blob: d6e6ea54a20015f2c255d0ffcd59b2fc53a0117c [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2013 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef RefPtrHashMap_h
#define RefPtrHashMap_h
namespace WTF {
// This specialization is a copy of HashMap for use with RefPtr keys, with overloaded functions
// to allow for lookup by pointer instead of RefPtr, avoiding ref-count churn.
// FIXME: Find a way to do this with traits that doesn't require a copy of the HashMap template.
template<typename T, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
class HashMap<RefPtr<T>, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg> {
WTF_MAKE_FAST_ALLOCATED;
private:
typedef KeyTraitsArg KeyTraits;
typedef MappedTraitsArg MappedTraits;
typedef KeyValuePairHashTraits<KeyTraits, MappedTraits> ValueTraits;
public:
typedef typename KeyTraits::TraitType KeyType;
typedef T* RawKeyType;
typedef typename MappedTraits::TraitType MappedType;
typedef typename ValueTraits::TraitType ValueType;
private:
typedef typename MappedTraits::PeekType MappedPeekType;
typedef HashArg HashFunctions;
typedef HashTable<KeyType, ValueType, KeyValuePairKeyExtractor<ValueType>,
HashFunctions, ValueTraits, KeyTraits> HashTableType;
typedef HashMapTranslator<ValueTraits, HashFunctions>
Translator;
public:
typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator;
typedef HashTableConstIteratorAdapter<HashTableType, ValueType> const_iterator;
typedef typename HashTableType::AddResult AddResult;
void swap(HashMap&);
int size() const;
int capacity() const;
bool isEmpty() const;
// iterators iterate over pairs of keys and values
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
iterator find(const KeyType&);
iterator find(RawKeyType);
const_iterator find(const KeyType&) const;
const_iterator find(RawKeyType) const;
bool contains(const KeyType&) const;
bool contains(RawKeyType) const;
MappedPeekType get(const KeyType&) const;
MappedPeekType get(RawKeyType) const;
MappedPeekType inlineGet(RawKeyType) const;
// replaces value but not key if key is already present
// return value is a pair of the iterator to the key location,
// and a boolean that's true if a new value was actually added
template<typename V> AddResult set(const KeyType&, V&&);
template<typename V> AddResult set(RawKeyType, V&&);
// does nothing if key is already present
// return value is a pair of the iterator to the key location,
// and a boolean that's true if a new value was actually added
template<typename V> AddResult add(const KeyType&, V&&);
template<typename V> AddResult add(RawKeyType, V&&);
bool remove(const KeyType&);
bool remove(RawKeyType);
bool remove(iterator);
void clear();
MappedType take(const KeyType&); // efficient combination of get with remove
MappedType take(RawKeyType); // efficient combination of get with remove
private:
template<typename V>
AddResult inlineAdd(const KeyType&, V&&);
template<typename V>
AddResult inlineAdd(RawKeyType, V&&);
HashTableType m_impl;
};
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<RefPtr<T>, U, V, W, X>::swap(HashMap& other)
{
m_impl.swap(other.m_impl);
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<RefPtr<T>, U, V, W, X>::size() const
{
return m_impl.size();
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<RefPtr<T>, U, V, W, X>::capacity() const
{
return m_impl.capacity();
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<RefPtr<T>, U, V, W, X>::isEmpty() const
{
return m_impl.isEmpty();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::iterator HashMap<RefPtr<T>, U, V, W, X>::begin()
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::iterator HashMap<RefPtr<T>, U, V, W, X>::end()
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::const_iterator HashMap<RefPtr<T>, U, V, W, X>::begin() const
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::const_iterator HashMap<RefPtr<T>, U, V, W, X>::end() const
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::iterator HashMap<RefPtr<T>, U, V, W, X>::find(const KeyType& key)
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::iterator HashMap<RefPtr<T>, U, V, W, X>::find(RawKeyType key)
{
return m_impl.template find<Translator>(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::const_iterator HashMap<RefPtr<T>, U, V, W, X>::find(const KeyType& key) const
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<RefPtr<T>, U, V, W, X>::const_iterator HashMap<RefPtr<T>, U, V, W, X>::find(RawKeyType key) const
{
return m_impl.template find<Translator>(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<RefPtr<T>, U, V, W, X>::contains(const KeyType& key) const
{
return m_impl.contains(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<RefPtr<T>, U, V, W, X>::contains(RawKeyType key) const
{
return m_impl.template contains<Translator>(key);
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename V>
auto HashMap<RefPtr<KeyArg>, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::inlineAdd(const KeyType& key, V&& mapped) -> AddResult
{
return m_impl.template add<Translator>(key, std::forward<V>(mapped));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename V>
auto HashMap<RefPtr<KeyArg>, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::inlineAdd(RawKeyType key, V&& mapped) -> AddResult
{
return m_impl.template add<Translator>(key, std::forward<V>(mapped));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename V>
auto HashMap<RefPtr<KeyArg>, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::set(const KeyType& key, V&& value) -> AddResult
{
AddResult result = inlineAdd(key, std::forward<V>(value));
if (!result.isNewEntry) {
// The inlineAdd call above found an existing hash table entry; we need to set the mapped value.
result.iterator->value = std::forward<V>(value);
}
return result;
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename V>
auto HashMap<RefPtr<KeyArg>, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::set(RawKeyType key, V&& value) -> AddResult
{
AddResult result = inlineAdd(key, std::forward<V>(value));
if (!result.isNewEntry) {
// The inlineAdd call above found an existing hash table entry; we need to set the mapped value.
result.iterator->value = std::forward<V>(value);
}
return result;
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename V>
auto HashMap<RefPtr<KeyArg>, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::add(const KeyType& key, V&& value) -> AddResult
{
return inlineAdd(key, std::forward<V>(value));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename V>
auto HashMap<RefPtr<KeyArg>, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::add(RawKeyType key, V&& value) -> AddResult
{
return inlineAdd(key, std::forward<V>(value));
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedPeekType
HashMap<RefPtr<T>, U, V, W, MappedTraits>::get(const KeyType& key) const
{
ValueType* entry = const_cast<HashTableType&>(m_impl).lookup(key);
if (!entry)
return MappedTraits::peek(MappedTraits::emptyValue());
return MappedTraits::peek(entry->value);
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedPeekType
inline HashMap<RefPtr<T>, U, V, W, MappedTraits>::inlineGet(RawKeyType key) const
{
ValueType* entry = const_cast<HashTableType&>(m_impl).template lookup<Translator>(key);
if (!entry)
return MappedTraits::peek(MappedTraits::emptyValue());
return MappedTraits::peek(entry->value);
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<RefPtr<T>, U, V, W, MappedTraits>::MappedPeekType
HashMap<RefPtr<T>, U, V, W, MappedTraits>::get(RawKeyType key) const
{
return inlineGet(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<RefPtr<T>, U, V, W, X>::remove(iterator it)
{
if (it.m_impl == m_impl.end())
return false;
m_impl.internalCheckTableConsistency();
m_impl.removeWithoutEntryConsistencyCheck(it.m_impl);
return true;
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<RefPtr<T>, U, V, W, X>::remove(const KeyType& key)
{
return remove(find(key));
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<RefPtr<T>, U, V, W, X>::remove(RawKeyType key)
{
return remove(find(key));
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<RefPtr<T>, U, V, W, X>::clear()
{
m_impl.clear();
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
auto HashMap<RefPtr<T>, U, V, W, MappedTraits>::take(const KeyType& key) -> MappedType
{
iterator it = find(key);
if (it == end())
return MappedTraits::emptyValue();
MappedType value = std::move(it->value);
remove(it);
return value;
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
auto HashMap<RefPtr<T>, U, V, W, MappedTraits>::take(RawKeyType key) -> MappedType
{
iterator it = find(key);
if (it == end())
return MappedTraits::emptyValue();
MappedType value = std::move(it->value);
remove(it);
return value;
}
} // namespace WTF
#endif // RefPtrHashMap_h