blob: 224e77495fb93834f58f9cf323437f391693942f [file] [log] [blame]
/*
* Copyright (C) 2012-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include <wtf/MediaTime.h>
#include <algorithm>
#include <cstdlib>
#include <wtf/Assertions.h>
#include <wtf/CheckedArithmetic.h>
#include <wtf/Int128.h>
#include <wtf/JSONValues.h>
#include <wtf/MathExtras.h>
#include <wtf/PrintStream.h>
#include <wtf/text/TextStream.h>
namespace WTF {
static_assert(std::is_trivially_destructible_v<MediaTime>, "MediaTime should be trivially destructible.");
static uint32_t greatestCommonDivisor(uint32_t a, uint32_t b)
{
ASSERT(a);
ASSERT(b);
// Euclid's Algorithm
uint32_t temp = 0;
while (b) {
temp = b;
b = a % b;
a = temp;
}
ASSERT(a);
return a;
}
static uint32_t leastCommonMultiple(uint32_t a, uint32_t b, uint32_t &result)
{
return safeMultiply(a, b / greatestCommonDivisor(a, b), result);
}
static int64_t signum(int64_t val)
{
return (0 < val) - (val < 0);
}
const uint32_t MediaTime::MaximumTimeScale = 1000000000;
MediaTime::MediaTime(const MediaTime& rhs)
{
*this = rhs;
}
MediaTime MediaTime::createWithFloat(float floatTime)
{
if (floatTime != floatTime)
return invalidTime();
if (std::isinf(floatTime))
return std::signbit(floatTime) ? negativeInfiniteTime() : positiveInfiniteTime();
MediaTime value(0, DefaultTimeScale, Valid | DoubleValue);
value.m_timeValueAsDouble = floatTime;
return value;
}
MediaTime MediaTime::createWithFloat(float floatTime, uint32_t timeScale)
{
if (floatTime != floatTime)
return invalidTime();
if (std::isinf(floatTime))
return std::signbit(floatTime) ? negativeInfiniteTime() : positiveInfiniteTime();
if (floatTime >= maxPlusOne<int64_t>)
return positiveInfiniteTime();
if (floatTime < std::numeric_limits<int64_t>::min())
return negativeInfiniteTime();
if (!timeScale)
return std::signbit(floatTime) ? negativeInfiniteTime() : positiveInfiniteTime();
while (floatTime * timeScale >= maxPlusOne<int64_t>)
timeScale /= 2;
return MediaTime(static_cast<int64_t>(floatTime * timeScale), timeScale, Valid);
}
MediaTime MediaTime::createWithDouble(double doubleTime)
{
if (doubleTime != doubleTime)
return invalidTime();
if (std::isinf(doubleTime))
return std::signbit(doubleTime) ? negativeInfiniteTime() : positiveInfiniteTime();
MediaTime value(0, DefaultTimeScale, Valid | DoubleValue);
value.m_timeValueAsDouble = doubleTime;
return value;
}
MediaTime MediaTime::createWithDouble(double doubleTime, uint32_t timeScale)
{
if (doubleTime != doubleTime)
return invalidTime();
if (std::isinf(doubleTime))
return std::signbit(doubleTime) ? negativeInfiniteTime() : positiveInfiniteTime();
if (doubleTime >= maxPlusOne<int64_t>)
return positiveInfiniteTime();
if (doubleTime < std::numeric_limits<int64_t>::min())
return negativeInfiniteTime();
if (!timeScale)
return std::signbit(doubleTime) ? negativeInfiniteTime() : positiveInfiniteTime();
while (doubleTime * timeScale >= maxPlusOne<int64_t>)
timeScale /= 2;
return MediaTime(static_cast<int64_t>(std::round(doubleTime * timeScale)), timeScale, Valid);
}
float MediaTime::toFloat() const
{
if (isInvalid() || isIndefinite())
return std::numeric_limits<float>::quiet_NaN();
if (isPositiveInfinite())
return std::numeric_limits<float>::infinity();
if (isNegativeInfinite())
return -std::numeric_limits<float>::infinity();
if (hasDoubleValue())
return m_timeValueAsDouble;
return static_cast<float>(m_timeValue) / m_timeScale;
}
double MediaTime::toDouble() const
{
if (isInvalid() || isIndefinite())
return std::numeric_limits<double>::quiet_NaN();
if (isPositiveInfinite())
return std::numeric_limits<double>::infinity();
if (isNegativeInfinite())
return -std::numeric_limits<double>::infinity();
if (hasDoubleValue())
return m_timeValueAsDouble;
return static_cast<double>(m_timeValue) / m_timeScale;
}
MediaTime& MediaTime::operator=(const MediaTime& rhs)
{
m_timeValue = rhs.m_timeValue;
m_timeScale = rhs.m_timeScale;
m_timeFlags = rhs.m_timeFlags;
return *this;
}
MediaTime MediaTime::operator+(const MediaTime& rhs) const
{
if (rhs.isInvalid() || isInvalid())
return invalidTime();
if (rhs.isIndefinite() || isIndefinite())
return indefiniteTime();
if (isPositiveInfinite() && rhs.isNegativeInfinite())
return invalidTime();
if (isNegativeInfinite() && rhs.isPositiveInfinite())
return invalidTime();
if (isPositiveInfinite() || rhs.isPositiveInfinite())
return positiveInfiniteTime();
if (isNegativeInfinite() || rhs.isNegativeInfinite())
return negativeInfiniteTime();
if (hasDoubleValue() && rhs.hasDoubleValue())
return MediaTime::createWithDouble(m_timeValueAsDouble + rhs.m_timeValueAsDouble);
if (hasDoubleValue() || rhs.hasDoubleValue())
return MediaTime::createWithDouble(toDouble() + rhs.toDouble());
MediaTime a = *this;
MediaTime b = rhs;
uint32_t commonTimeScale;
if (!leastCommonMultiple(a.m_timeScale, b.m_timeScale, commonTimeScale) || commonTimeScale > MaximumTimeScale)
commonTimeScale = MaximumTimeScale;
a.setTimeScale(commonTimeScale);
b.setTimeScale(commonTimeScale);
while (!safeAdd(a.m_timeValue, b.m_timeValue, a.m_timeValue)) {
if (commonTimeScale == 1)
return a.m_timeValue > 0 ? positiveInfiniteTime() : negativeInfiniteTime();
commonTimeScale /= 2;
a.setTimeScale(commonTimeScale);
b.setTimeScale(commonTimeScale);
}
return a;
}
MediaTime MediaTime::operator-(const MediaTime& rhs) const
{
if (rhs.isInvalid() || isInvalid())
return invalidTime();
if (rhs.isIndefinite() || isIndefinite())
return indefiniteTime();
if (isPositiveInfinite() && rhs.isPositiveInfinite())
return invalidTime();
if (isNegativeInfinite() && rhs.isNegativeInfinite())
return invalidTime();
if (isPositiveInfinite() || rhs.isNegativeInfinite())
return positiveInfiniteTime();
if (isNegativeInfinite() || rhs.isPositiveInfinite())
return negativeInfiniteTime();
if (hasDoubleValue() && rhs.hasDoubleValue())
return MediaTime::createWithDouble(m_timeValueAsDouble - rhs.m_timeValueAsDouble);
if (hasDoubleValue() || rhs.hasDoubleValue())
return MediaTime::createWithDouble(toDouble() - rhs.toDouble());
MediaTime a = *this;
MediaTime b = rhs;
uint32_t commonTimeScale;
if (!leastCommonMultiple(this->m_timeScale, rhs.m_timeScale, commonTimeScale) || commonTimeScale > MaximumTimeScale)
commonTimeScale = MaximumTimeScale;
a.setTimeScale(commonTimeScale);
b.setTimeScale(commonTimeScale);
while (!safeSub(a.m_timeValue, b.m_timeValue, a.m_timeValue)) {
if (commonTimeScale == 1)
return a.m_timeValue > 0 ? positiveInfiniteTime() : negativeInfiniteTime();
commonTimeScale /= 2;
a.setTimeScale(commonTimeScale);
b.setTimeScale(commonTimeScale);
}
return a;
}
MediaTime MediaTime::operator-() const
{
if (isInvalid())
return invalidTime();
if (isIndefinite())
return indefiniteTime();
if (isPositiveInfinite())
return negativeInfiniteTime();
if (isNegativeInfinite())
return positiveInfiniteTime();
MediaTime negativeTime = *this;
if (negativeTime.hasDoubleValue())
negativeTime.m_timeValueAsDouble = -negativeTime.m_timeValueAsDouble;
else
negativeTime.m_timeValue = -negativeTime.m_timeValue;
return negativeTime;
}
MediaTime MediaTime::operator*(int32_t rhs) const
{
if (isInvalid())
return invalidTime();
if (isIndefinite())
return indefiniteTime();
if (!rhs)
return zeroTime();
if (isPositiveInfinite()) {
if (rhs > 0)
return positiveInfiniteTime();
return negativeInfiniteTime();
}
if (isNegativeInfinite()) {
if (rhs > 0)
return negativeInfiniteTime();
return positiveInfiniteTime();
}
MediaTime a = *this;
if (a.hasDoubleValue()) {
a.m_timeValueAsDouble *= rhs;
return a;
}
while (!safeMultiply(a.m_timeValue, rhs, a.m_timeValue)) {
if (a.m_timeScale == 1)
return signum(a.m_timeValue) == signum(rhs) ? positiveInfiniteTime() : negativeInfiniteTime();
a.setTimeScale(a.m_timeScale / 2);
}
return a;
}
bool MediaTime::operator!() const
{
return (m_timeFlags == Valid && !m_timeValue)
|| (m_timeFlags == (Valid | DoubleValue) && !m_timeValueAsDouble)
|| isInvalid();
}
MediaTime::operator bool() const
{
return !(m_timeFlags == Valid && !m_timeValue)
&& !(m_timeFlags == (Valid | DoubleValue) && !m_timeValueAsDouble)
&& !isInvalid();
}
MediaTime::ComparisonFlags MediaTime::compare(const MediaTime& rhs) const
{
auto andFlags = m_timeFlags & rhs.m_timeFlags;
if (andFlags & (PositiveInfinite | NegativeInfinite | Indefinite))
return EqualTo;
auto orFlags = m_timeFlags | rhs.m_timeFlags;
if (!(orFlags & Valid))
return EqualTo;
if (!(andFlags & Valid))
return isInvalid() ? GreaterThan : LessThan;
if (orFlags & NegativeInfinite)
return isNegativeInfinite() ? LessThan : GreaterThan;
if (orFlags & PositiveInfinite)
return isPositiveInfinite() ? GreaterThan : LessThan;
if (orFlags & Indefinite)
return isIndefinite() ? GreaterThan : LessThan;
if (andFlags & DoubleValue) {
if (m_timeValueAsDouble == rhs.m_timeValueAsDouble)
return EqualTo;
return m_timeValueAsDouble < rhs.m_timeValueAsDouble ? LessThan : GreaterThan;
}
if (orFlags & DoubleValue) {
double a = toDouble();
double b = rhs.toDouble();
if (a > b)
return GreaterThan;
if (a < b)
return LessThan;
return EqualTo;
}
if ((m_timeValue < 0) != (rhs.m_timeValue < 0))
return m_timeValue < 0 ? LessThan : GreaterThan;
if (!m_timeValue && !rhs.m_timeValue)
return EqualTo;
if (m_timeScale == rhs.m_timeScale) {
if (m_timeValue == rhs.m_timeValue)
return EqualTo;
return m_timeValue < rhs.m_timeValue ? LessThan : GreaterThan;
}
if (m_timeValue == rhs.m_timeValue)
return m_timeScale < rhs.m_timeScale ? GreaterThan : LessThan;
if (m_timeValue >= 0) {
if (m_timeValue < rhs.m_timeValue && m_timeScale > rhs.m_timeScale)
return LessThan;
if (m_timeValue > rhs.m_timeValue && m_timeScale < rhs.m_timeScale)
return GreaterThan;
} else {
if (m_timeValue < rhs.m_timeValue && m_timeScale < rhs.m_timeScale)
return LessThan;
if (m_timeValue > rhs.m_timeValue && m_timeScale > rhs.m_timeScale)
return GreaterThan;
}
int64_t lhsFactor;
int64_t rhsFactor;
if (safeMultiply(m_timeValue, static_cast<int64_t>(rhs.m_timeScale), lhsFactor)
&& safeMultiply(rhs.m_timeValue, static_cast<int64_t>(m_timeScale), rhsFactor)) {
if (lhsFactor == rhsFactor)
return EqualTo;
return lhsFactor < rhsFactor ? LessThan : GreaterThan;
}
int64_t rhsWhole = rhs.m_timeValue / rhs.m_timeScale;
int64_t lhsWhole = m_timeValue / m_timeScale;
if (lhsWhole > rhsWhole)
return GreaterThan;
if (lhsWhole < rhsWhole)
return LessThan;
int64_t rhsRemain = rhs.m_timeValue % rhs.m_timeScale;
int64_t lhsRemain = m_timeValue % m_timeScale;
lhsFactor = lhsRemain * rhs.m_timeScale;
rhsFactor = rhsRemain * m_timeScale;
if (lhsFactor == rhsFactor)
return EqualTo;
return lhsFactor > rhsFactor ? GreaterThan : LessThan;
}
bool MediaTime::isBetween(const MediaTime& a, const MediaTime& b) const
{
if (a > b)
return *this > b && *this < a;
return *this > a && *this < b;
}
const MediaTime& MediaTime::zeroTime()
{
static const MediaTime time(0, 1, Valid);
return time;
}
const MediaTime& MediaTime::invalidTime()
{
static const MediaTime time(-1, 1, 0);
return time;
}
const MediaTime& MediaTime::positiveInfiniteTime()
{
static const MediaTime time(0, 1, PositiveInfinite | Valid);
return time;
}
const MediaTime& MediaTime::negativeInfiniteTime()
{
static const MediaTime time(-1, 1, NegativeInfinite | Valid);
return time;
}
const MediaTime& MediaTime::indefiniteTime()
{
static const MediaTime time(0, 1, Indefinite | Valid);
return time;
}
MediaTime MediaTime::toTimeScale(uint32_t timeScale, RoundingFlags flags) const
{
MediaTime result = *this;
result.setTimeScale(timeScale, flags);
return result;
}
void MediaTime::setTimeScale(uint32_t timeScale, RoundingFlags flags)
{
if (hasDoubleValue()) {
*this = MediaTime::createWithDouble(m_timeValueAsDouble, timeScale);
return;
}
if (!timeScale) {
*this = m_timeValue < 0 ? negativeInfiniteTime() : positiveInfiniteTime();
return;
}
if (timeScale == m_timeScale)
return;
timeScale = std::min(MaximumTimeScale, timeScale);
Int128 newValue = static_cast<Int128>(m_timeValue) * timeScale;
int64_t remainder = static_cast<int64_t>(newValue % m_timeScale);
newValue = newValue / m_timeScale;
if (newValue < std::numeric_limits<int64_t>::min()) {
*this = negativeInfiniteTime();
return;
}
if (newValue > std::numeric_limits<int64_t>::max()) {
*this = positiveInfiniteTime();
return;
}
m_timeValue = static_cast<int64_t>(newValue);
std::swap(m_timeScale, timeScale);
if (!remainder)
return;
m_timeFlags |= HasBeenRounded;
switch (flags) {
case RoundingFlags::HalfAwayFromZero:
if (static_cast<int64_t>(llabs(remainder)) * 2 >= static_cast<int64_t>(timeScale)) {
// round up (away from zero)
if (remainder < 0)
m_timeValue--;
else
m_timeValue++;
}
break;
case RoundingFlags::TowardZero:
break;
case RoundingFlags::AwayFromZero:
if (remainder < 0)
m_timeValue--;
else
m_timeValue++;
break;
case RoundingFlags::TowardPositiveInfinity:
if (remainder > 0)
m_timeValue++;
break;
case RoundingFlags::TowardNegativeInfinity:
if (remainder < 0)
m_timeValue--;
break;
}
}
void MediaTime::dump(PrintStream& out) const
{
out.print("{");
if (!hasDoubleValue())
out.print(m_timeValue, "/", m_timeScale, " = ");
out.print(toDouble(), "}");
}
String MediaTime::toString() const
{
const char* invalid = isInvalid() ? ", invalid" : "";
if (hasDoubleValue())
return makeString('{', toDouble(), invalid, '}');
return makeString('{', m_timeValue, '/', m_timeScale, " = ", toDouble(), invalid, '}');
}
Ref<JSON::Object> MediaTime::toJSONObject() const
{
auto object = JSON::Object::create();
if (hasDoubleValue()) {
object->setDouble("value"_s, toDouble());
return object;
}
if (isInvalid())
object->setBoolean("invalid"_s, true);
else if (isIndefinite())
object->setString("value"_s, "NaN"_s);
else if (isPositiveInfinite())
object->setString("value"_s, "POSITIVE_INFINITY"_s);
else if (isNegativeInfinite())
object->setString("value"_s, "NEGATIVE_INFINITY"_s);
else
object->setDouble("value"_s, toDouble());
object->setDouble("numerator"_s, static_cast<double>(m_timeValue));
object->setInteger("denominator"_s, m_timeScale);
object->setInteger("flags"_s, m_timeFlags);
return object;
}
String MediaTime::toJSONString() const
{
return toJSONObject()->toJSONString();
}
MediaTime abs(const MediaTime& rhs)
{
if (rhs.isInvalid())
return MediaTime::invalidTime();
if (rhs.isNegativeInfinite() || rhs.isPositiveInfinite())
return MediaTime::positiveInfiniteTime();
if (rhs.hasDoubleValue())
return MediaTime::createWithDouble(fabs(rhs.m_timeValueAsDouble));
MediaTime val = rhs;
val.m_timeValue = std::abs(rhs.m_timeValue);
return val;
}
String MediaTimeRange::toJSONString() const
{
auto object = JSON::Object::create();
object->setObject("start"_s, start.toJSONObject());
object->setObject("end"_s, end.toJSONObject());
return object->toJSONString();
}
#ifndef NDEBUG
TextStream& operator<<(TextStream& stream, const MediaTime& time)
{
return stream << time.toJSONString();
}
#endif
}