blob: e80e703372a1bd88d85d1052834f5f933dce0b66 [file] [log] [blame]
/*
* Copyright (C) 2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
var Statistics = new (function () {
this.min = function (values) {
return Math.min.apply(Math, values);
}
this.max = function (values) {
return Math.max.apply(Math, values);
}
this.sum = function (values) {
return values.length ? values.reduce(function (a, b) { return a + b; }) : 0;
}
this.mean = function (values) {
return this.sum(values) / values.length;
}
this.median = function (values) {
return values.sort(function (a, b) { return a - b; })[Math.floor(values.length / 2)];
}
this.squareSum = function (values) {
return values.length ? values.reduce(function (sum, value) { return sum + value * value;}, 0) : 0;
}
// With sum and sum of squares, we can compute the sample standard deviation in O(1).
// See https://rniwa.com/2012-11-10/sample-standard-deviation-in-terms-of-sum-and-square-sum-of-samples/
this.sampleStandardDeviation = function (numberOfSamples, sum, squareSum) {
if (numberOfSamples < 2)
return 0;
return Math.sqrt(squareSum / (numberOfSamples - 1) - sum * sum / (numberOfSamples - 1) / numberOfSamples);
}
this.supportedConfidenceIntervalProbabilities = function () {
var supportedProbabilities = [];
for (var probability in tDistributionByOneSidedProbability)
supportedProbabilities.push(oneSidedToTwoSidedProbability(probability).toFixed(2));
return supportedProbabilities
}
this.supportedOneSideTTestProbabilities = function () {
return Object.keys(tDistributionByOneSidedProbability);
}
// Computes the delta d s.t. (mean - d, mean + d) is the confidence interval with the specified probability in O(1).
this.confidenceIntervalDelta = function (probability, numberOfSamples, sum, squareSum) {
var oneSidedProbability = twoSidedToOneSidedProbability(probability);
if (!(oneSidedProbability in tDistributionByOneSidedProbability)) {
throw 'We only support ' + this.supportedConfidenceIntervalProbabilities().map(function (probability)
{ return probability * 100 + '%'; } ).join(', ') + ' confidence intervals.';
}
if (numberOfSamples - 2 < 0)
return NaN;
var deltas = tDistributionByOneSidedProbability[oneSidedProbability];
var degreesOfFreedom = numberOfSamples - 1;
if (degreesOfFreedom > deltas.length)
throw 'We only support up to ' + deltas.length + ' degrees of freedom';
// d = c * S/sqrt(numberOfSamples) where c ~ t-distribution(degreesOfFreedom) and S is the sample standard deviation.
return deltas[degreesOfFreedom - 1] * this.sampleStandardDeviation(numberOfSamples, sum, squareSum) / Math.sqrt(numberOfSamples);
}
this.confidenceInterval = function (values, probability) {
var sum = this.sum(values);
var mean = sum / values.length;
var delta = this.confidenceIntervalDelta(probability || 0.95, values.length, sum, this.squareSum(values));
return [mean - delta, mean + delta];
}
// Welch's t-test (http://en.wikipedia.org/wiki/Welch%27s_t_test)
this.testWelchsT = function (values1, values2, probability) {
return this.computeWelchsT(values1, 0, values1.length, values2, 0, values2.length, probability).significantlyDifferent;
}
this.probabilityRangeForWelchsT = function (values1, values2) {
var result = this.computeWelchsT(values1, 0, values1.length, values2, 0, values2.length);
if (isNaN(result.t) || isNaN(result.degreesOfFreedom))
return {t: NaN, degreesOfFreedom:NaN, range: [null, null]};
var lowerBound = null;
var upperBound = null;
for (var probability in tDistributionByOneSidedProbability) {
var twoSidedProbability = oneSidedToTwoSidedProbability(probability);
if (result.t > tDistributionByOneSidedProbability[probability][Math.round(result.degreesOfFreedom - 1)])
lowerBound = twoSidedProbability;
else if (lowerBound) {
upperBound = twoSidedProbability;
break;
}
}
return {t: result.t, degreesOfFreedom: result.degreesOfFreedom, range: [lowerBound, upperBound]};
}
this.computeWelchsT = function (values1, startIndex1, length1, values2, startIndex2, length2, probability) {
var stat1 = sampleMeanAndVarianceForValues(values1, startIndex1, length1);
var stat2 = sampleMeanAndVarianceForValues(values2, startIndex2, length2);
var sumOfSampleVarianceOverSampleSize = stat1.variance / stat1.size + stat2.variance / stat2.size;
var t = Math.abs((stat1.mean - stat2.mean) / Math.sqrt(sumOfSampleVarianceOverSampleSize));
// http://en.wikipedia.org/wiki/Welch–Satterthwaite_equation
var degreesOfFreedom = sumOfSampleVarianceOverSampleSize * sumOfSampleVarianceOverSampleSize
/ (stat1.variance * stat1.variance / stat1.size / stat1.size / stat1.degreesOfFreedom
+ stat2.variance * stat2.variance / stat2.size / stat2.size / stat2.degreesOfFreedom);
var minT = tDistributionByOneSidedProbability[twoSidedToOneSidedProbability(probability || 0.8)][Math.round(degreesOfFreedom - 1)];
return {
t: t,
degreesOfFreedom: degreesOfFreedom,
significantlyDifferent: t > minT,
};
}
this.findRangesForChangeDetectionsWithWelchsTTest = function (values, segmentations, oneSidedPossibility=0.99) {
if (!values.length)
return [];
const selectedRanges = [];
const twoSidedFromOneSidedPossibility = 2 * oneSidedPossibility - 1;
for (let i = 1; i + 2 < segmentations.length; i += 2) {
let found = false;
const previousMean = segmentations[i].value;
const currentMean = segmentations[i + 1].value;
console.assert(currentMean != previousMean);
const currentChangePoint = segmentations[i].seriesIndex;
const start = segmentations[i - 1].seriesIndex;
const end = segmentations[i + 2].seriesIndex;
for (let leftEdge = currentChangePoint - 2, rightEdge = currentChangePoint + 2; leftEdge >= start && rightEdge <= end; leftEdge--, rightEdge++) {
const result = this.computeWelchsT(values, leftEdge, currentChangePoint - leftEdge, values, currentChangePoint, rightEdge - currentChangePoint, twoSidedFromOneSidedPossibility);
if (result.significantlyDifferent) {
selectedRanges.push({
startIndex: leftEdge,
endIndex: rightEdge - 1,
segmentationStartValue: previousMean,
segmentationEndValue: currentMean
});
found = true;
break;
}
}
if (!found && Statistics.debuggingTestingRangeNomination)
console.log('Failed to find a testing range at', currentChangePoint, 'changing from', previousMean, 'to', currentMean);
}
return selectedRanges;
};
function sampleMeanAndVarianceForValues(values, startIndex, length) {
var sum = 0;
for (var i = 0; i < length; i++)
sum += values[startIndex + i];
var squareSum = 0;
for (var i = 0; i < length; i++)
squareSum += values[startIndex + i] * values[startIndex + i];
var sampleMean = sum / length;
// FIXME: Maybe we should be using the biased sample variance.
var unbiasedSampleVariance = (squareSum - sum * sum / length) / (length - 1);
return {
mean: sampleMean,
variance: unbiasedSampleVariance,
size: length,
degreesOfFreedom: length - 1,
}
}
this.movingAverage = function (values, backwardWindowSize, forwardWindowSize) {
var averages = new Array(values.length);
// We use naive O(n^2) algorithm for simplicy as well as to avoid accumulating round-off errors.
for (var i = 0; i < values.length; i++) {
var sum = 0;
var count = 0;
for (var j = i - backwardWindowSize; j <= i + forwardWindowSize; j++) {
if (j >= 0 && j < values.length) {
sum += values[j];
count++;
}
}
averages[i] = sum / count;
}
return averages;
}
this.cumulativeMovingAverage = function (values) {
var averages = new Array(values.length);
var sum = 0;
for (var i = 0; i < values.length; i++) {
sum += values[i];
averages[i] = sum / (i + 1);
}
return averages;
}
this.exponentialMovingAverage = function (values, smoothingFactor) {
var averages = new Array(values.length);
var movingAverage = values[0];
averages[0] = movingAverage;
for (var i = 1; i < values.length; i++) {
movingAverage = smoothingFactor * values[i] + (1 - smoothingFactor) * movingAverage;
averages[i] = movingAverage;
}
return averages;
}
// The return value is the starting indices of each segment.
this.segmentTimeSeriesGreedyWithStudentsTTest = function (values, minLength) {
if (values.length < 2)
return [0];
var segments = new Array;
recursivelySplitIntoTwoSegmentsAtMaxTIfSignificantlyDifferent(values, 0, values.length, minLength, segments);
segments.push(values.length);
return segments;
}
this.debuggingSegmentation = false;
this.segmentTimeSeriesByMaximizingSchwarzCriterion = function (values, segmentCountWeight, gridSize) {
// Split the time series into grids since splitIntoSegmentsUntilGoodEnough is O(n^2).
var gridLength = gridSize || 500;
var totalSegmentation = [0];
for (var gridCount = 0; gridCount < Math.ceil(values.length / gridLength); gridCount++) {
var gridValues = values.slice(gridCount * gridLength, (gridCount + 1) * gridLength);
var segmentation = splitIntoSegmentsUntilGoodEnough(gridValues, segmentCountWeight);
if (Statistics.debuggingSegmentation)
console.log('grid=' + gridCount, segmentation);
for (var i = 1; i < segmentation.length - 1; i++)
totalSegmentation.push(gridCount * gridLength + segmentation[i]);
}
if (Statistics.debuggingSegmentation)
console.log('Final Segmentation', totalSegmentation);
totalSegmentation.push(values.length);
return totalSegmentation;
}
function recursivelySplitIntoTwoSegmentsAtMaxTIfSignificantlyDifferent(values, startIndex, length, minLength, segments) {
var tMax = 0;
var argTMax = null;
for (var i = 1; i < length - 1; i++) {
var firstLength = i;
var secondLength = length - i;
if (firstLength < minLength || secondLength < minLength)
continue;
var result = Statistics.computeWelchsT(values, startIndex, firstLength, values, startIndex + i, secondLength, 0.9);
if (result.significantlyDifferent && result.t > tMax) {
tMax = result.t;
argTMax = i;
}
}
if (!tMax) {
segments.push(startIndex);
return;
}
recursivelySplitIntoTwoSegmentsAtMaxTIfSignificantlyDifferent(values, startIndex, argTMax, minLength, segments);
recursivelySplitIntoTwoSegmentsAtMaxTIfSignificantlyDifferent(values, startIndex + argTMax, length - argTMax, minLength, segments);
}
var tDistributionByOneSidedProbability = {
0.9: [
3.077684, 1.885618, 1.637744, 1.533206, 1.475884, 1.439756, 1.414924, 1.396815, 1.383029, 1.372184,
1.363430, 1.356217, 1.350171, 1.345030, 1.340606, 1.336757, 1.333379, 1.330391, 1.327728, 1.325341,
1.323188, 1.321237, 1.319460, 1.317836, 1.316345, 1.314972, 1.313703, 1.312527, 1.311434, 1.310415,
1.309464, 1.308573, 1.307737, 1.306952, 1.306212, 1.305514, 1.304854, 1.304230, 1.303639, 1.303077,
1.302543, 1.302035, 1.301552, 1.301090, 1.300649, 1.300228, 1.299825, 1.299439, 1.299069, 1.298714,
1.298373, 1.298045, 1.297730, 1.297426, 1.297134, 1.296853, 1.296581, 1.296319, 1.296066, 1.295821,
1.295585, 1.295356, 1.295134, 1.294920, 1.294712, 1.294511, 1.294315, 1.294126, 1.293942, 1.293763,
1.293589, 1.293421, 1.293256, 1.293097, 1.292941, 1.292790, 1.292643, 1.292500, 1.292360, 1.292224,
1.292091, 1.291961, 1.291835, 1.291711, 1.291591, 1.291473, 1.291358, 1.291246, 1.291136, 1.291029,
1.290924, 1.290821, 1.290721, 1.290623, 1.290527, 1.290432, 1.290340, 1.290250, 1.290161, 1.290075],
0.95: [
6.313752, 2.919986, 2.353363, 2.131847, 2.015048, 1.943180, 1.894579, 1.859548, 1.833113, 1.812461,
1.795885, 1.782288, 1.770933, 1.761310, 1.753050, 1.745884, 1.739607, 1.734064, 1.729133, 1.724718,
1.720743, 1.717144, 1.713872, 1.710882, 1.708141, 1.705618, 1.703288, 1.701131, 1.699127, 1.697261,
1.695519, 1.693889, 1.692360, 1.690924, 1.689572, 1.688298, 1.687094, 1.685954, 1.684875, 1.683851,
1.682878, 1.681952, 1.681071, 1.680230, 1.679427, 1.678660, 1.677927, 1.677224, 1.676551, 1.675905,
1.675285, 1.674689, 1.674116, 1.673565, 1.673034, 1.672522, 1.672029, 1.671553, 1.671093, 1.670649,
1.670219, 1.669804, 1.669402, 1.669013, 1.668636, 1.668271, 1.667916, 1.667572, 1.667239, 1.666914,
1.666600, 1.666294, 1.665996, 1.665707, 1.665425, 1.665151, 1.664885, 1.664625, 1.664371, 1.664125,
1.663884, 1.663649, 1.663420, 1.663197, 1.662978, 1.662765, 1.662557, 1.662354, 1.662155, 1.661961,
1.661771, 1.661585, 1.661404, 1.661226, 1.661052, 1.660881, 1.660715, 1.660551, 1.660391, 1.660234],
0.975: [
12.706205, 4.302653, 3.182446, 2.776445, 2.570582, 2.446912, 2.364624, 2.306004, 2.262157, 2.228139,
2.200985, 2.178813, 2.160369, 2.144787, 2.131450, 2.119905, 2.109816, 2.100922, 2.093024, 2.085963,
2.079614, 2.073873, 2.068658, 2.063899, 2.059539, 2.055529, 2.051831, 2.048407, 2.045230, 2.042272,
2.039513, 2.036933, 2.034515, 2.032245, 2.030108, 2.028094, 2.026192, 2.024394, 2.022691, 2.021075,
2.019541, 2.018082, 2.016692, 2.015368, 2.014103, 2.012896, 2.011741, 2.010635, 2.009575, 2.008559,
2.007584, 2.006647, 2.005746, 2.004879, 2.004045, 2.003241, 2.002465, 2.001717, 2.000995, 2.000298,
1.999624, 1.998972, 1.998341, 1.997730, 1.997138, 1.996564, 1.996008, 1.995469, 1.994945, 1.994437,
1.993943, 1.993464, 1.992997, 1.992543, 1.992102, 1.991673, 1.991254, 1.990847, 1.990450, 1.990063,
1.989686, 1.989319, 1.988960, 1.988610, 1.988268, 1.987934, 1.987608, 1.987290, 1.986979, 1.986675,
1.986377, 1.986086, 1.985802, 1.985523, 1.985251, 1.984984, 1.984723, 1.984467, 1.984217, 1.983972],
0.99: [
31.820516, 6.964557, 4.540703, 3.746947, 3.364930, 3.142668, 2.997952, 2.896459, 2.821438, 2.763769,
2.718079, 2.680998, 2.650309, 2.624494, 2.602480, 2.583487, 2.566934, 2.552380, 2.539483, 2.527977,
2.517648, 2.508325, 2.499867, 2.492159, 2.485107, 2.478630, 2.472660, 2.467140, 2.462021, 2.457262,
2.452824, 2.448678, 2.444794, 2.441150, 2.437723, 2.434494, 2.431447, 2.428568, 2.425841, 2.423257,
2.420803, 2.418470, 2.416250, 2.414134, 2.412116, 2.410188, 2.408345, 2.406581, 2.404892, 2.403272,
2.401718, 2.400225, 2.398790, 2.397410, 2.396081, 2.394801, 2.393568, 2.392377, 2.391229, 2.390119,
2.389047, 2.388011, 2.387008, 2.386037, 2.385097, 2.384186, 2.383302, 2.382446, 2.381615, 2.380807,
2.380024, 2.379262, 2.378522, 2.377802, 2.377102, 2.376420, 2.375757, 2.375111, 2.374482, 2.373868,
2.373270, 2.372687, 2.372119, 2.371564, 2.371022, 2.370493, 2.369977, 2.369472, 2.368979, 2.368497,
2.368026, 2.367566, 2.367115, 2.366674, 2.366243, 2.365821, 2.365407, 2.365002, 2.364606, 2.364217]
};
function oneSidedToTwoSidedProbability(probability) { return 2 * probability - 1; }
function twoSidedToOneSidedProbability(probability) { return (1 - (1 - probability) / 2); }
function splitIntoSegmentsUntilGoodEnough(values, BirgeAndMassartC) {
if (values.length < 2)
return [0, values.length];
var matrix = new SampleVarianceUpperTriangularMatrix(values);
var SchwarzCriterionBeta = Math.log1p(values.length - 1) / values.length;
BirgeAndMassartC = BirgeAndMassartC || 2.5; // Suggested by the authors.
var BirgeAndMassartPenalization = function (segmentCount) {
return segmentCount * (1 + BirgeAndMassartC * Math.log1p(values.length / segmentCount - 1));
}
var segmentation;
var minTotalCost = Infinity;
var maxK = Math.min(50, values.length);
for (var k = 1; k < maxK; k++) {
var start = Date.now();
var result = findOptimalSegmentation(values, matrix, k);
var cost = result.cost / values.length;
var penalty = SchwarzCriterionBeta * BirgeAndMassartPenalization(k);
if (cost + penalty < minTotalCost) {
minTotalCost = cost + penalty;
segmentation = result.segmentation;
} else
maxK = Math.min(maxK, k + 3);
if (Statistics.debuggingSegmentation)
console.log('splitIntoSegmentsUntilGoodEnough', k, Date.now() - start, cost + penalty);
}
return segmentation;
}
function allocateCostUpperTriangularForSegmentation(values, segmentCount)
{
// Dynamic programming. cost[i][k] = The cost to segmenting values up to i into k segments.
var cost = new Array(values.length);
for (var segmentEnd = 0; segmentEnd < values.length; segmentEnd++)
cost[segmentEnd] = new Float32Array(segmentCount + 1);
return cost;
}
function allocatePreviousNodeForSegmentation(values, segmentCount)
{
// previousNode[i][k] = The start of the last segment in an optimal segmentation that ends at i with k segments.
var previousNode = new Array(values.length);
for (var i = 0; i < values.length; i++)
previousNode[i] = new Array(segmentCount + 1);
return previousNode;
}
function findOptimalSegmentationInternal(cost, previousNode, values, costMatrix, segmentCount)
{
cost[0] = [0]; // The cost of segmenting single value is always 0.
previousNode[0] = [-1];
for (var segmentStart = 0; segmentStart < values.length; segmentStart++) {
var costOfOptimalSegmentationThatEndAtCurrentStart = cost[segmentStart];
for (var k = 0; k < segmentCount; k++) {
var noSegmentationOfLenghtKEndsAtCurrentStart = previousNode[segmentStart][k] === undefined;
if (noSegmentationOfLenghtKEndsAtCurrentStart)
continue;
for (var segmentEnd = segmentStart + 1; segmentEnd < values.length; segmentEnd++) {
var costOfOptimalSegmentationOfLengthK = costOfOptimalSegmentationThatEndAtCurrentStart[k];
var costOfCurrentSegment = costMatrix.costBetween(segmentStart, segmentEnd);
var totalCost = costOfOptimalSegmentationOfLengthK + costOfCurrentSegment;
if (previousNode[segmentEnd][k + 1] === undefined || totalCost < cost[segmentEnd][k + 1]) {
cost[segmentEnd][k + 1] = totalCost;
previousNode[segmentEnd][k + 1] = segmentStart;
}
}
}
}
}
function findOptimalSegmentation(values, costMatrix, segmentCount) {
var cost = allocateCostUpperTriangularForSegmentation(values, segmentCount);
var previousNode = allocatePreviousNodeForSegmentation(values, segmentCount);
findOptimalSegmentationInternal(cost, previousNode, values, costMatrix, segmentCount);
if (Statistics.debuggingSegmentation) {
console.log('findOptimalSegmentation with', segmentCount, 'segments');
for (var end = 0; end < values.length; end++) {
for (var k = 0; k <= segmentCount; k++) {
var start = previousNode[end][k];
if (start === undefined)
continue;
console.log(`C(segment=[${start}, ${end + 1}], segmentCount=${k})=${cost[end][k]}`);
}
}
}
var segmentEnd = values.length - 1;
var segmentation = new Array(segmentCount + 1);
segmentation[segmentCount] = values.length;
for (var k = segmentCount; k > 0; k--) {
segmentEnd = previousNode[segmentEnd][k];
segmentation[k - 1] = segmentEnd;
}
var costOfOptimalSegmentation = cost[values.length - 1][segmentCount];
if (Statistics.debuggingSegmentation)
console.log('Optimal segmentation:', segmentation, 'with cost =', costOfOptimalSegmentation);
return {segmentation: segmentation, cost: costOfOptimalSegmentation};
}
function SampleVarianceUpperTriangularMatrix(values) {
// The cost of segment (i, j].
var costMatrix = new Array(values.length - 1);
for (var i = 0; i < values.length - 1; i++) {
var remainingValueCount = values.length - i - 1;
costMatrix[i] = new Float32Array(remainingValueCount);
var sum = values[i];
var squareSum = sum * sum;
costMatrix[i][0] = 0;
for (var j = i + 1; j < values.length; j++) {
var currentValue = values[j];
sum += currentValue;
squareSum += currentValue * currentValue;
var sampleSize = j - i + 1;
var stdev = Statistics.sampleStandardDeviation(sampleSize, sum, squareSum);
costMatrix[i][j - i - 1] = stdev > 0 ? sampleSize * Math.log(stdev * stdev) : 0;
}
}
this.costMatrix = costMatrix;
}
SampleVarianceUpperTriangularMatrix.prototype.costBetween = function(from, to) {
if (from >= this.costMatrix.length || from == to)
return 0; // The cost of the segment that starts at the last data point is 0.
return this.costMatrix[from][to - from - 1];
}
})();
if (typeof module != 'undefined')
module.exports = Statistics;
class AsyncTask {
constructor(method, args)
{
this._method = method;
this._args = args;
}
execute()
{
if (!(this._method in Statistics))
throw `${this._method} is not a valid method of Statistics`;
AsyncTask._asyncMessageId++;
var startTime = Date.now();
var method = this._method;
var args = this._args;
return new Promise(function (resolve, reject) {
AsyncTaskWorker.waitForAvailableWorker(function (worker) {
worker.sendTask({id: AsyncTask._asyncMessageId, method: method, args: args}).then(function (data) {
var startLatency = data.workerStartTime - startTime;
var totalTime = Date.now() - startTime;
var callback = data.status == 'resolve' ? resolve : reject;
callback({result: data.result, workerId: worker.id(), startLatency: startLatency, totalTime: totalTime, workerTime: data.workerTime});
});
});
});
}
static isAvailable()
{
return typeof Worker !== 'undefined';
}
}
AsyncTask._asyncMessageId = 0;
class AsyncTaskWorker {
// Takes a callback instead of returning a promise because a worker can become unavailable before the end of the current microtask.
static waitForAvailableWorker(callback)
{
var worker = this._makeWorkerEventuallyAvailable();
if (worker)
callback(worker);
this._queue.push(callback);
}
static _makeWorkerEventuallyAvailable()
{
var worker = this._findAvailableWorker();
if (worker)
return worker;
var canStartMoreWorker = this._workerSet.size < this._maxWorkerCount;
if (!canStartMoreWorker)
return null;
if (this._latestStartTime > Date.now() - 50) {
setTimeout(function () {
var worker = AsyncTaskWorker._findAvailableWorker();
if (worker)
AsyncTaskWorker._queue.pop()(worker);
}, 50);
return null;
}
return new AsyncTaskWorker;
}
static _findAvailableWorker()
{
for (var worker of this._workerSet) {
if (!worker._currentTaskId)
return worker;
}
return null;
}
constructor()
{
this._webWorker = new Worker('async-task.js');
this._webWorker.onmessage = this._didRecieveMessage.bind(this);
this._id = AsyncTaskWorker._workerId;
this._startTime = Date.now();
this._currentTaskId = null;
this._callback = null;
AsyncTaskWorker._latestStartTime = this._startTime;
AsyncTaskWorker._workerId++;
AsyncTaskWorker._workerSet.add(this);
}
id() { return this._id; }
sendTask(task)
{
console.assert(!this._currentTaskId);
console.assert(task.id);
var self = this;
this._currentTaskId = task.id;
return new Promise(function (resolve) {
self._webWorker.postMessage(task);
self._callback = resolve;
});
}
_didRecieveMessage(event)
{
var callback = this._callback;
console.assert(this._currentTaskId);
this._currentTaskId = null;
this._callback = null;
if (AsyncTaskWorker._queue.length)
AsyncTaskWorker._queue.pop()(this);
else {
var self = this;
setTimeout(function () {
if (self._currentTaskId == null)
AsyncTaskWorker._workerSet.delete(self);
}, 1000);
}
callback(event.data);
}
static workerDidRecieveMessage(event)
{
var data = event.data;
var id = data.id;
var method = Statistics[data.method];
var startTime = Date.now();
try {
var returnValue = method.apply(Statistics, data.args);
postMessage({'id': id, 'status': 'resolve', 'result': returnValue, 'workerStartTime': startTime, 'workerTime': Date.now() - startTime});
} catch (error) {
postMessage({'id': id, 'status': 'reject', 'result': error.toString(), 'workerStartTime': startTime, 'workerTime': Date.now() - startTime});
throw error;
}
}
}
AsyncTaskWorker._maxWorkerCount = 4;
AsyncTaskWorker._workerSet = new Set;
AsyncTaskWorker._queue = [];
AsyncTaskWorker._workerId = 1;
AsyncTaskWorker._latestStartTime = 0;
if (typeof module == 'undefined' && typeof window == 'undefined' && typeof importScripts != 'undefined') { // Inside a worker
//importScripts('/shared/statistics.js');
onmessage = AsyncTaskWorker.workerDidRecieveMessage.bind(AsyncTaskWorker);
}
if (typeof module != 'undefined')
module.exports.AsyncTask = AsyncTask;