blob: 15d11b0516f8403940975b1ed355577119a76886 [file] [log] [blame]
/*
* Copyright (C) 2014-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "PathUtilities.h"
#include "AffineTransform.h"
#include "FloatPoint.h"
#include "FloatRect.h"
#include "GeometryUtilities.h"
#include <math.h>
#include <wtf/MathExtras.h>
namespace WebCore {
class FloatPointGraph {
WTF_MAKE_NONCOPYABLE(FloatPointGraph);
public:
FloatPointGraph() { }
class Node : public FloatPoint {
WTF_MAKE_NONCOPYABLE(Node);
public:
Node(FloatPoint point)
: FloatPoint(point)
{ }
const Vector<Node*>& nextPoints() const { return m_nextPoints; }
void addNextPoint(Node* node)
{
if (!m_nextPoints.contains(node))
m_nextPoints.append(node);
}
bool isVisited() const { return m_visited; }
void visit() { m_visited = true; }
void reset() { m_visited = false; m_nextPoints.clear(); }
private:
Vector<Node*> m_nextPoints;
bool m_visited { false };
};
typedef std::pair<Node*, Node*> Edge;
typedef Vector<Edge> Polygon;
Node* findOrCreateNode(FloatPoint);
void reset()
{
for (auto& node : m_allNodes)
node->reset();
}
private:
Vector<std::unique_ptr<Node>> m_allNodes;
};
FloatPointGraph::Node* FloatPointGraph::findOrCreateNode(FloatPoint point)
{
for (auto& testNode : m_allNodes) {
if (areEssentiallyEqual(*testNode, point))
return testNode.get();
}
m_allNodes.append(std::make_unique<FloatPointGraph::Node>(point));
return m_allNodes.last().get();
}
static bool findLineSegmentIntersection(const FloatPointGraph::Edge& edgeA, const FloatPointGraph::Edge& edgeB, FloatPoint& intersectionPoint)
{
if (!findIntersection(*edgeA.first, *edgeA.second, *edgeB.first, *edgeB.second, intersectionPoint))
return false;
FloatPoint edgeAVec(*edgeA.second - *edgeA.first);
FloatPoint edgeBVec(*edgeB.second - *edgeB.first);
float dotA = edgeAVec.dot(toFloatPoint(intersectionPoint - *edgeA.first));
if (dotA < 0 || dotA > edgeAVec.lengthSquared())
return false;
float dotB = edgeBVec.dot(toFloatPoint(intersectionPoint - *edgeB.first));
if (dotB < 0 || dotB > edgeBVec.lengthSquared())
return false;
return true;
}
static bool addIntersectionPoints(Vector<FloatPointGraph::Polygon>& polys, FloatPointGraph& graph)
{
bool foundAnyIntersections = false;
Vector<FloatPointGraph::Edge> allEdges;
for (auto& poly : polys)
allEdges.appendVector(poly);
for (const FloatPointGraph::Edge& edgeA : allEdges) {
Vector<FloatPointGraph::Node*> intersectionPoints({edgeA.first, edgeA.second});
for (const FloatPointGraph::Edge& edgeB : allEdges) {
if (&edgeA == &edgeB)
continue;
FloatPoint intersectionPoint;
if (!findLineSegmentIntersection(edgeA, edgeB, intersectionPoint))
continue;
foundAnyIntersections = true;
intersectionPoints.append(graph.findOrCreateNode(intersectionPoint));
}
std::sort(intersectionPoints.begin(), intersectionPoints.end(), [edgeA] (FloatPointGraph::Node* a, FloatPointGraph::Node* b) {
return FloatPoint(*edgeA.first - *b).lengthSquared() > FloatPoint(*edgeA.first - *a).lengthSquared();
});
for (unsigned pointIndex = 1; pointIndex < intersectionPoints.size(); pointIndex++)
intersectionPoints[pointIndex - 1]->addNextPoint(intersectionPoints[pointIndex]);
}
return foundAnyIntersections;
}
static FloatPointGraph::Polygon walkGraphAndExtractPolygon(FloatPointGraph::Node* startNode)
{
FloatPointGraph::Polygon outPoly;
FloatPointGraph::Node* currentNode = startNode;
FloatPointGraph::Node* previousNode = startNode;
do {
currentNode->visit();
FloatPoint currentVec(*previousNode - *currentNode);
currentVec.normalize();
// Walk the graph, at each node choosing the next non-visited
// point with the greatest internal angle.
FloatPointGraph::Node* nextNode = nullptr;
float nextNodeAngle = 0;
for (auto* potentialNextNode : currentNode->nextPoints()) {
if (potentialNextNode == currentNode)
continue;
// If we can get back to the start, we should, ignoring the fact that we already visited it.
// Otherwise we'll head inside the shape.
if (potentialNextNode == startNode) {
nextNode = startNode;
break;
}
if (potentialNextNode->isVisited())
continue;
FloatPoint nextVec(*potentialNextNode - *currentNode);
nextVec.normalize();
float angle = acos(nextVec.dot(currentVec));
float crossZ = nextVec.x() * currentVec.y() - nextVec.y() * currentVec.x();
if (crossZ < 0)
angle = (2 * piFloat) - angle;
if (!nextNode || angle > nextNodeAngle) {
nextNode = potentialNextNode;
nextNodeAngle = angle;
}
}
// If we don't end up at a node adjacent to the starting node,
// something went wrong (there's probably a hole in the shape),
// so bail out. We'll use a bounding box instead.
if (!nextNode)
return FloatPointGraph::Polygon();
outPoly.append(std::make_pair(currentNode, nextNode));
previousNode = currentNode;
currentNode = nextNode;
} while (currentNode != startNode);
return outPoly;
}
static FloatPointGraph::Node* findUnvisitedPolygonStartPoint(Vector<FloatPointGraph::Polygon>& polys)
{
for (auto& poly : polys) {
for (auto& edge : poly) {
if (edge.first->isVisited() || edge.second->isVisited())
goto nextPolygon;
}
// FIXME: We should make sure we find an outside edge to start with.
return poly[0].first;
nextPolygon:
continue;
}
return nullptr;
}
static Vector<FloatPointGraph::Polygon> unitePolygons(Vector<FloatPointGraph::Polygon>& polys, FloatPointGraph& graph)
{
graph.reset();
// There are no intersections, so the polygons are disjoint (we already removed wholly-contained rects in an earlier step).
if (!addIntersectionPoints(polys, graph))
return polys;
Vector<FloatPointGraph::Polygon> unitedPolygons;
while (FloatPointGraph::Node* startNode = findUnvisitedPolygonStartPoint(polys)) {
FloatPointGraph::Polygon unitedPolygon = walkGraphAndExtractPolygon(startNode);
if (unitedPolygon.isEmpty())
return Vector<FloatPointGraph::Polygon>();
unitedPolygons.append(unitedPolygon);
}
return unitedPolygons;
}
static FloatPointGraph::Polygon edgesForRect(FloatRect rect, FloatPointGraph& graph)
{
auto minMin = graph.findOrCreateNode(rect.minXMinYCorner());
auto minMax = graph.findOrCreateNode(rect.minXMaxYCorner());
auto maxMax = graph.findOrCreateNode(rect.maxXMaxYCorner());
auto maxMin = graph.findOrCreateNode(rect.maxXMinYCorner());
return FloatPointGraph::Polygon({
std::make_pair(minMin, maxMin),
std::make_pair(maxMin, maxMax),
std::make_pair(maxMax, minMax),
std::make_pair(minMax, minMin)
});
}
Vector<Path> PathUtilities::pathsWithShrinkWrappedRects(const Vector<FloatRect>& rects, float radius)
{
Vector<Path> paths;
if (rects.isEmpty())
return paths;
if (rects.size() > 20) {
Path path;
path.addRoundedRect(unionRect(rects), FloatSize(radius, radius));
paths.append(path);
return paths;
}
Vector<FloatRect> sortedRects = rects;
std::sort(sortedRects.begin(), sortedRects.end(), [](FloatRect a, FloatRect b) { return b.y() > a.y(); });
FloatPointGraph graph;
Vector<FloatPointGraph::Polygon> rectPolygons;
rectPolygons.reserveInitialCapacity(sortedRects.size());
for (auto& rect : sortedRects) {
bool isContained = false;
for (auto& otherRect : sortedRects) {
if (&rect == &otherRect)
continue;
if (otherRect.contains(rect)) {
isContained = true;
break;
}
}
if (!isContained)
rectPolygons.append(edgesForRect(rect, graph));
}
Vector<FloatPointGraph::Polygon> polys = unitePolygons(rectPolygons, graph);
if (polys.isEmpty()) {
Path path;
path.addRoundedRect(unionRect(sortedRects), FloatSize(radius, radius));
paths.append(path);
return paths;
}
for (auto& poly : polys) {
Path path;
for (unsigned i = 0; i < poly.size(); i++) {
FloatPointGraph::Edge& toEdge = poly[i];
// Connect the first edge to the last.
FloatPointGraph::Edge& fromEdge = (i > 0) ? poly[i - 1] : poly[poly.size() - 1];
FloatPoint fromEdgeVec = toFloatPoint(*fromEdge.second - *fromEdge.first);
FloatPoint toEdgeVec = toFloatPoint(*toEdge.second - *toEdge.first);
// Clamp the radius to no more than half the length of either adjacent edge,
// because we want a smooth curve and don't want unequal radii.
float clampedRadius = std::min(radius, fabsf(fromEdgeVec.x() ? fromEdgeVec.x() : fromEdgeVec.y()) / 2);
clampedRadius = std::min(clampedRadius, fabsf(toEdgeVec.x() ? toEdgeVec.x() : toEdgeVec.y()) / 2);
FloatPoint fromEdgeNorm = fromEdgeVec;
fromEdgeNorm.normalize();
FloatPoint toEdgeNorm = toEdgeVec;
toEdgeNorm.normalize();
// Project the radius along the incoming and outgoing edge.
FloatSize fromOffset = clampedRadius * toFloatSize(fromEdgeNorm);
FloatSize toOffset = clampedRadius * toFloatSize(toEdgeNorm);
if (!i)
path.moveTo(*fromEdge.second - fromOffset);
else
path.addLineTo(*fromEdge.second - fromOffset);
path.addArcTo(*fromEdge.second, *toEdge.first + toOffset, clampedRadius);
}
path.closeSubpath();
paths.append(path);
}
return paths;
}
Path PathUtilities::pathWithShrinkWrappedRects(const Vector<FloatRect>& rects, float radius)
{
Vector<Path> paths = pathsWithShrinkWrappedRects(rects, radius);
Path unionPath;
for (const auto& path : paths)
unionPath.addPath(path, AffineTransform());
return unionPath;
}
}