| /* |
| * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "ExecutableAllocator.h" |
| |
| #if ENABLE(JIT) |
| |
| #include "CodeProfiling.h" |
| #include "ExecutableAllocationFuzz.h" |
| #include "JSCInlines.h" |
| #include <wtf/FileSystem.h> |
| #include <wtf/MetaAllocator.h> |
| #include <wtf/PageReservation.h> |
| #include <wtf/ProcessID.h> |
| #include <wtf/SystemTracing.h> |
| #include <wtf/WorkQueue.h> |
| |
| #if OS(DARWIN) |
| #include <mach/mach_time.h> |
| #include <sys/mman.h> |
| #endif |
| |
| #if PLATFORM(IOS_FAMILY) |
| #include <wtf/cocoa/Entitlements.h> |
| #endif |
| |
| #include "LinkBuffer.h" |
| #include "MacroAssembler.h" |
| |
| #if PLATFORM(COCOA) |
| #define HAVE_REMAP_JIT 1 |
| #endif |
| |
| #if HAVE(REMAP_JIT) |
| #if CPU(ARM64) && PLATFORM(IOS_FAMILY) |
| #define USE_EXECUTE_ONLY_JIT_WRITE_FUNCTION 1 |
| #endif |
| #endif |
| |
| #if OS(DARWIN) |
| #include <mach/mach.h> |
| extern "C" { |
| /* Routine mach_vm_remap */ |
| #ifdef mig_external |
| mig_external |
| #else |
| extern |
| #endif /* mig_external */ |
| kern_return_t mach_vm_remap |
| ( |
| vm_map_t target_task, |
| mach_vm_address_t *target_address, |
| mach_vm_size_t size, |
| mach_vm_offset_t mask, |
| int flags, |
| vm_map_t src_task, |
| mach_vm_address_t src_address, |
| boolean_t copy, |
| vm_prot_t *cur_protection, |
| vm_prot_t *max_protection, |
| vm_inherit_t inheritance |
| ); |
| } |
| |
| #endif |
| |
| namespace JSC { |
| |
| using namespace WTF; |
| |
| #if defined(FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB) && FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB > 0 |
| static constexpr size_t fixedExecutableMemoryPoolSize = FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB * 1024 * 1024; |
| #elif CPU(ARM) |
| static constexpr size_t fixedExecutableMemoryPoolSize = 16 * 1024 * 1024; |
| #elif CPU(ARM64) |
| static constexpr size_t fixedExecutableMemoryPoolSize = 128 * 1024 * 1024; |
| #elif CPU(X86_64) |
| static constexpr size_t fixedExecutableMemoryPoolSize = 1024 * 1024 * 1024; |
| #else |
| static constexpr size_t fixedExecutableMemoryPoolSize = 32 * 1024 * 1024; |
| #endif |
| |
| #if CPU(ARM) |
| static constexpr double executablePoolReservationFraction = 0.15; |
| #else |
| static constexpr double executablePoolReservationFraction = 0.25; |
| #endif |
| |
| static bool isJITEnabled() |
| { |
| bool jitEnabled = !g_jscConfig.jitDisabled; |
| #if PLATFORM(IOS_FAMILY) && (CPU(ARM64) || CPU(ARM)) |
| return processHasEntitlement("dynamic-codesigning") && jitEnabled; |
| #else |
| return jitEnabled; |
| #endif |
| } |
| |
| void ExecutableAllocator::setJITEnabled(bool enabled) |
| { |
| bool jitEnabled = !g_jscConfig.jitDisabled; |
| ASSERT(!g_jscConfig.fixedVMPoolExecutableAllocator); |
| if (jitEnabled == enabled) |
| return; |
| |
| g_jscConfig.jitDisabled = !enabled; |
| |
| #if PLATFORM(IOS_FAMILY) && (CPU(ARM64) || CPU(ARM)) |
| if (!enabled) { |
| // Because of an OS quirk, even after the JIT region has been unmapped, |
| // the OS thinks that region is reserved, and as such, can cause Gigacage |
| // allocation to fail. We work around this by initializing the Gigacage |
| // first. |
| // Note: when called, setJITEnabled() is always called extra early in the |
| // process bootstrap. Under normal operation (when setJITEnabled() isn't |
| // called at all), we will naturally initialize the Gigacage before we |
| // allocate the JIT region. Hence, this workaround is merely ensuring the |
| // same behavior of allocation ordering. |
| Gigacage::ensureGigacage(); |
| |
| constexpr size_t size = 1; |
| constexpr int protection = PROT_READ | PROT_WRITE | PROT_EXEC; |
| constexpr int flags = MAP_PRIVATE | MAP_ANON | MAP_JIT; |
| constexpr int fd = OSAllocator::JSJITCodePages; |
| void* allocation = mmap(nullptr, size, protection, flags, fd, 0); |
| const void* executableMemoryAllocationFailure = reinterpret_cast<void*>(-1); |
| RELEASE_ASSERT_WITH_MESSAGE(allocation && allocation != executableMemoryAllocationFailure, "We should not have allocated executable memory before disabling the JIT."); |
| RELEASE_ASSERT_WITH_MESSAGE(!munmap(allocation, size), "Unmapping executable memory should succeed so we do not have any executable memory in the address space"); |
| RELEASE_ASSERT_WITH_MESSAGE(mmap(nullptr, size, protection, flags, fd, 0) == executableMemoryAllocationFailure, "Allocating executable memory should fail after setJITEnabled(false) is called."); |
| } |
| #endif |
| } |
| |
| class FixedVMPoolExecutableAllocator final : public MetaAllocator { |
| WTF_MAKE_FAST_ALLOCATED; |
| public: |
| FixedVMPoolExecutableAllocator() |
| : MetaAllocator(jitAllocationGranule) // round up all allocations to 32 bytes |
| { |
| if (!isJITEnabled()) |
| return; |
| |
| size_t reservationSize; |
| if (Options::jitMemoryReservationSize()) |
| reservationSize = Options::jitMemoryReservationSize(); |
| else |
| reservationSize = fixedExecutableMemoryPoolSize; |
| reservationSize = std::max(roundUpToMultipleOf(pageSize(), reservationSize), pageSize() * 2); |
| |
| auto tryCreatePageReservation = [] (size_t reservationSize) { |
| #if OS(LINUX) |
| // If we use uncommitted reservation, mmap operation is recorded with small page size in perf command's output. |
| // This makes the following JIT code logging broken and some of JIT code is not recorded correctly. |
| // To avoid this problem, we use committed reservation if we need perf JITDump logging. |
| if (Options::logJITCodeForPerf()) |
| return PageReservation::reserveAndCommitWithGuardPages(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true); |
| #endif |
| return PageReservation::reserveWithGuardPages(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true); |
| }; |
| |
| m_reservation = tryCreatePageReservation(reservationSize); |
| if (m_reservation) { |
| ASSERT(m_reservation.size() == reservationSize); |
| void* reservationBase = m_reservation.base(); |
| |
| #if ENABLE(FAST_JIT_PERMISSIONS) && !ENABLE(SEPARATED_WX_HEAP) |
| RELEASE_ASSERT(os_thread_self_restrict_rwx_is_supported()); |
| os_thread_self_restrict_rwx_to_rx(); |
| |
| #else // not ENABLE(FAST_JIT_PERMISSIONS) or ENABLE(SEPARATED_WX_HEAP) |
| #if ENABLE(FAST_JIT_PERMISSIONS) |
| if (os_thread_self_restrict_rwx_is_supported()) { |
| g_jscConfig.useFastPermisionsJITCopy = true; |
| os_thread_self_restrict_rwx_to_rx(); |
| } else |
| #endif |
| if (Options::useSeparatedWXHeap()) { |
| // First page of our JIT allocation is reserved. |
| ASSERT(reservationSize >= pageSize() * 2); |
| reservationBase = (void*)((uintptr_t)reservationBase + pageSize()); |
| reservationSize -= pageSize(); |
| initializeSeparatedWXHeaps(m_reservation.base(), pageSize(), reservationBase, reservationSize); |
| } |
| #endif // not ENABLE(FAST_JIT_PERMISSIONS) or ENABLE(SEPARATED_WX_HEAP) |
| |
| addFreshFreeSpace(reservationBase, reservationSize); |
| |
| ASSERT(bytesReserved() == reservationSize); // Since our executable memory is fixed-sized, bytesReserved is never changed after initialization. |
| |
| void* reservationEnd = reinterpret_cast<uint8_t*>(reservationBase) + reservationSize; |
| |
| g_jscConfig.startExecutableMemory = tagCodePtr<ExecutableMemoryPtrTag>(reservationBase); |
| g_jscConfig.endExecutableMemory = tagCodePtr<ExecutableMemoryPtrTag>(reservationEnd); |
| } |
| } |
| |
| virtual ~FixedVMPoolExecutableAllocator(); |
| |
| void* memoryStart() { return untagCodePtr<ExecutableMemoryPtrTag>(g_jscConfig.startExecutableMemory); } |
| void* memoryEnd() { return untagCodePtr<ExecutableMemoryPtrTag>(g_jscConfig.endExecutableMemory); } |
| bool isJITPC(void* pc) { return memoryStart() <= pc && pc < memoryEnd(); } |
| |
| protected: |
| FreeSpacePtr allocateNewSpace(size_t&) override |
| { |
| // We're operating in a fixed pool, so new allocation is always prohibited. |
| return nullptr; |
| } |
| |
| void notifyNeedPage(void* page, size_t count) override |
| { |
| #if USE(MADV_FREE_FOR_JIT_MEMORY) |
| UNUSED_PARAM(page); |
| UNUSED_PARAM(count); |
| #else |
| m_reservation.commit(page, pageSize() * count); |
| #endif |
| } |
| |
| void notifyPageIsFree(void* page, size_t count) override |
| { |
| #if USE(MADV_FREE_FOR_JIT_MEMORY) |
| for (;;) { |
| int result = madvise(page, pageSize() * count, MADV_FREE); |
| if (!result) |
| return; |
| ASSERT(result == -1); |
| if (errno != EAGAIN) { |
| RELEASE_ASSERT_NOT_REACHED(); // In debug mode, this should be a hard failure. |
| break; // In release mode, we should just ignore the error - not returning memory to the OS is better than crashing, especially since we _will_ be able to reuse the memory internally anyway. |
| } |
| } |
| #else |
| m_reservation.decommit(page, pageSize() * count); |
| #endif |
| } |
| |
| private: |
| #if OS(DARWIN) && HAVE(REMAP_JIT) |
| void initializeSeparatedWXHeaps(void* stubBase, size_t stubSize, void* jitBase, size_t jitSize) |
| { |
| mach_vm_address_t writableAddr = 0; |
| |
| // Create a second mapping of the JIT region at a random address. |
| vm_prot_t cur, max; |
| int remapFlags = VM_FLAGS_ANYWHERE; |
| #if defined(VM_FLAGS_RANDOM_ADDR) |
| remapFlags |= VM_FLAGS_RANDOM_ADDR; |
| #endif |
| kern_return_t ret = mach_vm_remap(mach_task_self(), &writableAddr, jitSize, 0, |
| remapFlags, |
| mach_task_self(), (mach_vm_address_t)jitBase, FALSE, |
| &cur, &max, VM_INHERIT_DEFAULT); |
| |
| bool remapSucceeded = (ret == KERN_SUCCESS); |
| if (!remapSucceeded) |
| return; |
| |
| // Assemble a thunk that will serve as the means for writing into the JIT region. |
| MacroAssemblerCodeRef<JITThunkPtrTag> writeThunk = jitWriteThunkGenerator(reinterpret_cast<void*>(writableAddr), stubBase, stubSize); |
| |
| int result = 0; |
| |
| #if USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION) |
| // Prevent reading the write thunk code. |
| result = vm_protect(mach_task_self(), reinterpret_cast<vm_address_t>(stubBase), stubSize, true, VM_PROT_EXECUTE); |
| RELEASE_ASSERT(!result); |
| #endif |
| |
| // Prevent writing into the executable JIT mapping. |
| result = vm_protect(mach_task_self(), reinterpret_cast<vm_address_t>(jitBase), jitSize, true, VM_PROT_READ | VM_PROT_EXECUTE); |
| RELEASE_ASSERT(!result); |
| |
| // Prevent execution in the writable JIT mapping. |
| result = vm_protect(mach_task_self(), static_cast<vm_address_t>(writableAddr), jitSize, true, VM_PROT_READ | VM_PROT_WRITE); |
| RELEASE_ASSERT(!result); |
| |
| // Zero out writableAddr to avoid leaking the address of the writable mapping. |
| memset_s(&writableAddr, sizeof(writableAddr), 0, sizeof(writableAddr)); |
| |
| #if ENABLE(SEPARATED_WX_HEAP) |
| g_jscConfig.jitWriteSeparateHeaps = reinterpret_cast<JITWriteSeparateHeapsFunction>(writeThunk.code().executableAddress()); |
| #endif |
| } |
| |
| #if CPU(ARM64) && USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION) |
| MacroAssemblerCodeRef<JITThunkPtrTag> jitWriteThunkGenerator(void* writableAddr, void* stubBase, size_t stubSize) |
| { |
| using namespace ARM64Registers; |
| using TrustedImm32 = MacroAssembler::TrustedImm32; |
| |
| MacroAssembler jit; |
| |
| jit.tagReturnAddress(); |
| jit.move(MacroAssembler::TrustedImmPtr(writableAddr), x7); |
| jit.addPtr(x7, x0); |
| |
| jit.move(x0, x3); |
| MacroAssembler::Jump smallCopy = jit.branch64(MacroAssembler::Below, x2, MacroAssembler::TrustedImm64(64)); |
| |
| jit.add64(TrustedImm32(32), x3); |
| jit.and64(TrustedImm32(-32), x3); |
| jit.loadPair64(x1, x12, x13); |
| jit.loadPair64(x1, TrustedImm32(16), x14, x15); |
| jit.sub64(x3, x0, x5); |
| jit.addPtr(x5, x1); |
| |
| jit.loadPair64(x1, x8, x9); |
| jit.loadPair64(x1, TrustedImm32(16), x10, x11); |
| jit.add64(TrustedImm32(32), x1); |
| jit.sub64(x5, x2); |
| jit.storePair64(x12, x13, x0); |
| jit.storePair64(x14, x15, x0, TrustedImm32(16)); |
| MacroAssembler::Jump cleanup = jit.branchSub64(MacroAssembler::BelowOrEqual, TrustedImm32(64), x2); |
| |
| MacroAssembler::Label copyLoop = jit.label(); |
| jit.storePair64WithNonTemporalAccess(x8, x9, x3); |
| jit.storePair64WithNonTemporalAccess(x10, x11, x3, TrustedImm32(16)); |
| jit.add64(TrustedImm32(32), x3); |
| jit.loadPair64WithNonTemporalAccess(x1, x8, x9); |
| jit.loadPair64WithNonTemporalAccess(x1, TrustedImm32(16), x10, x11); |
| jit.add64(TrustedImm32(32), x1); |
| jit.branchSub64(MacroAssembler::Above, TrustedImm32(32), x2).linkTo(copyLoop, &jit); |
| |
| cleanup.link(&jit); |
| jit.add64(x2, x1); |
| jit.loadPair64(x1, x12, x13); |
| jit.loadPair64(x1, TrustedImm32(16), x14, x15); |
| jit.storePair64(x8, x9, x3); |
| jit.storePair64(x10, x11, x3, TrustedImm32(16)); |
| jit.addPtr(x2, x3); |
| jit.storePair64(x12, x13, x3, TrustedImm32(32)); |
| jit.storePair64(x14, x15, x3, TrustedImm32(48)); |
| jit.ret(); |
| |
| MacroAssembler::Label local0 = jit.label(); |
| jit.load64(x1, PostIndex(8), x6); |
| jit.store64(x6, x3, PostIndex(8)); |
| smallCopy.link(&jit); |
| jit.branchSub64(MacroAssembler::AboveOrEqual, TrustedImm32(8), x2).linkTo(local0, &jit); |
| MacroAssembler::Jump local2 = jit.branchAdd64(MacroAssembler::Equal, TrustedImm32(8), x2); |
| MacroAssembler::Label local1 = jit.label(); |
| jit.load8(x1, PostIndex(1), x6); |
| jit.store8(x6, x3, PostIndex(1)); |
| jit.branchSub64(MacroAssembler::NotEqual, TrustedImm32(1), x2).linkTo(local1, &jit); |
| local2.link(&jit); |
| jit.ret(); |
| |
| auto stubBaseCodePtr = MacroAssemblerCodePtr<LinkBufferPtrTag>(tagCodePtr<LinkBufferPtrTag>(stubBase)); |
| LinkBuffer linkBuffer(jit, stubBaseCodePtr, stubSize); |
| // We don't use FINALIZE_CODE() for two reasons. |
| // The first is that we don't want the writeable address, as disassembled instructions, |
| // to appear in the console or anywhere in memory, via the PrintStream buffer. |
| // The second is we can't guarantee that the code is readable when using the |
| // asyncDisassembly option as our caller will set our pages execute only. |
| return linkBuffer.finalizeCodeWithoutDisassembly<JITThunkPtrTag>(); |
| } |
| #else // not CPU(ARM64) && USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION) |
| static void genericWriteToJITRegion(off_t offset, const void* data, size_t dataSize) |
| { |
| memcpy((void*)(g_jscConfig.startOfFixedWritableMemoryPool + offset), data, dataSize); |
| } |
| |
| MacroAssemblerCodeRef<JITThunkPtrTag> jitWriteThunkGenerator(void* address, void*, size_t) |
| { |
| g_jscConfig.startOfFixedWritableMemoryPool = reinterpret_cast<uintptr_t>(address); |
| void* function = reinterpret_cast<void*>(&genericWriteToJITRegion); |
| #if CPU(ARM_THUMB2) |
| // Handle thumb offset |
| uintptr_t functionAsInt = reinterpret_cast<uintptr_t>(function); |
| functionAsInt -= 1; |
| function = reinterpret_cast<void*>(functionAsInt); |
| #endif |
| auto codePtr = MacroAssemblerCodePtr<JITThunkPtrTag>(tagCFunctionPtr<JITThunkPtrTag>(function)); |
| return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(codePtr); |
| } |
| #endif // CPU(ARM64) && USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION) |
| |
| #else // OS(DARWIN) && HAVE(REMAP_JIT) |
| void initializeSeparatedWXHeaps(void*, size_t, void*, size_t) |
| { |
| } |
| #endif |
| |
| private: |
| PageReservation m_reservation; |
| }; |
| |
| FixedVMPoolExecutableAllocator::~FixedVMPoolExecutableAllocator() |
| { |
| m_reservation.deallocate(); |
| } |
| |
| // Keep this pointer in a mutable global variable to help Leaks find it. |
| // But we do not use this pointer. |
| static FixedVMPoolExecutableAllocator* globalFixedVMPoolExecutableAllocatorToWorkAroundLeaks = nullptr; |
| void ExecutableAllocator::initializeUnderlyingAllocator() |
| { |
| RELEASE_ASSERT(!g_jscConfig.fixedVMPoolExecutableAllocator); |
| g_jscConfig.fixedVMPoolExecutableAllocator = new FixedVMPoolExecutableAllocator(); |
| globalFixedVMPoolExecutableAllocatorToWorkAroundLeaks = g_jscConfig.fixedVMPoolExecutableAllocator; |
| CodeProfiling::notifyAllocator(g_jscConfig.fixedVMPoolExecutableAllocator); |
| } |
| |
| bool ExecutableAllocator::isValid() const |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::isValid(); |
| return !!allocator->bytesReserved(); |
| } |
| |
| bool ExecutableAllocator::underMemoryPressure() |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::underMemoryPressure(); |
| return allocator->bytesAllocated() > allocator->bytesReserved() / 2; |
| } |
| |
| double ExecutableAllocator::memoryPressureMultiplier(size_t addedMemoryUsage) |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::memoryPressureMultiplier(addedMemoryUsage); |
| ASSERT(allocator->bytesAllocated() <= allocator->bytesReserved()); |
| size_t bytesAllocated = allocator->bytesAllocated() + addedMemoryUsage; |
| size_t bytesAvailable = static_cast<size_t>( |
| allocator->bytesReserved() * (1 - executablePoolReservationFraction)); |
| if (bytesAllocated >= bytesAvailable) |
| bytesAllocated = bytesAvailable; |
| double result = 1.0; |
| size_t divisor = bytesAvailable - bytesAllocated; |
| if (divisor) |
| result = static_cast<double>(bytesAvailable) / divisor; |
| if (result < 1.0) |
| result = 1.0; |
| return result; |
| } |
| |
| RefPtr<ExecutableMemoryHandle> ExecutableAllocator::allocate(size_t sizeInBytes, void* ownerUID, JITCompilationEffort effort) |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::allocate(sizeInBytes, ownerUID, effort); |
| if (Options::logExecutableAllocation()) { |
| MetaAllocator::Statistics stats = allocator->currentStatistics(); |
| dataLog("Allocating ", sizeInBytes, " bytes of executable memory with ", stats.bytesAllocated, " bytes allocated, ", stats.bytesReserved, " bytes reserved, and ", stats.bytesCommitted, " committed.\n"); |
| } |
| |
| if (effort != JITCompilationCanFail && Options::reportMustSucceedExecutableAllocations()) { |
| dataLog("Allocating ", sizeInBytes, " bytes of executable memory with JITCompilationMustSucceed.\n"); |
| WTFReportBacktrace(); |
| } |
| |
| if (effort == JITCompilationCanFail |
| && doExecutableAllocationFuzzingIfEnabled() == PretendToFailExecutableAllocation) |
| return nullptr; |
| |
| if (effort == JITCompilationCanFail) { |
| // Don't allow allocations if we are down to reserve. |
| size_t bytesAllocated = allocator->bytesAllocated() + sizeInBytes; |
| size_t bytesAvailable = static_cast<size_t>( |
| allocator->bytesReserved() * (1 - executablePoolReservationFraction)); |
| if (bytesAllocated > bytesAvailable) { |
| if (Options::logExecutableAllocation()) |
| dataLog("Allocation failed because bytes allocated ", bytesAllocated, " > ", bytesAvailable, " bytes available.\n"); |
| return nullptr; |
| } |
| } |
| |
| RefPtr<ExecutableMemoryHandle> result = allocator->allocate(sizeInBytes, ownerUID); |
| if (!result) { |
| if (effort != JITCompilationCanFail) { |
| dataLog("Ran out of executable memory while allocating ", sizeInBytes, " bytes.\n"); |
| CRASH(); |
| } |
| return nullptr; |
| } |
| |
| void* start = allocator->memoryStart(); |
| void* end = allocator->memoryEnd(); |
| void* resultStart = result->start().untaggedPtr(); |
| void* resultEnd = result->end().untaggedPtr(); |
| RELEASE_ASSERT(start <= resultStart && resultStart < end); |
| RELEASE_ASSERT(start < resultEnd && resultEnd <= end); |
| return result; |
| } |
| |
| bool ExecutableAllocator::isValidExecutableMemory(const AbstractLocker& locker, void* address) |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::isValidExecutableMemory(locker, address); |
| return allocator->isInAllocatedMemory(locker, address); |
| } |
| |
| Lock& ExecutableAllocator::getLock() const |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::getLock(); |
| return allocator->getLock(); |
| } |
| |
| size_t ExecutableAllocator::committedByteCount() |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::committedByteCount(); |
| return allocator->bytesCommitted(); |
| } |
| |
| #if ENABLE(META_ALLOCATOR_PROFILE) |
| void ExecutableAllocator::dumpProfile() |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return; |
| allocator->dumpProfile(); |
| } |
| #endif |
| |
| void* startOfFixedExecutableMemoryPoolImpl() |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return nullptr; |
| return allocator->memoryStart(); |
| } |
| |
| void* endOfFixedExecutableMemoryPoolImpl() |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return nullptr; |
| return allocator->memoryEnd(); |
| } |
| |
| bool isJITPC(void* pc) |
| { |
| auto* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| return allocator && allocator->isJITPC(pc); |
| } |
| |
| void dumpJITMemory(const void* dst, const void* src, size_t size) |
| { |
| RELEASE_ASSERT(Options::dumpJITMemoryPath()); |
| |
| #if OS(DARWIN) |
| static int fd = -1; |
| static uint8_t* buffer; |
| static constexpr size_t bufferSize = fixedExecutableMemoryPoolSize; |
| static size_t offset = 0; |
| static Lock dumpJITMemoryLock; |
| static bool needsToFlush = false; |
| static auto flush = [](const AbstractLocker&) { |
| if (fd == -1) { |
| String path = Options::dumpJITMemoryPath(); |
| path = path.replace("%pid", String::number(getCurrentProcessID())); |
| fd = open(FileSystem::fileSystemRepresentation(path).data(), O_CREAT | O_TRUNC | O_APPEND | O_WRONLY | O_EXLOCK | O_NONBLOCK, 0666); |
| RELEASE_ASSERT(fd != -1); |
| } |
| write(fd, buffer, offset); |
| offset = 0; |
| needsToFlush = false; |
| }; |
| |
| static std::once_flag once; |
| static LazyNeverDestroyed<Ref<WorkQueue>> flushQueue; |
| std::call_once(once, [] { |
| buffer = bitwise_cast<uint8_t*>(malloc(bufferSize)); |
| flushQueue.construct(WorkQueue::create("jsc.dumpJITMemory.queue", WorkQueue::Type::Serial, WorkQueue::QOS::Background)); |
| std::atexit([] { |
| LockHolder locker(dumpJITMemoryLock); |
| flush(locker); |
| close(fd); |
| fd = -1; |
| }); |
| }); |
| |
| static auto enqueueFlush = [](const AbstractLocker&) { |
| if (needsToFlush) |
| return; |
| |
| needsToFlush = true; |
| flushQueue.get()->dispatchAfter(Seconds(Options::dumpJITMemoryFlushInterval()), [] { |
| LockHolder locker(dumpJITMemoryLock); |
| if (!needsToFlush) |
| return; |
| flush(locker); |
| }); |
| }; |
| |
| static auto write = [](const AbstractLocker& locker, const void* src, size_t size) { |
| if (UNLIKELY(offset + size > bufferSize)) |
| flush(locker); |
| memcpy(buffer + offset, src, size); |
| offset += size; |
| enqueueFlush(locker); |
| }; |
| |
| LockHolder locker(dumpJITMemoryLock); |
| uint64_t time = mach_absolute_time(); |
| uint64_t dst64 = bitwise_cast<uintptr_t>(dst); |
| uint64_t size64 = size; |
| TraceScope(DumpJITMemoryStart, DumpJITMemoryStop, time, dst64, size64); |
| write(locker, &time, sizeof(time)); |
| write(locker, &dst64, sizeof(dst64)); |
| write(locker, &size64, sizeof(size64)); |
| write(locker, src, size); |
| #else |
| UNUSED_PARAM(dst); |
| UNUSED_PARAM(src); |
| UNUSED_PARAM(size); |
| RELEASE_ASSERT_NOT_REACHED(); |
| #endif |
| } |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(JIT) |
| |
| namespace JSC { |
| |
| // Keep this pointer in a mutable global variable to help Leaks find it. |
| // But we do not use this pointer. |
| static ExecutableAllocator* globalExecutableAllocatorToWorkAroundLeaks = nullptr; |
| void ExecutableAllocator::initialize() |
| { |
| g_jscConfig.executableAllocator = new ExecutableAllocator; |
| globalExecutableAllocatorToWorkAroundLeaks = g_jscConfig.executableAllocator; |
| } |
| |
| ExecutableAllocator& ExecutableAllocator::singleton() |
| { |
| ASSERT(g_jscConfig.executableAllocator); |
| return *g_jscConfig.executableAllocator; |
| } |
| |
| } // namespace JSC |