location, v);
}
else
{
getUniformInternal(context, v, location, nativeType,
gl::VariableComponentCount(uniform.type));
}
}
void Program::getUniformuiv(const Context *context, GLint location, GLuint *v) const
{
const auto &uniformLocation = mState.getUniformLocations()[location];
const auto &uniform = mState.getUniforms()[uniformLocation.index];
GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_UNSIGNED_INT)
{
mProgram->getUniformuiv(context, location, v);
}
else
{
getUniformInternal(context, v, location, nativeType,
gl::VariableComponentCount(uniform.type));
}
}
void Program::flagForDeletion()
{
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
return mDeleteStatus;
}
void Program::validate(const Caps &caps)
{
mInfoLog.reset();
if (mLinked)
{
mValidated = ConvertToBool(mProgram->validate(caps, &mInfoLog));
}
else
{
mInfoLog << "Program has not been successfully linked.";
}
}
bool Program::validateSamplers(InfoLog *infoLog, const Caps &caps)
{
// Skip cache if we're using an infolog, so we get the full error.
// Also skip the cache if the sample mapping has changed, or if we haven't ever validated.
if (infoLog == nullptr && mCachedValidateSamplersResult.valid())
{
return mCachedValidateSamplersResult.value();
}
if (mTextureUnitTypesCache.empty())
{
mTextureUnitTypesCache.resize(caps.maxCombinedTextureImageUnits, GL_NONE);
}
else
{
std::fill(mTextureUnitTypesCache.begin(), mTextureUnitTypesCache.end(), GL_NONE);
}
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
for (const auto &samplerBinding : mState.mSamplerBindings)
{
if (samplerBinding.unreferenced)
continue;
GLenum textureType = samplerBinding.textureType;
for (GLuint textureUnit : samplerBinding.boundTextureUnits)
{
if (textureUnit >= caps.maxCombinedTextureImageUnits)
{
if (infoLog)
{
(*infoLog) << "Sampler uniform (" << textureUnit
<< ") exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS ("
<< caps.maxCombinedTextureImageUnits << ")";
}
mCachedValidateSamplersResult = false;
return false;
}
if (mTextureUnitTypesCache[textureUnit] != GL_NONE)
{
if (textureType != mTextureUnitTypesCache[textureUnit])
{
if (infoLog)
{
(*infoLog) << "Samplers of conflicting types refer to the same texture "
"image unit ("
<< textureUnit << ").";
}
mCachedValidateSamplersResult = false;
return false;
}
}
else
{
mTextureUnitTypesCache[textureUnit] = textureType;
}
}
}
mCachedValidateSamplersResult = true;
return true;
}
bool Program::isValidated() const
{
return mValidated;
}
GLuint Program::getActiveUniformBlockCount() const
{
return static_cast<GLuint>(mState.mUniformBlocks.size());
}
GLuint Program::getActiveAtomicCounterBufferCount() const
{
return static_cast<GLuint>(mState.mAtomicCounterBuffers.size());
}
GLuint Program::getActiveShaderStorageBlockCount() const
{
return static_cast<GLuint>(mState.mShaderStorageBlocks.size());
}
void Program::getActiveUniformBlockName(const GLuint blockIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *blockName) const
{
GetInterfaceBlockName(blockIndex, mState.mUniformBlocks, bufSize, length, blockName);
}
void Program::getActiveShaderStorageBlockName(const GLuint blockIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *blockName) const
{
GetInterfaceBlockName(blockIndex, mState.mShaderStorageBlocks, bufSize, length, blockName);
}
GLint Program::getActiveUniformBlockMaxLength() const
{
int maxLength = 0;
if (mLinked)
{
unsigned int numUniformBlocks = static_cast<unsigned int>(mState.mUniformBlocks.size());
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++)
{
const InterfaceBlock &uniformBlock = mState.mUniformBlocks[uniformBlockIndex];
if (!uniformBlock.name.empty())
{
int length = static_cast<int>(uniformBlock.nameWithArrayIndex().length());
maxLength = std::max(length + 1, maxLength);
}
}
}
return maxLength;
}
GLuint Program::getUniformBlockIndex(const std::string &name) const
{
return GetInterfaceBlockIndex(mState.mUniformBlocks, name);
}
GLuint Program::getShaderStorageBlockIndex(const std::string &name) const
{
return GetInterfaceBlockIndex(mState.mShaderStorageBlocks, name);
}
const InterfaceBlock &Program::getUniformBlockByIndex(GLuint index) const
{
ASSERT(index < static_cast<GLuint>(mState.mUniformBlocks.size()));
return mState.mUniformBlocks[index];
}
const InterfaceBlock &Program::getShaderStorageBlockByIndex(GLuint index) const
{
ASSERT(index < static_cast<GLuint>(mState.mShaderStorageBlocks.size()));
return mState.mShaderStorageBlocks[index];
}
void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding)
{
mState.mUniformBlocks[uniformBlockIndex].binding = uniformBlockBinding;
mState.mActiveUniformBlockBindings.set(uniformBlockIndex, uniformBlockBinding != 0);
mProgram->setUniformBlockBinding(uniformBlockIndex, uniformBlockBinding);
}
GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const
{
return mState.getUniformBlockBinding(uniformBlockIndex);
}
GLuint Program::getShaderStorageBlockBinding(GLuint shaderStorageBlockIndex) const
{
return mState.getShaderStorageBlockBinding(shaderStorageBlockIndex);
}
void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode)
{
mState.mTransformFeedbackVaryingNames.resize(count);
for (GLsizei i = 0; i < count; i++)
{
mState.mTransformFeedbackVaryingNames[i] = varyings[i];
}
mState.mTransformFeedbackBufferMode = bufferMode;
}
void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const
{
if (mLinked)
{
ASSERT(index < mState.mLinkedTransformFeedbackVaryings.size());
const auto &var = mState.mLinkedTransformFeedbackVaryings[index];
std::string varName = var.nameWithArrayIndex();
GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varName.length()));
if (length)
{
*length = lastNameIdx;
}
if (size)
{
*size = var.size();
}
if (type)
{
*type = var.type;
}
if (name)
{
memcpy(name, varName.c_str(), lastNameIdx);
name[lastNameIdx] = '\0';
}
}
}
GLsizei Program::getTransformFeedbackVaryingCount() const
{
if (mLinked)
{
return static_cast<GLsizei>(mState.mLinkedTransformFeedbackVaryings.size());
}
else
{
return 0;
}
}
GLsizei Program::getTransformFeedbackVaryingMaxLength() const
{
if (mLinked)
{
GLsizei maxSize = 0;
for (const auto &var : mState.mLinkedTransformFeedbackVaryings)
{
maxSize =
std::max(maxSize, static_cast<GLsizei>(var.nameWithArrayIndex().length() + 1));
}
return maxSize;
}
else
{
return 0;
}
}
GLenum Program::getTransformFeedbackBufferMode() const
{
return mState.mTransformFeedbackBufferMode;
}
bool Program::linkVaryings(const Context *context, InfoLog &infoLog) const
{
Shader *vertexShader = mState.mAttachedVertexShader;
Shader *fragmentShader = mState.mAttachedFragmentShader;
ASSERT(vertexShader->getShaderVersion(context) == fragmentShader->getShaderVersion(context));
const std::vector<sh::Varying> &vertexVaryings = vertexShader->getOutputVaryings(context);
const std::vector<sh::Varying> &fragmentVaryings = fragmentShader->getInputVaryings(context);
std::map<GLuint, std::string> staticFragmentInputLocations;
for (const sh::Varying &output : fragmentVaryings)
{
bool matched = false;
// Built-in varyings obey special rules
if (output.isBuiltIn())
{
continue;
}
for (const sh::Varying &input : vertexVaryings)
{
if (output.name == input.name)
{
ASSERT(!input.isBuiltIn());
if (!linkValidateVaryings(infoLog, output.name, input, output,
vertexShader->getShaderVersion(context)))
{
return false;
}
matched = true;
break;
}
}
// We permit unmatched, unreferenced varyings
if (!matched && output.staticUse)
{
infoLog << "Fragment varying " << output.name << " does not match any vertex varying";
return false;
}
// Check for aliased path rendering input bindings (if any).
// If more than one binding refer statically to the same
// location the link must fail.
if (!output.staticUse)
continue;
const auto inputBinding = mFragmentInputBindings.getBinding(output.name);
if (inputBinding == -1)
continue;
const auto it = staticFragmentInputLocations.find(inputBinding);
if (it == std::end(staticFragmentInputLocations))
{
staticFragmentInputLocations.insert(std::make_pair(inputBinding, output.name));
}
else
{
infoLog << "Binding for fragment input " << output.name << " conflicts with "
<< it->second;
return false;
}
}
if (!linkValidateBuiltInVaryings(context, infoLog))
{
return false;
}
// TODO(jmadill): verify no unmatched vertex varyings?
return true;
}
bool Program::linkUniforms(const Context *context,
InfoLog &infoLog,
const Bindings &uniformLocationBindings)
{
UniformLinker linker(mState);
if (!linker.link(context, infoLog, uniformLocationBindings))
{
return false;
}
linker.getResults(&mState.mUniforms, &mState.mUniformLocations);
linkSamplerAndImageBindings();
if (!linkAtomicCounterBuffers())
{
return false;
}
return true;
}
void Program::linkSamplerAndImageBindings()
{
unsigned int high = static_cast<unsigned int>(mState.mUniforms.size());
unsigned int low = high;
for (auto counterIter = mState.mUniforms.rbegin();
counterIter != mState.mUniforms.rend() && counterIter->isAtomicCounter(); ++counterIter)
{
--low;
}
mState.mAtomicCounterUniformRange = RangeUI(low, high);
high = low;
for (auto imageIter = mState.mUniforms.rbegin();
imageIter != mState.mUniforms.rend() && imageIter->isImage(); ++imageIter)
{
--low;
}
mState.mImageUniformRange = RangeUI(low, high);
// If uniform is a image type, insert it into the mImageBindings array.
for (unsigned int imageIndex : mState.mImageUniformRange)
{
// ES3.1 (section 7.6.1) and GLSL ES3.1 (section 4.4.5), Uniform*i{v} commands
// cannot load values into a uniform defined as an image. if declare without a
// binding qualifier, any uniform image variable (include all elements of
// unbound image array) shoud be bound to unit zero.
auto &imageUniform = mState.mUniforms[imageIndex];
if (imageUniform.binding == -1)
{
mState.mImageBindings.emplace_back(
ImageBinding(imageUniform.getBasicTypeElementCount()));
}
else
{
mState.mImageBindings.emplace_back(
ImageBinding(imageUniform.binding, imageUniform.getBasicTypeElementCount()));
}
}
high = low;
for (auto samplerIter = mState.mUniforms.rbegin() + mState.mImageUniformRange.length();
samplerIter != mState.mUniforms.rend() && samplerIter->isSampler(); ++samplerIter)
{
--low;
}
mState.mSamplerUniformRange = RangeUI(low, high);
// If uniform is a sampler type, insert it into the mSamplerBindings array.
for (unsigned int samplerIndex : mState.mSamplerUniformRange)
{
const auto &samplerUniform = mState.mUniforms[samplerIndex];
GLenum textureType = SamplerTypeToTextureType(samplerUniform.type);
mState.mSamplerBindings.emplace_back(
SamplerBinding(textureType, samplerUniform.getBasicTypeElementCount(), false));
}
}
bool Program::linkAtomicCounterBuffers()
{
for (unsigned int index : mState.mAtomicCounterUniformRange)
{
auto &uniform = mState.mUniforms[index];
bool found = false;
for (unsigned int bufferIndex = 0; bufferIndex < mState.mAtomicCounterBuffers.size();
++bufferIndex)
{
auto &buffer = mState.mAtomicCounterBuffers[bufferIndex];
if (buffer.binding == uniform.binding)
{
buffer.memberIndexes.push_back(index);
uniform.bufferIndex = bufferIndex;
found = true;
buffer.unionReferencesWith(uniform);
break;
}
}
if (!found)
{
AtomicCounterBuffer atomicCounterBuffer;
atomicCounterBuffer.binding = uniform.binding;
atomicCounterBuffer.memberIndexes.push_back(index);
atomicCounterBuffer.unionReferencesWith(uniform);
mState.mAtomicCounterBuffers.push_back(atomicCounterBuffer);
uniform.bufferIndex = static_cast<int>(mState.mAtomicCounterBuffers.size() - 1);
}
}
// TODO(jie.a.chen@intel.com): Count each atomic counter buffer to validate against
// gl_Max[Vertex|Fragment|Compute|Combined]AtomicCounterBuffers.
return true;
}
bool Program::linkValidateInterfaceBlockFields(InfoLog &infoLog,
const std::string &uniformName,
const sh::InterfaceBlockField &vertexUniform,
const sh::InterfaceBlockField &fragmentUniform,
bool webglCompatibility)
{
// If webgl, validate precision of UBO fields, otherwise don't. See Khronos bug 10287.
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform,
webglCompatibility))
{
return false;
}
if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout)
{
infoLog << "Matrix packings for " << uniformName << " differ between vertex and fragment shaders";
return false;
}
return true;
}
// Assigns locations to all attributes from the bindings and program locations.
bool Program::linkAttributes(const Context *context, InfoLog &infoLog)
{
const ContextState &data = context->getContextState();
auto *vertexShader = mState.getAttachedVertexShader();
unsigned int usedLocations = 0;
mState.mAttributes = vertexShader->getActiveAttributes(context);
GLuint maxAttribs = data.getCaps().maxVertexAttributes;
// TODO(jmadill): handle aliasing robustly
if (mState.mAttributes.size() > maxAttribs)
{
infoLog << "Too many vertex attributes.";
return false;
}
std::vector<sh::Attribute *> usedAttribMap(maxAttribs, nullptr);
// Link attributes that have a binding location
for (sh::Attribute &attribute : mState.mAttributes)
{
// GLSL ES 3.10 January 2016 section 4.3.4: Vertex shader inputs can't be arrays or
// structures, so we don't need to worry about adjusting their names or generating entries
// for each member/element (unlike uniforms for example).
ASSERT(!attribute.isArray() && !attribute.isStruct());
int bindingLocation = mAttributeBindings.getBinding(attribute.name);
if (attribute.location == -1 && bindingLocation != -1)
{
attribute.location = bindingLocation;
}
if (attribute.location != -1)
{
// Location is set by glBindAttribLocation or by location layout qualifier
const int regs = VariableRegisterCount(attribute.type);
if (static_cast<GLuint>(regs + attribute.location) > maxAttribs)
{
infoLog << "Active attribute (" << attribute.name << ") at location "
<< attribute.location << " is too big to fit";
return false;
}
for (int reg = 0; reg < regs; reg++)
{
const int regLocation = attribute.location + reg;
sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation];
// In GLSL 3.00, attribute aliasing produces a link error
// In GLSL 1.00, attribute aliasing is allowed, but ANGLE currently has a bug
if (linkedAttribute)
{
// TODO(jmadill): fix aliasing on ES2
// if (mProgram->getShaderVersion() >= 300)
{
infoLog << "Attribute '" << attribute.name << "' aliases attribute '"
<< linkedAttribute->name << "' at location " << regLocation;
return false;
}
}
else
{
usedAttribMap[regLocation] = &attribute;
}
usedLocations |= 1 << regLocation;
}
}
}
// Link attributes that don't have a binding location
for (sh::Attribute &attribute : mState.mAttributes)
{
// Not set by glBindAttribLocation or by location layout qualifier
if (attribute.location == -1)
{
int regs = VariableRegisterCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs);
if (availableIndex == -1 || static_cast<GLuint>(availableIndex + regs) > maxAttribs)
{
infoLog << "Too many active attributes (" << attribute.name << ")";
return false;
}
attribute.location = availableIndex;
}
}
for (const sh::Attribute &attribute : mState.mAttributes)
{
ASSERT(attribute.location != -1);
unsigned int regs = static_cast<unsigned int>(VariableRegisterCount(attribute.type));
for (unsigned int r = 0; r < regs; r++)
{
unsigned int location = static_cast<unsigned int>(attribute.location) + r;
mState.mActiveAttribLocationsMask.set(location);
mState.mMaxActiveAttribLocation =
std::max(mState.mMaxActiveAttribLocation, location + 1);
}
}
return true;
}
bool Program::validateVertexAndFragmentInterfaceBlocks(
const std::vector<sh::InterfaceBlock> &vertexInterfaceBlocks,
const std::vector<sh::InterfaceBlock> &fragmentInterfaceBlocks,
InfoLog &infoLog,
bool webglCompatibility) const
{
// Check that interface blocks defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::InterfaceBlock *> InterfaceBlockMap;
InterfaceBlockMap linkedInterfaceBlocks;
for (const sh::InterfaceBlock &vertexInterfaceBlock : vertexInterfaceBlocks)
{
linkedInterfaceBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock;
}
for (const sh::InterfaceBlock &fragmentInterfaceBlock : fragmentInterfaceBlocks)
{
auto entry = linkedInterfaceBlocks.find(fragmentInterfaceBlock.name);
if (entry != linkedInterfaceBlocks.end())
{
const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second;
if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock,
webglCompatibility))
{
return false;
}
}
// TODO(jiajia.qin@intel.com): Add
// MAX_COMBINED_UNIFORM_BLOCKS/MAX_COMBINED_SHADER_STORAGE_BLOCKS validation.
}
return true;
}
bool Program::linkInterfaceBlocks(const Context *context, InfoLog &infoLog)
{
const auto &caps = context->getCaps();
if (mState.mAttachedComputeShader)
{
Shader &computeShader = *mState.mAttachedComputeShader;
const auto &computeUniformBlocks = computeShader.getUniformBlocks(context);
if (!validateInterfaceBlocksCount(
caps.maxComputeUniformBlocks, computeUniformBlocks,
"Compute shader uniform block count exceeds GL_MAX_COMPUTE_UNIFORM_BLOCKS (",
infoLog))
{
return false;
}
const auto &computeShaderStorageBlocks = computeShader.getShaderStorageBlocks(context);
if (!validateInterfaceBlocksCount(caps.maxComputeShaderStorageBlocks,
computeShaderStorageBlocks,
"Compute shader shader storage block count exceeds "
"GL_MAX_COMPUTE_SHADER_STORAGE_BLOCKS (",
infoLog))
{
return false;
}
return true;
}
Shader &vertexShader = *mState.mAttachedVertexShader;
Shader &fragmentShader = *mState.mAttachedFragmentShader;
const auto &vertexUniformBlocks = vertexShader.getUniformBlocks(context);
const auto &fragmentUniformBlocks = fragmentShader.getUniformBlocks(context);
if (!validateInterfaceBlocksCount(
caps.maxVertexUniformBlocks, vertexUniformBlocks,
"Vertex shader uniform block count exceeds GL_MAX_VERTEX_UNIFORM_BLOCKS (", infoLog))
{
return false;
}
if (!validateInterfaceBlocksCount(
caps.maxFragmentUniformBlocks, fragmentUniformBlocks,
"Fragment shader uniform block count exceeds GL_MAX_FRAGMENT_UNIFORM_BLOCKS (",
infoLog))
{
return false;
}
bool webglCompatibility = context->getExtensions().webglCompatibility;
if (!validateVertexAndFragmentInterfaceBlocks(vertexUniformBlocks, fragmentUniformBlocks,
infoLog, webglCompatibility))
{
return false;
}
if (context->getClientVersion() >= Version(3, 1))
{
const auto &vertexShaderStorageBlocks = vertexShader.getShaderStorageBlocks(context);
const auto &fragmentShaderStorageBlocks = fragmentShader.getShaderStorageBlocks(context);
if (!validateInterfaceBlocksCount(caps.maxVertexShaderStorageBlocks,
vertexShaderStorageBlocks,
"Vertex shader shader storage block count exceeds "
"GL_MAX_VERTEX_SHADER_STORAGE_BLOCKS (",
infoLog))
{
return false;
}
if (!validateInterfaceBlocksCount(caps.maxFragmentShaderStorageBlocks,
fragmentShaderStorageBlocks,
"Fragment shader shader storage block count exceeds "
"GL_MAX_FRAGMENT_SHADER_STORAGE_BLOCKS (",
infoLog))
{
return false;
}
if (!validateVertexAndFragmentInterfaceBlocks(vertexShaderStorageBlocks,
fragmentShaderStorageBlocks, infoLog,
webglCompatibility))
{
return false;
}
}
return true;
}
bool Program::areMatchingInterfaceBlocks(InfoLog &infoLog,
const sh::InterfaceBlock &vertexInterfaceBlock,
const sh::InterfaceBlock &fragmentInterfaceBlock,
bool webglCompatibility) const
{
const char* blockName = vertexInterfaceBlock.name.c_str();
// validate blocks for the same member types
if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size())
{
infoLog << "Types for interface block '" << blockName
<< "' differ between vertex and fragment shaders";
return false;
}
if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize)
{
infoLog << "Array sizes differ for interface block '" << blockName
<< "' between vertex and fragment shaders";
return false;
}
if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout ||
vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout ||
vertexInterfaceBlock.binding != fragmentInterfaceBlock.binding)
{
infoLog << "Layout qualifiers differ for interface block '" << blockName
<< "' between vertex and fragment shaders";
return false;
}
const unsigned int numBlockMembers =
static_cast<unsigned int>(vertexInterfaceBlock.fields.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex];
const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog << "Name mismatch for field " << blockMemberIndex
<< " of interface block '" << blockName
<< "': (in vertex: '" << vertexMember.name
<< "', in fragment: '" << fragmentMember.name << "')";
return false;
}
std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'";
if (!linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember,
webglCompatibility))
{
return false;
}
}
return true;
}
bool Program::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable,
const sh::ShaderVariable &fragmentVariable, bool validatePrecision)
{
if (vertexVariable.type != fragmentVariable.type)
{
infoLog << "Types for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (vertexVariable.arraySizes != fragmentVariable.arraySizes)
{
infoLog << "Array sizes for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (validatePrecision && vertexVariable.precision != fragmentVariable.precision)
{
infoLog << "Precisions for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (vertexVariable.structName != fragmentVariable.structName)
{
infoLog << "Structure names for " << variableName
<< " differ between vertex and fragment shaders";
return false;
}
if (vertexVariable.fields.size() != fragmentVariable.fields.size())
{
infoLog << "Structure lengths for " << variableName << " differ between vertex and fragment shaders";
return false;
}
const unsigned int numMembers = static_cast<unsigned int>(vertexVariable.fields.size());
for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++)
{
const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex];
const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog << "Name mismatch for field '" << memberIndex
<< "' of " << variableName
<< ": (in vertex: '" << vertexMember.name
<< "', in fragment: '" << fragmentMember.name << "')";
return false;
}
const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." +
vertexMember.name + "'";
if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision))
{
return false;
}
}
return true;
}
bool Program::linkValidateVaryings(InfoLog &infoLog,
const std::string &varyingName,
const sh::Varying &vertexVarying,
const sh::Varying &fragmentVarying,
int shaderVersion)
{
if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false))
{
return false;
}
if (!sh::InterpolationTypesMatch(vertexVarying.interpolation, fragmentVarying.interpolation))
{
infoLog << "Interpolation types for " << varyingName
<< " differ between vertex and fragment shaders.";
return false;
}
if (shaderVersion == 100 && vertexVarying.isInvariant != fragmentVarying.isInvariant)
{
infoLog << "Invariance for " << varyingName
<< " differs between vertex and fragment shaders.";
return false;
}
return true;
}
bool Program::linkValidateBuiltInVaryings(const Context *context, InfoLog &infoLog) const
{
Shader *vertexShader = mState.mAttachedVertexShader;
Shader *fragmentShader = mState.mAttachedFragmentShader;
const auto &vertexVaryings = vertexShader->getOutputVaryings(context);
const auto &fragmentVaryings = fragmentShader->getInputVaryings(context);
int shaderVersion = vertexShader->getShaderVersion(context);
if (shaderVersion != 100)
{
// Only ESSL 1.0 has restrictions on matching input and output invariance
return true;
}
bool glPositionIsInvariant = false;
bool glPointSizeIsInvariant = false;
bool glFragCoordIsInvariant = false;
bool glPointCoordIsInvariant = false;
for (const sh::Varying &varying : vertexVaryings)
{
if (!varying.isBuiltIn())
{
continue;
}
if (varying.name.compare("gl_Position") == 0)
{
glPositionIsInvariant = varying.isInvariant;
}
else if (varying.name.compare("gl_PointSize") == 0)
{
glPointSizeIsInvariant = varying.isInvariant;
}
}
for (const sh::Varying &varying : fragmentVaryings)
{
if (!varying.isBuiltIn())
{
continue;
}
if (varying.name.compare("gl_FragCoord") == 0)
{
glFragCoordIsInvariant = varying.isInvariant;
}
else if (varying.name.compare("gl_PointCoord") == 0)
{
glPointCoordIsInvariant = varying.isInvariant;
}
}
// There is some ambiguity in ESSL 1.00.17 paragraph 4.6.4 interpretation,
// for example, https://cvs.khronos.org/bugzilla/show_bug.cgi?id=13842.
// Not requiring invariance to match is supported by:
// dEQP, WebGL CTS, Nexus 5X GLES
if (glFragCoordIsInvariant && !glPositionIsInvariant)
{
infoLog << "gl_FragCoord can only be declared invariant if and only if gl_Position is "
"declared invariant.";
return false;
}
if (glPointCoordIsInvariant && !glPointSizeIsInvariant)
{
infoLog << "gl_PointCoord can only be declared invariant if and only if gl_PointSize is "
"declared invariant.";
return false;
}
return true;
}
bool Program::linkValidateTransformFeedback(const gl::Context *context,
InfoLog &infoLog,
const Program::MergedVaryings &varyings,
const Caps &caps) const
{
size_t totalComponents = 0;
std::set<std::string> uniqueNames;
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
bool found = false;
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(tfVaryingName, &subscripts);
for (const auto &ref : varyings)
{
const sh::Varying *varying = ref.second.get();
if (baseName == varying->name)
{
if (uniqueNames.count(tfVaryingName) > 0)
{
infoLog << "Two transform feedback varyings specify the same output variable ("
<< tfVaryingName << ").";
return false;
}
if (context->getClientVersion() >= Version(3, 1))
{
if (IncludeSameArrayElement(uniqueNames, tfVaryingName))
{
infoLog
<< "Two transform feedback varyings include the same array element ("
<< tfVaryingName << ").";
return false;
}
}
else if (varying->isArray())
{
infoLog << "Capture of arrays is undefined and not supported.";
return false;
}
uniqueNames.insert(tfVaryingName);
// TODO(jmadill): Investigate implementation limits on D3D11
// GLSL ES 3.10 section 4.3.6: A vertex output can't be an array of arrays.
ASSERT(!varying->isArrayOfArrays());
size_t elementCount =
((varying->isArray() && subscripts.empty()) ? varying->getOutermostArraySize()
: 1);
size_t componentCount = VariableComponentCount(varying->type) * elementCount;
if (mState.mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS &&
componentCount > caps.maxTransformFeedbackSeparateComponents)
{
infoLog << "Transform feedback varying's " << varying->name << " components ("
<< componentCount << ") exceed the maximum separate components ("
<< caps.maxTransformFeedbackSeparateComponents << ").";
return false;
}
totalComponents += componentCount;
found = true;
break;
}
}
if (context->getClientVersion() < Version(3, 1) &&
tfVaryingName.find('[') != std::string::npos)
{
infoLog << "Capture of array elements is undefined and not supported.";
return false;
}
if (!found)
{
infoLog << "Transform feedback varying " << tfVaryingName
<< " does not exist in the vertex shader.";
return false;
}
}
if (mState.mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS &&
totalComponents > caps.maxTransformFeedbackInterleavedComponents)
{
infoLog << "Transform feedback varying total components (" << totalComponents
<< ") exceed the maximum interleaved components ("
<< caps.maxTransformFeedbackInterleavedComponents << ").";
return false;
}
return true;
}
bool Program::linkValidateGlobalNames(const Context *context, InfoLog &infoLog) const
{
const std::vector<sh::Uniform> &vertexUniforms =
mState.mAttachedVertexShader->getUniforms(context);
const std::vector<sh::Uniform> &fragmentUniforms =
mState.mAttachedFragmentShader->getUniforms(context);
const std::vector<sh::Attribute> &attributes =
mState.mAttachedVertexShader->getActiveAttributes(context);
for (const auto &attrib : attributes)
{
for (const auto &uniform : vertexUniforms)
{
if (uniform.name == attrib.name)
{
infoLog << "Name conflicts between a uniform and an attribute: " << attrib.name;
return false;
}
}
for (const auto &uniform : fragmentUniforms)
{
if (uniform.name == attrib.name)
{
infoLog << "Name conflicts between a uniform and an attribute: " << attrib.name;
return false;
}
}
}
return true;
}
void Program::gatherTransformFeedbackVaryings(const Program::MergedVaryings &varyings)
{
// Gather the linked varyings that are used for transform feedback, they should all exist.
mState.mLinkedTransformFeedbackVaryings.clear();
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(tfVaryingName, &subscripts);
size_t subscript = GL_INVALID_INDEX;
if (!subscripts.empty())
{
subscript = subscripts.back();
}
for (const auto &ref : varyings)
{
const sh::Varying *varying = ref.second.get();
if (baseName == varying->name)
{
mState.mLinkedTransformFeedbackVaryings.emplace_back(
*varying, static_cast<GLuint>(subscript));
break;
}
}
}
}
Program::MergedVaryings Program::getMergedVaryings(const Context *context) const
{
MergedVaryings merged;
for (const sh::Varying &varying : mState.mAttachedVertexShader->getOutputVaryings(context))
{
merged[varying.name].vertex = &varying;
}
for (const sh::Varying &varying : mState.mAttachedFragmentShader->getInputVaryings(context))
{
merged[varying.name].fragment = &varying;
}
return merged;
}
void Program::linkOutputVariables(const Context *context)
{
Shader *fragmentShader = mState.mAttachedFragmentShader;
ASSERT(fragmentShader != nullptr);
ASSERT(mState.mOutputVariableTypes.empty());
ASSERT(mState.mActiveOutputVariables.none());
// Gather output variable types
for (const auto &outputVariable : fragmentShader->getActiveOutputVariables(context))
{
if (outputVariable.isBuiltIn() && outputVariable.name != "gl_FragColor" &&
outputVariable.name != "gl_FragData")
{
continue;
}
unsigned int baseLocation =
(outputVariable.location == -1 ? 0u
: static_cast<unsigned int>(outputVariable.location));
// GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of
// structures, so we may use getBasicTypeElementCount().
unsigned int elementCount = outputVariable.getBasicTypeElementCount();
for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++)
{
const unsigned int location = baseLocation + elementIndex;
if (location >= mState.mOutputVariableTypes.size())
{
mState.mOutputVariableTypes.resize(location + 1, GL_NONE);
}
ASSERT(location < mState.mActiveOutputVariables.size());
mState.mActiveOutputVariables.set(location);
mState.mOutputVariableTypes[location] = VariableComponentType(outputVariable.type);
}
}
// Skip this step for GLES2 shaders.
if (fragmentShader->getShaderVersion(context) == 100)
return;
mState.mOutputVariables = fragmentShader->getActiveOutputVariables(context);
// TODO(jmadill): any caps validation here?
for (unsigned int outputVariableIndex = 0; outputVariableIndex < mState.mOutputVariables.size();
outputVariableIndex++)
{
const sh::OutputVariable &outputVariable = mState.mOutputVariables[outputVariableIndex];
if (outputVariable.isArray())
{
// We're following the GLES 3.1 November 2016 spec section 7.3.1.1 Naming Active
// Resources and including [0] at the end of array variable names.
mState.mOutputVariables[outputVariableIndex].name += "[0]";
mState.mOutputVariables[outputVariableIndex].mappedName += "[0]";
}
// Don't store outputs for gl_FragDepth, gl_FragColor, etc.
if (outputVariable.isBuiltIn())
continue;
// Since multiple output locations must be specified, use 0 for non-specified locations.
unsigned int baseLocation =
(outputVariable.location == -1 ? 0u
: static_cast<unsigned int>(outputVariable.location));
// GLSL ES 3.10 section 4.3.6: Output variables cannot be arrays of arrays or arrays of
// structures, so we may use getBasicTypeElementCount().
unsigned int elementCount = outputVariable.getBasicTypeElementCount();
for (unsigned int elementIndex = 0; elementIndex < elementCount; elementIndex++)
{
const unsigned int location = baseLocation + elementIndex;
if (location >= mState.mOutputLocations.size())
{
mState.mOutputLocations.resize(location + 1);
}
ASSERT(!mState.mOutputLocations.at(location).used());
if (outputVariable.isArray())
{
mState.mOutputLocations[location] =
VariableLocation(elementIndex, outputVariableIndex);
}
else
{
VariableLocation locationInfo;
locationInfo.index = outputVariableIndex;
mState.mOutputLocations[location] = locationInfo;
}
}
}
}
void Program::setUniformValuesFromBindingQualifiers()
{
for (unsigned int samplerIndex : mState.mSamplerUniformRange)
{
const auto &samplerUniform = mState.mUniforms[samplerIndex];
if (samplerUniform.binding != -1)
{
GLint location = getUniformLocation(samplerUniform.name);
ASSERT(location != -1);
std::vector<GLint> boundTextureUnits;
for (unsigned int elementIndex = 0;
elementIndex < samplerUniform.getBasicTypeElementCount(); ++elementIndex)
{
boundTextureUnits.push_back(samplerUniform.binding + elementIndex);
}
setUniform1iv(location, static_cast<GLsizei>(boundTextureUnits.size()),
boundTextureUnits.data());
}
}
}
void Program::gatherAtomicCounterBuffers()
{
for (unsigned int index : mState.mAtomicCounterUniformRange)
{
auto &uniform = mState.mUniforms[index];
uniform.blockInfo.offset = uniform.offset;
uniform.blockInfo.arrayStride = (uniform.isArray() ? 4 : 0);
uniform.blockInfo.matrixStride = 0;
uniform.blockInfo.isRowMajorMatrix = false;
}
// TODO(jie.a.chen@intel.com): Get the actual BUFFER_DATA_SIZE from backend for each buffer.
}
void Program::initInterfaceBlockBindings()
{
// Set initial bindings from shader.
for (unsigned int blockIndex = 0; blockIndex < mState.mUniformBlocks.size(); blockIndex++)
{
InterfaceBlock &uniformBlock = mState.mUniformBlocks[blockIndex];
bindUniformBlock(blockIndex, uniformBlock.binding);
}
}
void Program::updateSamplerUniform(const VariableLocation &locationInfo,
GLsizei clampedCount,
const GLint *v)
{
ASSERT(mState.isSamplerUniformIndex(locationInfo.index));
GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(locationInfo.index);
std::vector<GLuint> *boundTextureUnits =
&mState.mSamplerBindings[samplerIndex].boundTextureUnits;
std::copy(v, v + clampedCount, boundTextureUnits->begin() + locationInfo.arrayIndex);
// Invalidate the validation cache.
mCachedValidateSamplersResult.reset();
}
template <typename T>
GLsizei Program::clampUniformCount(const VariableLocation &locationInfo,
GLsizei count,
int vectorSize,
const T *v)
{
if (count == 1)
return 1;
const LinkedUniform &linkedUniform = mState.mUniforms[locationInfo.index];
// OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array
// element index used, as reported by GetActiveUniform, will be ignored by the GL."
unsigned int remainingElements =
linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex;
GLsizei maxElementCount =
static_cast<GLsizei>(remainingElements * linkedUniform.getElementComponents());
if (count * vectorSize > maxElementCount)
{
return maxElementCount / vectorSize;
}
return count;
}
template <size_t cols, size_t rows, typename T>
GLsizei Program::clampMatrixUniformCount(GLint location,
GLsizei count,
GLboolean transpose,
const T *v)
{
const VariableLocation &locationInfo = mState.mUniformLocations[location];
if (!transpose)
{
return clampUniformCount(locationInfo, count, cols * rows, v);
}
const LinkedUniform &linkedUniform = mState.mUniforms[locationInfo.index];
// OpenGL ES 3.0.4 spec pg 67: "Values for any array element that exceeds the highest array
// element index used, as reported by GetActiveUniform, will be ignored by the GL."
unsigned int remainingElements =
linkedUniform.getBasicTypeElementCount() - locationInfo.arrayIndex;
return std::min(count, static_cast<GLsizei>(remainingElements));
}
// Driver differences mean that doing the uniform value cast ourselves gives consistent results.
// EG: on NVIDIA drivers, it was observed that getUniformi for MAX_INT+1 returned MIN_INT.
template <typename DestT>
void Program::getUniformInternal(const Context *context,
DestT *dataOut,
GLint location,
GLenum nativeType,
int components) const
{
switch (nativeType)
{
case GL_BOOL:
{
GLint tempValue[16] = {0};
mProgram->getUniformiv(context, location, tempValue);
UniformStateQueryCastLoop<GLboolean>(
dataOut, reinterpret_cast<const uint8_t *>(tempValue), components);
break;
}
case GL_INT:
{
GLint tempValue[16] = {0};
mProgram->getUniformiv(context, location, tempValue);
UniformStateQueryCastLoop<GLint>(dataOut, reinterpret_cast<const uint8_t *>(tempValue),
components);
break;
}
case GL_UNSIGNED_INT:
{
GLuint tempValue[16] = {0};
mProgram->getUniformuiv(context, location, tempValue);
UniformStateQueryCastLoop<GLuint>(dataOut, reinterpret_cast<const uint8_t *>(tempValue),
components);
break;
}
case GL_FLOAT:
{
GLfloat tempValue[16] = {0};
mProgram->getUniformfv(context, location, tempValue);
UniformStateQueryCastLoop<GLfloat>(
dataOut, reinterpret_cast<const uint8_t *>(tempValue), components);
break;
}
default:
UNREACHABLE();
break;
}
}
bool Program::samplesFromTexture(const gl::State &state, GLuint textureID) const
{
// Must be called after samplers are validated.
ASSERT(mCachedValidateSamplersResult.valid() && mCachedValidateSamplersResult.value());
for (const auto &binding : mState.mSamplerBindings)
{
GLenum textureType = binding.textureType;
for (const auto &unit : binding.boundTextureUnits)
{
GLenum programTextureID = state.getSamplerTextureId(unit, textureType);
if (programTextureID == textureID)
{
// TODO(jmadill): Check for appropriate overlap.
return true;
}
}
}
return false;
}
} // namespace gl