| /* |
| * Copyright (C) 2007, 2009, 2015 Apple Inc. All rights reserved. |
| * Copyright (C) 2007 Justin Haygood <jhaygood@reaktix.com> |
| * Copyright (C) 2011 Research In Motion Limited. All rights reserved. |
| * Copyright (C) 2017 Yusuke Suzuki <utatane.tea@gmail.com> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "Threading.h" |
| |
| #if USE(PTHREADS) |
| |
| #include <errno.h> |
| #include <wtf/DataLog.h> |
| #include <wtf/NeverDestroyed.h> |
| #include <wtf/RawPointer.h> |
| #include <wtf/StdLibExtras.h> |
| #include <wtf/ThreadGroup.h> |
| #include <wtf/ThreadingPrimitives.h> |
| #include <wtf/WordLock.h> |
| |
| #if OS(LINUX) |
| #include <sys/prctl.h> |
| #endif |
| |
| #if !COMPILER(MSVC) |
| #include <limits.h> |
| #include <sched.h> |
| #include <sys/time.h> |
| #endif |
| |
| #if !OS(DARWIN) && OS(UNIX) |
| |
| #include <semaphore.h> |
| #include <sys/mman.h> |
| #include <unistd.h> |
| #include <pthread.h> |
| |
| #if HAVE(PTHREAD_NP_H) |
| #include <pthread_np.h> |
| #endif |
| |
| #endif |
| |
| namespace WTF { |
| |
| static Lock globalSuspendLock; |
| |
| Thread::~Thread() |
| { |
| } |
| |
| #if !OS(DARWIN) |
| class Semaphore { |
| WTF_MAKE_NONCOPYABLE(Semaphore); |
| WTF_MAKE_FAST_ALLOCATED; |
| public: |
| explicit Semaphore(unsigned initialValue) |
| { |
| int sharedBetweenProcesses = 0; |
| sem_init(&m_platformSemaphore, sharedBetweenProcesses, initialValue); |
| } |
| |
| ~Semaphore() |
| { |
| sem_destroy(&m_platformSemaphore); |
| } |
| |
| void wait() |
| { |
| sem_wait(&m_platformSemaphore); |
| } |
| |
| void post() |
| { |
| sem_post(&m_platformSemaphore); |
| } |
| |
| private: |
| sem_t m_platformSemaphore; |
| }; |
| static LazyNeverDestroyed<Semaphore> globalSemaphoreForSuspendResume; |
| |
| // We use SIGUSR1 to suspend and resume machine threads in JavaScriptCore. |
| static constexpr const int SigThreadSuspendResume = SIGUSR1; |
| static std::atomic<Thread*> targetThread { nullptr }; |
| |
| #if COMPILER(GCC) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wreturn-local-addr" |
| #endif // COMPILER(GCC) |
| |
| #if COMPILER(CLANG) |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wreturn-stack-address" |
| #endif // COMPILER(CLANG) |
| |
| static UNUSED_FUNCTION NEVER_INLINE void* getApproximateStackPointer() |
| { |
| volatile void* stackLocation = nullptr; |
| return &stackLocation; |
| } |
| |
| #if COMPILER(GCC) |
| #pragma GCC diagnostic pop |
| #endif // COMPILER(GCC) |
| |
| #if COMPILER(CLANG) |
| #pragma clang diagnostic pop |
| #endif // COMPILER(CLANG) |
| |
| static UNUSED_FUNCTION bool isOnAlternativeSignalStack() |
| { |
| stack_t stack { }; |
| int ret = sigaltstack(nullptr, &stack); |
| RELEASE_ASSERT(!ret); |
| return stack.ss_flags == SS_ONSTACK; |
| } |
| |
| void Thread::signalHandlerSuspendResume(int, siginfo_t*, void* ucontext) |
| { |
| // Touching a global variable atomic types from signal handlers is allowed. |
| Thread* thread = targetThread.load(); |
| |
| if (thread->m_suspendCount) { |
| // This is signal handler invocation that is intended to be used to resume sigsuspend. |
| // So this handler invocation itself should not process. |
| // |
| // When signal comes, first, the system calls signal handler. And later, sigsuspend will be resumed. Signal handler invocation always precedes. |
| // So, the problem never happens that suspended.store(true, ...) will be executed before the handler is called. |
| // http://pubs.opengroup.org/onlinepubs/009695399/functions/sigsuspend.html |
| return; |
| } |
| |
| ASSERT_WITH_MESSAGE(!isOnAlternativeSignalStack(), "Using an alternative signal stack is not supported. Consider disabling the concurrent GC."); |
| |
| #if HAVE(MACHINE_CONTEXT) |
| ucontext_t* userContext = static_cast<ucontext_t*>(ucontext); |
| thread->m_platformRegisters = ®istersFromUContext(userContext); |
| #else |
| UNUSED_PARAM(ucontext); |
| PlatformRegisters platformRegisters { getApproximateStackPointer() }; |
| thread->m_platformRegisters = &platformRegisters; |
| #endif |
| |
| // Allow suspend caller to see that this thread is suspended. |
| // sem_post is async-signal-safe function. It means that we can call this from a signal handler. |
| // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03 |
| // |
| // And sem_post emits memory barrier that ensures that PlatformRegisters are correctly saved. |
| // http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_11 |
| globalSemaphoreForSuspendResume->post(); |
| |
| // Reaching here, SigThreadSuspendResume is blocked in this handler (this is configured by sigaction's sa_mask). |
| // So before calling sigsuspend, SigThreadSuspendResume to this thread is deferred. This ensures that the handler is not executed recursively. |
| sigset_t blockedSignalSet; |
| sigfillset(&blockedSignalSet); |
| sigdelset(&blockedSignalSet, SigThreadSuspendResume); |
| sigsuspend(&blockedSignalSet); |
| |
| thread->m_platformRegisters = nullptr; |
| |
| // Allow resume caller to see that this thread is resumed. |
| globalSemaphoreForSuspendResume->post(); |
| } |
| |
| #endif // !OS(DARWIN) |
| |
| void Thread::initializePlatformThreading() |
| { |
| #if !OS(DARWIN) |
| globalSemaphoreForSuspendResume.construct(0); |
| |
| // Signal handlers are process global configuration. |
| // Intentionally block SigThreadSuspendResume in the handler. |
| // SigThreadSuspendResume will be allowed in the handler by sigsuspend. |
| struct sigaction action; |
| sigemptyset(&action.sa_mask); |
| sigaddset(&action.sa_mask, SigThreadSuspendResume); |
| |
| action.sa_sigaction = &signalHandlerSuspendResume; |
| action.sa_flags = SA_RESTART | SA_SIGINFO; |
| sigaction(SigThreadSuspendResume, &action, 0); |
| #endif |
| } |
| |
| void Thread::initializeCurrentThreadEvenIfNonWTFCreated() |
| { |
| #if !OS(DARWIN) |
| sigset_t mask; |
| sigemptyset(&mask); |
| sigaddset(&mask, SigThreadSuspendResume); |
| pthread_sigmask(SIG_UNBLOCK, &mask, 0); |
| #endif |
| } |
| |
| static void* wtfThreadEntryPoint(void* context) |
| { |
| Thread::entryPoint(reinterpret_cast<Thread::NewThreadContext*>(context)); |
| return nullptr; |
| } |
| |
| bool Thread::establishHandle(NewThreadContext* context) |
| { |
| pthread_t threadHandle; |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| #if HAVE(QOS_CLASSES) |
| pthread_attr_set_qos_class_np(&attr, adjustedQOSClass(QOS_CLASS_USER_INITIATED), 0); |
| #endif |
| int error = pthread_create(&threadHandle, &attr, wtfThreadEntryPoint, context); |
| pthread_attr_destroy(&attr); |
| if (error) { |
| LOG_ERROR("Failed to create pthread at entry point %p with context %p", wtfThreadEntryPoint, context); |
| return false; |
| } |
| establishPlatformSpecificHandle(threadHandle); |
| return true; |
| } |
| |
| void Thread::initializeCurrentThreadInternal(const char* threadName) |
| { |
| #if HAVE(PTHREAD_SETNAME_NP) |
| pthread_setname_np(normalizeThreadName(threadName)); |
| #elif OS(LINUX) |
| prctl(PR_SET_NAME, normalizeThreadName(threadName)); |
| #else |
| UNUSED_PARAM(threadName); |
| #endif |
| initializeCurrentThreadEvenIfNonWTFCreated(); |
| } |
| |
| void Thread::changePriority(int delta) |
| { |
| std::lock_guard<std::mutex> locker(m_mutex); |
| |
| int policy; |
| struct sched_param param; |
| |
| if (pthread_getschedparam(m_handle, &policy, ¶m)) |
| return; |
| |
| param.sched_priority += delta; |
| |
| pthread_setschedparam(m_handle, policy, ¶m); |
| } |
| |
| int Thread::waitForCompletion() |
| { |
| pthread_t handle; |
| { |
| std::lock_guard<std::mutex> locker(m_mutex); |
| handle = m_handle; |
| } |
| |
| int joinResult = pthread_join(handle, 0); |
| |
| if (joinResult == EDEADLK) |
| LOG_ERROR("Thread %p was found to be deadlocked trying to quit", this); |
| else if (joinResult) |
| LOG_ERROR("Thread %p was unable to be joined.\n", this); |
| |
| std::lock_guard<std::mutex> locker(m_mutex); |
| ASSERT(joinableState() == Joinable); |
| |
| // If the thread has already exited, then do nothing. If the thread hasn't exited yet, then just signal that we've already joined on it. |
| // In both cases, Thread::destructTLS() will take care of destroying Thread. |
| if (!hasExited()) |
| didJoin(); |
| |
| return joinResult; |
| } |
| |
| void Thread::detach() |
| { |
| std::lock_guard<std::mutex> locker(m_mutex); |
| int detachResult = pthread_detach(m_handle); |
| if (detachResult) |
| LOG_ERROR("Thread %p was unable to be detached\n", this); |
| |
| if (!hasExited()) |
| didBecomeDetached(); |
| } |
| |
| Thread& Thread::initializeCurrentTLS() |
| { |
| // Not a WTF-created thread, Thread is not established yet. |
| Ref<Thread> thread = adoptRef(*new Thread()); |
| thread->establishPlatformSpecificHandle(pthread_self()); |
| thread->initializeInThread(); |
| initializeCurrentThreadEvenIfNonWTFCreated(); |
| |
| return initializeTLS(WTFMove(thread)); |
| } |
| |
| bool Thread::signal(int signalNumber) |
| { |
| std::lock_guard<std::mutex> locker(m_mutex); |
| if (hasExited()) |
| return false; |
| int errNo = pthread_kill(m_handle, signalNumber); |
| return !errNo; // A 0 errNo means success. |
| } |
| |
| auto Thread::suspend() -> Expected<void, PlatformSuspendError> |
| { |
| RELEASE_ASSERT_WITH_MESSAGE(this != &Thread::current(), "We do not support suspending the current thread itself."); |
| // During suspend, suspend or resume should not be executed from the other threads. |
| // We use global lock instead of per thread lock. |
| // Consider the following case, there are threads A and B. |
| // And A attempt to suspend B and B attempt to suspend A. |
| // A and B send signals. And later, signals are delivered to A and B. |
| // In that case, both will be suspended. |
| // |
| // And it is important to use a global lock to suspend and resume. Let's consider using per-thread lock. |
| // Your issuing thread (A) attempts to suspend the target thread (B). Then, you will suspend the thread (C) additionally. |
| // This case frequently happens if you stop threads to perform stack scanning. But thread (B) may hold the lock of thread (C). |
| // In that case, dead lock happens. Using global lock here avoids this dead lock. |
| LockHolder locker(globalSuspendLock); |
| #if OS(DARWIN) |
| kern_return_t result = thread_suspend(m_platformThread); |
| if (result != KERN_SUCCESS) |
| return makeUnexpected(result); |
| return { }; |
| #else |
| if (!m_suspendCount) { |
| // Ideally, we would like to use pthread_sigqueue. It allows us to pass the argument to the signal handler. |
| // But it can be used in a few platforms, like Linux. |
| // Instead, we use Thread* stored in a global variable to pass it to the signal handler. |
| targetThread.store(this); |
| int result = pthread_kill(m_handle, SigThreadSuspendResume); |
| if (result) |
| return makeUnexpected(result); |
| globalSemaphoreForSuspendResume->wait(); |
| } |
| ++m_suspendCount; |
| return { }; |
| #endif |
| } |
| |
| void Thread::resume() |
| { |
| // During resume, suspend or resume should not be executed from the other threads. |
| LockHolder locker(globalSuspendLock); |
| #if OS(DARWIN) |
| thread_resume(m_platformThread); |
| #else |
| if (m_suspendCount == 1) { |
| // When allowing SigThreadSuspendResume interrupt in the signal handler by sigsuspend and SigThreadSuspendResume is actually issued, |
| // the signal handler itself will be called once again. |
| // There are several ways to distinguish the handler invocation for suspend and resume. |
| // 1. Use different signal numbers. And check the signal number in the handler. |
| // 2. Use some arguments to distinguish suspend and resume in the handler. If pthread_sigqueue can be used, we can take this. |
| // 3. Use thread's flag. |
| // In this implementaiton, we take (3). m_suspendCount is used to distinguish it. |
| targetThread.store(this); |
| if (pthread_kill(m_handle, SigThreadSuspendResume) == ESRCH) |
| return; |
| globalSemaphoreForSuspendResume->wait(); |
| } |
| --m_suspendCount; |
| #endif |
| } |
| |
| #if OS(DARWIN) |
| struct ThreadStateMetadata { |
| unsigned userCount; |
| thread_state_flavor_t flavor; |
| }; |
| |
| static ThreadStateMetadata threadStateMetadata() |
| { |
| #if CPU(X86) |
| unsigned userCount = sizeof(PlatformRegisters) / sizeof(int); |
| thread_state_flavor_t flavor = i386_THREAD_STATE; |
| #elif CPU(X86_64) |
| unsigned userCount = x86_THREAD_STATE64_COUNT; |
| thread_state_flavor_t flavor = x86_THREAD_STATE64; |
| #elif CPU(PPC) |
| unsigned userCount = PPC_THREAD_STATE_COUNT; |
| thread_state_flavor_t flavor = PPC_THREAD_STATE; |
| #elif CPU(PPC64) |
| unsigned userCount = PPC_THREAD_STATE64_COUNT; |
| thread_state_flavor_t flavor = PPC_THREAD_STATE64; |
| #elif CPU(ARM) |
| unsigned userCount = ARM_THREAD_STATE_COUNT; |
| thread_state_flavor_t flavor = ARM_THREAD_STATE; |
| #elif CPU(ARM64) |
| unsigned userCount = ARM_THREAD_STATE64_COUNT; |
| thread_state_flavor_t flavor = ARM_THREAD_STATE64; |
| #else |
| #error Unknown Architecture |
| #endif |
| return ThreadStateMetadata { userCount, flavor }; |
| } |
| #endif // OS(DARWIN) |
| |
| size_t Thread::getRegisters(PlatformRegisters& registers) |
| { |
| LockHolder locker(globalSuspendLock); |
| #if OS(DARWIN) |
| auto metadata = threadStateMetadata(); |
| kern_return_t result = thread_get_state(m_platformThread, metadata.flavor, (thread_state_t)®isters, &metadata.userCount); |
| if (result != KERN_SUCCESS) { |
| WTFReportFatalError(__FILE__, __LINE__, WTF_PRETTY_FUNCTION, "JavaScript garbage collection failed because thread_get_state returned an error (%d). This is probably the result of running inside Rosetta, which is not supported.", result); |
| CRASH(); |
| } |
| return metadata.userCount * sizeof(uintptr_t); |
| #else |
| ASSERT_WITH_MESSAGE(m_suspendCount, "We can get registers only if the thread is suspended."); |
| ASSERT(m_platformRegisters); |
| registers = *m_platformRegisters; |
| return sizeof(PlatformRegisters); |
| #endif |
| } |
| |
| void Thread::establishPlatformSpecificHandle(pthread_t handle) |
| { |
| std::lock_guard<std::mutex> locker(m_mutex); |
| m_handle = handle; |
| #if OS(DARWIN) |
| m_platformThread = pthread_mach_thread_np(handle); |
| #endif |
| } |
| |
| #if !HAVE(FAST_TLS) |
| void Thread::initializeTLSKey() |
| { |
| threadSpecificKeyCreate(&s_key, destructTLS); |
| } |
| #endif |
| |
| Thread& Thread::initializeTLS(Ref<Thread>&& thread) |
| { |
| // We leak the ref to keep the Thread alive while it is held in TLS. destructTLS will deref it later at thread destruction time. |
| auto& threadInTLS = thread.leakRef(); |
| #if !HAVE(FAST_TLS) |
| ASSERT(s_key != InvalidThreadSpecificKey); |
| threadSpecificSet(s_key, &threadInTLS); |
| #else |
| _pthread_setspecific_direct(WTF_THREAD_DATA_KEY, &threadInTLS); |
| pthread_key_init_np(WTF_THREAD_DATA_KEY, &destructTLS); |
| #endif |
| return threadInTLS; |
| } |
| |
| void Thread::destructTLS(void* data) |
| { |
| Thread* thread = static_cast<Thread*>(data); |
| ASSERT(thread); |
| |
| if (thread->m_isDestroyedOnce) { |
| thread->didExit(); |
| thread->deref(); |
| return; |
| } |
| |
| thread->m_isDestroyedOnce = true; |
| // Re-setting the value for key causes another destructTLS() call after all other thread-specific destructors were called. |
| #if !HAVE(FAST_TLS) |
| ASSERT(s_key != InvalidThreadSpecificKey); |
| threadSpecificSet(s_key, thread); |
| #else |
| _pthread_setspecific_direct(WTF_THREAD_DATA_KEY, thread); |
| pthread_key_init_np(WTF_THREAD_DATA_KEY, &destructTLS); |
| #endif |
| } |
| |
| Mutex::Mutex() |
| { |
| pthread_mutexattr_t attr; |
| pthread_mutexattr_init(&attr); |
| pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL); |
| |
| int result = pthread_mutex_init(&m_mutex, &attr); |
| ASSERT_UNUSED(result, !result); |
| |
| pthread_mutexattr_destroy(&attr); |
| } |
| |
| Mutex::~Mutex() |
| { |
| int result = pthread_mutex_destroy(&m_mutex); |
| ASSERT_UNUSED(result, !result); |
| } |
| |
| void Mutex::lock() |
| { |
| int result = pthread_mutex_lock(&m_mutex); |
| ASSERT_UNUSED(result, !result); |
| } |
| |
| bool Mutex::tryLock() |
| { |
| int result = pthread_mutex_trylock(&m_mutex); |
| |
| if (result == 0) |
| return true; |
| if (result == EBUSY) |
| return false; |
| |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| void Mutex::unlock() |
| { |
| int result = pthread_mutex_unlock(&m_mutex); |
| ASSERT_UNUSED(result, !result); |
| } |
| |
| ThreadCondition::ThreadCondition() |
| { |
| pthread_cond_init(&m_condition, NULL); |
| } |
| |
| ThreadCondition::~ThreadCondition() |
| { |
| pthread_cond_destroy(&m_condition); |
| } |
| |
| void ThreadCondition::wait(Mutex& mutex) |
| { |
| int result = pthread_cond_wait(&m_condition, &mutex.impl()); |
| ASSERT_UNUSED(result, !result); |
| } |
| |
| bool ThreadCondition::timedWait(Mutex& mutex, WallTime absoluteTime) |
| { |
| if (absoluteTime < WallTime::now()) |
| return false; |
| |
| if (absoluteTime > WallTime::fromRawSeconds(INT_MAX)) { |
| wait(mutex); |
| return true; |
| } |
| |
| double rawSeconds = absoluteTime.secondsSinceEpoch().value(); |
| |
| int timeSeconds = static_cast<int>(rawSeconds); |
| int timeNanoseconds = static_cast<int>((rawSeconds - timeSeconds) * 1E9); |
| |
| timespec targetTime; |
| targetTime.tv_sec = timeSeconds; |
| targetTime.tv_nsec = timeNanoseconds; |
| |
| return pthread_cond_timedwait(&m_condition, &mutex.impl(), &targetTime) == 0; |
| } |
| |
| void ThreadCondition::signal() |
| { |
| int result = pthread_cond_signal(&m_condition); |
| ASSERT_UNUSED(result, !result); |
| } |
| |
| void ThreadCondition::broadcast() |
| { |
| int result = pthread_cond_broadcast(&m_condition); |
| ASSERT_UNUSED(result, !result); |
| } |
| |
| void Thread::yield() |
| { |
| sched_yield(); |
| } |
| |
| } // namespace WTF |
| |
| #endif // USE(PTHREADS) |