blob: 3e24d488c5f19acad37dea84a124f8b907c3a87d [file] [log] [blame]
/*
* Copyright (C) 2017 Igalia S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "GridTrackSizingAlgorithm.h"
#include "Grid.h"
#include "GridArea.h"
#include "GridLayoutFunctions.h"
#include "RenderGrid.h"
namespace WebCore {
const LayoutUnit& GridTrack::baseSize() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return m_baseSize;
}
const LayoutUnit& GridTrack::growthLimit() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
ASSERT(!m_growthLimitCap || m_growthLimitCap.value() >= m_growthLimit || m_baseSize >= m_growthLimitCap.value());
return m_growthLimit;
}
void GridTrack::setBaseSize(LayoutUnit baseSize)
{
m_baseSize = baseSize;
ensureGrowthLimitIsBiggerThanBaseSize();
}
void GridTrack::setGrowthLimit(LayoutUnit growthLimit)
{
m_growthLimit = growthLimit == infinity ? growthLimit : std::min(growthLimit, m_growthLimitCap.valueOr(growthLimit));
ensureGrowthLimitIsBiggerThanBaseSize();
}
const LayoutUnit& GridTrack::growthLimitIfNotInfinite() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return m_growthLimit == infinity ? m_baseSize : m_growthLimit;
}
void GridTrack::setTempSize(const LayoutUnit& tempSize)
{
ASSERT(tempSize >= 0);
ASSERT(growthLimitIsInfinite() || growthLimit() >= tempSize);
m_tempSize = tempSize;
}
void GridTrack::growTempSize(const LayoutUnit& tempSize)
{
ASSERT(tempSize >= 0);
m_tempSize += tempSize;
}
void GridTrack::setGrowthLimitCap(Optional<LayoutUnit> growthLimitCap)
{
ASSERT(!growthLimitCap || growthLimitCap.value() >= 0);
m_growthLimitCap = growthLimitCap;
}
void GridTrack::setCachedTrackSize(const GridTrackSize& cachedTrackSize)
{
m_cachedTrackSize = cachedTrackSize;
}
void GridTrack::ensureGrowthLimitIsBiggerThanBaseSize()
{
if (m_growthLimit != infinity && m_growthLimit < m_baseSize)
m_growthLimit = m_baseSize;
}
// Static helper methods.
static GridAxis gridAxisForDirection(GridTrackSizingDirection direction)
{
return direction == ForColumns ? GridRowAxis : GridColumnAxis;
}
static GridTrackSizingDirection gridDirectionForAxis(GridAxis axis)
{
return axis == GridRowAxis ? ForColumns : ForRows;
}
static bool shouldClearOverrideContainingBlockContentSizeForChild(const RenderBox& child, GridTrackSizingDirection direction)
{
if (direction == ForColumns)
return child.hasRelativeLogicalWidth() || child.style().logicalWidth().isIntrinsicOrAuto();
return child.hasRelativeLogicalHeight() || child.style().logicalHeight().isIntrinsicOrAuto();
}
static void setOverrideContainingBlockContentSizeForChild(RenderBox& child, GridTrackSizingDirection direction, Optional<LayoutUnit> size)
{
if (direction == ForColumns)
child.setOverrideContainingBlockContentLogicalWidth(size);
else
child.setOverrideContainingBlockContentLogicalHeight(size);
}
// FIXME: we borrowed this from RenderBlock. We cannot call it from here because it's protected for RenderObjects.
static LayoutUnit marginIntrinsicLogicalWidthForChild(const RenderGrid* renderGrid, RenderBox& child)
{
// A margin has three types: fixed, percentage, and auto (variable).
// Auto and percentage margins become 0 when computing min/max width.
// Fixed margins can be added in as is.
Length marginLeft = child.style().marginStartUsing(&renderGrid->style());
Length marginRight = child.style().marginEndUsing(&renderGrid->style());
LayoutUnit margin;
if (marginLeft.isFixed())
margin += marginLeft.value();
if (marginRight.isFixed())
margin += marginRight.value();
return margin;
}
// GridTrackSizingAlgorithm private.
void GridTrackSizingAlgorithm::setFreeSpace(GridTrackSizingDirection direction, Optional<LayoutUnit> freeSpace)
{
if (direction == ForColumns)
m_freeSpaceColumns = freeSpace;
else
m_freeSpaceRows = freeSpace;
}
Optional<LayoutUnit> GridTrackSizingAlgorithm::availableSpace() const
{
ASSERT(wasSetup());
return availableSpace(m_direction);
}
void GridTrackSizingAlgorithm::setAvailableSpace(GridTrackSizingDirection direction, Optional<LayoutUnit> availableSpace)
{
if (direction == ForColumns)
m_availableSpaceColumns = availableSpace;
else
m_availableSpaceRows = availableSpace;
}
const GridTrackSize& GridTrackSizingAlgorithm::rawGridTrackSize(GridTrackSizingDirection direction, unsigned translatedIndex) const
{
bool isRowAxis = direction == ForColumns;
auto& renderStyle = m_renderGrid->style();
auto& trackStyles = isRowAxis ? renderStyle.gridColumns() : renderStyle.gridRows();
auto& autoRepeatTrackStyles = isRowAxis ? renderStyle.gridAutoRepeatColumns() : renderStyle.gridAutoRepeatRows();
auto& autoTrackStyles = isRowAxis ? renderStyle.gridAutoColumns() : renderStyle.gridAutoRows();
unsigned insertionPoint = isRowAxis ? renderStyle.gridAutoRepeatColumnsInsertionPoint() : renderStyle.gridAutoRepeatRowsInsertionPoint();
unsigned autoRepeatTracksCount = m_grid.autoRepeatTracks(direction);
// We should not use GridPositionsResolver::explicitGridXXXCount() for this because the
// explicit grid might be larger than the number of tracks in grid-template-rows|columns (if
// grid-template-areas is specified for example).
unsigned explicitTracksCount = trackStyles.size() + autoRepeatTracksCount;
int untranslatedIndexAsInt = translatedIndex + m_grid.smallestTrackStart(direction);
unsigned autoTrackStylesSize = autoTrackStyles.size();
if (untranslatedIndexAsInt < 0) {
int index = untranslatedIndexAsInt % static_cast<int>(autoTrackStylesSize);
// We need to traspose the index because the first negative implicit line will get the last defined auto track and so on.
index += index ? autoTrackStylesSize : 0;
ASSERT(index >= 0);
return autoTrackStyles[index];
}
unsigned untranslatedIndex = static_cast<unsigned>(untranslatedIndexAsInt);
if (untranslatedIndex >= explicitTracksCount)
return autoTrackStyles[(untranslatedIndex - explicitTracksCount) % autoTrackStylesSize];
if (!autoRepeatTracksCount || untranslatedIndex < insertionPoint)
return trackStyles[untranslatedIndex];
if (untranslatedIndex < (insertionPoint + autoRepeatTracksCount)) {
unsigned autoRepeatLocalIndex = untranslatedIndexAsInt - insertionPoint;
return autoRepeatTrackStyles[autoRepeatLocalIndex % autoRepeatTrackStyles.size()];
}
return trackStyles[untranslatedIndex - autoRepeatTracksCount];
}
LayoutUnit GridTrackSizingAlgorithm::computeTrackBasedSize() const
{
LayoutUnit size;
auto& allTracks = tracks(m_direction);
for (auto& track : allTracks)
size += track.baseSize();
size += m_renderGrid->guttersSize(m_grid, m_direction, 0, allTracks.size(), availableSpace());
return size;
}
LayoutUnit GridTrackSizingAlgorithm::initialBaseSize(const GridTrackSize& trackSize) const
{
const GridLength& gridLength = trackSize.minTrackBreadth();
if (gridLength.isFlex())
return 0;
const Length& trackLength = gridLength.length();
if (trackLength.isSpecified())
return valueForLength(trackLength, std::max<LayoutUnit>(availableSpace().valueOr(0), 0));
ASSERT(trackLength.isMinContent() || trackLength.isAuto() || trackLength.isMaxContent());
return 0;
}
LayoutUnit GridTrackSizingAlgorithm::initialGrowthLimit(const GridTrackSize& trackSize, LayoutUnit baseSize) const
{
const GridLength& gridLength = trackSize.maxTrackBreadth();
if (gridLength.isFlex())
return baseSize;
const Length& trackLength = gridLength.length();
if (trackLength.isSpecified())
return valueForLength(trackLength, std::max<LayoutUnit>(availableSpace().valueOr(0), 0));
ASSERT(trackLength.isMinContent() || trackLength.isAuto() || trackLength.isMaxContent());
return infinity;
}
void GridTrackSizingAlgorithm::sizeTrackToFitNonSpanningItem(const GridSpan& span, RenderBox& gridItem, GridTrack& track)
{
unsigned trackPosition = span.startLine();
const auto& trackSize = tracks(m_direction)[trackPosition].cachedTrackSize();
if (trackSize.hasMinContentMinTrackBreadth()) {
track.setBaseSize(std::max(track.baseSize(), m_strategy->minContentForChild(gridItem)));
} else if (trackSize.hasMaxContentMinTrackBreadth()) {
track.setBaseSize(std::max(track.baseSize(), m_strategy->maxContentForChild(gridItem)));
} else if (trackSize.hasAutoMinTrackBreadth()) {
track.setBaseSize(std::max(track.baseSize(), m_strategy->minSizeForChild(gridItem)));
}
if (trackSize.hasMinContentMaxTrackBreadth()) {
track.setGrowthLimit(std::max(track.growthLimit(), m_strategy->minContentForChild(gridItem)));
} else if (trackSize.hasMaxContentOrAutoMaxTrackBreadth()) {
LayoutUnit growthLimit = m_strategy->maxContentForChild(gridItem);
if (trackSize.isFitContent())
growthLimit = std::min(growthLimit, valueForLength(trackSize.fitContentTrackBreadth().length(), availableSpace().valueOr(0)));
track.setGrowthLimit(std::max(track.growthLimit(), growthLimit));
}
}
bool GridTrackSizingAlgorithm::spanningItemCrossesFlexibleSizedTracks(const GridSpan& itemSpan) const
{
const Vector<GridTrack>& trackList = tracks(m_direction);
for (auto trackPosition : itemSpan) {
const auto& trackSize = trackList[trackPosition].cachedTrackSize();
if (trackSize.minTrackBreadth().isFlex() || trackSize.maxTrackBreadth().isFlex())
return true;
}
return false;
}
class GridItemWithSpan {
public:
GridItemWithSpan(RenderBox& gridItem, GridSpan span)
: m_gridItem(gridItem)
, m_span(span)
{
}
RenderBox& gridItem() const { return m_gridItem; }
GridSpan span() const { return m_span; }
bool operator<(const GridItemWithSpan other) const { return m_span.integerSpan() < other.m_span.integerSpan(); }
private:
std::reference_wrapper<RenderBox> m_gridItem;
GridSpan m_span;
};
struct GridItemsSpanGroupRange {
Vector<GridItemWithSpan>::iterator rangeStart;
Vector<GridItemWithSpan>::iterator rangeEnd;
};
enum TrackSizeRestriction {
AllowInfinity,
ForbidInfinity,
};
LayoutUnit GridTrackSizingAlgorithm::itemSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, RenderBox& gridItem) const
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveIntrinsicMaximums:
return m_strategy->minSizeForChild(gridItem);
case ResolveContentBasedMinimums:
return m_strategy->minContentForChild(gridItem);
case ResolveMaxContentMinimums:
case ResolveMaxContentMaximums:
return m_strategy->maxContentForChild(gridItem);
case MaximizeTracks:
ASSERT_NOT_REACHED();
return 0;
}
ASSERT_NOT_REACHED();
return 0;
}
static bool shouldProcessTrackForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize)
{
switch (phase) {
case ResolveIntrinsicMinimums:
return trackSize.hasIntrinsicMinTrackBreadth();
case ResolveContentBasedMinimums:
return trackSize.hasMinOrMaxContentMinTrackBreadth();
case ResolveMaxContentMinimums:
return trackSize.hasMaxContentMinTrackBreadth();
case ResolveIntrinsicMaximums:
return trackSize.hasIntrinsicMaxTrackBreadth();
case ResolveMaxContentMaximums:
return trackSize.hasMaxContentOrAutoMaxTrackBreadth();
case MaximizeTracks:
ASSERT_NOT_REACHED();
return false;
}
ASSERT_NOT_REACHED();
return false;
}
static LayoutUnit trackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track, TrackSizeRestriction restriction)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
case ResolveMaxContentMinimums:
case MaximizeTracks:
return track.baseSize();
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
return restriction == AllowInfinity ? track.growthLimit() : track.growthLimitIfNotInfinite();
}
ASSERT_NOT_REACHED();
return track.baseSize();
}
static void updateTrackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
case ResolveMaxContentMinimums:
track.setBaseSize(track.plannedSize());
return;
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
track.setGrowthLimit(track.plannedSize());
return;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return;
}
ASSERT_NOT_REACHED();
}
static bool trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
return trackSize.hasAutoOrMinContentMinTrackBreadthAndIntrinsicMaxTrackBreadth();
case ResolveMaxContentMinimums:
return trackSize.hasMaxContentMinTrackBreadthAndMaxContentMaxTrackBreadth();
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
return true;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return false;
}
ASSERT_NOT_REACHED();
return false;
}
static void markAsInfinitelyGrowableForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
case ResolveMaxContentMinimums:
return;
case ResolveIntrinsicMaximums:
if (trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity) == infinity && track.plannedSize() != infinity)
track.setInfinitelyGrowable(true);
return;
case ResolveMaxContentMaximums:
if (track.infinitelyGrowable())
track.setInfinitelyGrowable(false);
return;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return;
}
ASSERT_NOT_REACHED();
}
template <TrackSizeComputationPhase phase>
void GridTrackSizingAlgorithm::increaseSizesToAccommodateSpanningItems(const GridItemsSpanGroupRange& gridItemsWithSpan)
{
Vector<GridTrack>& allTracks = tracks(m_direction);
for (const auto& trackIndex : m_contentSizedTracksIndex) {
GridTrack& track = allTracks[trackIndex];
track.setPlannedSize(trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity));
}
Vector<GridTrack*> growBeyondGrowthLimitsTracks;
Vector<GridTrack*> filteredTracks;
for (auto it = gridItemsWithSpan.rangeStart; it != gridItemsWithSpan.rangeEnd; ++it) {
GridItemWithSpan& gridItemWithSpan = *it;
ASSERT(gridItemWithSpan.span().integerSpan() > 1);
const GridSpan& itemSpan = gridItemWithSpan.span();
filteredTracks.shrink(0);
growBeyondGrowthLimitsTracks.shrink(0);
LayoutUnit spanningTracksSize;
for (auto trackPosition : itemSpan) {
GridTrack& track = allTracks[trackPosition];
const auto& trackSize = track.cachedTrackSize();
spanningTracksSize += trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity);
if (!shouldProcessTrackForTrackSizeComputationPhase(phase, trackSize))
continue;
filteredTracks.append(&track);
if (trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(phase, trackSize))
growBeyondGrowthLimitsTracks.append(&track);
}
if (filteredTracks.isEmpty())
continue;
spanningTracksSize += m_renderGrid->guttersSize(m_grid, m_direction, itemSpan.startLine(), itemSpan.integerSpan(), availableSpace());
LayoutUnit extraSpace = itemSizeForTrackSizeComputationPhase(phase, gridItemWithSpan.gridItem()) - spanningTracksSize;
extraSpace = std::max<LayoutUnit>(extraSpace, 0);
auto& tracksToGrowBeyondGrowthLimits = growBeyondGrowthLimitsTracks.isEmpty() ? filteredTracks : growBeyondGrowthLimitsTracks;
distributeSpaceToTracks<phase>(filteredTracks, &tracksToGrowBeyondGrowthLimits, extraSpace);
}
for (const auto& trackIndex : m_contentSizedTracksIndex) {
GridTrack& track = allTracks[trackIndex];
markAsInfinitelyGrowableForTrackSizeComputationPhase(phase, track);
updateTrackSizeForTrackSizeComputationPhase(phase, track);
}
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
// This check ensures that we respect the irreflexivity property of the strict weak ordering required by std::sort
// (forall x: NOT x < x).
bool track1HasInfiniteGrowthPotentialWithoutCap = track1->infiniteGrowthPotential() && !track1->growthLimitCap();
bool track2HasInfiniteGrowthPotentialWithoutCap = track2->infiniteGrowthPotential() && !track2->growthLimitCap();
if (track1HasInfiniteGrowthPotentialWithoutCap && track2HasInfiniteGrowthPotentialWithoutCap)
return false;
if (track1HasInfiniteGrowthPotentialWithoutCap || track2HasInfiniteGrowthPotentialWithoutCap)
return track2HasInfiniteGrowthPotentialWithoutCap;
LayoutUnit track1Limit = track1->growthLimitCap().valueOr(track1->growthLimit());
LayoutUnit track2Limit = track2->growthLimitCap().valueOr(track2->growthLimit());
return (track1Limit - track1->baseSize()) < (track2Limit - track2->baseSize());
}
static void clampGrowthShareIfNeeded(TrackSizeComputationPhase phase, const GridTrack& track, LayoutUnit& growthShare)
{
if (phase != ResolveMaxContentMaximums || !track.growthLimitCap())
return;
LayoutUnit distanceToCap = track.growthLimitCap().value() - track.tempSize();
if (distanceToCap <= 0)
return;
growthShare = std::min(growthShare, distanceToCap);
}
template <TrackSizeComputationPhase phase>
void GridTrackSizingAlgorithm::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* growBeyondGrowthLimitsTracks, LayoutUnit& freeSpace) const
{
ASSERT(freeSpace >= 0);
for (auto* track : tracks)
track->setTempSize(trackSizeForTrackSizeComputationPhase(phase, *track, ForbidInfinity));
if (freeSpace > 0) {
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
unsigned tracksSize = tracks.size();
for (unsigned i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
const LayoutUnit& trackBreadth = trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity);
bool infiniteGrowthPotential = track.infiniteGrowthPotential();
LayoutUnit trackGrowthPotential = infiniteGrowthPotential ? track.growthLimit() : track.growthLimit() - trackBreadth;
// Let's avoid computing availableLogicalSpaceShare as much as possible as it's a hot spot in performance tests.
if (trackGrowthPotential > 0 || infiniteGrowthPotential) {
LayoutUnit availableLogicalSpaceShare = freeSpace / (tracksSize - i);
LayoutUnit growthShare = infiniteGrowthPotential ? availableLogicalSpaceShare : std::min(availableLogicalSpaceShare, trackGrowthPotential);
clampGrowthShareIfNeeded(phase, track, growthShare);
ASSERT_WITH_MESSAGE(growthShare >= 0, "We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function. We can still have 0 as growthShare if the amount of tracks greatly exceeds the freeSpace.");
track.growTempSize(growthShare);
freeSpace -= growthShare;
}
}
}
if (freeSpace > 0 && growBeyondGrowthLimitsTracks) {
// We need to sort them because there might be tracks with growth limit caps (like the ones
// with fit-content()) which cannot indefinitely grow over the limits.
if (phase == ResolveMaxContentMaximums)
std::sort(growBeyondGrowthLimitsTracks->begin(), growBeyondGrowthLimitsTracks->end(), sortByGridTrackGrowthPotential);
unsigned tracksGrowingBeyondGrowthLimitsSize = growBeyondGrowthLimitsTracks->size();
for (unsigned i = 0; i < tracksGrowingBeyondGrowthLimitsSize; ++i) {
GridTrack* track = growBeyondGrowthLimitsTracks->at(i);
LayoutUnit growthShare = freeSpace / (tracksGrowingBeyondGrowthLimitsSize - i);
clampGrowthShareIfNeeded(phase, *track, growthShare);
track->growTempSize(growthShare);
freeSpace -= growthShare;
}
}
for (auto* track : tracks)
track->setPlannedSize(track->plannedSize() == infinity ? track->tempSize() : std::max(track->plannedSize(), track->tempSize()));
}
LayoutSize GridTrackSizingAlgorithm::estimatedGridAreaBreadthForChild(const RenderBox& child) const
{
return {estimatedGridAreaBreadthForChild(child, ForColumns), estimatedGridAreaBreadthForChild(child, ForRows)};
}
LayoutUnit GridTrackSizingAlgorithm::estimatedGridAreaBreadthForChild(const RenderBox& child, GridTrackSizingDirection direction) const
{
const GridSpan& span = m_grid.gridItemSpan(child, direction);
LayoutUnit gridAreaSize;
bool gridAreaIsIndefinite = false;
Optional<LayoutUnit> availableSize = availableSpace(direction);
for (auto trackPosition : span) {
// We may need to estimate the grid area size before running the track sizing algorithm in order to perform the pre-layout of orthogonal items.
// We cannot use tracks(direction)[trackPosition].cachedTrackSize() because tracks(direction) is empty, since we are either performing pre-layout
// or are running the track sizing algorithm in the opposite direction and haven't run it in the desired direction yet.
const auto& trackSize = wasSetup() ? calculateGridTrackSize(direction, trackPosition) : rawGridTrackSize(direction, trackPosition);
GridLength maxTrackSize = trackSize.maxTrackBreadth();
if (maxTrackSize.isContentSized() || maxTrackSize.isFlex() || isRelativeGridLengthAsAuto(maxTrackSize, direction))
gridAreaIsIndefinite = true;
else
gridAreaSize += valueForLength(maxTrackSize.length(), availableSize.valueOr(0_lu));
}
gridAreaSize += m_renderGrid->guttersSize(m_grid, direction, span.startLine(), span.integerSpan(), availableSize);
GridTrackSizingDirection childInlineDirection = GridLayoutFunctions::flowAwareDirectionForChild(*m_renderGrid, child, ForColumns);
if (gridAreaIsIndefinite)
return direction == childInlineDirection ? std::max(child.maxPreferredLogicalWidth(), gridAreaSize) : -1_lu;
return gridAreaSize;
}
LayoutUnit GridTrackSizingAlgorithm::gridAreaBreadthForChild(const RenderBox& child, GridTrackSizingDirection direction) const
{
bool addContentAlignmentOffset =
direction == ForColumns && m_sizingState == RowSizingFirstIteration;
// To determine the column track's size based on an orthogonal grid item we need it's logical
// height, which may depend on the row track's size. It's possible that the row tracks sizing
// logic has not been performed yet, so we will need to do an estimation.
if (direction == ForRows && (m_sizingState == ColumnSizingFirstIteration || m_sizingState == ColumnSizingSecondIteration)) {
ASSERT(GridLayoutFunctions::isOrthogonalChild(*m_renderGrid, child));
// FIXME (jfernandez) Content Alignment should account for this heuristic.
// https://github.com/w3c/csswg-drafts/issues/2697
if (m_sizingState == ColumnSizingFirstIteration)
return estimatedGridAreaBreadthForChild(child, ForRows);
addContentAlignmentOffset = true;
}
const Vector<GridTrack>& allTracks = tracks(direction);
const GridSpan& span = m_grid.gridItemSpan(child, direction);
LayoutUnit gridAreaBreadth;
for (auto trackPosition : span)
gridAreaBreadth += allTracks[trackPosition].baseSize();
if (addContentAlignmentOffset)
gridAreaBreadth += (span.integerSpan() - 1) * m_renderGrid->gridItemOffset(direction);
gridAreaBreadth += m_renderGrid->guttersSize(m_grid, direction, span.startLine(), span.integerSpan(), availableSpace(direction));
return gridAreaBreadth;
}
bool GridTrackSizingAlgorithm::isRelativeGridLengthAsAuto(const GridLength& length, GridTrackSizingDirection direction) const
{
return length.isPercentage() && !availableSpace(direction);
}
bool GridTrackSizingAlgorithm::isIntrinsicSizedGridArea(const RenderBox& child, GridAxis axis) const
{
ASSERT(wasSetup());
GridTrackSizingDirection direction = gridDirectionForAxis(axis);
const GridSpan& span = m_grid.gridItemSpan(child, direction);
for (auto trackPosition : span) {
const auto& trackSize = rawGridTrackSize(direction, trackPosition);
// We consider fr units as 'auto' for the min sizing function.
// FIXME(jfernandez): https://github.com/w3c/csswg-drafts/issues/2611
//
// The use of AvailableSize function may imply different results
// for the same item when assuming indefinite or definite size
// constraints depending on the phase we evaluate the item's
// baseline participation.
// FIXME(jfernandez): https://github.com/w3c/csswg-drafts/issues/3046
if (trackSize.isContentSized() || trackSize.isFitContent() || trackSize.minTrackBreadth().isFlex() || (trackSize.maxTrackBreadth().isFlex() && !availableSpace(direction)))
return true;
}
return false;
}
GridTrackSize GridTrackSizingAlgorithm::calculateGridTrackSize(GridTrackSizingDirection direction, unsigned translatedIndex) const
{
ASSERT(wasSetup());
// Collapse empty auto repeat tracks if auto-fit.
if (m_grid.hasAutoRepeatEmptyTracks(direction) && m_grid.isEmptyAutoRepeatTrack(direction, translatedIndex))
return { Length(Fixed), LengthTrackSizing };
auto& trackSize = rawGridTrackSize(direction, translatedIndex);
if (trackSize.isFitContent())
return isRelativeGridLengthAsAuto(trackSize.fitContentTrackBreadth(), direction) ? GridTrackSize(Length(Auto), Length(MaxContent)) : trackSize;
GridLength minTrackBreadth = trackSize.minTrackBreadth();
GridLength maxTrackBreadth = trackSize.maxTrackBreadth();
// If the logical width/height of the grid container is indefinite, percentage
// values are treated as <auto>.
if (isRelativeGridLengthAsAuto(trackSize.minTrackBreadth(), direction))
minTrackBreadth = Length(Auto);
if (isRelativeGridLengthAsAuto(trackSize.maxTrackBreadth(), direction))
maxTrackBreadth = Length(Auto);
// Flex sizes are invalid as a min sizing function. However we still can have a flexible |minTrackBreadth|
// if the track size is just a flex size (e.g. "1fr"), the spec says that in this case it implies an automatic minimum.
if (minTrackBreadth.isFlex())
minTrackBreadth = Length(Auto);
return GridTrackSize(minTrackBreadth, maxTrackBreadth);
}
double GridTrackSizingAlgorithm::computeFlexFactorUnitSize(const Vector<GridTrack>& tracks, double flexFactorSum, LayoutUnit& leftOverSpace, const Vector<unsigned, 8>& flexibleTracksIndexes, std::unique_ptr<TrackIndexSet> tracksToTreatAsInflexible) const
{
// We want to avoid the effect of flex factors sum below 1 making the factor unit size to grow exponentially.
double hypotheticalFactorUnitSize = leftOverSpace / std::max<double>(1, flexFactorSum);
// product of the hypothetical "flex factor unit" and any flexible track's "flex factor" must be grater than such track's "base size".
bool validFlexFactorUnit = true;
for (auto index : flexibleTracksIndexes) {
if (tracksToTreatAsInflexible && tracksToTreatAsInflexible->contains(index))
continue;
LayoutUnit baseSize = tracks[index].baseSize();
double flexFactor = tracks[index].cachedTrackSize().maxTrackBreadth().flex();
// treating all such tracks as inflexible.
if (baseSize > hypotheticalFactorUnitSize * flexFactor) {
leftOverSpace -= baseSize;
flexFactorSum -= flexFactor;
if (!tracksToTreatAsInflexible)
tracksToTreatAsInflexible = makeUnique<TrackIndexSet>();
tracksToTreatAsInflexible->add(index);
validFlexFactorUnit = false;
}
}
if (!validFlexFactorUnit)
return computeFlexFactorUnitSize(tracks, flexFactorSum, leftOverSpace, flexibleTracksIndexes, WTFMove(tracksToTreatAsInflexible));
return hypotheticalFactorUnitSize;
}
void GridTrackSizingAlgorithm::computeFlexSizedTracksGrowth(double flexFraction, Vector<LayoutUnit>& increments, LayoutUnit& totalGrowth) const
{
size_t numFlexTracks = m_flexibleSizedTracksIndex.size();
ASSERT(increments.size() == numFlexTracks);
const Vector<GridTrack>& allTracks = tracks(m_direction);
for (size_t i = 0; i < numFlexTracks; ++i) {
unsigned trackIndex = m_flexibleSizedTracksIndex[i];
const auto& trackSize = allTracks[trackIndex].cachedTrackSize();
ASSERT(trackSize.maxTrackBreadth().isFlex());
LayoutUnit oldBaseSize = allTracks[trackIndex].baseSize();
LayoutUnit newBaseSize = std::max(oldBaseSize, LayoutUnit(flexFraction * trackSize.maxTrackBreadth().flex()));
increments[i] = newBaseSize - oldBaseSize;
totalGrowth += increments[i];
}
}
double GridTrackSizingAlgorithm::findFrUnitSize(const GridSpan& tracksSpan, LayoutUnit leftOverSpace) const
{
if (leftOverSpace <= 0)
return 0;
const Vector<GridTrack>& allTracks = tracks(m_direction);
double flexFactorSum = 0;
Vector<unsigned, 8> flexibleTracksIndexes;
for (auto trackIndex : tracksSpan) {
const auto& trackSize = allTracks[trackIndex].cachedTrackSize();
if (!trackSize.maxTrackBreadth().isFlex())
leftOverSpace -= allTracks[trackIndex].baseSize();
else {
double flexFactor = trackSize.maxTrackBreadth().flex();
flexibleTracksIndexes.append(trackIndex);
flexFactorSum += flexFactor;
}
}
// We don't remove the gutters from left_over_space here, because that was already done before.
// The function is not called if we don't have <flex> grid tracks.
ASSERT(!flexibleTracksIndexes.isEmpty());
return computeFlexFactorUnitSize(allTracks, flexFactorSum, leftOverSpace, flexibleTracksIndexes);
}
void GridTrackSizingAlgorithm::computeGridContainerIntrinsicSizes()
{
m_minContentSize = m_maxContentSize = 0_lu;
Vector<GridTrack>& allTracks = tracks(m_direction);
for (auto& track : allTracks) {
ASSERT(!track.infiniteGrowthPotential());
m_minContentSize += track.baseSize();
m_maxContentSize += track.growthLimit();
// The growth limit caps must be cleared now in order to properly sort
// tracks by growth potential on an eventual "Maximize Tracks".
track.setGrowthLimitCap(WTF::nullopt);
}
}
// GridTrackSizingAlgorithmStrategy.
LayoutUnit GridTrackSizingAlgorithmStrategy::logicalHeightForChild(RenderBox& child) const
{
GridTrackSizingDirection childBlockDirection = GridLayoutFunctions::flowAwareDirectionForChild(*renderGrid(), child, ForRows);
// If |child| has a relative logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the block-axis override size to -1 (no possible resolution).
if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForRows)) {
setOverrideContainingBlockContentSizeForChild(child, childBlockDirection, WTF::nullopt);
child.setNeedsLayout(MarkOnlyThis);
}
// We need to clear the stretched height to properly compute logical height during layout.
if (child.needsLayout())
child.clearOverrideContentLogicalHeight();
child.layoutIfNeeded();
return child.logicalHeight() + GridLayoutFunctions::marginLogicalSizeForChild(*renderGrid(), childBlockDirection, child) + m_algorithm.baselineOffsetForChild(child, gridAxisForDirection(direction()));
}
LayoutUnit GridTrackSizingAlgorithmStrategy::minContentForChild(RenderBox& child) const
{
GridTrackSizingDirection childInlineDirection = GridLayoutFunctions::flowAwareDirectionForChild(*renderGrid(), child, ForColumns);
if (direction() == childInlineDirection) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.minPreferredLogicalWidth() + GridLayoutFunctions::marginLogicalSizeForChild(*renderGrid(), childInlineDirection, child) + m_algorithm.baselineOffsetForChild(child, gridAxisForDirection(direction()));
}
if (updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection))
child.setNeedsLayout(MarkOnlyThis);
return logicalHeightForChild(child);
}
LayoutUnit GridTrackSizingAlgorithmStrategy::maxContentForChild(RenderBox& child) const
{
GridTrackSizingDirection childInlineDirection = GridLayoutFunctions::flowAwareDirectionForChild(*renderGrid(), child, ForColumns);
if (direction() == childInlineDirection) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.maxPreferredLogicalWidth() + GridLayoutFunctions::marginLogicalSizeForChild(*renderGrid(), childInlineDirection, child) + m_algorithm.baselineOffsetForChild(child, gridAxisForDirection(direction()));
}
if (updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection))
child.setNeedsLayout(MarkOnlyThis);
return logicalHeightForChild(child);
}
LayoutUnit GridTrackSizingAlgorithmStrategy::minSizeForChild(RenderBox& child) const
{
GridTrackSizingDirection childInlineDirection = GridLayoutFunctions::flowAwareDirectionForChild(*renderGrid(), child, ForColumns);
bool isRowAxis = direction() == childInlineDirection;
const Length& childSize = isRowAxis ? child.style().logicalWidth() : child.style().logicalHeight();
if (!childSize.isAuto() && !childSize.isPercentOrCalculated())
return minContentForChild(child);
const Length& childMinSize = isRowAxis ? child.style().logicalMinWidth() : child.style().logicalMinHeight();
bool overflowIsVisible = isRowAxis ? child.style().overflowInlineDirection() == Overflow::Visible : child.style().overflowBlockDirection() == Overflow::Visible;
LayoutUnit baselineShim = m_algorithm.baselineOffsetForChild(child, gridAxisForDirection(direction()));
if (childMinSize.isAuto() && overflowIsVisible) {
auto minSize = minContentForChild(child);
LayoutUnit maxBreadth;
auto allTracks = m_algorithm.tracks(direction());
for (auto trackPosition : m_algorithm.grid().gridItemSpan(child, direction())) {
const auto& trackSize = allTracks[trackPosition].cachedTrackSize();
if (!trackSize.hasFixedMaxTrackBreadth())
return minSize;
maxBreadth += valueForLength(trackSize.maxTrackBreadth().length(), availableSpace().valueOr(0_lu));
}
if (minSize > maxBreadth) {
auto marginAndBorderAndPadding = GridLayoutFunctions::marginLogicalSizeForChild(*renderGrid(), direction(), child);
marginAndBorderAndPadding += isRowAxis ? child.borderAndPaddingLogicalWidth() : child.borderAndPaddingLogicalHeight();
minSize = std::max(maxBreadth, marginAndBorderAndPadding + baselineShim);
}
return minSize;
}
LayoutUnit gridAreaSize = m_algorithm.gridAreaBreadthForChild(child, childInlineDirection);
if (isRowAxis)
return minLogicalWidthForChild(child, childMinSize, gridAreaSize) + baselineShim;
bool overrideSizeHasChanged = updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection, gridAreaSize);
layoutGridItemForMinSizeComputation(child, overrideSizeHasChanged);
return child.computeLogicalHeightUsing(MinSize, childMinSize, WTF::nullopt).valueOr(0) + child.marginLogicalHeight() + child.scrollbarLogicalHeight() + baselineShim;
}
bool GridTrackSizingAlgorithm::canParticipateInBaselineAlignment(const RenderBox& child, GridAxis baselineAxis) const
{
ASSERT(baselineAxis == GridColumnAxis ? m_columnBaselineItemsMap.contains(&child) : m_rowBaselineItemsMap.contains(&child));
// Baseline cyclic dependencies only happen with synthesized
// baselines. These cases include orthogonal or empty grid items
// and replaced elements.
bool isParallelToBaselineAxis = baselineAxis == GridColumnAxis ? !GridLayoutFunctions::isOrthogonalChild(*m_renderGrid, child) : GridLayoutFunctions::isOrthogonalChild(*m_renderGrid, child);
if (isParallelToBaselineAxis && child.firstLineBaseline())
return true;
// Baseline cyclic dependencies only happen in grid areas with
// intrinsically-sized tracks.
if (!isIntrinsicSizedGridArea(child, baselineAxis))
return true;
return isParallelToBaselineAxis ? !child.hasRelativeLogicalHeight() : !child.hasRelativeLogicalWidth() && !child.style().logicalWidth().isAuto();
}
bool GridTrackSizingAlgorithm::participateInBaselineAlignment(const RenderBox& child, GridAxis baselineAxis) const
{
return baselineAxis == GridColumnAxis ? m_columnBaselineItemsMap.get(&child) : m_rowBaselineItemsMap.get(&child);
}
void GridTrackSizingAlgorithm::updateBaselineAlignmentContext(const RenderBox& child, GridAxis baselineAxis)
{
ASSERT(wasSetup());
ASSERT(canParticipateInBaselineAlignment(child, baselineAxis));
ASSERT(!child.needsLayout());
ItemPosition align = m_renderGrid->selfAlignmentForChild(baselineAxis, child).position();
const auto& span = m_grid.gridItemSpan(child, gridDirectionForAxis(baselineAxis));
m_baselineAlignment.updateBaselineAlignmentContext(align, span.startLine(), child, baselineAxis);
}
LayoutUnit GridTrackSizingAlgorithm::baselineOffsetForChild(const RenderBox& child, GridAxis baselineAxis) const
{
if (!participateInBaselineAlignment(child, baselineAxis))
return LayoutUnit();
ItemPosition align = m_renderGrid->selfAlignmentForChild(baselineAxis, child).position();
const auto& span = m_grid.gridItemSpan(child, gridDirectionForAxis(baselineAxis));
return m_baselineAlignment.baselineOffsetForChild(align, span.startLine(), child, baselineAxis);
}
void GridTrackSizingAlgorithm::clearBaselineItemsCache()
{
m_columnBaselineItemsMap.clear();
m_rowBaselineItemsMap.clear();
}
void GridTrackSizingAlgorithm::cacheBaselineAlignedItem(const RenderBox& item, GridAxis axis)
{
ASSERT(m_renderGrid->isBaselineAlignmentForChild(item, axis));
if (axis == GridColumnAxis)
m_columnBaselineItemsMap.add(&item, true);
else
m_rowBaselineItemsMap.add(&item, true);
}
void GridTrackSizingAlgorithm::copyBaselineItemsCache(const GridTrackSizingAlgorithm& source, GridAxis axis)
{
if (axis == GridColumnAxis)
m_columnBaselineItemsMap = source.m_columnBaselineItemsMap;
else
m_rowBaselineItemsMap = source.m_rowBaselineItemsMap;
}
bool GridTrackSizingAlgorithmStrategy::updateOverrideContainingBlockContentSizeForChild(RenderBox& child, GridTrackSizingDirection direction, Optional<LayoutUnit> overrideSize) const
{
if (!overrideSize)
overrideSize = m_algorithm.gridAreaBreadthForChild(child, direction);
if (GridLayoutFunctions::hasOverrideContainingBlockContentSizeForChild(child, direction) && GridLayoutFunctions::overrideContainingBlockContentSizeForChild(child, direction) == overrideSize)
return false;
setOverrideContainingBlockContentSizeForChild(child, direction, overrideSize);
return true;
}
class IndefiniteSizeStrategy final : public GridTrackSizingAlgorithmStrategy {
public:
IndefiniteSizeStrategy(GridTrackSizingAlgorithm& algorithm)
: GridTrackSizingAlgorithmStrategy(algorithm) { }
private:
LayoutUnit minLogicalWidthForChild(RenderBox&, Length childMinSize, LayoutUnit availableSize) const override;
void layoutGridItemForMinSizeComputation(RenderBox&, bool overrideSizeHasChanged) const override;
void maximizeTracks(Vector<GridTrack>&, Optional<LayoutUnit>& freeSpace) override;
double findUsedFlexFraction(Vector<unsigned>& flexibleSizedTracksIndex, GridTrackSizingDirection, Optional<LayoutUnit> freeSpace) const override;
bool recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const override;
LayoutUnit freeSpaceForStretchAutoTracksStep() const override;
};
LayoutUnit IndefiniteSizeStrategy::minLogicalWidthForChild(RenderBox& child, Length childMinSize, LayoutUnit availableSize) const
{
return child.computeLogicalWidthInFragmentUsing(MinSize, childMinSize, availableSize, *renderGrid(), nullptr) + marginIntrinsicLogicalWidthForChild(renderGrid(), child);
}
void IndefiniteSizeStrategy::layoutGridItemForMinSizeComputation(RenderBox& child, bool overrideSizeHasChanged) const
{
if (overrideSizeHasChanged && direction() != ForColumns)
child.setNeedsLayout(MarkOnlyThis);
child.layoutIfNeeded();
}
void IndefiniteSizeStrategy::maximizeTracks(Vector<GridTrack>& tracks, Optional<LayoutUnit>& freeSpace)
{
UNUSED_PARAM(freeSpace);
for (auto& track : tracks)
track.setBaseSize(track.growthLimit());
}
static inline double normalizedFlexFraction(const GridTrack& track)
{
double flexFactor = track.cachedTrackSize().maxTrackBreadth().flex();
return track.baseSize() / std::max<double>(1, flexFactor);
}
double IndefiniteSizeStrategy::findUsedFlexFraction(Vector<unsigned>& flexibleSizedTracksIndex, GridTrackSizingDirection direction, Optional<LayoutUnit> freeSpace) const
{
UNUSED_PARAM(freeSpace);
auto allTracks = m_algorithm.tracks(direction);
double flexFraction = 0;
for (const auto& trackIndex : flexibleSizedTracksIndex) {
// FIXME: we pass TrackSizing to gridTrackSize() because it does not really matter
// as we know the track is a flex sized track. It'd be nice not to have to do that.
flexFraction = std::max(flexFraction, normalizedFlexFraction(allTracks[trackIndex]));
}
const Grid& grid = m_algorithm.grid();
if (!grid.hasGridItems())
return flexFraction;
for (unsigned i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
GridIterator iterator(grid, direction, flexibleSizedTracksIndex[i]);
while (auto* gridItem = iterator.nextGridItem()) {
const GridSpan& span = grid.gridItemSpan(*gridItem, direction);
// Do not include already processed items.
if (i > 0 && span.startLine() <= flexibleSizedTracksIndex[i - 1])
continue;
// Removing gutters from the max-content contribution of the item, so they are not taken into account in FindFrUnitSize().
LayoutUnit leftOverSpace = maxContentForChild(*gridItem) - renderGrid()->guttersSize(m_algorithm.grid(), direction, span.startLine(), span.integerSpan(), availableSpace());
flexFraction = std::max(flexFraction, findFrUnitSize(span, leftOverSpace));
}
}
return flexFraction;
}
bool IndefiniteSizeStrategy::recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const
{
if (direction() == ForColumns)
return false;
const RenderGrid* renderGrid = this->renderGrid();
auto minSize = renderGrid->computeContentLogicalHeight(MinSize, renderGrid->style().logicalMinHeight(), WTF::nullopt);
auto maxSize = renderGrid->computeContentLogicalHeight(MaxSize, renderGrid->style().logicalMaxHeight(), WTF::nullopt);
// Redo the flex fraction computation using min|max-height as definite available space in case
// the total height is smaller than min-height or larger than max-height.
LayoutUnit rowsSize = totalGrowth + computeTrackBasedSize();
bool checkMinSize = minSize && rowsSize < minSize.value();
bool checkMaxSize = maxSize && rowsSize > maxSize.value();
if (!checkMinSize && !checkMaxSize)
return false;
LayoutUnit freeSpace = checkMaxSize ? maxSize.value() : -1_lu;
const Grid& grid = m_algorithm.grid();
freeSpace = std::max(freeSpace, minSize.valueOr(0_lu)) - renderGrid->guttersSize(grid, ForRows, 0, grid.numTracks(ForRows), availableSpace());
size_t numberOfTracks = m_algorithm.tracks(ForRows).size();
flexFraction = findFrUnitSize(GridSpan::translatedDefiniteGridSpan(0, numberOfTracks), freeSpace);
return true;
}
class DefiniteSizeStrategy final : public GridTrackSizingAlgorithmStrategy {
public:
DefiniteSizeStrategy(GridTrackSizingAlgorithm& algorithm)
: GridTrackSizingAlgorithmStrategy(algorithm) { }
private:
LayoutUnit minLogicalWidthForChild(RenderBox&, Length childMinSize, LayoutUnit availableSize) const override;
void layoutGridItemForMinSizeComputation(RenderBox&, bool overrideSizeHasChanged) const override;
void maximizeTracks(Vector<GridTrack>&, Optional<LayoutUnit>& freeSpace) override;
double findUsedFlexFraction(Vector<unsigned>& flexibleSizedTracksIndex, GridTrackSizingDirection, Optional<LayoutUnit> freeSpace) const override;
bool recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const override;
LayoutUnit freeSpaceForStretchAutoTracksStep() const override;
};
LayoutUnit IndefiniteSizeStrategy::freeSpaceForStretchAutoTracksStep() const
{
ASSERT(!m_algorithm.freeSpace(direction()));
if (direction() == ForColumns)
return 0_lu;
auto minSize = renderGrid()->computeContentLogicalHeight(MinSize, renderGrid()->style().logicalMinHeight(), WTF::nullopt);
if (!minSize)
return 0_lu;
return minSize.value() - computeTrackBasedSize();
}
LayoutUnit DefiniteSizeStrategy::minLogicalWidthForChild(RenderBox& child, Length childMinSize, LayoutUnit availableSize) const
{
LayoutUnit marginLogicalWidth =
GridLayoutFunctions::computeMarginLogicalSizeForChild(*renderGrid(), ForColumns, child);
return child.computeLogicalWidthInFragmentUsing(MinSize, childMinSize, availableSize, *renderGrid(), nullptr) + marginLogicalWidth;
}
void DefiniteSizeStrategy::maximizeTracks(Vector<GridTrack>& tracks, Optional<LayoutUnit>& freeSpace)
{
size_t tracksSize = tracks.size();
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (size_t i = 0; i < tracksSize; ++i) {
tracksForDistribution[i] = tracks.data() + i;
tracksForDistribution[i]->setPlannedSize(tracksForDistribution[i]->baseSize());
}
ASSERT(freeSpace);
distributeSpaceToTracks(tracksForDistribution, freeSpace.value());
for (auto* track : tracksForDistribution)
track->setBaseSize(track->plannedSize());
}
void DefiniteSizeStrategy::layoutGridItemForMinSizeComputation(RenderBox& child, bool overrideSizeHasChanged) const
{
if (overrideSizeHasChanged)
child.setNeedsLayout(MarkOnlyThis);
child.layoutIfNeeded();
}
double DefiniteSizeStrategy::findUsedFlexFraction(Vector<unsigned>&, GridTrackSizingDirection direction, Optional<LayoutUnit> freeSpace) const
{
GridSpan allTracksSpan = GridSpan::translatedDefiniteGridSpan(0, m_algorithm.tracks(direction).size());
ASSERT(freeSpace);
return findFrUnitSize(allTracksSpan, freeSpace.value());
}
LayoutUnit DefiniteSizeStrategy::freeSpaceForStretchAutoTracksStep() const
{
return m_algorithm.freeSpace(direction()).value();
}
bool DefiniteSizeStrategy::recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const
{
UNUSED_PARAM(flexFraction);
UNUSED_PARAM(totalGrowth);
return false;
}
// GridTrackSizingAlgorithm steps.
void GridTrackSizingAlgorithm::initializeTrackSizes()
{
ASSERT(m_contentSizedTracksIndex.isEmpty());
ASSERT(m_flexibleSizedTracksIndex.isEmpty());
ASSERT(m_autoSizedTracksForStretchIndex.isEmpty());
ASSERT(!m_hasPercentSizedRowsIndefiniteHeight);
Vector<GridTrack>& allTracks = tracks(m_direction);
const bool indefiniteHeight = m_direction == ForRows && !m_renderGrid->hasDefiniteLogicalHeight();
LayoutUnit maxSize = std::max(0_lu, availableSpace().valueOr(0_lu));
// 1. Initialize per Grid track variables.
for (unsigned i = 0; i < allTracks.size(); ++i) {
GridTrack& track = allTracks[i];
const auto& trackSize = calculateGridTrackSize(m_direction, i);
track.setCachedTrackSize(trackSize);
track.setBaseSize(initialBaseSize(trackSize));
track.setGrowthLimit(initialGrowthLimit(trackSize, track.baseSize()));
track.setInfinitelyGrowable(false);
if (trackSize.isFitContent())
track.setGrowthLimitCap(valueForLength(trackSize.fitContentTrackBreadth().length(), maxSize));
if (trackSize.isContentSized())
m_contentSizedTracksIndex.append(i);
if (trackSize.maxTrackBreadth().isFlex())
m_flexibleSizedTracksIndex.append(i);
if (trackSize.hasAutoMaxTrackBreadth() && !trackSize.isFitContent())
m_autoSizedTracksForStretchIndex.append(i);
if (!m_hasPercentSizedRowsIndefiniteHeight && indefiniteHeight) {
auto& rawTrackSize = rawGridTrackSize(m_direction, i);
if (rawTrackSize.minTrackBreadth().isPercentage() || rawTrackSize.maxTrackBreadth().isPercentage())
m_hasPercentSizedRowsIndefiniteHeight = true;
}
}
}
void GridTrackSizingAlgorithm::resolveIntrinsicTrackSizes()
{
Vector<GridItemWithSpan> itemsSortedByIncreasingSpan;
HashSet<RenderBox*> itemsSet;
Vector<GridTrack>& allTracks = tracks(m_direction);
if (m_grid.hasGridItems()) {
for (auto trackIndex : m_contentSizedTracksIndex) {
GridIterator iterator(m_grid, m_direction, trackIndex);
GridTrack& track = allTracks[trackIndex];
while (auto* gridItem = iterator.nextGridItem()) {
if (itemsSet.add(gridItem).isNewEntry) {
const GridSpan& span = m_grid.gridItemSpan(*gridItem, m_direction);
if (span.integerSpan() == 1)
sizeTrackToFitNonSpanningItem(span, *gridItem, track);
else if (!spanningItemCrossesFlexibleSizedTracks(span))
itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, span));
}
}
}
std::sort(itemsSortedByIncreasingSpan.begin(), itemsSortedByIncreasingSpan.end());
}
auto it = itemsSortedByIncreasingSpan.begin();
auto end = itemsSortedByIncreasingSpan.end();
while (it != end) {
GridItemsSpanGroupRange spanGroupRange = { it, std::upper_bound(it, end, *it) };
increaseSizesToAccommodateSpanningItems<ResolveIntrinsicMinimums>(spanGroupRange);
increaseSizesToAccommodateSpanningItems<ResolveContentBasedMinimums>(spanGroupRange);
increaseSizesToAccommodateSpanningItems<ResolveMaxContentMinimums>(spanGroupRange);
increaseSizesToAccommodateSpanningItems<ResolveIntrinsicMaximums>(spanGroupRange);
increaseSizesToAccommodateSpanningItems<ResolveMaxContentMaximums>(spanGroupRange);
it = spanGroupRange.rangeEnd;
}
for (auto trackIndex : m_contentSizedTracksIndex) {
GridTrack& track = allTracks[trackIndex];
if (track.growthLimit() == infinity)
track.setGrowthLimit(track.baseSize());
}
}
void GridTrackSizingAlgorithm::stretchFlexibleTracks(Optional<LayoutUnit> freeSpace)
{
if (m_flexibleSizedTracksIndex.isEmpty())
return;
double flexFraction = m_strategy->findUsedFlexFraction(m_flexibleSizedTracksIndex, m_direction, freeSpace);
LayoutUnit totalGrowth;
Vector<LayoutUnit> increments;
increments.grow(m_flexibleSizedTracksIndex.size());
computeFlexSizedTracksGrowth(flexFraction, increments, totalGrowth);
if (m_strategy->recomputeUsedFlexFractionIfNeeded(flexFraction, totalGrowth)) {
totalGrowth = 0_lu;
computeFlexSizedTracksGrowth(flexFraction, increments, totalGrowth);
}
size_t i = 0;
Vector<GridTrack>& allTracks = tracks(m_direction);
for (auto trackIndex : m_flexibleSizedTracksIndex) {
auto& track = allTracks[trackIndex];
if (LayoutUnit increment = increments[i++])
track.setBaseSize(track.baseSize() + increment);
}
if (this->freeSpace(m_direction))
setFreeSpace(m_direction, this->freeSpace(m_direction).value() - totalGrowth);
m_maxContentSize += totalGrowth;
}
void GridTrackSizingAlgorithm::stretchAutoTracks()
{
auto currentFreeSpace = m_strategy->freeSpaceForStretchAutoTracksStep();
if (m_autoSizedTracksForStretchIndex.isEmpty() || currentFreeSpace <= 0
|| (m_renderGrid->contentAlignment(m_direction).distribution() != ContentDistribution::Stretch))
return;
Vector<GridTrack>& allTracks = tracks(m_direction);
unsigned numberOfAutoSizedTracks = m_autoSizedTracksForStretchIndex.size();
LayoutUnit sizeToIncrease = currentFreeSpace / numberOfAutoSizedTracks;
for (const auto& trackIndex : m_autoSizedTracksForStretchIndex) {
auto& track = allTracks[trackIndex];
track.setBaseSize(track.baseSize() + sizeToIncrease);
}
setFreeSpace(m_direction, 0_lu);
}
void GridTrackSizingAlgorithm::advanceNextState()
{
switch (m_sizingState) {
case ColumnSizingFirstIteration:
m_sizingState = RowSizingFirstIteration;
return;
case RowSizingFirstIteration:
m_sizingState = ColumnSizingSecondIteration;
return;
case ColumnSizingSecondIteration:
m_sizingState = RowSizingSecondIteration;
return;
case RowSizingSecondIteration:
m_sizingState = ColumnSizingFirstIteration;
return;
}
ASSERT_NOT_REACHED();
m_sizingState = ColumnSizingFirstIteration;
}
bool GridTrackSizingAlgorithm::isValidTransition() const
{
switch (m_sizingState) {
case ColumnSizingFirstIteration:
case ColumnSizingSecondIteration:
return m_direction == ForColumns;
case RowSizingFirstIteration:
case RowSizingSecondIteration:
return m_direction == ForRows;
}
ASSERT_NOT_REACHED();
return false;
}
// GridTrackSizingAlgorithm API.
void GridTrackSizingAlgorithm::setup(GridTrackSizingDirection direction, unsigned numTracks, SizingOperation sizingOperation, Optional<LayoutUnit> availableSpace, Optional<LayoutUnit> freeSpace)
{
ASSERT(m_needsSetup);
m_direction = direction;
setAvailableSpace(direction, availableSpace);
m_sizingOperation = sizingOperation;
switch (m_sizingOperation) {
case IntrinsicSizeComputation:
m_strategy = makeUnique<IndefiniteSizeStrategy>(*this);
break;
case TrackSizing:
m_strategy = makeUnique<DefiniteSizeStrategy>(*this);
break;
}
m_contentSizedTracksIndex.shrink(0);
m_flexibleSizedTracksIndex.shrink(0);
m_autoSizedTracksForStretchIndex.shrink(0);
setFreeSpace(direction, freeSpace);
tracks(direction).resize(numTracks);
m_needsSetup = false;
m_hasPercentSizedRowsIndefiniteHeight = false;
computeBaselineAlignmentContext();
}
void GridTrackSizingAlgorithm::computeBaselineAlignmentContext()
{
GridAxis axis = gridAxisForDirection(m_direction);
m_baselineAlignment.clear(axis);
m_baselineAlignment.setBlockFlow(m_renderGrid->style().writingMode());
BaselineItemsCache& baselineItemsCache = axis == GridColumnAxis ? m_columnBaselineItemsMap : m_rowBaselineItemsMap;
BaselineItemsCache tmpBaselineItemsCache = baselineItemsCache;
for (auto* child : tmpBaselineItemsCache.keys()) {
// FIXME (jfernandez): We may have to get rid of the baseline participation
// flag (hence just using a HashSet) depending on the CSS WG resolution on
// https://github.com/w3c/csswg-drafts/issues/3046
if (canParticipateInBaselineAlignment(*child, axis)) {
updateBaselineAlignmentContext(*child, axis);
baselineItemsCache.set(child, true);
} else
baselineItemsCache.set(child, false);
}
}
void GridTrackSizingAlgorithm::run()
{
ASSERT(wasSetup());
StateMachine stateMachine(*this);
// Step 1.
const Optional<LayoutUnit> initialFreeSpace = freeSpace(m_direction);
initializeTrackSizes();
// Step 2.
if (!m_contentSizedTracksIndex.isEmpty())
resolveIntrinsicTrackSizes();
// This is not exactly a step of the track sizing algorithm, but we use the track sizes computed
// up to this moment (before maximization) to calculate the grid container intrinsic sizes.
computeGridContainerIntrinsicSizes();
if (freeSpace(m_direction)) {
LayoutUnit updatedFreeSpace = freeSpace(m_direction).value() - m_minContentSize;
setFreeSpace(m_direction, updatedFreeSpace);
if (updatedFreeSpace <= 0)
return;
}
// Step 3.
m_strategy->maximizeTracks(tracks(m_direction), m_direction == ForColumns ? m_freeSpaceColumns : m_freeSpaceRows);
// Step 4.
stretchFlexibleTracks(initialFreeSpace);
// Step 5.
stretchAutoTracks();
}
void GridTrackSizingAlgorithm::reset()
{
ASSERT(wasSetup());
m_sizingState = ColumnSizingFirstIteration;
m_columns.shrink(0);
m_rows.shrink(0);
m_contentSizedTracksIndex.shrink(0);
m_flexibleSizedTracksIndex.shrink(0);
m_autoSizedTracksForStretchIndex.shrink(0);
setAvailableSpace(ForRows, WTF::nullopt);
setAvailableSpace(ForColumns, WTF::nullopt);
m_hasPercentSizedRowsIndefiniteHeight = false;
}
#if ASSERT_ENABLED
bool GridTrackSizingAlgorithm::tracksAreWiderThanMinTrackBreadth() const
{
const Vector<GridTrack>& allTracks = tracks(m_direction);
for (size_t i = 0; i < allTracks.size(); ++i) {
const auto& trackSize = allTracks[i].cachedTrackSize();
if (initialBaseSize(trackSize) > allTracks[i].baseSize())
return false;
}
return true;
}
#endif // ASSERT_ENABLED
GridTrackSizingAlgorithm::StateMachine::StateMachine(GridTrackSizingAlgorithm& algorithm)
: m_algorithm(algorithm)
{
ASSERT(m_algorithm.isValidTransition());
ASSERT(!m_algorithm.m_needsSetup);
}
GridTrackSizingAlgorithm::StateMachine::~StateMachine()
{
m_algorithm.advanceNextState();
m_algorithm.m_needsSetup = true;
}
} // namespace WebCore