blob: 3b8c8320193d87a530815fa07f1c3efa626c46ec [file] [log] [blame]
/*
* Copyright (C) 2011-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGSpeculativeJIT.h"
#if ENABLE(DFG_JIT)
#include "BinarySwitch.h"
#include "DFGAbstractInterpreterInlines.h"
#include "DFGArrayifySlowPathGenerator.h"
#include "DFGCallArrayAllocatorSlowPathGenerator.h"
#include "DFGCallCreateDirectArgumentsSlowPathGenerator.h"
#include "DFGCapabilities.h"
#include "DFGMayExit.h"
#include "DFGOSRExitFuzz.h"
#include "DFGSaneStringGetByValSlowPathGenerator.h"
#include "DFGSlowPathGenerator.h"
#include "DFGSnippetParams.h"
#include "DirectArguments.h"
#include "JITAddGenerator.h"
#include "JITBitAndGenerator.h"
#include "JITBitOrGenerator.h"
#include "JITBitXorGenerator.h"
#include "JITDivGenerator.h"
#include "JITLeftShiftGenerator.h"
#include "JITMulGenerator.h"
#include "JITRightShiftGenerator.h"
#include "JITSubGenerator.h"
#include "JSAsyncFunction.h"
#include "JSAsyncGeneratorFunction.h"
#include "JSCInlines.h"
#include "JSFixedArray.h"
#include "JSGeneratorFunction.h"
#include "JSImmutableButterfly.h"
#include "JSLexicalEnvironment.h"
#include "JSPropertyNameEnumerator.h"
#include "LinkBuffer.h"
#include "RegExpConstructor.h"
#include "ScopedArguments.h"
#include "ScratchRegisterAllocator.h"
#include "SuperSampler.h"
#include "TypeProfilerLog.h"
#include "WeakMapImpl.h"
#include <wtf/BitVector.h>
#include <wtf/Box.h>
#include <wtf/MathExtras.h>
namespace JSC { namespace DFG {
SpeculativeJIT::SpeculativeJIT(JITCompiler& jit)
: m_compileOkay(true)
, m_jit(jit)
, m_graph(m_jit.graph())
, m_currentNode(0)
, m_lastGeneratedNode(LastNodeType)
, m_indexInBlock(0)
, m_generationInfo(m_jit.graph().frameRegisterCount())
, m_state(m_jit.graph())
, m_interpreter(m_jit.graph(), m_state)
, m_stream(&jit.jitCode()->variableEventStream)
, m_minifiedGraph(&jit.jitCode()->minifiedDFG)
{
}
SpeculativeJIT::~SpeculativeJIT()
{
}
void SpeculativeJIT::emitAllocateRawObject(GPRReg resultGPR, RegisteredStructure structure, GPRReg storageGPR, unsigned numElements, unsigned vectorLength)
{
ASSERT(!isCopyOnWrite(structure->indexingMode()));
IndexingType indexingType = structure->indexingType();
bool hasIndexingHeader = hasIndexedProperties(indexingType);
unsigned inlineCapacity = structure->inlineCapacity();
unsigned outOfLineCapacity = structure->outOfLineCapacity();
GPRTemporary scratch(this);
GPRTemporary scratch2(this);
GPRReg scratchGPR = scratch.gpr();
GPRReg scratch2GPR = scratch2.gpr();
ASSERT(vectorLength >= numElements);
vectorLength = Butterfly::optimalContiguousVectorLength(structure.get(), vectorLength);
JITCompiler::JumpList slowCases;
size_t size = 0;
if (hasIndexingHeader)
size += vectorLength * sizeof(JSValue) + sizeof(IndexingHeader);
size += outOfLineCapacity * sizeof(JSValue);
m_jit.move(TrustedImmPtr(nullptr), storageGPR);
if (size) {
if (Allocator allocator = m_jit.vm()->jsValueGigacageAuxiliarySpace.allocatorForNonVirtual(size, AllocatorForMode::AllocatorIfExists)) {
m_jit.emitAllocate(storageGPR, JITAllocator::constant(allocator), scratchGPR, scratch2GPR, slowCases);
m_jit.addPtr(
TrustedImm32(outOfLineCapacity * sizeof(JSValue) + sizeof(IndexingHeader)),
storageGPR);
if (hasIndexingHeader)
m_jit.store32(TrustedImm32(vectorLength), MacroAssembler::Address(storageGPR, Butterfly::offsetOfVectorLength()));
} else
slowCases.append(m_jit.jump());
}
size_t allocationSize = JSFinalObject::allocationSize(inlineCapacity);
Allocator allocator = subspaceFor<JSFinalObject>(*m_jit.vm())->allocatorForNonVirtual(allocationSize, AllocatorForMode::AllocatorIfExists);
if (allocator) {
emitAllocateJSObject(resultGPR, JITAllocator::constant(allocator), scratchGPR, TrustedImmPtr(structure), storageGPR, scratch2GPR, slowCases);
m_jit.emitInitializeInlineStorage(resultGPR, structure->inlineCapacity());
} else
slowCases.append(m_jit.jump());
// I want a slow path that also loads out the storage pointer, and that's
// what this custom CallArrayAllocatorSlowPathGenerator gives me. It's a lot
// of work for a very small piece of functionality. :-/
addSlowPathGenerator(std::make_unique<CallArrayAllocatorSlowPathGenerator>(
slowCases, this, operationNewRawObject, resultGPR, storageGPR,
structure, vectorLength));
if (numElements < vectorLength) {
#if USE(JSVALUE64)
if (hasDouble(structure->indexingType()))
m_jit.move(TrustedImm64(bitwise_cast<int64_t>(PNaN)), scratchGPR);
else
m_jit.move(TrustedImm64(JSValue::encode(JSValue())), scratchGPR);
for (unsigned i = numElements; i < vectorLength; ++i)
m_jit.store64(scratchGPR, MacroAssembler::Address(storageGPR, sizeof(double) * i));
#else
EncodedValueDescriptor value;
if (hasDouble(structure->indexingType()))
value.asInt64 = JSValue::encode(JSValue(JSValue::EncodeAsDouble, PNaN));
else
value.asInt64 = JSValue::encode(JSValue());
for (unsigned i = numElements; i < vectorLength; ++i) {
m_jit.store32(TrustedImm32(value.asBits.tag), MacroAssembler::Address(storageGPR, sizeof(double) * i + OBJECT_OFFSETOF(JSValue, u.asBits.tag)));
m_jit.store32(TrustedImm32(value.asBits.payload), MacroAssembler::Address(storageGPR, sizeof(double) * i + OBJECT_OFFSETOF(JSValue, u.asBits.payload)));
}
#endif
}
if (hasIndexingHeader)
m_jit.store32(TrustedImm32(numElements), MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
m_jit.emitInitializeOutOfLineStorage(storageGPR, structure->outOfLineCapacity());
m_jit.mutatorFence(*m_jit.vm());
}
void SpeculativeJIT::emitGetLength(InlineCallFrame* inlineCallFrame, GPRReg lengthGPR, bool includeThis)
{
if (inlineCallFrame && !inlineCallFrame->isVarargs())
m_jit.move(TrustedImm32(inlineCallFrame->argumentCountIncludingThis - !includeThis), lengthGPR);
else {
VirtualRegister argumentCountRegister = m_jit.argumentCount(inlineCallFrame);
m_jit.load32(JITCompiler::payloadFor(argumentCountRegister), lengthGPR);
if (!includeThis)
m_jit.sub32(TrustedImm32(1), lengthGPR);
}
}
void SpeculativeJIT::emitGetLength(CodeOrigin origin, GPRReg lengthGPR, bool includeThis)
{
emitGetLength(origin.inlineCallFrame, lengthGPR, includeThis);
}
void SpeculativeJIT::emitGetCallee(CodeOrigin origin, GPRReg calleeGPR)
{
if (origin.inlineCallFrame) {
if (origin.inlineCallFrame->isClosureCall) {
m_jit.loadPtr(
JITCompiler::addressFor(origin.inlineCallFrame->calleeRecovery.virtualRegister()),
calleeGPR);
} else {
m_jit.move(
TrustedImmPtr::weakPointer(m_jit.graph(), origin.inlineCallFrame->calleeRecovery.constant().asCell()),
calleeGPR);
}
} else
m_jit.loadPtr(JITCompiler::addressFor(CallFrameSlot::callee), calleeGPR);
}
void SpeculativeJIT::emitGetArgumentStart(CodeOrigin origin, GPRReg startGPR)
{
m_jit.addPtr(
TrustedImm32(
JITCompiler::argumentsStart(origin).offset() * static_cast<int>(sizeof(Register))),
GPRInfo::callFrameRegister, startGPR);
}
MacroAssembler::Jump SpeculativeJIT::emitOSRExitFuzzCheck()
{
if (!Options::useOSRExitFuzz()
|| !canUseOSRExitFuzzing(m_jit.graph().baselineCodeBlockFor(m_origin.semantic))
|| !doOSRExitFuzzing())
return MacroAssembler::Jump();
MacroAssembler::Jump result;
m_jit.pushToSave(GPRInfo::regT0);
m_jit.load32(&g_numberOfOSRExitFuzzChecks, GPRInfo::regT0);
m_jit.add32(TrustedImm32(1), GPRInfo::regT0);
m_jit.store32(GPRInfo::regT0, &g_numberOfOSRExitFuzzChecks);
unsigned atOrAfter = Options::fireOSRExitFuzzAtOrAfter();
unsigned at = Options::fireOSRExitFuzzAt();
if (at || atOrAfter) {
unsigned threshold;
MacroAssembler::RelationalCondition condition;
if (atOrAfter) {
threshold = atOrAfter;
condition = MacroAssembler::Below;
} else {
threshold = at;
condition = MacroAssembler::NotEqual;
}
MacroAssembler::Jump ok = m_jit.branch32(
condition, GPRInfo::regT0, MacroAssembler::TrustedImm32(threshold));
m_jit.popToRestore(GPRInfo::regT0);
result = m_jit.jump();
ok.link(&m_jit);
}
m_jit.popToRestore(GPRInfo::regT0);
return result;
}
void SpeculativeJIT::speculationCheck(ExitKind kind, JSValueSource jsValueSource, Node* node, MacroAssembler::Jump jumpToFail)
{
if (!m_compileOkay)
return;
JITCompiler::Jump fuzzJump = emitOSRExitFuzzCheck();
if (fuzzJump.isSet()) {
JITCompiler::JumpList jumpsToFail;
jumpsToFail.append(fuzzJump);
jumpsToFail.append(jumpToFail);
m_jit.appendExitInfo(jumpsToFail);
} else
m_jit.appendExitInfo(jumpToFail);
m_jit.jitCode()->appendOSRExit(OSRExit(kind, jsValueSource, m_jit.graph().methodOfGettingAValueProfileFor(m_currentNode, node), this, m_stream->size()));
}
void SpeculativeJIT::speculationCheck(ExitKind kind, JSValueSource jsValueSource, Node* node, const MacroAssembler::JumpList& jumpsToFail)
{
if (!m_compileOkay)
return;
JITCompiler::Jump fuzzJump = emitOSRExitFuzzCheck();
if (fuzzJump.isSet()) {
JITCompiler::JumpList myJumpsToFail;
myJumpsToFail.append(jumpsToFail);
myJumpsToFail.append(fuzzJump);
m_jit.appendExitInfo(myJumpsToFail);
} else
m_jit.appendExitInfo(jumpsToFail);
m_jit.jitCode()->appendOSRExit(OSRExit(kind, jsValueSource, m_jit.graph().methodOfGettingAValueProfileFor(m_currentNode, node), this, m_stream->size()));
}
OSRExitJumpPlaceholder SpeculativeJIT::speculationCheck(ExitKind kind, JSValueSource jsValueSource, Node* node)
{
if (!m_compileOkay)
return OSRExitJumpPlaceholder();
unsigned index = m_jit.jitCode()->osrExit.size();
m_jit.appendExitInfo();
m_jit.jitCode()->appendOSRExit(OSRExit(kind, jsValueSource, m_jit.graph().methodOfGettingAValueProfileFor(m_currentNode, node), this, m_stream->size()));
return OSRExitJumpPlaceholder(index);
}
OSRExitJumpPlaceholder SpeculativeJIT::speculationCheck(ExitKind kind, JSValueSource jsValueSource, Edge nodeUse)
{
return speculationCheck(kind, jsValueSource, nodeUse.node());
}
void SpeculativeJIT::speculationCheck(ExitKind kind, JSValueSource jsValueSource, Edge nodeUse, MacroAssembler::Jump jumpToFail)
{
speculationCheck(kind, jsValueSource, nodeUse.node(), jumpToFail);
}
void SpeculativeJIT::speculationCheck(ExitKind kind, JSValueSource jsValueSource, Edge nodeUse, const MacroAssembler::JumpList& jumpsToFail)
{
speculationCheck(kind, jsValueSource, nodeUse.node(), jumpsToFail);
}
void SpeculativeJIT::speculationCheck(ExitKind kind, JSValueSource jsValueSource, Node* node, MacroAssembler::Jump jumpToFail, const SpeculationRecovery& recovery)
{
if (!m_compileOkay)
return;
unsigned recoveryIndex = m_jit.jitCode()->appendSpeculationRecovery(recovery);
m_jit.appendExitInfo(jumpToFail);
m_jit.jitCode()->appendOSRExit(OSRExit(kind, jsValueSource, m_jit.graph().methodOfGettingAValueProfileFor(m_currentNode, node), this, m_stream->size(), recoveryIndex));
}
void SpeculativeJIT::speculationCheck(ExitKind kind, JSValueSource jsValueSource, Edge nodeUse, MacroAssembler::Jump jumpToFail, const SpeculationRecovery& recovery)
{
speculationCheck(kind, jsValueSource, nodeUse.node(), jumpToFail, recovery);
}
void SpeculativeJIT::emitInvalidationPoint(Node* node)
{
if (!m_compileOkay)
return;
OSRExitCompilationInfo& info = m_jit.appendExitInfo(JITCompiler::JumpList());
m_jit.jitCode()->appendOSRExit(OSRExit(
UncountableInvalidation, JSValueSource(), MethodOfGettingAValueProfile(),
this, m_stream->size()));
info.m_replacementSource = m_jit.watchpointLabel();
ASSERT(info.m_replacementSource.isSet());
noResult(node);
}
void SpeculativeJIT::unreachable(Node* node)
{
m_compileOkay = false;
m_jit.abortWithReason(DFGUnreachableNode, node->op());
}
void SpeculativeJIT::terminateSpeculativeExecution(ExitKind kind, JSValueRegs jsValueRegs, Node* node)
{
if (!m_compileOkay)
return;
speculationCheck(kind, jsValueRegs, node, m_jit.jump());
m_compileOkay = false;
if (verboseCompilationEnabled())
dataLog("Bailing compilation.\n");
}
void SpeculativeJIT::terminateSpeculativeExecution(ExitKind kind, JSValueRegs jsValueRegs, Edge nodeUse)
{
terminateSpeculativeExecution(kind, jsValueRegs, nodeUse.node());
}
void SpeculativeJIT::typeCheck(JSValueSource source, Edge edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail, ExitKind exitKind)
{
ASSERT(needsTypeCheck(edge, typesPassedThrough));
m_interpreter.filter(edge, typesPassedThrough);
speculationCheck(exitKind, source, edge.node(), jumpToFail);
}
RegisterSet SpeculativeJIT::usedRegisters()
{
RegisterSet result;
for (unsigned i = GPRInfo::numberOfRegisters; i--;) {
GPRReg gpr = GPRInfo::toRegister(i);
if (m_gprs.isInUse(gpr))
result.set(gpr);
}
for (unsigned i = FPRInfo::numberOfRegisters; i--;) {
FPRReg fpr = FPRInfo::toRegister(i);
if (m_fprs.isInUse(fpr))
result.set(fpr);
}
// FIXME: This is overly conservative. We could subtract out those callee-saves that we
// actually saved.
// https://bugs.webkit.org/show_bug.cgi?id=185686
result.merge(RegisterSet::stubUnavailableRegisters());
return result;
}
void SpeculativeJIT::addSlowPathGenerator(std::unique_ptr<SlowPathGenerator> slowPathGenerator)
{
m_slowPathGenerators.append(WTFMove(slowPathGenerator));
}
void SpeculativeJIT::addSlowPathGeneratorLambda(Function<void()>&& lambda)
{
m_slowPathLambdas.append(SlowPathLambda{ WTFMove(lambda), m_currentNode, static_cast<unsigned>(m_stream->size()) });
}
void SpeculativeJIT::runSlowPathGenerators(PCToCodeOriginMapBuilder& pcToCodeOriginMapBuilder)
{
for (auto& slowPathGenerator : m_slowPathGenerators) {
pcToCodeOriginMapBuilder.appendItem(m_jit.labelIgnoringWatchpoints(), slowPathGenerator->origin().semantic);
slowPathGenerator->generate(this);
}
for (auto& slowPathLambda : m_slowPathLambdas) {
Node* currentNode = slowPathLambda.currentNode;
m_currentNode = currentNode;
m_outOfLineStreamIndex = slowPathLambda.streamIndex;
pcToCodeOriginMapBuilder.appendItem(m_jit.labelIgnoringWatchpoints(), currentNode->origin.semantic);
slowPathLambda.generator();
m_outOfLineStreamIndex = std::nullopt;
}
}
void SpeculativeJIT::clearGenerationInfo()
{
for (unsigned i = 0; i < m_generationInfo.size(); ++i)
m_generationInfo[i] = GenerationInfo();
m_gprs = RegisterBank<GPRInfo>();
m_fprs = RegisterBank<FPRInfo>();
}
SilentRegisterSavePlan SpeculativeJIT::silentSavePlanForGPR(VirtualRegister spillMe, GPRReg source)
{
GenerationInfo& info = generationInfoFromVirtualRegister(spillMe);
Node* node = info.node();
DataFormat registerFormat = info.registerFormat();
ASSERT(registerFormat != DataFormatNone);
ASSERT(registerFormat != DataFormatDouble);
SilentSpillAction spillAction;
SilentFillAction fillAction;
if (!info.needsSpill())
spillAction = DoNothingForSpill;
else {
#if USE(JSVALUE64)
ASSERT(info.gpr() == source);
if (registerFormat == DataFormatInt32)
spillAction = Store32Payload;
else if (registerFormat == DataFormatCell || registerFormat == DataFormatStorage)
spillAction = StorePtr;
else if (registerFormat == DataFormatInt52 || registerFormat == DataFormatStrictInt52)
spillAction = Store64;
else {
ASSERT(registerFormat & DataFormatJS);
spillAction = Store64;
}
#elif USE(JSVALUE32_64)
if (registerFormat & DataFormatJS) {
ASSERT(info.tagGPR() == source || info.payloadGPR() == source);
spillAction = source == info.tagGPR() ? Store32Tag : Store32Payload;
} else {
ASSERT(info.gpr() == source);
spillAction = Store32Payload;
}
#endif
}
if (registerFormat == DataFormatInt32) {
ASSERT(info.gpr() == source);
ASSERT(isJSInt32(info.registerFormat()));
if (node->hasConstant()) {
ASSERT(node->isInt32Constant());
fillAction = SetInt32Constant;
} else
fillAction = Load32Payload;
} else if (registerFormat == DataFormatBoolean) {
#if USE(JSVALUE64)
RELEASE_ASSERT_NOT_REACHED();
#if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE)
fillAction = DoNothingForFill;
#endif
#elif USE(JSVALUE32_64)
ASSERT(info.gpr() == source);
if (node->hasConstant()) {
ASSERT(node->isBooleanConstant());
fillAction = SetBooleanConstant;
} else
fillAction = Load32Payload;
#endif
} else if (registerFormat == DataFormatCell) {
ASSERT(info.gpr() == source);
if (node->hasConstant()) {
DFG_ASSERT(m_jit.graph(), m_currentNode, node->isCellConstant());
node->asCell(); // To get the assertion.
fillAction = SetCellConstant;
} else {
#if USE(JSVALUE64)
fillAction = LoadPtr;
#else
fillAction = Load32Payload;
#endif
}
} else if (registerFormat == DataFormatStorage) {
ASSERT(info.gpr() == source);
fillAction = LoadPtr;
} else if (registerFormat == DataFormatInt52) {
if (node->hasConstant())
fillAction = SetInt52Constant;
else if (info.spillFormat() == DataFormatInt52)
fillAction = Load64;
else if (info.spillFormat() == DataFormatStrictInt52)
fillAction = Load64ShiftInt52Left;
else if (info.spillFormat() == DataFormatNone)
fillAction = Load64;
else {
RELEASE_ASSERT_NOT_REACHED();
#if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE)
fillAction = Load64; // Make GCC happy.
#endif
}
} else if (registerFormat == DataFormatStrictInt52) {
if (node->hasConstant())
fillAction = SetStrictInt52Constant;
else if (info.spillFormat() == DataFormatInt52)
fillAction = Load64ShiftInt52Right;
else if (info.spillFormat() == DataFormatStrictInt52)
fillAction = Load64;
else if (info.spillFormat() == DataFormatNone)
fillAction = Load64;
else {
RELEASE_ASSERT_NOT_REACHED();
#if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE)
fillAction = Load64; // Make GCC happy.
#endif
}
} else {
ASSERT(registerFormat & DataFormatJS);
#if USE(JSVALUE64)
ASSERT(info.gpr() == source);
if (node->hasConstant()) {
if (node->isCellConstant())
fillAction = SetTrustedJSConstant;
else
fillAction = SetJSConstant;
} else if (info.spillFormat() == DataFormatInt32) {
ASSERT(registerFormat == DataFormatJSInt32);
fillAction = Load32PayloadBoxInt;
} else
fillAction = Load64;
#else
ASSERT(info.tagGPR() == source || info.payloadGPR() == source);
if (node->hasConstant())
fillAction = info.tagGPR() == source ? SetJSConstantTag : SetJSConstantPayload;
else if (info.payloadGPR() == source)
fillAction = Load32Payload;
else { // Fill the Tag
switch (info.spillFormat()) {
case DataFormatInt32:
ASSERT(registerFormat == DataFormatJSInt32);
fillAction = SetInt32Tag;
break;
case DataFormatCell:
ASSERT(registerFormat == DataFormatJSCell);
fillAction = SetCellTag;
break;
case DataFormatBoolean:
ASSERT(registerFormat == DataFormatJSBoolean);
fillAction = SetBooleanTag;
break;
default:
fillAction = Load32Tag;
break;
}
}
#endif
}
return SilentRegisterSavePlan(spillAction, fillAction, node, source);
}
SilentRegisterSavePlan SpeculativeJIT::silentSavePlanForFPR(VirtualRegister spillMe, FPRReg source)
{
GenerationInfo& info = generationInfoFromVirtualRegister(spillMe);
Node* node = info.node();
ASSERT(info.registerFormat() == DataFormatDouble);
SilentSpillAction spillAction;
SilentFillAction fillAction;
if (!info.needsSpill())
spillAction = DoNothingForSpill;
else {
ASSERT(!node->hasConstant());
ASSERT(info.spillFormat() == DataFormatNone);
ASSERT(info.fpr() == source);
spillAction = StoreDouble;
}
#if USE(JSVALUE64)
if (node->hasConstant()) {
node->asNumber(); // To get the assertion.
fillAction = SetDoubleConstant;
} else {
ASSERT(info.spillFormat() == DataFormatNone || info.spillFormat() == DataFormatDouble);
fillAction = LoadDouble;
}
#elif USE(JSVALUE32_64)
ASSERT(info.registerFormat() == DataFormatDouble);
if (node->hasConstant()) {
node->asNumber(); // To get the assertion.
fillAction = SetDoubleConstant;
} else
fillAction = LoadDouble;
#endif
return SilentRegisterSavePlan(spillAction, fillAction, node, source);
}
void SpeculativeJIT::silentSpill(const SilentRegisterSavePlan& plan)
{
switch (plan.spillAction()) {
case DoNothingForSpill:
break;
case Store32Tag:
m_jit.store32(plan.gpr(), JITCompiler::tagFor(plan.node()->virtualRegister()));
break;
case Store32Payload:
m_jit.store32(plan.gpr(), JITCompiler::payloadFor(plan.node()->virtualRegister()));
break;
case StorePtr:
m_jit.storePtr(plan.gpr(), JITCompiler::addressFor(plan.node()->virtualRegister()));
break;
#if USE(JSVALUE64)
case Store64:
m_jit.store64(plan.gpr(), JITCompiler::addressFor(plan.node()->virtualRegister()));
break;
#endif
case StoreDouble:
m_jit.storeDouble(plan.fpr(), JITCompiler::addressFor(plan.node()->virtualRegister()));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void SpeculativeJIT::silentFill(const SilentRegisterSavePlan& plan)
{
switch (plan.fillAction()) {
case DoNothingForFill:
break;
case SetInt32Constant:
m_jit.move(Imm32(plan.node()->asInt32()), plan.gpr());
break;
#if USE(JSVALUE64)
case SetInt52Constant:
m_jit.move(Imm64(plan.node()->asAnyInt() << JSValue::int52ShiftAmount), plan.gpr());
break;
case SetStrictInt52Constant:
m_jit.move(Imm64(plan.node()->asAnyInt()), plan.gpr());
break;
#endif // USE(JSVALUE64)
case SetBooleanConstant:
m_jit.move(TrustedImm32(plan.node()->asBoolean()), plan.gpr());
break;
case SetCellConstant:
ASSERT(plan.node()->constant()->value().isCell());
m_jit.move(TrustedImmPtr(plan.node()->constant()), plan.gpr());
break;
#if USE(JSVALUE64)
case SetTrustedJSConstant:
m_jit.move(valueOfJSConstantAsImm64(plan.node()).asTrustedImm64(), plan.gpr());
break;
case SetJSConstant:
m_jit.move(valueOfJSConstantAsImm64(plan.node()), plan.gpr());
break;
case SetDoubleConstant:
m_jit.moveDouble(Imm64(reinterpretDoubleToInt64(plan.node()->asNumber())), plan.fpr());
break;
case Load32PayloadBoxInt:
m_jit.load32(JITCompiler::payloadFor(plan.node()->virtualRegister()), plan.gpr());
m_jit.or64(GPRInfo::tagTypeNumberRegister, plan.gpr());
break;
case Load32PayloadConvertToInt52:
m_jit.load32(JITCompiler::payloadFor(plan.node()->virtualRegister()), plan.gpr());
m_jit.signExtend32ToPtr(plan.gpr(), plan.gpr());
m_jit.lshift64(TrustedImm32(JSValue::int52ShiftAmount), plan.gpr());
break;
case Load32PayloadSignExtend:
m_jit.load32(JITCompiler::payloadFor(plan.node()->virtualRegister()), plan.gpr());
m_jit.signExtend32ToPtr(plan.gpr(), plan.gpr());
break;
#else
case SetJSConstantTag:
m_jit.move(Imm32(plan.node()->asJSValue().tag()), plan.gpr());
break;
case SetJSConstantPayload:
m_jit.move(Imm32(plan.node()->asJSValue().payload()), plan.gpr());
break;
case SetInt32Tag:
m_jit.move(TrustedImm32(JSValue::Int32Tag), plan.gpr());
break;
case SetCellTag:
m_jit.move(TrustedImm32(JSValue::CellTag), plan.gpr());
break;
case SetBooleanTag:
m_jit.move(TrustedImm32(JSValue::BooleanTag), plan.gpr());
break;
case SetDoubleConstant:
m_jit.loadDouble(TrustedImmPtr(m_jit.addressOfDoubleConstant(plan.node())), plan.fpr());
break;
#endif
case Load32Tag:
m_jit.load32(JITCompiler::tagFor(plan.node()->virtualRegister()), plan.gpr());
break;
case Load32Payload:
m_jit.load32(JITCompiler::payloadFor(plan.node()->virtualRegister()), plan.gpr());
break;
case LoadPtr:
m_jit.loadPtr(JITCompiler::addressFor(plan.node()->virtualRegister()), plan.gpr());
break;
#if USE(JSVALUE64)
case Load64:
m_jit.load64(JITCompiler::addressFor(plan.node()->virtualRegister()), plan.gpr());
break;
case Load64ShiftInt52Right:
m_jit.load64(JITCompiler::addressFor(plan.node()->virtualRegister()), plan.gpr());
m_jit.rshift64(TrustedImm32(JSValue::int52ShiftAmount), plan.gpr());
break;
case Load64ShiftInt52Left:
m_jit.load64(JITCompiler::addressFor(plan.node()->virtualRegister()), plan.gpr());
m_jit.lshift64(TrustedImm32(JSValue::int52ShiftAmount), plan.gpr());
break;
#endif
case LoadDouble:
m_jit.loadDouble(JITCompiler::addressFor(plan.node()->virtualRegister()), plan.fpr());
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
JITCompiler::JumpList SpeculativeJIT::jumpSlowForUnwantedArrayMode(GPRReg tempGPR, ArrayMode arrayMode)
{
JITCompiler::JumpList result;
IndexingType indexingModeMask = IsArray | IndexingShapeMask;
if (arrayMode.action() == Array::Write)
indexingModeMask |= CopyOnWrite;
switch (arrayMode.type()) {
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::Undecided:
case Array::ArrayStorage: {
IndexingType shape = arrayMode.shapeMask();
switch (arrayMode.arrayClass()) {
case Array::OriginalArray:
case Array::OriginalCopyOnWriteArray:
RELEASE_ASSERT_NOT_REACHED();
return result;
case Array::Array:
m_jit.and32(TrustedImm32(indexingModeMask), tempGPR);
result.append(m_jit.branch32(
MacroAssembler::NotEqual, tempGPR, TrustedImm32(IsArray | shape)));
return result;
case Array::NonArray:
case Array::OriginalNonArray:
m_jit.and32(TrustedImm32(indexingModeMask), tempGPR);
result.append(m_jit.branch32(
MacroAssembler::NotEqual, tempGPR, TrustedImm32(shape)));
return result;
case Array::PossiblyArray:
m_jit.and32(TrustedImm32(indexingModeMask & ~IsArray), tempGPR);
result.append(m_jit.branch32(MacroAssembler::NotEqual, tempGPR, TrustedImm32(shape)));
return result;
}
RELEASE_ASSERT_NOT_REACHED();
return result;
}
case Array::SlowPutArrayStorage: {
ASSERT(!arrayMode.isJSArrayWithOriginalStructure());
switch (arrayMode.arrayClass()) {
case Array::OriginalArray:
case Array::OriginalCopyOnWriteArray:
RELEASE_ASSERT_NOT_REACHED();
return result;
case Array::Array:
result.append(
m_jit.branchTest32(
MacroAssembler::Zero, tempGPR, MacroAssembler::TrustedImm32(IsArray)));
break;
case Array::NonArray:
case Array::OriginalNonArray:
result.append(
m_jit.branchTest32(
MacroAssembler::NonZero, tempGPR, MacroAssembler::TrustedImm32(IsArray)));
break;
case Array::PossiblyArray:
break;
}
m_jit.and32(TrustedImm32(IndexingShapeMask), tempGPR);
m_jit.sub32(TrustedImm32(ArrayStorageShape), tempGPR);
result.append(
m_jit.branch32(
MacroAssembler::Above, tempGPR,
TrustedImm32(SlowPutArrayStorageShape - ArrayStorageShape)));
return result;
}
default:
CRASH();
break;
}
return result;
}
void SpeculativeJIT::checkArray(Node* node)
{
ASSERT(node->arrayMode().isSpecific());
ASSERT(!node->arrayMode().doesConversion());
SpeculateCellOperand base(this, node->child1());
GPRReg baseReg = base.gpr();
if (node->arrayMode().alreadyChecked(m_jit.graph(), node, m_state.forNode(node->child1()))) {
noResult(m_currentNode);
return;
}
switch (node->arrayMode().type()) {
case Array::AnyTypedArray:
case Array::String:
RELEASE_ASSERT_NOT_REACHED(); // Should have been a Phantom(String:)
return;
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::Undecided:
case Array::ArrayStorage:
case Array::SlowPutArrayStorage: {
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
m_jit.load8(MacroAssembler::Address(baseReg, JSCell::indexingTypeAndMiscOffset()), tempGPR);
speculationCheck(
BadIndexingType, JSValueSource::unboxedCell(baseReg), 0,
jumpSlowForUnwantedArrayMode(tempGPR, node->arrayMode()));
noResult(m_currentNode);
return;
}
case Array::DirectArguments:
speculateCellTypeWithoutTypeFiltering(node->child1(), baseReg, DirectArgumentsType);
noResult(m_currentNode);
return;
case Array::ScopedArguments:
speculateCellTypeWithoutTypeFiltering(node->child1(), baseReg, ScopedArgumentsType);
noResult(m_currentNode);
return;
default:
speculateCellTypeWithoutTypeFiltering(
node->child1(), baseReg,
typeForTypedArrayType(node->arrayMode().typedArrayType()));
noResult(m_currentNode);
return;
}
}
void SpeculativeJIT::arrayify(Node* node, GPRReg baseReg, GPRReg propertyReg)
{
ASSERT(node->arrayMode().doesConversion());
GPRTemporary temp(this);
GPRTemporary structure;
GPRReg tempGPR = temp.gpr();
GPRReg structureGPR = InvalidGPRReg;
if (node->op() != ArrayifyToStructure) {
GPRTemporary realStructure(this);
structure.adopt(realStructure);
structureGPR = structure.gpr();
}
// We can skip all that comes next if we already have array storage.
MacroAssembler::JumpList slowPath;
if (node->op() == ArrayifyToStructure) {
ASSERT(!isCopyOnWrite(node->structure()->indexingMode()));
ASSERT((node->structure()->indexingType() & IndexingShapeMask) == node->arrayMode().shapeMask());
slowPath.append(m_jit.branchWeakStructure(
JITCompiler::NotEqual,
JITCompiler::Address(baseReg, JSCell::structureIDOffset()),
node->structure()));
} else {
m_jit.load8(
MacroAssembler::Address(baseReg, JSCell::indexingTypeAndMiscOffset()), tempGPR);
slowPath.append(jumpSlowForUnwantedArrayMode(tempGPR, node->arrayMode()));
}
addSlowPathGenerator(std::make_unique<ArrayifySlowPathGenerator>(
slowPath, this, node, baseReg, propertyReg, tempGPR, structureGPR));
noResult(m_currentNode);
}
void SpeculativeJIT::arrayify(Node* node)
{
ASSERT(node->arrayMode().isSpecific());
SpeculateCellOperand base(this, node->child1());
if (!node->child2()) {
arrayify(node, base.gpr(), InvalidGPRReg);
return;
}
SpeculateInt32Operand property(this, node->child2());
arrayify(node, base.gpr(), property.gpr());
}
GPRReg SpeculativeJIT::fillStorage(Edge edge)
{
VirtualRegister virtualRegister = edge->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
switch (info.registerFormat()) {
case DataFormatNone: {
if (info.spillFormat() == DataFormatStorage) {
GPRReg gpr = allocate();
m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
m_jit.loadPtr(JITCompiler::addressFor(virtualRegister), gpr);
info.fillStorage(*m_stream, gpr);
return gpr;
}
// Must be a cell; fill it as a cell and then return the pointer.
return fillSpeculateCell(edge);
}
case DataFormatStorage: {
GPRReg gpr = info.gpr();
m_gprs.lock(gpr);
return gpr;
}
default:
return fillSpeculateCell(edge);
}
}
void SpeculativeJIT::useChildren(Node* node)
{
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); childIdx++) {
if (!!m_jit.graph().m_varArgChildren[childIdx])
use(m_jit.graph().m_varArgChildren[childIdx]);
}
} else {
Edge child1 = node->child1();
if (!child1) {
ASSERT(!node->child2() && !node->child3());
return;
}
use(child1);
Edge child2 = node->child2();
if (!child2) {
ASSERT(!node->child3());
return;
}
use(child2);
Edge child3 = node->child3();
if (!child3)
return;
use(child3);
}
}
void SpeculativeJIT::compileGetById(Node* node, AccessType accessType)
{
ASSERT(accessType == AccessType::Get || accessType == AccessType::GetDirect || accessType == AccessType::TryGet);
switch (node->child1().useKind()) {
case CellUse: {
SpeculateCellOperand base(this, node->child1());
JSValueRegsTemporary result(this, Reuse, base);
JSValueRegs baseRegs = JSValueRegs::payloadOnly(base.gpr());
JSValueRegs resultRegs = result.regs();
base.use();
cachedGetById(node->origin.semantic, baseRegs, resultRegs, node->identifierNumber(), JITCompiler::Jump(), NeedToSpill, accessType);
jsValueResult(resultRegs, node, DataFormatJS, UseChildrenCalledExplicitly);
break;
}
case UntypedUse: {
JSValueOperand base(this, node->child1());
JSValueRegsTemporary result(this, Reuse, base);
JSValueRegs baseRegs = base.jsValueRegs();
JSValueRegs resultRegs = result.regs();
base.use();
JITCompiler::Jump notCell = m_jit.branchIfNotCell(baseRegs);
cachedGetById(node->origin.semantic, baseRegs, resultRegs, node->identifierNumber(), notCell, NeedToSpill, accessType);
jsValueResult(resultRegs, node, DataFormatJS, UseChildrenCalledExplicitly);
break;
}
default:
DFG_CRASH(m_jit.graph(), node, "Bad use kind");
break;
}
}
void SpeculativeJIT::compileGetByIdFlush(Node* node, AccessType accessType)
{
switch (node->child1().useKind()) {
case CellUse: {
SpeculateCellOperand base(this, node->child1());
JSValueRegs baseRegs = JSValueRegs::payloadOnly(base.gpr());
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
base.use();
flushRegisters();
cachedGetById(node->origin.semantic, baseRegs, resultRegs, node->identifierNumber(), JITCompiler::Jump(), DontSpill, accessType);
jsValueResult(resultRegs, node, DataFormatJS, UseChildrenCalledExplicitly);
break;
}
case UntypedUse: {
JSValueOperand base(this, node->child1());
JSValueRegs baseRegs = base.jsValueRegs();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
base.use();
flushRegisters();
JITCompiler::Jump notCell = m_jit.branchIfNotCell(baseRegs);
cachedGetById(node->origin.semantic, baseRegs, resultRegs, node->identifierNumber(), notCell, DontSpill, accessType);
jsValueResult(resultRegs, node, DataFormatJS, UseChildrenCalledExplicitly);
break;
}
default:
DFG_CRASH(m_jit.graph(), node, "Bad use kind");
break;
}
}
void SpeculativeJIT::compileInById(Node* node)
{
SpeculateCellOperand base(this, node->child1());
JSValueRegsTemporary result(this, Reuse, base, PayloadWord);
GPRReg baseGPR = base.gpr();
JSValueRegs resultRegs = result.regs();
base.use();
CodeOrigin codeOrigin = node->origin.semantic;
CallSiteIndex callSite = m_jit.recordCallSiteAndGenerateExceptionHandlingOSRExitIfNeeded(codeOrigin, m_stream->size());
RegisterSet usedRegisters = this->usedRegisters();
JITInByIdGenerator gen(
m_jit.codeBlock(), codeOrigin, callSite, usedRegisters, identifierUID(node->identifierNumber()),
JSValueRegs::payloadOnly(baseGPR), resultRegs);
gen.generateFastPath(m_jit);
auto slowPath = slowPathCall(
gen.slowPathJump(), this, operationInByIdOptimize,
NeedToSpill, ExceptionCheckRequirement::CheckNeeded,
resultRegs, gen.stubInfo(), CCallHelpers::CellValue(baseGPR), identifierUID(node->identifierNumber()));
m_jit.addInById(gen, slowPath.get());
addSlowPathGenerator(WTFMove(slowPath));
blessedBooleanResult(resultRegs.payloadGPR(), node, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::compileInByVal(Node* node)
{
SpeculateCellOperand base(this, node->child1());
JSValueOperand key(this, node->child2());
GPRReg baseGPR = base.gpr();
JSValueRegs regs = key.jsValueRegs();
base.use();
key.use();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationInByVal, resultRegs, baseGPR, regs);
m_jit.exceptionCheck();
blessedBooleanResult(resultRegs.payloadGPR(), node, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::compileDeleteById(Node* node)
{
JSValueOperand value(this, node->child1());
GPRFlushedCallResult result(this);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg resultGPR = result.gpr();
value.use();
flushRegisters();
callOperation(operationDeleteById, resultGPR, valueRegs, identifierUID(node->identifierNumber()));
m_jit.exceptionCheck();
unblessedBooleanResult(resultGPR, node, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::compileDeleteByVal(Node* node)
{
JSValueOperand base(this, node->child1());
JSValueOperand key(this, node->child2());
GPRFlushedCallResult result(this);
JSValueRegs baseRegs = base.jsValueRegs();
JSValueRegs keyRegs = key.jsValueRegs();
GPRReg resultGPR = result.gpr();
base.use();
key.use();
flushRegisters();
callOperation(operationDeleteByVal, resultGPR, baseRegs, keyRegs);
m_jit.exceptionCheck();
unblessedBooleanResult(resultGPR, node, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::compilePushWithScope(Node* node)
{
SpeculateCellOperand currentScope(this, node->child1());
GPRReg currentScopeGPR = currentScope.gpr();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
auto objectEdge = node->child2();
if (objectEdge.useKind() == ObjectUse) {
SpeculateCellOperand object(this, objectEdge);
GPRReg objectGPR = object.gpr();
speculateObject(objectEdge, objectGPR);
flushRegisters();
callOperation(operationPushWithScopeObject, resultGPR, currentScopeGPR, objectGPR);
// No exception check here as we did not have to call toObject().
} else {
ASSERT(objectEdge.useKind() == UntypedUse);
JSValueOperand object(this, objectEdge);
JSValueRegs objectRegs = object.jsValueRegs();
flushRegisters();
callOperation(operationPushWithScope, resultGPR, currentScopeGPR, objectRegs);
m_jit.exceptionCheck();
}
cellResult(resultGPR, node);
}
bool SpeculativeJIT::nonSpeculativeStrictEq(Node* node, bool invert)
{
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
ASSERT(node->adjustedRefCount() == 1);
nonSpeculativePeepholeStrictEq(node, branchNode, invert);
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
nonSpeculativeNonPeepholeStrictEq(node, invert);
return false;
}
static const char* dataFormatString(DataFormat format)
{
// These values correspond to the DataFormat enum.
const char* strings[] = {
"[ ]",
"[ i]",
"[ d]",
"[ c]",
"Err!",
"Err!",
"Err!",
"Err!",
"[J ]",
"[Ji]",
"[Jd]",
"[Jc]",
"Err!",
"Err!",
"Err!",
"Err!",
};
return strings[format];
}
void SpeculativeJIT::dump(const char* label)
{
if (label)
dataLogF("<%s>\n", label);
dataLogF(" gprs:\n");
m_gprs.dump();
dataLogF(" fprs:\n");
m_fprs.dump();
dataLogF(" VirtualRegisters:\n");
for (unsigned i = 0; i < m_generationInfo.size(); ++i) {
GenerationInfo& info = m_generationInfo[i];
if (info.alive())
dataLogF(" % 3d:%s%s", i, dataFormatString(info.registerFormat()), dataFormatString(info.spillFormat()));
else
dataLogF(" % 3d:[__][__]", i);
if (info.registerFormat() == DataFormatDouble)
dataLogF(":fpr%d\n", info.fpr());
else if (info.registerFormat() != DataFormatNone
#if USE(JSVALUE32_64)
&& !(info.registerFormat() & DataFormatJS)
#endif
) {
ASSERT(info.gpr() != InvalidGPRReg);
dataLogF(":%s\n", GPRInfo::debugName(info.gpr()));
} else
dataLogF("\n");
}
if (label)
dataLogF("</%s>\n", label);
}
GPRTemporary::GPRTemporary()
: m_jit(0)
, m_gpr(InvalidGPRReg)
{
}
GPRTemporary::GPRTemporary(SpeculativeJIT* jit)
: m_jit(jit)
, m_gpr(InvalidGPRReg)
{
m_gpr = m_jit->allocate();
}
GPRTemporary::GPRTemporary(SpeculativeJIT* jit, GPRReg specific)
: m_jit(jit)
, m_gpr(InvalidGPRReg)
{
m_gpr = m_jit->allocate(specific);
}
#if USE(JSVALUE32_64)
GPRTemporary::GPRTemporary(
SpeculativeJIT* jit, ReuseTag, JSValueOperand& op1, WhichValueWord which)
: m_jit(jit)
, m_gpr(InvalidGPRReg)
{
if (!op1.isDouble() && m_jit->canReuse(op1.node()))
m_gpr = m_jit->reuse(op1.gpr(which));
else
m_gpr = m_jit->allocate();
}
#else // USE(JSVALUE32_64)
GPRTemporary::GPRTemporary(SpeculativeJIT* jit, ReuseTag, JSValueOperand& op1, WhichValueWord)
: GPRTemporary(jit, Reuse, op1)
{
}
#endif
JSValueRegsTemporary::JSValueRegsTemporary() { }
JSValueRegsTemporary::JSValueRegsTemporary(SpeculativeJIT* jit)
#if USE(JSVALUE64)
: m_gpr(jit)
#else
: m_payloadGPR(jit)
, m_tagGPR(jit)
#endif
{
}
#if USE(JSVALUE64)
template<typename T>
JSValueRegsTemporary::JSValueRegsTemporary(SpeculativeJIT* jit, ReuseTag, T& operand, WhichValueWord)
: m_gpr(jit, Reuse, operand)
{
}
#else
template<typename T>
JSValueRegsTemporary::JSValueRegsTemporary(SpeculativeJIT* jit, ReuseTag, T& operand, WhichValueWord resultWord)
{
if (resultWord == PayloadWord) {
m_payloadGPR = GPRTemporary(jit, Reuse, operand);
m_tagGPR = GPRTemporary(jit);
} else {
m_payloadGPR = GPRTemporary(jit);
m_tagGPR = GPRTemporary(jit, Reuse, operand);
}
}
#endif
#if USE(JSVALUE64)
JSValueRegsTemporary::JSValueRegsTemporary(SpeculativeJIT* jit, ReuseTag, JSValueOperand& operand)
{
m_gpr = GPRTemporary(jit, Reuse, operand);
}
#else
JSValueRegsTemporary::JSValueRegsTemporary(SpeculativeJIT* jit, ReuseTag, JSValueOperand& operand)
{
if (jit->canReuse(operand.node())) {
m_payloadGPR = GPRTemporary(jit, Reuse, operand, PayloadWord);
m_tagGPR = GPRTemporary(jit, Reuse, operand, TagWord);
} else {
m_payloadGPR = GPRTemporary(jit);
m_tagGPR = GPRTemporary(jit);
}
}
#endif
JSValueRegsTemporary::~JSValueRegsTemporary() { }
JSValueRegs JSValueRegsTemporary::regs()
{
#if USE(JSVALUE64)
return JSValueRegs(m_gpr.gpr());
#else
return JSValueRegs(m_tagGPR.gpr(), m_payloadGPR.gpr());
#endif
}
void GPRTemporary::adopt(GPRTemporary& other)
{
ASSERT(!m_jit);
ASSERT(m_gpr == InvalidGPRReg);
ASSERT(other.m_jit);
ASSERT(other.m_gpr != InvalidGPRReg);
m_jit = other.m_jit;
m_gpr = other.m_gpr;
other.m_jit = 0;
other.m_gpr = InvalidGPRReg;
}
FPRTemporary::FPRTemporary(FPRTemporary&& other)
{
ASSERT(other.m_jit);
ASSERT(other.m_fpr != InvalidFPRReg);
m_jit = other.m_jit;
m_fpr = other.m_fpr;
other.m_jit = nullptr;
}
FPRTemporary::FPRTemporary(SpeculativeJIT* jit)
: m_jit(jit)
, m_fpr(InvalidFPRReg)
{
m_fpr = m_jit->fprAllocate();
}
FPRTemporary::FPRTemporary(SpeculativeJIT* jit, SpeculateDoubleOperand& op1)
: m_jit(jit)
, m_fpr(InvalidFPRReg)
{
if (m_jit->canReuse(op1.node()))
m_fpr = m_jit->reuse(op1.fpr());
else
m_fpr = m_jit->fprAllocate();
}
FPRTemporary::FPRTemporary(SpeculativeJIT* jit, SpeculateDoubleOperand& op1, SpeculateDoubleOperand& op2)
: m_jit(jit)
, m_fpr(InvalidFPRReg)
{
if (m_jit->canReuse(op1.node()))
m_fpr = m_jit->reuse(op1.fpr());
else if (m_jit->canReuse(op2.node()))
m_fpr = m_jit->reuse(op2.fpr());
else if (m_jit->canReuse(op1.node(), op2.node()) && op1.fpr() == op2.fpr())
m_fpr = m_jit->reuse(op1.fpr());
else
m_fpr = m_jit->fprAllocate();
}
#if USE(JSVALUE32_64)
FPRTemporary::FPRTemporary(SpeculativeJIT* jit, JSValueOperand& op1)
: m_jit(jit)
, m_fpr(InvalidFPRReg)
{
if (op1.isDouble() && m_jit->canReuse(op1.node()))
m_fpr = m_jit->reuse(op1.fpr());
else
m_fpr = m_jit->fprAllocate();
}
#endif
void SpeculativeJIT::compilePeepHoleDoubleBranch(Node* node, Node* branchNode, JITCompiler::DoubleCondition condition)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
if (taken == nextBlock()) {
condition = MacroAssembler::invert(condition);
std::swap(taken, notTaken);
}
SpeculateDoubleOperand op1(this, node->child1());
SpeculateDoubleOperand op2(this, node->child2());
branchDouble(condition, op1.fpr(), op2.fpr(), taken);
jump(notTaken);
}
void SpeculativeJIT::compilePeepHoleObjectEquality(Node* node, Node* branchNode)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
MacroAssembler::RelationalCondition condition = MacroAssembler::Equal;
if (taken == nextBlock()) {
condition = MacroAssembler::NotEqual;
BasicBlock* tmp = taken;
taken = notTaken;
notTaken = tmp;
}
SpeculateCellOperand op1(this, node->child1());
SpeculateCellOperand op2(this, node->child2());
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
if (masqueradesAsUndefinedWatchpointIsStillValid()) {
if (m_state.forNode(node->child1()).m_type & ~SpecObject) {
speculationCheck(
BadType, JSValueSource::unboxedCell(op1GPR), node->child1(), m_jit.branchIfNotObject(op1GPR));
}
if (m_state.forNode(node->child2()).m_type & ~SpecObject) {
speculationCheck(
BadType, JSValueSource::unboxedCell(op2GPR), node->child2(), m_jit.branchIfNotObject(op2GPR));
}
} else {
if (m_state.forNode(node->child1()).m_type & ~SpecObject) {
speculationCheck(
BadType, JSValueSource::unboxedCell(op1GPR), node->child1(),
m_jit.branchIfNotObject(op1GPR));
}
speculationCheck(BadType, JSValueSource::unboxedCell(op1GPR), node->child1(),
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(op1GPR, JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
if (m_state.forNode(node->child2()).m_type & ~SpecObject) {
speculationCheck(
BadType, JSValueSource::unboxedCell(op2GPR), node->child2(),
m_jit.branchIfNotObject(op2GPR));
}
speculationCheck(BadType, JSValueSource::unboxedCell(op2GPR), node->child2(),
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(op2GPR, JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
}
branchPtr(condition, op1GPR, op2GPR, taken);
jump(notTaken);
}
void SpeculativeJIT::compilePeepHoleBooleanBranch(Node* node, Node* branchNode, JITCompiler::RelationalCondition condition)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
// The branch instruction will branch to the taken block.
// If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
if (taken == nextBlock()) {
condition = JITCompiler::invert(condition);
BasicBlock* tmp = taken;
taken = notTaken;
notTaken = tmp;
}
if (node->child1()->isInt32Constant()) {
int32_t imm = node->child1()->asInt32();
SpeculateBooleanOperand op2(this, node->child2());
branch32(condition, JITCompiler::Imm32(imm), op2.gpr(), taken);
} else if (node->child2()->isInt32Constant()) {
SpeculateBooleanOperand op1(this, node->child1());
int32_t imm = node->child2()->asInt32();
branch32(condition, op1.gpr(), JITCompiler::Imm32(imm), taken);
} else {
SpeculateBooleanOperand op1(this, node->child1());
SpeculateBooleanOperand op2(this, node->child2());
branch32(condition, op1.gpr(), op2.gpr(), taken);
}
jump(notTaken);
}
void SpeculativeJIT::compileStringSlice(Node* node)
{
SpeculateCellOperand string(this, node->child1());
GPRTemporary startIndex(this);
GPRTemporary temp(this);
GPRTemporary temp2(this);
GPRReg stringGPR = string.gpr();
GPRReg startIndexGPR = startIndex.gpr();
GPRReg tempGPR = temp.gpr();
GPRReg temp2GPR = temp2.gpr();
speculateString(node->child1(), stringGPR);
{
m_jit.load32(JITCompiler::Address(stringGPR, JSString::offsetOfLength()), temp2GPR);
emitPopulateSliceIndex(node->child2(), temp2GPR, startIndexGPR);
if (node->child3())
emitPopulateSliceIndex(node->child3(), temp2GPR, tempGPR);
else
m_jit.move(temp2GPR, tempGPR);
}
CCallHelpers::JumpList doneCases;
CCallHelpers::JumpList slowCases;
auto nonEmptyCase = m_jit.branch32(MacroAssembler::Below, startIndexGPR, tempGPR);
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), jsEmptyString(&vm())), tempGPR);
doneCases.append(m_jit.jump());
nonEmptyCase.link(&m_jit);
m_jit.sub32(startIndexGPR, tempGPR); // the size of the sliced string.
slowCases.append(m_jit.branch32(MacroAssembler::NotEqual, tempGPR, TrustedImm32(1)));
m_jit.loadPtr(MacroAssembler::Address(stringGPR, JSString::offsetOfValue()), temp2GPR);
slowCases.append(m_jit.branchTestPtr(MacroAssembler::Zero, temp2GPR));
m_jit.loadPtr(MacroAssembler::Address(temp2GPR, StringImpl::dataOffset()), tempGPR);
// Load the character into scratchReg
m_jit.zeroExtend32ToPtr(startIndexGPR, startIndexGPR);
auto is16Bit = m_jit.branchTest32(MacroAssembler::Zero, MacroAssembler::Address(temp2GPR, StringImpl::flagsOffset()), TrustedImm32(StringImpl::flagIs8Bit()));
m_jit.load8(MacroAssembler::BaseIndex(tempGPR, startIndexGPR, MacroAssembler::TimesOne, 0), tempGPR);
auto cont8Bit = m_jit.jump();
is16Bit.link(&m_jit);
m_jit.load16(MacroAssembler::BaseIndex(tempGPR, startIndexGPR, MacroAssembler::TimesTwo, 0), tempGPR);
auto bigCharacter = m_jit.branch32(MacroAssembler::AboveOrEqual, tempGPR, TrustedImm32(0x100));
// 8 bit string values don't need the isASCII check.
cont8Bit.link(&m_jit);
m_jit.lshift32(MacroAssembler::TrustedImm32(sizeof(void*) == 4 ? 2 : 3), tempGPR);
m_jit.addPtr(TrustedImmPtr(m_jit.vm()->smallStrings.singleCharacterStrings()), tempGPR);
m_jit.loadPtr(tempGPR, tempGPR);
addSlowPathGenerator(
slowPathCall(
bigCharacter, this, operationSingleCharacterString, tempGPR, tempGPR));
addSlowPathGenerator(
slowPathCall(
slowCases, this, operationStringSubstr, tempGPR, stringGPR, startIndexGPR, tempGPR));
doneCases.link(&m_jit);
cellResult(tempGPR, node);
}
void SpeculativeJIT::compileToLowerCase(Node* node)
{
ASSERT(node->op() == ToLowerCase);
SpeculateCellOperand string(this, node->child1());
GPRTemporary temp(this);
GPRTemporary index(this);
GPRTemporary charReg(this);
GPRTemporary length(this);
GPRReg stringGPR = string.gpr();
GPRReg tempGPR = temp.gpr();
GPRReg indexGPR = index.gpr();
GPRReg charGPR = charReg.gpr();
GPRReg lengthGPR = length.gpr();
speculateString(node->child1(), stringGPR);
CCallHelpers::JumpList slowPath;
m_jit.move(TrustedImmPtr(nullptr), indexGPR);
m_jit.loadPtr(MacroAssembler::Address(stringGPR, JSString::offsetOfValue()), tempGPR);
slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, tempGPR));
slowPath.append(m_jit.branchTest32(
MacroAssembler::Zero, MacroAssembler::Address(tempGPR, StringImpl::flagsOffset()),
MacroAssembler::TrustedImm32(StringImpl::flagIs8Bit())));
m_jit.load32(MacroAssembler::Address(tempGPR, StringImpl::lengthMemoryOffset()), lengthGPR);
m_jit.loadPtr(MacroAssembler::Address(tempGPR, StringImpl::dataOffset()), tempGPR);
auto loopStart = m_jit.label();
auto loopDone = m_jit.branch32(CCallHelpers::AboveOrEqual, indexGPR, lengthGPR);
m_jit.load8(MacroAssembler::BaseIndex(tempGPR, indexGPR, MacroAssembler::TimesOne), charGPR);
slowPath.append(m_jit.branchTest32(CCallHelpers::NonZero, charGPR, TrustedImm32(~0x7F)));
m_jit.sub32(TrustedImm32('A'), charGPR);
slowPath.append(m_jit.branch32(CCallHelpers::BelowOrEqual, charGPR, TrustedImm32('Z' - 'A')));
m_jit.add32(TrustedImm32(1), indexGPR);
m_jit.jump().linkTo(loopStart, &m_jit);
slowPath.link(&m_jit);
silentSpillAllRegisters(lengthGPR);
callOperation(operationToLowerCase, lengthGPR, stringGPR, indexGPR);
silentFillAllRegisters();
m_jit.exceptionCheck();
auto done = m_jit.jump();
loopDone.link(&m_jit);
m_jit.move(stringGPR, lengthGPR);
done.link(&m_jit);
cellResult(lengthGPR, node);
}
void SpeculativeJIT::compilePeepHoleInt32Branch(Node* node, Node* branchNode, JITCompiler::RelationalCondition condition)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
// The branch instruction will branch to the taken block.
// If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
if (taken == nextBlock()) {
condition = JITCompiler::invert(condition);
BasicBlock* tmp = taken;
taken = notTaken;
notTaken = tmp;
}
if (node->child1()->isInt32Constant()) {
int32_t imm = node->child1()->asInt32();
SpeculateInt32Operand op2(this, node->child2());
branch32(condition, JITCompiler::Imm32(imm), op2.gpr(), taken);
} else if (node->child2()->isInt32Constant()) {
SpeculateInt32Operand op1(this, node->child1());
int32_t imm = node->child2()->asInt32();
branch32(condition, op1.gpr(), JITCompiler::Imm32(imm), taken);
} else {
SpeculateInt32Operand op1(this, node->child1());
SpeculateInt32Operand op2(this, node->child2());
branch32(condition, op1.gpr(), op2.gpr(), taken);
}
jump(notTaken);
}
// Returns true if the compare is fused with a subsequent branch.
bool SpeculativeJIT::compilePeepHoleBranch(Node* node, MacroAssembler::RelationalCondition condition, MacroAssembler::DoubleCondition doubleCondition, S_JITOperation_EJJ operation)
{
// Fused compare & branch.
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
// detectPeepHoleBranch currently only permits the branch to be the very next node,
// so can be no intervening nodes to also reference the compare.
ASSERT(node->adjustedRefCount() == 1);
if (node->isBinaryUseKind(Int32Use))
compilePeepHoleInt32Branch(node, branchNode, condition);
#if USE(JSVALUE64)
else if (node->isBinaryUseKind(Int52RepUse))
compilePeepHoleInt52Branch(node, branchNode, condition);
#endif // USE(JSVALUE64)
else if (node->isBinaryUseKind(StringUse) || node->isBinaryUseKind(StringIdentUse)) {
// Use non-peephole comparison, for now.
return false;
} else if (node->isBinaryUseKind(DoubleRepUse))
compilePeepHoleDoubleBranch(node, branchNode, doubleCondition);
else if (node->op() == CompareEq) {
if (node->isBinaryUseKind(BooleanUse))
compilePeepHoleBooleanBranch(node, branchNode, condition);
else if (node->isBinaryUseKind(SymbolUse))
compilePeepHoleSymbolEquality(node, branchNode);
else if (node->isBinaryUseKind(ObjectUse))
compilePeepHoleObjectEquality(node, branchNode);
else if (node->isBinaryUseKind(ObjectUse, ObjectOrOtherUse))
compilePeepHoleObjectToObjectOrOtherEquality(node->child1(), node->child2(), branchNode);
else if (node->isBinaryUseKind(ObjectOrOtherUse, ObjectUse))
compilePeepHoleObjectToObjectOrOtherEquality(node->child2(), node->child1(), branchNode);
else if (!needsTypeCheck(node->child1(), SpecOther))
nonSpeculativePeepholeBranchNullOrUndefined(node->child2(), branchNode);
else if (!needsTypeCheck(node->child2(), SpecOther))
nonSpeculativePeepholeBranchNullOrUndefined(node->child1(), branchNode);
else {
nonSpeculativePeepholeBranch(node, branchNode, condition, operation);
return true;
}
} else {
nonSpeculativePeepholeBranch(node, branchNode, condition, operation);
return true;
}
use(node->child1());
use(node->child2());
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
return false;
}
void SpeculativeJIT::noticeOSRBirth(Node* node)
{
if (!node->hasVirtualRegister())
return;
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
info.noticeOSRBirth(*m_stream, node, virtualRegister);
}
void SpeculativeJIT::compileMovHint(Node* node)
{
ASSERT(node->containsMovHint() && node->op() != ZombieHint);
Node* child = node->child1().node();
noticeOSRBirth(child);
m_stream->appendAndLog(VariableEvent::movHint(MinifiedID(child), node->unlinkedLocal()));
}
void SpeculativeJIT::bail(AbortReason reason)
{
if (verboseCompilationEnabled())
dataLog("Bailing compilation.\n");
m_compileOkay = true;
m_jit.abortWithReason(reason, m_lastGeneratedNode);
clearGenerationInfo();
}
void SpeculativeJIT::compileCurrentBlock()
{
ASSERT(m_compileOkay);
if (!m_block)
return;
ASSERT(m_block->isReachable);
m_jit.blockHeads()[m_block->index] = m_jit.label();
if (!m_block->intersectionOfCFAHasVisited) {
// Don't generate code for basic blocks that are unreachable according to CFA.
// But to be sure that nobody has generated a jump to this block, drop in a
// breakpoint here.
m_jit.abortWithReason(DFGUnreachableBasicBlock);
return;
}
if (m_block->isCatchEntrypoint) {
m_jit.addPtr(CCallHelpers::TrustedImm32(-(m_jit.graph().frameRegisterCount() * sizeof(Register))), GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister);
if (Options::zeroStackFrame())
m_jit.clearStackFrame(GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister, GPRInfo::regT0, m_jit.graph().frameRegisterCount() * sizeof(Register));
m_jit.emitSaveCalleeSaves();
m_jit.emitMaterializeTagCheckRegisters();
m_jit.emitPutToCallFrameHeader(m_jit.codeBlock(), CallFrameSlot::codeBlock);
}
m_stream->appendAndLog(VariableEvent::reset());
m_jit.jitAssertHasValidCallFrame();
m_jit.jitAssertTagsInPlace();
m_jit.jitAssertArgumentCountSane();
m_state.reset();
m_state.beginBasicBlock(m_block);
for (size_t i = m_block->variablesAtHead.size(); i--;) {
int operand = m_block->variablesAtHead.operandForIndex(i);
Node* node = m_block->variablesAtHead[i];
if (!node)
continue; // No need to record dead SetLocal's.
VariableAccessData* variable = node->variableAccessData();
DataFormat format;
if (!node->refCount())
continue; // No need to record dead SetLocal's.
format = dataFormatFor(variable->flushFormat());
m_stream->appendAndLog(
VariableEvent::setLocal(
VirtualRegister(operand),
variable->machineLocal(),
format));
}
m_origin = NodeOrigin();
for (m_indexInBlock = 0; m_indexInBlock < m_block->size(); ++m_indexInBlock) {
m_currentNode = m_block->at(m_indexInBlock);
// We may have hit a contradiction that the CFA was aware of but that the JIT
// didn't cause directly.
if (!m_state.isValid()) {
bail(DFGBailedAtTopOfBlock);
return;
}
m_interpreter.startExecuting();
m_interpreter.executeKnownEdgeTypes(m_currentNode);
m_jit.setForNode(m_currentNode);
m_origin = m_currentNode->origin;
if (validationEnabled())
m_origin.exitOK &= mayExit(m_jit.graph(), m_currentNode) == Exits;
m_lastGeneratedNode = m_currentNode->op();
ASSERT(m_currentNode->shouldGenerate());
if (verboseCompilationEnabled()) {
dataLogF(
"SpeculativeJIT generating Node @%d (bc#%u) at JIT offset 0x%x",
(int)m_currentNode->index(),
m_currentNode->origin.semantic.bytecodeIndex, m_jit.debugOffset());
dataLog("\n");
}
if (Options::validateDFGExceptionHandling() && (mayExit(m_jit.graph(), m_currentNode) != DoesNotExit || m_currentNode->isTerminal()))
m_jit.jitReleaseAssertNoException(*m_jit.vm());
m_jit.pcToCodeOriginMapBuilder().appendItem(m_jit.labelIgnoringWatchpoints(), m_origin.semantic);
compile(m_currentNode);
if (belongsInMinifiedGraph(m_currentNode->op()))
m_minifiedGraph->append(MinifiedNode::fromNode(m_currentNode));
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.clearRegisterAllocationOffsets();
#endif
if (!m_compileOkay) {
bail(DFGBailedAtEndOfNode);
return;
}
// Make sure that the abstract state is rematerialized for the next node.
m_interpreter.executeEffects(m_indexInBlock);
}
// Perform the most basic verification that children have been used correctly.
if (!ASSERT_DISABLED) {
for (auto& info : m_generationInfo)
RELEASE_ASSERT(!info.alive());
}
}
// If we are making type predictions about our arguments then
// we need to check that they are correct on function entry.
void SpeculativeJIT::checkArgumentTypes()
{
ASSERT(!m_currentNode);
m_origin = NodeOrigin(CodeOrigin(0), CodeOrigin(0), true);
auto& arguments = m_jit.graph().m_rootToArguments.find(m_jit.graph().block(0))->value;
for (int i = 0; i < m_jit.codeBlock()->numParameters(); ++i) {
Node* node = arguments[i];
if (!node) {
// The argument is dead. We don't do any checks for such arguments.
continue;
}
ASSERT(node->op() == SetArgument);
ASSERT(node->shouldGenerate());
VariableAccessData* variableAccessData = node->variableAccessData();
FlushFormat format = variableAccessData->flushFormat();
if (format == FlushedJSValue)
continue;
VirtualRegister virtualRegister = variableAccessData->local();
JSValueSource valueSource = JSValueSource(JITCompiler::addressFor(virtualRegister));
#if USE(JSVALUE64)
switch (format) {
case FlushedInt32: {
speculationCheck(BadType, valueSource, node, m_jit.branch64(MacroAssembler::Below, JITCompiler::addressFor(virtualRegister), GPRInfo::tagTypeNumberRegister));
break;
}
case FlushedBoolean: {
GPRTemporary temp(this);
m_jit.load64(JITCompiler::addressFor(virtualRegister), temp.gpr());
m_jit.xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), temp.gpr());
speculationCheck(BadType, valueSource, node, m_jit.branchTest64(MacroAssembler::NonZero, temp.gpr(), TrustedImm32(static_cast<int32_t>(~1))));
break;
}
case FlushedCell: {
speculationCheck(BadType, valueSource, node, m_jit.branchTest64(MacroAssembler::NonZero, JITCompiler::addressFor(virtualRegister), GPRInfo::tagMaskRegister));
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
#else
switch (format) {
case FlushedInt32: {
speculationCheck(BadType, valueSource, node, m_jit.branch32(MacroAssembler::NotEqual, JITCompiler::tagFor(virtualRegister), TrustedImm32(JSValue::Int32Tag)));
break;
}
case FlushedBoolean: {
speculationCheck(BadType, valueSource, node, m_jit.branch32(MacroAssembler::NotEqual, JITCompiler::tagFor(virtualRegister), TrustedImm32(JSValue::BooleanTag)));
break;
}
case FlushedCell: {
speculationCheck(BadType, valueSource, node, m_jit.branch32(MacroAssembler::NotEqual, JITCompiler::tagFor(virtualRegister), TrustedImm32(JSValue::CellTag)));
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
#endif
}
m_origin = NodeOrigin();
}
bool SpeculativeJIT::compile()
{
checkArgumentTypes();
ASSERT(!m_currentNode);
for (BlockIndex blockIndex = 0; blockIndex < m_jit.graph().numBlocks(); ++blockIndex) {
m_jit.setForBlockIndex(blockIndex);
m_block = m_jit.graph().block(blockIndex);
compileCurrentBlock();
}
linkBranches();
return true;
}
void SpeculativeJIT::createOSREntries()
{
for (BlockIndex blockIndex = 0; blockIndex < m_jit.graph().numBlocks(); ++blockIndex) {
BasicBlock* block = m_jit.graph().block(blockIndex);
if (!block)
continue;
if (block->isOSRTarget || block->isCatchEntrypoint) {
// Currently we don't have OSR entry trampolines. We could add them
// here if need be.
m_osrEntryHeads.append(m_jit.blockHeads()[blockIndex]);
}
}
}
void SpeculativeJIT::linkOSREntries(LinkBuffer& linkBuffer)
{
unsigned osrEntryIndex = 0;
for (BlockIndex blockIndex = 0; blockIndex < m_jit.graph().numBlocks(); ++blockIndex) {
BasicBlock* block = m_jit.graph().block(blockIndex);
if (!block)
continue;
if (!block->isOSRTarget && !block->isCatchEntrypoint)
continue;
if (block->isCatchEntrypoint) {
auto& argumentsVector = m_jit.graph().m_rootToArguments.find(block)->value;
Vector<FlushFormat> argumentFormats;
argumentFormats.reserveInitialCapacity(argumentsVector.size());
for (Node* setArgument : argumentsVector) {
if (setArgument) {
FlushFormat flushFormat = setArgument->variableAccessData()->flushFormat();
ASSERT(flushFormat == FlushedInt32 || flushFormat == FlushedCell || flushFormat == FlushedBoolean || flushFormat == FlushedJSValue);
argumentFormats.uncheckedAppend(flushFormat);
} else
argumentFormats.uncheckedAppend(DeadFlush);
}
m_jit.noticeCatchEntrypoint(*block, m_osrEntryHeads[osrEntryIndex++], linkBuffer, WTFMove(argumentFormats));
} else {
ASSERT(block->isOSRTarget);
m_jit.noticeOSREntry(*block, m_osrEntryHeads[osrEntryIndex++], linkBuffer);
}
}
m_jit.jitCode()->finalizeOSREntrypoints();
m_jit.jitCode()->common.finalizeCatchEntrypoints();
ASSERT(osrEntryIndex == m_osrEntryHeads.size());
if (verboseCompilationEnabled()) {
DumpContext dumpContext;
dataLog("OSR Entries:\n");
for (OSREntryData& entryData : m_jit.jitCode()->osrEntry)
dataLog(" ", inContext(entryData, &dumpContext), "\n");
if (!dumpContext.isEmpty())
dumpContext.dump(WTF::dataFile());
}
}
void SpeculativeJIT::compileCheckTraps(Node* node)
{
ASSERT(Options::usePollingTraps());
GPRTemporary unused(this);
GPRReg unusedGPR = unused.gpr();
JITCompiler::Jump needTrapHandling = m_jit.branchTest8(JITCompiler::NonZero,
JITCompiler::AbsoluteAddress(m_jit.vm()->needTrapHandlingAddress()));
addSlowPathGenerator(slowPathCall(needTrapHandling, this, operationHandleTraps, unusedGPR));
noResult(node);
}
void SpeculativeJIT::compileDoublePutByVal(Node* node, SpeculateCellOperand& base, SpeculateStrictInt32Operand& property)
{
Edge child3 = m_jit.graph().varArgChild(node, 2);
Edge child4 = m_jit.graph().varArgChild(node, 3);
ArrayMode arrayMode = node->arrayMode();
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
SpeculateDoubleOperand value(this, child3);
FPRReg valueReg = value.fpr();
DFG_TYPE_CHECK(
JSValueRegs(), child3, SpecFullRealNumber,
m_jit.branchIfNaN(valueReg));
if (!m_compileOkay)
return;
StorageOperand storage(this, child4);
GPRReg storageReg = storage.gpr();
if (node->op() == PutByValAlias) {
// Store the value to the array.
GPRReg propertyReg = property.gpr();
FPRReg valueReg = value.fpr();
m_jit.storeDouble(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight));
noResult(m_currentNode);
return;
}
GPRTemporary temporary;
GPRReg temporaryReg = temporaryRegisterForPutByVal(temporary, node);
MacroAssembler::Jump slowCase;
if (arrayMode.isInBounds()) {
speculationCheck(
OutOfBounds, JSValueRegs(), 0,
m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));
} else {
MacroAssembler::Jump inBounds = m_jit.branch32(MacroAssembler::Below, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength()));
slowCase = m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfVectorLength()));
if (!arrayMode.isOutOfBounds())
speculationCheck(OutOfBounds, JSValueRegs(), 0, slowCase);
m_jit.add32(TrustedImm32(1), propertyReg, temporaryReg);
m_jit.store32(temporaryReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength()));
inBounds.link(&m_jit);
}
m_jit.storeDouble(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight));
base.use();
property.use();
value.use();
storage.use();
if (arrayMode.isOutOfBounds()) {
addSlowPathGenerator(
slowPathCall(
slowCase, this,
m_jit.codeBlock()->isStrictMode()
? (node->op() == PutByValDirect ? operationPutDoubleByValDirectBeyondArrayBoundsStrict : operationPutDoubleByValBeyondArrayBoundsStrict)
: (node->op() == PutByValDirect ? operationPutDoubleByValDirectBeyondArrayBoundsNonStrict : operationPutDoubleByValBeyondArrayBoundsNonStrict),
NoResult, baseReg, propertyReg, valueReg));
}
noResult(m_currentNode, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::compileGetCharCodeAt(Node* node)
{
SpeculateCellOperand string(this, node->child1());
SpeculateStrictInt32Operand index(this, node->child2());
StorageOperand storage(this, node->child3());
GPRReg stringReg = string.gpr();
GPRReg indexReg = index.gpr();
GPRReg storageReg = storage.gpr();
ASSERT(speculationChecked(m_state.forNode(node->child1()).m_type, SpecString));
// unsigned comparison so we can filter out negative indices and indices that are too large
speculationCheck(Uncountable, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::AboveOrEqual, indexReg, MacroAssembler::Address(stringReg, JSString::offsetOfLength())));
GPRTemporary scratch(this);
GPRReg scratchReg = scratch.gpr();
m_jit.loadPtr(MacroAssembler::Address(stringReg, JSString::offsetOfValue()), scratchReg);
// Load the character into scratchReg
JITCompiler::Jump is16Bit = m_jit.branchTest32(MacroAssembler::Zero, MacroAssembler::Address(scratchReg, StringImpl::flagsOffset()), TrustedImm32(StringImpl::flagIs8Bit()));
m_jit.load8(MacroAssembler::BaseIndex(storageReg, indexReg, MacroAssembler::TimesOne, 0), scratchReg);
JITCompiler::Jump cont8Bit = m_jit.jump();
is16Bit.link(&m_jit);
m_jit.load16(MacroAssembler::BaseIndex(storageReg, indexReg, MacroAssembler::TimesTwo, 0), scratchReg);
cont8Bit.link(&m_jit);
int32Result(scratchReg, m_currentNode);
}
void SpeculativeJIT::compileGetByValOnString(Node* node)
{
SpeculateCellOperand base(this, m_graph.child(node, 0));
SpeculateStrictInt32Operand property(this, m_graph.child(node, 1));
StorageOperand storage(this, m_graph.child(node, 2));
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
GPRTemporary scratch(this);
GPRReg scratchReg = scratch.gpr();
#if USE(JSVALUE32_64)
GPRTemporary resultTag;
GPRReg resultTagReg = InvalidGPRReg;
if (node->arrayMode().isOutOfBounds()) {
GPRTemporary realResultTag(this);
resultTag.adopt(realResultTag);
resultTagReg = resultTag.gpr();
}
#endif
ASSERT(ArrayMode(Array::String, Array::Read).alreadyChecked(m_jit.graph(), node, m_state.forNode(m_graph.child(node, 0))));
// unsigned comparison so we can filter out negative indices and indices that are too large
JITCompiler::Jump outOfBounds = m_jit.branch32(
MacroAssembler::AboveOrEqual, propertyReg,
MacroAssembler::Address(baseReg, JSString::offsetOfLength()));
if (node->arrayMode().isInBounds())
speculationCheck(OutOfBounds, JSValueRegs(), 0, outOfBounds);
m_jit.loadPtr(MacroAssembler::Address(baseReg, JSString::offsetOfValue()), scratchReg);
// Load the character into scratchReg
JITCompiler::Jump is16Bit = m_jit.branchTest32(MacroAssembler::Zero, MacroAssembler::Address(scratchReg, StringImpl::flagsOffset()), TrustedImm32(StringImpl::flagIs8Bit()));
m_jit.load8(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesOne, 0), scratchReg);
JITCompiler::Jump cont8Bit = m_jit.jump();
is16Bit.link(&m_jit);
m_jit.load16(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesTwo, 0), scratchReg);
JITCompiler::Jump bigCharacter =
m_jit.branch32(MacroAssembler::AboveOrEqual, scratchReg, TrustedImm32(0x100));
// 8 bit string values don't need the isASCII check.
cont8Bit.link(&m_jit);
m_jit.lshift32(MacroAssembler::TrustedImm32(sizeof(void*) == 4 ? 2 : 3), scratchReg);
m_jit.addPtr(TrustedImmPtr(m_jit.vm()->smallStrings.singleCharacterStrings()), scratchReg);
m_jit.loadPtr(scratchReg, scratchReg);
addSlowPathGenerator(
slowPathCall(
bigCharacter, this, operationSingleCharacterString, scratchReg, scratchReg));
if (node->arrayMode().isOutOfBounds()) {
#if USE(JSVALUE32_64)
m_jit.move(TrustedImm32(JSValue::CellTag), resultTagReg);
#endif
JSGlobalObject* globalObject = m_jit.globalObjectFor(node->origin.semantic);
bool prototypeChainIsSane = false;
if (globalObject->stringPrototypeChainIsSane()) {
// FIXME: This could be captured using a Speculation mode that means "out-of-bounds
// loads return a trivial value". Something like SaneChainOutOfBounds. This should
// speculate that we don't take negative out-of-bounds, or better yet, it should rely
// on a stringPrototypeChainIsSane() guaranteeing that the prototypes have no negative
// indexed properties either.
// https://bugs.webkit.org/show_bug.cgi?id=144668
m_jit.graph().registerAndWatchStructureTransition(globalObject->stringPrototype()->structure(*m_jit.vm()));
m_jit.graph().registerAndWatchStructureTransition(globalObject->objectPrototype()->structure(*m_jit.vm()));
prototypeChainIsSane = globalObject->stringPrototypeChainIsSane();
}
if (prototypeChainIsSane) {
#if USE(JSVALUE64)
addSlowPathGenerator(std::make_unique<SaneStringGetByValSlowPathGenerator>(
outOfBounds, this, JSValueRegs(scratchReg), baseReg, propertyReg));
#else
addSlowPathGenerator(std::make_unique<SaneStringGetByValSlowPathGenerator>(
outOfBounds, this, JSValueRegs(resultTagReg, scratchReg),
baseReg, propertyReg));
#endif
} else {
#if USE(JSVALUE64)
addSlowPathGenerator(
slowPathCall(
outOfBounds, this, operationGetByValStringInt,
scratchReg, baseReg, propertyReg));
#else
addSlowPathGenerator(
slowPathCall(
outOfBounds, this, operationGetByValStringInt,
JSValueRegs(resultTagReg, scratchReg), baseReg, propertyReg));
#endif
}
#if USE(JSVALUE64)
jsValueResult(scratchReg, m_currentNode);
#else
jsValueResult(resultTagReg, scratchReg, m_currentNode);
#endif
} else
cellResult(scratchReg, m_currentNode);
}
void SpeculativeJIT::compileFromCharCode(Node* node)
{
Edge& child = node->child1();
if (child.useKind() == UntypedUse) {
JSValueOperand opr(this, child);
JSValueRegs oprRegs = opr.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationStringFromCharCodeUntyped, resultRegs, oprRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
SpeculateStrictInt32Operand property(this, child);
GPRReg propertyReg = property.gpr();
GPRTemporary smallStrings(this);
GPRTemporary scratch(this);
GPRReg scratchReg = scratch.gpr();
GPRReg smallStringsReg = smallStrings.gpr();
JITCompiler::JumpList slowCases;
slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, TrustedImm32(0xff)));
m_jit.move(TrustedImmPtr(m_jit.vm()->smallStrings.singleCharacterStrings()), smallStringsReg);
m_jit.loadPtr(MacroAssembler::BaseIndex(smallStringsReg, propertyReg, MacroAssembler::ScalePtr, 0), scratchReg);
slowCases.append(m_jit.branchTest32(MacroAssembler::Zero, scratchReg));
addSlowPathGenerator(slowPathCall(slowCases, this, operationStringFromCharCode, scratchReg, propertyReg));
cellResult(scratchReg, m_currentNode);
}
GeneratedOperandType SpeculativeJIT::checkGeneratedTypeForToInt32(Node* node)
{
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
switch (info.registerFormat()) {
case DataFormatStorage:
RELEASE_ASSERT_NOT_REACHED();
case DataFormatBoolean:
case DataFormatCell:
terminateSpeculativeExecution(Uncountable, JSValueRegs(), 0);
return GeneratedOperandTypeUnknown;
case DataFormatNone:
case DataFormatJSCell:
case DataFormatJS:
case DataFormatJSBoolean:
case DataFormatJSDouble:
return GeneratedOperandJSValue;
case DataFormatJSInt32:
case DataFormatInt32:
return GeneratedOperandInteger;
default:
RELEASE_ASSERT_NOT_REACHED();
return GeneratedOperandTypeUnknown;
}
}
void SpeculativeJIT::compileValueToInt32(Node* node)
{
switch (node->child1().useKind()) {
#if USE(JSVALUE64)
case Int52RepUse: {
SpeculateStrictInt52Operand op1(this, node->child1());
GPRTemporary result(this, Reuse, op1);
GPRReg op1GPR = op1.gpr();
GPRReg resultGPR = result.gpr();
m_jit.zeroExtend32ToPtr(op1GPR, resultGPR);
int32Result(resultGPR, node, DataFormatInt32);
return;
}
#endif // USE(JSVALUE64)
case DoubleRepUse: {
GPRTemporary result(this);
SpeculateDoubleOperand op1(this, node->child1());
FPRReg fpr = op1.fpr();
GPRReg gpr = result.gpr();
#if CPU(ARM64)
if (MacroAssemblerARM64::supportsDoubleToInt32ConversionUsingJavaScriptSemantics())
m_jit.convertDoubleToInt32UsingJavaScriptSemantics(fpr, gpr);
else
#endif
{
JITCompiler::Jump notTruncatedToInteger = m_jit.branchTruncateDoubleToInt32(fpr, gpr, JITCompiler::BranchIfTruncateFailed);
addSlowPathGenerator(slowPathCall(notTruncatedToInteger, this,
hasSensibleDoubleToInt() ? operationToInt32SensibleSlow : operationToInt32, NeedToSpill, ExceptionCheckRequirement::CheckNotNeeded, gpr, fpr));
}
int32Result(gpr, node);
return;
}
case NumberUse:
case NotCellUse: {
switch (checkGeneratedTypeForToInt32(node->child1().node())) {
case GeneratedOperandInteger: {
SpeculateInt32Operand op1(this, node->child1(), ManualOperandSpeculation);
GPRTemporary result(this, Reuse, op1);
m_jit.move(op1.gpr(), result.gpr());
int32Result(result.gpr(), node, op1.format());
return;
}
case GeneratedOperandJSValue: {
GPRTemporary result(this);
#if USE(JSVALUE64)
JSValueOperand op1(this, node->child1(), ManualOperandSpeculation);
GPRReg gpr = op1.gpr();
GPRReg resultGpr = result.gpr();
FPRTemporary tempFpr(this);
FPRReg fpr = tempFpr.fpr();
JITCompiler::Jump isInteger = m_jit.branchIfInt32(gpr);
JITCompiler::JumpList converted;
if (node->child1().useKind() == NumberUse) {
DFG_TYPE_CHECK(
JSValueRegs(gpr), node->child1(), SpecBytecodeNumber,
m_jit.branchIfNotNumber(gpr));
} else {
JITCompiler::Jump isNumber = m_jit.branchIfNumber(gpr);
DFG_TYPE_CHECK(
JSValueRegs(gpr), node->child1(), ~SpecCellCheck, m_jit.branchIfCell(JSValueRegs(gpr)));
// It's not a cell: so true turns into 1 and all else turns into 0.
m_jit.compare64(JITCompiler::Equal, gpr, TrustedImm32(ValueTrue), resultGpr);
converted.append(m_jit.jump());
isNumber.link(&m_jit);
}
// First, if we get here we have a double encoded as a JSValue
unboxDouble(gpr, resultGpr, fpr);
#if CPU(ARM64)
if (MacroAssemblerARM64::supportsDoubleToInt32ConversionUsingJavaScriptSemantics())
m_jit.convertDoubleToInt32UsingJavaScriptSemantics(fpr, resultGpr);
else
#endif
{
silentSpillAllRegisters(resultGpr);
callOperation(operationToInt32, resultGpr, fpr);
silentFillAllRegisters();
}
converted.append(m_jit.jump());
isInteger.link(&m_jit);
m_jit.zeroExtend32ToPtr(gpr, resultGpr);
converted.link(&m_jit);
#else
Node* childNode = node->child1().node();
VirtualRegister virtualRegister = childNode->virtualRegister();
GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
JSValueOperand op1(this, node->child1(), ManualOperandSpeculation);
GPRReg payloadGPR = op1.payloadGPR();
GPRReg resultGpr = result.gpr();
JITCompiler::JumpList converted;
if (info.registerFormat() == DataFormatJSInt32)
m_jit.move(payloadGPR, resultGpr);
else {
GPRReg tagGPR = op1.tagGPR();
FPRTemporary tempFpr(this);
FPRReg fpr = tempFpr.fpr();
FPRTemporary scratch(this);
JITCompiler::Jump isInteger = m_jit.branchIfInt32(tagGPR);
if (node->child1().useKind() == NumberUse) {
DFG_TYPE_CHECK(
op1.jsValueRegs(), node->child1(), SpecBytecodeNumber,
m_jit.branch32(
MacroAssembler::AboveOrEqual, tagGPR,
TrustedImm32(JSValue::LowestTag)));
} else {
JITCompiler::Jump isNumber = m_jit.branch32(MacroAssembler::Below, tagGPR, TrustedImm32(JSValue::LowestTag));
DFG_TYPE_CHECK(
op1.jsValueRegs(), node->child1(), ~SpecCell,
m_jit.branchIfCell(op1.jsValueRegs()));
// It's not a cell: so true turns into 1 and all else turns into 0.
JITCompiler::Jump isBoolean = m_jit.branchIfBoolean(tagGPR, InvalidGPRReg);
m_jit.move(TrustedImm32(0), resultGpr);
converted.append(m_jit.jump());
isBoolean.link(&m_jit);
m_jit.move(payloadGPR, resultGpr);
converted.append(m_jit.jump());
isNumber.link(&m_jit);
}
unboxDouble(tagGPR, payloadGPR, fpr, scratch.fpr());
silentSpillAllRegisters(resultGpr);
callOperation(operationToInt32, resultGpr, fpr);
silentFillAllRegisters();
converted.append(m_jit.jump());
isInteger.link(&m_jit);
m_jit.move(payloadGPR, resultGpr);
converted.link(&m_jit);
}
#endif
int32Result(resultGpr, node);
return;
}
case GeneratedOperandTypeUnknown:
RELEASE_ASSERT(!m_compileOkay);
return;
}
RELEASE_ASSERT_NOT_REACHED();
return;
}
default:
ASSERT(!m_compileOkay);
return;
}
}
void SpeculativeJIT::compileUInt32ToNumber(Node* node)
{
if (doesOverflow(node->arithMode())) {
if (enableInt52()) {
SpeculateInt32Operand op1(this, node->child1());
GPRTemporary result(this, Reuse, op1);
m_jit.zeroExtend32ToPtr(op1.gpr(), result.gpr());
strictInt52Result(result.gpr(), node);
return;
}
SpeculateInt32Operand op1(this, node->child1());
FPRTemporary result(this);
GPRReg inputGPR = op1.gpr();
FPRReg outputFPR = result.fpr();
m_jit.convertInt32ToDouble(inputGPR, outputFPR);
JITCompiler::Jump positive = m_jit.branch32(MacroAssembler::GreaterThanOrEqual, inputGPR, TrustedImm32(0));
m_jit.addDouble(JITCompiler::AbsoluteAddress(&AssemblyHelpers::twoToThe32), outputFPR);
positive.link(&m_jit);
doubleResult(outputFPR, node);
return;
}
RELEASE_ASSERT(node->arithMode() == Arith::CheckOverflow);
SpeculateInt32Operand op1(this, node->child1());
GPRTemporary result(this);
m_jit.move(op1.gpr(), result.gpr());
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::LessThan, result.gpr(), TrustedImm32(0)));
int32Result(result.gpr(), node, op1.format());
}
void SpeculativeJIT::compileDoubleAsInt32(Node* node)
{
SpeculateDoubleOperand op1(this, node->child1());
FPRTemporary scratch(this);
GPRTemporary result(this);
FPRReg valueFPR = op1.fpr();
FPRReg scratchFPR = scratch.fpr();
GPRReg resultGPR = result.gpr();
JITCompiler::JumpList failureCases;
RELEASE_ASSERT(shouldCheckOverflow(node->arithMode()));
m_jit.branchConvertDoubleToInt32(
valueFPR, resultGPR, failureCases, scratchFPR,
shouldCheckNegativeZero(node->arithMode()));
speculationCheck(Overflow, JSValueRegs(), 0, failureCases);
int32Result(resultGPR, node);
}
void SpeculativeJIT::compileDoubleRep(Node* node)
{
switch (node->child1().useKind()) {
case RealNumberUse: {
JSValueOperand op1(this, node->child1(), ManualOperandSpeculation);
FPRTemporary result(this);
JSValueRegs op1Regs = op1.jsValueRegs();
FPRReg resultFPR = result.fpr();
#if USE(JSVALUE64)
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
m_jit.unboxDoubleWithoutAssertions(op1Regs.gpr(), tempGPR, resultFPR);
#else
FPRTemporary temp(this);
FPRReg tempFPR = temp.fpr();
unboxDouble(op1Regs.tagGPR(), op1Regs.payloadGPR(), resultFPR, tempFPR);
#endif
JITCompiler::Jump done = m_jit.branchIfNotNaN(resultFPR);
DFG_TYPE_CHECK(
op1Regs, node->child1(), SpecBytecodeRealNumber, m_jit.branchIfNotInt32(op1Regs));
m_jit.convertInt32ToDouble(op1Regs.payloadGPR(), resultFPR);
done.link(&m_jit);
doubleResult(resultFPR, node);
return;
}
case NotCellUse:
case NumberUse: {
ASSERT(!node->child1()->isNumberConstant()); // This should have been constant folded.
SpeculatedType possibleTypes = m_state.forNode(node->child1()).m_type;
if (isInt32Speculation(possibleTypes)) {
SpeculateInt32Operand op1(this, node->child1(), ManualOperandSpeculation);
FPRTemporary result(this);
m_jit.convertInt32ToDouble(op1.gpr(), result.fpr());
doubleResult(result.fpr(), node);
return;
}
JSValueOperand op1(this, node->child1(), ManualOperandSpeculation);
FPRTemporary result(this);
#if USE(JSVALUE64)
GPRTemporary temp(this);
GPRReg op1GPR = op1.gpr();
GPRReg tempGPR = temp.gpr();
FPRReg resultFPR = result.fpr();
JITCompiler::JumpList done;
JITCompiler::Jump isInteger = m_jit.branchIfInt32(op1GPR);
if (node->child1().useKind() == NotCellUse) {
JITCompiler::Jump isNumber = m_jit.branchIfNumber(op1GPR);
JITCompiler::Jump isUndefined = m_jit.branchIfUndefined(op1GPR);
static const double zero = 0;
m_jit.loadDouble(TrustedImmPtr(&zero), resultFPR);
JITCompiler::Jump isNull = m_jit.branchIfNull(op1GPR);
done.append(isNull);
DFG_TYPE_CHECK(JSValueRegs(op1GPR), node->child1(), ~SpecCellCheck,
m_jit.branchTest64(JITCompiler::Zero, op1GPR, TrustedImm32(static_cast<int32_t>(TagBitBool))));
JITCompiler::Jump isFalse = m_jit.branch64(JITCompiler::Equal, op1GPR, TrustedImm64(ValueFalse));
static const double one = 1;
m_jit.loadDouble(TrustedImmPtr(&one), resultFPR);
done.append(m_jit.jump());
done.append(isFalse);
isUndefined.link(&m_jit);
static const double NaN = PNaN;
m_jit.loadDouble(TrustedImmPtr(&NaN), resultFPR);
done.append(m_jit.jump());
isNumber.link(&m_jit);
} else if (needsTypeCheck(node->child1(), SpecBytecodeNumber)) {
typeCheck(
JSValueRegs(op1GPR), node->child1(), SpecBytecodeNumber,
m_jit.branchIfNotNumber(op1GPR));
}
unboxDouble(op1GPR, tempGPR, resultFPR);
done.append(m_jit.jump());
isInteger.link(&m_jit);
m_jit.convertInt32ToDouble(op1GPR, resultFPR);
done.link(&m_jit);
#else // USE(JSVALUE64) -> this is the 32_64 case
FPRTemporary temp(this);
GPRReg op1TagGPR = op1.tagGPR();
GPRReg op1PayloadGPR = op1.payloadGPR();
FPRReg tempFPR = temp.fpr();
FPRReg resultFPR = result.fpr();
JITCompiler::JumpList done;
JITCompiler::Jump isInteger = m_jit.branchIfInt32(op1TagGPR);
if (node->child1().useKind() == NotCellUse) {
JITCompiler::Jump isNumber = m_jit.branch32(JITCompiler::Below, op1TagGPR, JITCompiler::TrustedImm32(JSValue::LowestTag + 1));
JITCompiler::Jump isUndefined = m_jit.branchIfUndefined(op1TagGPR);
static const double zero = 0;
m_jit.loadDouble(TrustedImmPtr(&zero), resultFPR);
JITCompiler::Jump isNull = m_jit.branchIfNull(op1TagGPR);
done.append(isNull);
DFG_TYPE_CHECK(JSValueRegs(op1TagGPR, op1PayloadGPR), node->child1(), ~SpecCell, m_jit.branchIfNotBoolean(op1TagGPR, InvalidGPRReg));
JITCompiler::Jump isFalse = m_jit.branchTest32(JITCompiler::Zero, op1PayloadGPR, TrustedImm32(1));
static const double one = 1;
m_jit.loadDouble(TrustedImmPtr(&one), resultFPR);
done.append(m_jit.jump());
done.append(isFalse);
isUndefined.link(&m_jit);
static const double NaN = PNaN;
m_jit.loadDouble(TrustedImmPtr(&NaN), resultFPR);
done.append(m_jit.jump());
isNumber.link(&m_jit);
} else if (needsTypeCheck(node->child1(), SpecBytecodeNumber)) {
// This check fails with Int32Tag, but it is OK since Int32 case is already excluded.
typeCheck(
JSValueRegs(op1TagGPR, op1PayloadGPR), node->child1(), SpecBytecodeNumber,
m_jit.branch32(MacroAssembler::AboveOrEqual, op1TagGPR, TrustedImm32(JSValue::LowestTag)));
}
unboxDouble(op1TagGPR, op1PayloadGPR, resultFPR, tempFPR);
done.append(m_jit.jump());
isInteger.link(&m_jit);
m_jit.convertInt32ToDouble(op1PayloadGPR, resultFPR);
done.link(&m_jit);
#endif // USE(JSVALUE64)
doubleResult(resultFPR, node);
return;
}
#if USE(JSVALUE64)
case Int52RepUse: {
SpeculateStrictInt52Operand value(this, node->child1());
FPRTemporary result(this);
GPRReg valueGPR = value.gpr();
FPRReg resultFPR = result.fpr();
m_jit.convertInt64ToDouble(valueGPR, resultFPR);
doubleResult(resultFPR, node);
return;
}
#endif // USE(JSVALUE64)
default:
RELEASE_ASSERT_NOT_REACHED();
return;
}
}
void SpeculativeJIT::compileValueRep(Node* node)
{
switch (node->child1().useKind()) {
case DoubleRepUse: {
SpeculateDoubleOperand value(this, node->child1());
JSValueRegsTemporary result(this);
FPRReg valueFPR = value.fpr();
JSValueRegs resultRegs = result.regs();
// It's very tempting to in-place filter the value to indicate that it's not impure NaN
// anymore. Unfortunately, this would be unsound. If it's a GetLocal or if the value was
// subject to a prior SetLocal, filtering the value would imply that the corresponding
// local was purified.
if (needsTypeCheck(node->child1(), ~SpecDoubleImpureNaN))
m_jit.purifyNaN(valueFPR);
boxDouble(valueFPR, resultRegs);
jsValueResult(resultRegs, node);
return;
}
#if USE(JSVALUE64)
case Int52RepUse: {
SpeculateStrictInt52Operand value(this, node->child1());
GPRTemporary result(this);
GPRReg valueGPR = value.gpr();
GPRReg resultGPR = result.gpr();
boxInt52(valueGPR, resultGPR, DataFormatStrictInt52);
jsValueResult(resultGPR, node);
return;
}
#endif // USE(JSVALUE64)
default:
RELEASE_ASSERT_NOT_REACHED();
return;
}
}
static double clampDoubleToByte(double d)
{
d += 0.5;
if (!(d > 0))
d = 0;
else if (d > 255)
d = 255;
return d;
}
static void compileClampIntegerToByte(JITCompiler& jit, GPRReg result)
{
MacroAssembler::Jump inBounds = jit.branch32(MacroAssembler::BelowOrEqual, result, JITCompiler::TrustedImm32(0xff));
MacroAssembler::Jump tooBig = jit.branch32(MacroAssembler::GreaterThan, result, JITCompiler::TrustedImm32(0xff));
jit.xorPtr(result, result);
MacroAssembler::Jump clamped = jit.jump();
tooBig.link(&jit);
jit.move(JITCompiler::TrustedImm32(255), result);
clamped.link(&jit);
inBounds.link(&jit);
}
static void compileClampDoubleToByte(JITCompiler& jit, GPRReg result, FPRReg source, FPRReg scratch)
{
// Unordered compare so we pick up NaN
static const double zero = 0;
static const double byteMax = 255;
static const double half = 0.5;
jit.loadDouble(JITCompiler::TrustedImmPtr(&zero), scratch);
MacroAssembler::Jump tooSmall = jit.branchDouble(MacroAssembler::DoubleLessThanOrEqualOrUnordered, source, scratch);
jit.loadDouble(JITCompiler::TrustedImmPtr(&byteMax), scratch);
MacroAssembler::Jump tooBig = jit.branchDouble(MacroAssembler::DoubleGreaterThan, source, scratch);
jit.loadDouble(JITCompiler::TrustedImmPtr(&half), scratch);
// FIXME: This should probably just use a floating point round!
// https://bugs.webkit.org/show_bug.cgi?id=72054
jit.addDouble(source, scratch);
jit.truncateDoubleToInt32(scratch, result);
MacroAssembler::Jump truncatedInt = jit.jump();
tooSmall.link(&jit);
jit.xorPtr(result, result);
MacroAssembler::Jump zeroed = jit.jump();
tooBig.link(&jit);
jit.move(JITCompiler::TrustedImm32(255), result);
truncatedInt.link(&jit);
zeroed.link(&jit);
}
JITCompiler::Jump SpeculativeJIT::jumpForTypedArrayOutOfBounds(Node* node, GPRReg baseGPR, GPRReg indexGPR)
{
if (node->op() == PutByValAlias)
return JITCompiler::Jump();
JSArrayBufferView* view = m_jit.graph().tryGetFoldableView(
m_state.forNode(m_jit.graph().child(node, 0)).m_value, node->arrayMode());
if (view) {
uint32_t length = view->length();
Node* indexNode = m_jit.graph().child(node, 1).node();
if (indexNode->isInt32Constant() && indexNode->asUInt32() < length)
return JITCompiler::Jump();
return m_jit.branch32(
MacroAssembler::AboveOrEqual, indexGPR, MacroAssembler::Imm32(length));
}
return m_jit.branch32(
MacroAssembler::AboveOrEqual, indexGPR,
MacroAssembler::Address(baseGPR, JSArrayBufferView::offsetOfLength()));
}
void SpeculativeJIT::emitTypedArrayBoundsCheck(Node* node, GPRReg baseGPR, GPRReg indexGPR)
{
JITCompiler::Jump jump = jumpForTypedArrayOutOfBounds(node, baseGPR, indexGPR);
if (!jump.isSet())
return;
speculationCheck(OutOfBounds, JSValueRegs(), 0, jump);
}
JITCompiler::Jump SpeculativeJIT::jumpForTypedArrayIsNeuteredIfOutOfBounds(Node* node, GPRReg base, JITCompiler::Jump outOfBounds)
{
JITCompiler::Jump done;
if (outOfBounds.isSet()) {
done = m_jit.jump();
if (node->arrayMode().isInBounds())
speculationCheck(OutOfBounds, JSValueSource(), 0, outOfBounds);
else {
outOfBounds.link(&m_jit);
JITCompiler::Jump notWasteful = m_jit.branch32(
MacroAssembler::NotEqual,
MacroAssembler::Address(base, JSArrayBufferView::offsetOfMode()),
TrustedImm32(WastefulTypedArray));
JITCompiler::Jump hasNullVector = m_jit.branchTestPtr(
MacroAssembler::Zero,
MacroAssembler::Address(base, JSArrayBufferView::offsetOfVector()));
speculationCheck(Uncountable, JSValueSource(), node, hasNullVector);
notWasteful.link(&m_jit);
}
}
return done;
}
void SpeculativeJIT::loadFromIntTypedArray(GPRReg storageReg, GPRReg propertyReg, GPRReg resultReg, TypedArrayType type)
{
switch (elementSize(type)) {
case 1:
if (isSigned(type))
m_jit.load8SignedExtendTo32(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesOne), resultReg);
else
m_jit.load8(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesOne), resultReg);
break;
case 2:
if (isSigned(type))
m_jit.load16SignedExtendTo32(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesTwo), resultReg);
else
m_jit.load16(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesTwo), resultReg);
break;
case 4:
m_jit.load32(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesFour), resultReg);
break;
default:
CRASH();
}
}
void SpeculativeJIT::setIntTypedArrayLoadResult(Node* node, GPRReg resultReg, TypedArrayType type, bool canSpeculate)
{
if (elementSize(type) < 4 || isSigned(type)) {
int32Result(resultReg, node);
return;
}
ASSERT(elementSize(type) == 4 && !isSigned(type));
if (node->shouldSpeculateInt32() && canSpeculate) {
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::LessThan, resultReg, TrustedImm32(0)));
int32Result(resultReg, node);
return;
}
#if USE(JSVALUE64)
if (node->shouldSpeculateAnyInt()) {
m_jit.zeroExtend32ToPtr(resultReg, resultReg);
strictInt52Result(resultReg, node);
return;
}
#endif
FPRTemporary fresult(this);
m_jit.convertInt32ToDouble(resultReg, fresult.fpr());
JITCompiler::Jump positive = m_jit.branch32(MacroAssembler::GreaterThanOrEqual, resultReg, TrustedImm32(0));
m_jit.addDouble(JITCompiler::AbsoluteAddress(&AssemblyHelpers::twoToThe32), fresult.fpr());
positive.link(&m_jit);
doubleResult(fresult.fpr(), node);
}
void SpeculativeJIT::compileGetByValOnIntTypedArray(Node* node, TypedArrayType type)
{
ASSERT(isInt(type));
SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
StorageOperand storage(this, m_graph.varArgChild(node, 2));
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
GPRTemporary result(this);
GPRReg resultReg = result.gpr();
ASSERT(node->arrayMode().alreadyChecked(m_jit.graph(), node, m_state.forNode(m_graph.varArgChild(node, 0))));
emitTypedArrayBoundsCheck(node, baseReg, propertyReg);
loadFromIntTypedArray(storageReg, propertyReg, resultReg, type);
bool canSpeculate = true;
setIntTypedArrayLoadResult(node, resultReg, type, canSpeculate);
}
bool SpeculativeJIT::getIntTypedArrayStoreOperand(
GPRTemporary& value,
GPRReg property,
#if USE(JSVALUE32_64)
GPRTemporary& propertyTag,
GPRTemporary& valueTag,
#endif
Edge valueUse, JITCompiler::JumpList& slowPathCases, bool isClamped)
{
bool isAppropriateConstant = false;
if (valueUse->isConstant()) {
JSValue jsValue = valueUse->asJSValue();
SpeculatedType expectedType = typeFilterFor(valueUse.useKind());
SpeculatedType actualType = speculationFromValue(jsValue);
isAppropriateConstant = (expectedType | actualType) == expectedType;
}
if (isAppropriateConstant) {
JSValue jsValue = valueUse->asJSValue();
if (!jsValue.isNumber()) {
terminateSpeculativeExecution(Uncountable, JSValueRegs(), 0);
return false;
}
double d = jsValue.asNumber();
if (isClamped)
d = clampDoubleToByte(d);
GPRTemporary scratch(this);
GPRReg scratchReg = scratch.gpr();
m_jit.move(Imm32(toInt32(d)), scratchReg);
value.adopt(scratch);
} else {
switch (valueUse.useKind()) {
case Int32Use: {
SpeculateInt32Operand valueOp(this, valueUse);
GPRTemporary scratch(this);
GPRReg scratchReg = scratch.gpr();
m_jit.move(valueOp.gpr(), scratchReg);
if (isClamped)
compileClampIntegerToByte(m_jit, scratchReg);
value.adopt(scratch);
break;
}
#if USE(JSVALUE64)
case Int52RepUse: {
SpeculateStrictInt52Operand valueOp(this, valueUse);
GPRTemporary scratch(this);
GPRReg scratchReg = scratch.gpr();
m_jit.move(valueOp.gpr(), scratchReg);
if (isClamped) {
MacroAssembler::Jump inBounds = m_jit.branch64(
MacroAssembler::BelowOrEqual, scratchReg, JITCompiler::TrustedImm64(0xff));
MacroAssembler::Jump tooBig = m_jit.branch64(
MacroAssembler::GreaterThan, scratchReg, JITCompiler::TrustedImm64(0xff));
m_jit.move(TrustedImm32(0), scratchReg);
MacroAssembler::Jump clamped = m_jit.jump();
tooBig.link(&m_jit);
m_jit.move(JITCompiler::TrustedImm32(255), scratchReg);
clamped.link(&m_jit);
inBounds.link(&m_jit);
}
value.adopt(scratch);
break;
}
#endif // USE(JSVALUE64)
case DoubleRepUse: {
RELEASE_ASSERT(!isAtomicsIntrinsic(m_currentNode->op()));
if (isClamped) {
SpeculateDoubleOperand valueOp(this, valueUse);
GPRTemporary result(this);
FPRTemporary floatScratch(this);
FPRReg fpr = valueOp.fpr();
GPRReg gpr = result.gpr();
compileClampDoubleToByte(m_jit, gpr, fpr, floatScratch.fpr());
value.adopt(result);
} else {
#if USE(JSVALUE32_64)
GPRTemporary realPropertyTag(this);
propertyTag.adopt(realPropertyTag);
GPRReg propertyTagGPR = propertyTag.gpr();
GPRTemporary realValueTag(this);
valueTag.adopt(realValueTag);
GPRReg valueTagGPR = valueTag.gpr();
#endif
SpeculateDoubleOperand valueOp(this, valueUse);
GPRTemporary result(this);
FPRReg fpr = valueOp.fpr();
GPRReg gpr = result.gpr();
MacroAssembler::Jump notNaN = m_jit.branchIfNotNaN(fpr);
m_jit.xorPtr(gpr, gpr);
MacroAssembler::JumpList fixed(m_jit.jump());
notNaN.link(&m_jit);
fixed.append(m_jit.branchTruncateDoubleToInt32(
fpr, gpr, MacroAssembler::BranchIfTruncateSuccessful));
#if USE(JSVALUE64)
m_jit.or64(GPRInfo::tagTypeNumberRegister, property);
boxDouble(fpr, gpr);
#else
UNUSED_PARAM(property);
m_jit.move(TrustedImm32(JSValue::Int32Tag), propertyTagGPR);
boxDouble(fpr, valueTagGPR, gpr);
#endif
slowPathCases.append(m_jit.jump());
fixed.link(&m_jit);
value.adopt(result);
}
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
return true;
}
void SpeculativeJIT::compilePutByValForIntTypedArray(GPRReg base, GPRReg property, Node* node, TypedArrayType type)
{
ASSERT(isInt(type));
StorageOperand storage(this, m_jit.graph().varArgChild(node, 3));
GPRReg storageReg = storage.gpr();
Edge valueUse = m_jit.graph().varArgChild(node, 2);
GPRTemporary value;
#if USE(JSVALUE32_64)
GPRTemporary propertyTag;
GPRTemporary valueTag;
#endif
JITCompiler::JumpList slowPathCases;
bool result = getIntTypedArrayStoreOperand(
value, property,
#if USE(JSVALUE32_64)
propertyTag, valueTag,
#endif
valueUse, slowPathCases, isClamped(type));
if (!result) {
noResult(node);
return;
}
GPRReg valueGPR = value.gpr();
#if USE(JSVALUE32_64)
GPRReg propertyTagGPR = propertyTag.gpr();
GPRReg valueTagGPR = valueTag.gpr();
#endif
ASSERT_UNUSED(valueGPR, valueGPR != property);
ASSERT(valueGPR != base);
ASSERT(valueGPR != storageReg);
JITCompiler::Jump outOfBounds = jumpForTypedArrayOutOfBounds(node, base, property);
switch (elementSize(type)) {
case 1:
m_jit.store8(value.gpr(), MacroAssembler::BaseIndex(storageReg, property, MacroAssembler::TimesOne));
break;
case 2:
m_jit.store16(value.gpr(), MacroAssembler::BaseIndex(storageReg, property, MacroAssembler::TimesTwo));
break;
case 4:
m_jit.store32(value.gpr(), MacroAssembler::BaseIndex(storageReg, property, MacroAssembler::TimesFour));
break;
default:
CRASH();
}
JITCompiler::Jump done = jumpForTypedArrayIsNeuteredIfOutOfBounds(node, base, outOfBounds);
if (done.isSet())
done.link(&m_jit);
if (!slowPathCases.empty()) {
#if USE(JSVALUE64)
if (node->op() == PutByValDirect) {
addSlowPathGenerator(slowPathCall(
slowPathCases, this,
m_jit.isStrictModeFor(node->origin.semantic) ? operationPutByValDirectStrict : operationPutByValDirectNonStrict,
NoResult, base, property, valueGPR));
} else {
addSlowPathGenerator(slowPathCall(
slowPathCases, this,
m_jit.isStrictModeFor(node->origin.semantic) ? operationPutByValStrict : operationPutByValNonStrict,
NoResult, base, property, valueGPR));
}
#else // not USE(JSVALUE64)
if (node->op() == PutByValDirect) {
addSlowPathGenerator(slowPathCall(
slowPathCases, this,
m_jit.codeBlock()->isStrictMode() ? operationPutByValDirectCellStrict : operationPutByValDirectCellNonStrict,
NoResult, base, JSValueRegs(propertyTagGPR, property), JSValueRegs(valueTagGPR, valueGPR)));
} else {
addSlowPathGenerator(slowPathCall(
slowPathCases, this,
m_jit.codeBlock()->isStrictMode() ? operationPutByValCellStrict : operationPutByValCellNonStrict,
NoResult, base, JSValueRegs(propertyTagGPR, property), JSValueRegs(valueTagGPR, valueGPR)));
}
#endif
}
noResult(node);
}
void SpeculativeJIT::compileGetByValOnFloatTypedArray(Node* node, TypedArrayType type)
{
ASSERT(isFloat(type));
SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
StorageOperand storage(this, m_graph.varArgChild(node, 2));
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
GPRReg storageReg = storage.gpr();
ASSERT(node->arrayMode().alreadyChecked(m_jit.graph(), node, m_state.forNode(m_graph.varArgChild(node, 0))));
FPRTemporary result(this);
FPRReg resultReg = result.fpr();
emitTypedArrayBoundsCheck(node, baseReg, propertyReg);
switch (elementSize(type)) {
case 4:
m_jit.loadFloat(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesFour), resultReg);
m_jit.convertFloatToDouble(resultReg, resultReg);
break;
case 8: {
m_jit.loadDouble(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight), resultReg);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
doubleResult(resultReg, node);
}
void SpeculativeJIT::compilePutByValForFloatTypedArray(GPRReg base, GPRReg property, Node* node, TypedArrayType type)
{
ASSERT(isFloat(type));
StorageOperand storage(this, m_jit.graph().varArgChild(node, 3));
GPRReg storageReg = storage.gpr();
Edge baseUse = m_jit.graph().varArgChild(node, 0);
Edge valueUse = m_jit.graph().varArgChild(node, 2);
SpeculateDoubleOperand valueOp(this, valueUse);
FPRTemporary scratch(this);
FPRReg valueFPR = valueOp.fpr();
FPRReg scratchFPR = scratch.fpr();
ASSERT_UNUSED(baseUse, node->arrayMode().alreadyChecked(m_jit.graph(), node, m_state.forNode(baseUse)));
MacroAssembler::Jump outOfBounds = jumpForTypedArrayOutOfBounds(node, base, property);
switch (elementSize(type)) {
case 4: {
m_jit.moveDouble(valueFPR, scratchFPR);
m_jit.convertDoubleToFloat(valueFPR, scratchFPR);
m_jit.storeFloat(scratchFPR, MacroAssembler::BaseIndex(storageReg, property, MacroAssembler::TimesFour));
break;
}
case 8:
m_jit.storeDouble(valueFPR, MacroAssembler::BaseIndex(storageReg, property, MacroAssembler::TimesEight));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
JITCompiler::Jump done = jumpForTypedArrayIsNeuteredIfOutOfBounds(node, base, outOfBounds);
if (done.isSet())
done.link(&m_jit);
noResult(node);
}
void SpeculativeJIT::compileGetByValForObjectWithString(Node* node)
{
SpeculateCellOperand arg1(this, m_graph.varArgChild(node, 0));
SpeculateCellOperand arg2(this, m_graph.varArgChild(node, 1));
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
speculateObject(m_graph.varArgChild(node, 0), arg1GPR);
speculateString(m_graph.varArgChild(node, 1), arg2GPR);
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationGetByValObjectString, resultRegs, arg1GPR, arg2GPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileGetByValForObjectWithSymbol(Node* node)
{
SpeculateCellOperand arg1(this, m_graph.varArgChild(node, 0));
SpeculateCellOperand arg2(this, m_graph.varArgChild(node, 1));
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
speculateObject(m_graph.varArgChild(node, 0), arg1GPR);
speculateSymbol(m_graph.varArgChild(node, 1), arg2GPR);
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationGetByValObjectSymbol, resultRegs, arg1GPR, arg2GPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compilePutByValForCellWithString(Node* node, Edge& child1, Edge& child2, Edge& child3)
{
SpeculateCellOperand arg1(this, child1);
SpeculateCellOperand arg2(this, child2);
JSValueOperand arg3(this, child3);
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
JSValueRegs arg3Regs = arg3.jsValueRegs();
speculateString(child2, arg2GPR);
flushRegisters();
callOperation(m_jit.isStrictModeFor(node->origin.semantic) ? operationPutByValCellStringStrict : operationPutByValCellStringNonStrict, arg1GPR, arg2GPR, arg3Regs);
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compilePutByValForCellWithSymbol(Node* node, Edge& child1, Edge& child2, Edge& child3)
{
SpeculateCellOperand arg1(this, child1);
SpeculateCellOperand arg2(this, child2);
JSValueOperand arg3(this, child3);
GPRReg arg1GPR = arg1.gpr();
GPRReg arg2GPR = arg2.gpr();
JSValueRegs arg3Regs = arg3.jsValueRegs();
speculateSymbol(child2, arg2GPR);
flushRegisters();
callOperation(m_jit.isStrictModeFor(node->origin.semantic) ? operationPutByValCellSymbolStrict : operationPutByValCellSymbolNonStrict, arg1GPR, arg2GPR, arg3Regs);
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compileGetByValWithThis(Node* node)
{
JSValueOperand base(this, node->child1());
JSValueRegs baseRegs = base.jsValueRegs();
JSValueOperand thisValue(this, node->child2());
JSValueRegs thisValueRegs = thisValue.jsValueRegs();
JSValueOperand subscript(this, node->child3());
JSValueRegs subscriptRegs = subscript.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationGetByValWithThis, resultRegs, baseRegs, thisValueRegs, subscriptRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileCheckTypeInfoFlags(Node* node)
{
SpeculateCellOperand base(this, node->child1());
GPRReg baseGPR = base.gpr();
// FIXME: This only works for checking if a single bit is set. If we want to check more
// than one bit at once, we'll need to fix this:
// https://bugs.webkit.org/show_bug.cgi?id=185705
speculationCheck(BadTypeInfoFlags, JSValueRegs(), 0, m_jit.branchTest8(MacroAssembler::Zero, MacroAssembler::Address(baseGPR, JSCell::typeInfoFlagsOffset()), MacroAssembler::TrustedImm32(node->typeInfoOperand())));
noResult(node);
}
void SpeculativeJIT::compileParseInt(Node* node)
{
RELEASE_ASSERT(node->child1().useKind() == UntypedUse || node->child1().useKind() == StringUse);
if (node->child2()) {
SpeculateInt32Operand radix(this, node->child2());
GPRReg radixGPR = radix.gpr();
if (node->child1().useKind() == UntypedUse) {
JSValueOperand value(this, node->child1());
JSValueRegs valueRegs = value.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationParseIntGeneric, resultRegs, valueRegs, radixGPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
SpeculateCellOperand value(this, node->child1());
GPRReg valueGPR = value.gpr();
speculateString(node->child1(), valueGPR);
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationParseIntString, resultRegs, valueGPR, radixGPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
if (node->child1().useKind() == UntypedUse) {
JSValueOperand value(this, node->child1());
JSValueRegs valueRegs = value.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationParseIntNoRadixGeneric, resultRegs, valueRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
SpeculateCellOperand value(this, node->child1());
GPRReg valueGPR = value.gpr();
speculateString(node->child1(), valueGPR);
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationParseIntStringNoRadix, resultRegs, valueGPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileOverridesHasInstance(Node* node)
{
Node* hasInstanceValueNode = node->child2().node();
JSFunction* defaultHasInstanceFunction = jsCast<JSFunction*>(node->cellOperand()->value());
MacroAssembler::JumpList notDefault;
SpeculateCellOperand base(this, node->child1());
JSValueOperand hasInstanceValue(this, node->child2());
GPRTemporary result(this);
GPRReg baseGPR = base.gpr();
GPRReg resultGPR = result.gpr();
// It would be great if constant folding handled automatically the case where we knew the hasInstance function
// was a constant. Unfortunately, the folding rule for OverridesHasInstance is in the strength reduction phase
// since it relies on OSR information. https://bugs.webkit.org/show_bug.cgi?id=154832
if (!hasInstanceValueNode->isCellConstant() || defaultHasInstanceFunction != hasInstanceValueNode->asCell()) {
JSValueRegs hasInstanceValueRegs = hasInstanceValue.jsValueRegs();
#if USE(JSVALUE64)
notDefault.append(m_jit.branchPtr(MacroAssembler::NotEqual, hasInstanceValueRegs.gpr(), TrustedImmPtr(node->cellOperand())));
#else
notDefault.append(m_jit.branchIfNotCell(hasInstanceValueRegs));
notDefault.append(m_jit.branchPtr(MacroAssembler::NotEqual, hasInstanceValueRegs.payloadGPR(), TrustedImmPtr(node->cellOperand())));
#endif
}
// Check that base 'ImplementsDefaultHasInstance'.
m_jit.test8(MacroAssembler::Zero, MacroAssembler::Address(baseGPR, JSCell::typeInfoFlagsOffset()), MacroAssembler::TrustedImm32(ImplementsDefaultHasInstance), resultGPR);
MacroAssembler::Jump done = m_jit.jump();
if (!notDefault.empty()) {
notDefault.link(&m_jit);
m_jit.move(TrustedImm32(1), resultGPR);
}
done.link(&m_jit);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileInstanceOfForCells(Node* node, JSValueRegs valueRegs, JSValueRegs prototypeRegs, GPRReg resultGPR, GPRReg scratchGPR, GPRReg scratch2GPR, JITCompiler::Jump slowCase)
{
CallSiteIndex callSiteIndex = m_jit.addCallSite(node->origin.semantic);
JITInstanceOfGenerator gen(
m_jit.codeBlock(), node->origin.semantic, callSiteIndex, usedRegisters(), resultGPR,
valueRegs.payloadGPR(), prototypeRegs.payloadGPR(), scratchGPR, scratch2GPR,
m_state.forNode(node->child2()).isType(SpecObject | ~SpecCell));
gen.generateFastPath(m_jit);
JITCompiler::JumpList slowCases;
slowCases.append(slowCase);
std::unique_ptr<SlowPathGenerator> slowPath = slowPathCall(
slowCases, this, operationInstanceOfOptimize, resultGPR, gen.stubInfo(), valueRegs,
prototypeRegs);
m_jit.addInstanceOf(gen, slowPath.get());
addSlowPathGenerator(WTFMove(slowPath));
}
void SpeculativeJIT::compileInstanceOf(Node* node)
{
#if USE(JSVALUE64)
if (node->child1().useKind() == CellUse
&& node->child2().useKind() == CellUse) {
SpeculateCellOperand value(this, node->child1());
SpeculateCellOperand prototype(this, node->child2());
GPRTemporary result(this);
GPRTemporary scratch(this);
GPRTemporary scratch2(this);
GPRReg valueGPR = value.gpr();
GPRReg prototypeGPR = prototype.gpr();
GPRReg resultGPR = result.gpr();
GPRReg scratchGPR = scratch.gpr();
GPRReg scratch2GPR = scratch2.gpr();
compileInstanceOfForCells(node, JSValueRegs(valueGPR), JSValueRegs(prototypeGPR), resultGPR, scratchGPR, scratch2GPR);
blessedBooleanResult(resultGPR, node);
return;
}
#endif
DFG_ASSERT(m_jit.graph(), node, node->child1().useKind() == UntypedUse);
DFG_ASSERT(m_jit.graph(), node, node->child2().useKind() == UntypedUse);
JSValueOperand value(this, node->child1());
JSValueOperand prototype(this, node->child2());
GPRTemporary result(this);
GPRTemporary scratch(this);
JSValueRegs valueRegs = value.jsValueRegs();
JSValueRegs prototypeRegs = prototype.jsValueRegs();
GPRReg resultGPR = result.gpr();
GPRReg scratchGPR = scratch.gpr();
JITCompiler::Jump isCell = m_jit.branchIfCell(valueRegs);
moveFalseTo(resultGPR);
JITCompiler::Jump done = m_jit.jump();
isCell.link(&m_jit);
JITCompiler::Jump slowCase = m_jit.branchIfNotCell(prototypeRegs);
compileInstanceOfForCells(node, valueRegs, prototypeRegs, resultGPR, scratchGPR, InvalidGPRReg, slowCase);
done.link(&m_jit);
blessedBooleanResult(resultGPR, node);
return;
}
template<typename SnippetGenerator, J_JITOperation_EJJ snippetSlowPathFunction>
void SpeculativeJIT::emitUntypedBitOp(Node* node)
{
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
if (isKnownNotNumber(leftChild.node()) || isKnownNotNumber(rightChild.node())) {
JSValueOperand left(this, leftChild);
JSValueOperand right(this, rightChild);
JSValueRegs leftRegs = left.jsValueRegs();
JSValueRegs rightRegs = right.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(snippetSlowPathFunction, resultRegs, leftRegs, rightRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
std::optional<JSValueOperand> left;
std::optional<JSValueOperand> right;
JSValueRegs leftRegs;
JSValueRegs rightRegs;
#if USE(JSVALUE64)
GPRTemporary result(this);
JSValueRegs resultRegs = JSValueRegs(result.gpr());
GPRTemporary scratch(this);
GPRReg scratchGPR = scratch.gpr();
#else
GPRTemporary resultTag(this);
GPRTemporary resultPayload(this);
JSValueRegs resultRegs = JSValueRegs(resultPayload.gpr(), resultTag.gpr());
GPRReg scratchGPR = resultTag.gpr();
#endif
SnippetOperand leftOperand;
SnippetOperand rightOperand;
// The snippet generator does not support both operands being constant. If the left
// operand is already const, we'll ignore the right operand's constness.
if (leftChild->isInt32Constant())
leftOperand.setConstInt32(leftChild->asInt32());
else if (rightChild->isInt32Constant())
rightOperand.setConstInt32(rightChild->asInt32());
RELEASE_ASSERT(!leftOperand.isConst() || !rightOperand.isConst());
if (!leftOperand.isConst()) {
left.emplace(this, leftChild);
leftRegs = left->jsValueRegs();
}
if (!rightOperand.isConst()) {
right.emplace(this, rightChild);
rightRegs = right->jsValueRegs();
}
SnippetGenerator gen(leftOperand, rightOperand, resultRegs, leftRegs, rightRegs, scratchGPR);
gen.generateFastPath(m_jit);
ASSERT(gen.didEmitFastPath());
gen.endJumpList().append(m_jit.jump());
gen.slowPathJumpList().link(&m_jit);
silentSpillAllRegisters(resultRegs);
if (leftOperand.isConst()) {
leftRegs = resultRegs;
m_jit.moveValue(leftChild->asJSValue(), leftRegs);
} else if (rightOperand.isConst()) {
rightRegs = resultRegs;
m_jit.moveValue(rightChild->asJSValue(), rightRegs);
}
callOperation(snippetSlowPathFunction, resultRegs, leftRegs, rightRegs);
silentFillAllRegisters();
m_jit.exceptionCheck();
gen.endJumpList().link(&m_jit);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileValueBitwiseOp(Node* node)
{
NodeType op = node->op();
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
if (leftChild.useKind() == UntypedUse || rightChild.useKind() == UntypedUse) {
switch (op) {
case ValueBitAnd:
emitUntypedBitOp<JITBitAndGenerator, operationValueBitAnd>(node);
return;
case ValueBitOr:
emitUntypedBitOp<JITBitOrGenerator, operationValueBitOr>(node);
return;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
ASSERT(leftChild.useKind() == BigIntUse && rightChild.useKind() == BigIntUse);
SpeculateCellOperand left(this, node->child1());
SpeculateCellOperand right(this, node->child2());
GPRReg leftGPR = left.gpr();
GPRReg rightGPR = right.gpr();
speculateBigInt(leftChild, leftGPR);
speculateBigInt(rightChild, rightGPR);
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
switch (op) {
case ValueBitAnd:
callOperation(operationBitAndBigInt, resultGPR, leftGPR, rightGPR);
break;
case ValueBitOr:
callOperation(operationBitOrBigInt, resultGPR, leftGPR, rightGPR);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileBitwiseOp(Node* node)
{
NodeType op = node->op();
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
if (leftChild.useKind() == UntypedUse || rightChild.useKind() == UntypedUse) {
switch (op) {
case BitXor:
emitUntypedBitOp<JITBitXorGenerator, operationValueBitXor>(node);
return;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
if (leftChild->isInt32Constant()) {
SpeculateInt32Operand op2(this, rightChild);
GPRTemporary result(this, Reuse, op2);
bitOp(op, leftChild->asInt32(), op2.gpr(), result.gpr());
int32Result(result.gpr(), node);
} else if (rightChild->isInt32Constant()) {
SpeculateInt32Operand op1(this, leftChild);
GPRTemporary result(this, Reuse, op1);
bitOp(op, rightChild->asInt32(), op1.gpr(), result.gpr());
int32Result(result.gpr(), node);
} else {
SpeculateInt32Operand op1(this, leftChild);
SpeculateInt32Operand op2(this, rightChild);
GPRTemporary result(this, Reuse, op1, op2);
GPRReg reg1 = op1.gpr();
GPRReg reg2 = op2.gpr();
bitOp(op, reg1, reg2, result.gpr());
int32Result(result.gpr(), node);
}
}
void SpeculativeJIT::emitUntypedRightShiftBitOp(Node* node)
{
J_JITOperation_EJJ snippetSlowPathFunction = node->op() == BitRShift
? operationValueBitRShift : operationValueBitURShift;
JITRightShiftGenerator::ShiftType shiftType = node->op() == BitRShift
? JITRightShiftGenerator::SignedShift : JITRightShiftGenerator::UnsignedShift;
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
if (isKnownNotNumber(leftChild.node()) || isKnownNotNumber(rightChild.node())) {
JSValueOperand left(this, leftChild);
JSValueOperand right(this, rightChild);
JSValueRegs leftRegs = left.jsValueRegs();
JSValueRegs rightRegs = right.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(snippetSlowPathFunction, resultRegs, leftRegs, rightRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
std::optional<JSValueOperand> left;
std::optional<JSValueOperand> right;
JSValueRegs leftRegs;
JSValueRegs rightRegs;
FPRTemporary leftNumber(this);
FPRReg leftFPR = leftNumber.fpr();
#if USE(JSVALUE64)
GPRTemporary result(this);
JSValueRegs resultRegs = JSValueRegs(result.gpr());
GPRTemporary scratch(this);
GPRReg scratchGPR = scratch.gpr();
FPRReg scratchFPR = InvalidFPRReg;
#else
GPRTemporary resultTag(this);
GPRTemporary resultPayload(this);
JSValueRegs resultRegs = JSValueRegs(resultPayload.gpr(), resultTag.gpr());
GPRReg scratchGPR = resultTag.gpr();
FPRTemporary fprScratch(this);
FPRReg scratchFPR = fprScratch.fpr();
#endif
SnippetOperand leftOperand;
SnippetOperand rightOperand;
// The snippet generator does not support both operands being constant. If the left
// operand is already const, we'll ignore the right operand's constness.
if (leftChild->isInt32Constant())
leftOperand.setConstInt32(leftChild->asInt32());
else if (rightChild->isInt32Constant())
rightOperand.setConstInt32(rightChild->asInt32());
RELEASE_ASSERT(!leftOperand.isConst() || !rightOperand.isConst());
if (!leftOperand.isConst()) {
left.emplace(this, leftChild);
leftRegs = left->jsValueRegs();
}
if (!rightOperand.isConst()) {
right.emplace(this, rightChild);
rightRegs = right->jsValueRegs();
}
JITRightShiftGenerator gen(leftOperand, rightOperand, resultRegs, leftRegs, rightRegs,
leftFPR, scratchGPR, scratchFPR, shiftType);
gen.generateFastPath(m_jit);
ASSERT(gen.didEmitFastPath());
gen.endJumpList().append(m_jit.jump());
gen.slowPathJumpList().link(&m_jit);
silentSpillAllRegisters(resultRegs);
if (leftOperand.isConst()) {
leftRegs = resultRegs;
m_jit.moveValue(leftChild->asJSValue(), leftRegs);
} else if (rightOperand.isConst()) {
rightRegs = resultRegs;
m_jit.moveValue(rightChild->asJSValue(), rightRegs);
}
callOperation(snippetSlowPathFunction, resultRegs, leftRegs, rightRegs);
silentFillAllRegisters();
m_jit.exceptionCheck();
gen.endJumpList().link(&m_jit);
jsValueResult(resultRegs, node);
return;
}
void SpeculativeJIT::compileShiftOp(Node* node)
{
NodeType op = node->op();
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
if (leftChild.useKind() == UntypedUse || rightChild.useKind() == UntypedUse) {
switch (op) {
case BitLShift:
emitUntypedBitOp<JITLeftShiftGenerator, operationValueBitLShift>(node);
return;
case BitRShift:
case BitURShift:
emitUntypedRightShiftBitOp(node);
return;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
if (rightChild->isInt32Constant()) {
SpeculateInt32Operand op1(this, leftChild);
GPRTemporary result(this, Reuse, op1);
shiftOp(op, op1.gpr(), rightChild->asInt32() & 0x1f, result.gpr());
int32Result(result.gpr(), node);
} else {
// Do not allow shift amount to be used as the result, MacroAssembler does not permit this.
SpeculateInt32Operand op1(this, leftChild);
SpeculateInt32Operand op2(this, rightChild);
GPRTemporary result(this, Reuse, op1);
GPRReg reg1 = op1.gpr();
GPRReg reg2 = op2.gpr();
shiftOp(op, reg1, reg2, result.gpr());
int32Result(result.gpr(), node);
}
}
void SpeculativeJIT::compileValueAdd(Node* node)
{
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
if (isKnownNotNumber(leftChild.node()) || isKnownNotNumber(rightChild.node())) {
JSValueOperand left(this, leftChild);
JSValueOperand right(this, rightChild);
JSValueRegs leftRegs = left.jsValueRegs();
JSValueRegs rightRegs = right.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationValueAddNotNumber, resultRegs, leftRegs, rightRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
#if USE(JSVALUE64)
bool needsScratchGPRReg = true;
bool needsScratchFPRReg = false;
#else
bool needsScratchGPRReg = true;
bool needsScratchFPRReg = true;
#endif
CodeBlock* baselineCodeBlock = m_jit.graph().baselineCodeBlockFor(node->origin.semantic);
ArithProfile* arithProfile = baselineCodeBlock->arithProfileForBytecodeOffset(node->origin.semantic.bytecodeIndex);
Instruction* instruction = &baselineCodeBlock->instructions()[node->origin.semantic.bytecodeIndex];
JITAddIC* addIC = m_jit.codeBlock()->addJITAddIC(arithProfile, instruction);
auto repatchingFunction = operationValueAddOptimize;
auto nonRepatchingFunction = operationValueAdd;
compileMathIC(node, addIC, needsScratchGPRReg, needsScratchFPRReg, repatchingFunction, nonRepatchingFunction);
}
void SpeculativeJIT::compileValueSub(Node* node)
{
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
if (node->binaryUseKind() == UntypedUse) {
#if USE(JSVALUE64)
bool needsScratchGPRReg = true;
bool needsScratchFPRReg = false;
#else
bool needsScratchGPRReg = true;
bool needsScratchFPRReg = true;
#endif
CodeBlock* baselineCodeBlock = m_jit.graph().baselineCodeBlockFor(node->origin.semantic);
ArithProfile* arithProfile = baselineCodeBlock->arithProfileForBytecodeOffset(node->origin.semantic.bytecodeIndex);
Instruction* instruction = &baselineCodeBlock->instructions()[node->origin.semantic.bytecodeIndex];
JITSubIC* subIC = m_jit.codeBlock()->addJITSubIC(arithProfile, instruction);
auto repatchingFunction = operationValueSubOptimize;
auto nonRepatchingFunction = operationValueSub;
compileMathIC(node, subIC, needsScratchGPRReg, needsScratchFPRReg, repatchingFunction, nonRepatchingFunction);
return;
}
ASSERT(leftChild.useKind() == BigIntUse && rightChild.useKind() == BigIntUse);
SpeculateCellOperand left(this, node->child1());
SpeculateCellOperand right(this, node->child2());
GPRReg leftGPR = left.gpr();
GPRReg rightGPR = right.gpr();
speculateBigInt(leftChild, leftGPR);
speculateBigInt(rightChild, rightGPR);
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationSubBigInt, resultGPR, leftGPR, rightGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
template <typename Generator, typename RepatchingFunction, typename NonRepatchingFunction>
void SpeculativeJIT::compileMathIC(Node* node, JITBinaryMathIC<Generator>* mathIC, bool needsScratchGPRReg, bool needsScratchFPRReg, RepatchingFunction repatchingFunction, NonRepatchingFunction nonRepatchingFunction)
{
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
std::optional<JSValueOperand> left;
std::optional<JSValueOperand> right;
JSValueRegs leftRegs;
JSValueRegs rightRegs;
FPRTemporary leftNumber(this);
FPRTemporary rightNumber(this);
FPRReg leftFPR = leftNumber.fpr();
FPRReg rightFPR = rightNumber.fpr();
GPRReg scratchGPR = InvalidGPRReg;
FPRReg scratchFPR = InvalidFPRReg;
std::optional<FPRTemporary> fprScratch;
if (needsScratchFPRReg) {
fprScratch.emplace(this);
scratchFPR = fprScratch->fpr();
}
#if USE(JSVALUE64)
std::optional<GPRTemporary> gprScratch;
if (needsScratchGPRReg) {
gprScratch.emplace(this);
scratchGPR = gprScratch->gpr();
}
GPRTemporary result(this);
JSValueRegs resultRegs = JSValueRegs(result.gpr());
#else
GPRTemporary resultTag(this);
GPRTemporary resultPayload(this);
JSValueRegs resultRegs = JSValueRegs(resultPayload.gpr(), resultTag.gpr());
if (needsScratchGPRReg)
scratchGPR = resultRegs.tagGPR();
#endif
SnippetOperand leftOperand(m_state.forNode(leftChild).resultType());
SnippetOperand rightOperand(m_state.forNode(rightChild).resultType());
// The snippet generator does not support both operands being constant. If the left
// operand is already const, we'll ignore the right operand's constness.
if (leftChild->isInt32Constant())
leftOperand.setConstInt32(leftChild->asInt32());
else if (rightChild->isInt32Constant())
rightOperand.setConstInt32(rightChild->asInt32());
ASSERT(!leftOperand.isConst() || !rightOperand.isConst());
ASSERT(!(Generator::isLeftOperandValidConstant(leftOperand) && Generator::isRightOperandValidConstant(rightOperand)));
if (!Generator::isLeftOperandValidConstant(leftOperand)) {
left.emplace(this, leftChild);
leftRegs = left->jsValueRegs();
}
if (!Generator::isRightOperandValidConstant(rightOperand)) {
right.emplace(this, rightChild);
rightRegs = right->jsValueRegs();
}
#if ENABLE(MATH_IC_STATS)
auto inlineStart = m_jit.label();
#endif
Box<MathICGenerationState> addICGenerationState = Box<MathICGenerationState>::create();
mathIC->m_generator = Generator(leftOperand, rightOperand, resultRegs, leftRegs, rightRegs, leftFPR, rightFPR, scratchGPR, scratchFPR);
bool shouldEmitProfiling = false;
bool generatedInline = mathIC->generateInline(m_jit, *addICGenerationState, shouldEmitProfiling);
if (generatedInline) {
ASSERT(!addICGenerationState->slowPathJumps.empty());
Vector<SilentRegisterSavePlan> savePlans;
silentSpillAllRegistersImpl(false, savePlans, resultRegs);
auto done = m_jit.label();
addSlowPathGeneratorLambda([=, savePlans = WTFMove(savePlans)] () {
addICGenerationState->slowPathJumps.link(&m_jit);
addICGenerationState->slowPathStart = m_jit.label();
#if ENABLE(MATH_IC_STATS)
auto slowPathStart = m_jit.label();
#endif
silentSpill(savePlans);
auto innerLeftRegs = leftRegs;
auto innerRightRegs = rightRegs;
if (Generator::isLeftOperandValidConstant(leftOperand)) {
innerLeftRegs = resultRegs;
m_jit.moveValue(leftChild->asJSValue(), innerLeftRegs);
} else if (Generator::isRightOperandValidConstant(rightOperand)) {
innerRightRegs = resultRegs;
m_jit.moveValue(rightChild->asJSValue(), innerRightRegs);
}
if (addICGenerationState->shouldSlowPathRepatch)
addICGenerationState->slowPathCall = callOperation(bitwise_cast<J_JITOperation_EJJMic>(repatchingFunction), resultRegs, innerLeftRegs, innerRightRegs, TrustedImmPtr(mathIC));
else
addICGenerationState->slowPathCall = callOperation(nonRepatchingFunction, resultRegs, innerLeftRegs, innerRightRegs);
silentFill(savePlans);
m_jit.exceptionCheck();
m_jit.jump().linkTo(done, &m_jit);
m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
mathIC->finalizeInlineCode(*addICGenerationState, linkBuffer);
});
#if ENABLE(MATH_IC_STATS)
auto slowPathEnd = m_jit.label();
m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
size_t size = static_cast<char*>(linkBuffer.locationOf(slowPathEnd).executableAddress()) - static_cast<char*>(linkBuffer.locationOf(slowPathStart).executableAddress());
mathIC->m_generatedCodeSize += size;
});
#endif
});
} else {
if (Generator::isLeftOperandValidConstant(leftOperand)) {
left.emplace(this, leftChild);
leftRegs = left->jsValueRegs();
} else if (Generator::isRightOperandValidConstant(rightOperand)) {
right.emplace(this, rightChild);
rightRegs = right->jsValueRegs();
}
flushRegisters();
callOperation(nonRepatchingFunction, resultRegs, leftRegs, rightRegs);
m_jit.exceptionCheck();
}
#if ENABLE(MATH_IC_STATS)
auto inlineEnd = m_jit.label();
m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
size_t size = static_cast<char*>(linkBuffer.locationOf(inlineEnd).executableAddress()) - static_cast<char*>(linkBuffer.locationOf(inlineStart).executableAddress());
mathIC->m_generatedCodeSize += size;
});
#endif
jsValueResult(resultRegs, node);
return;
}
void SpeculativeJIT::compileInstanceOfCustom(Node* node)
{
// We could do something smarter here but this case is currently super rare and unless
// Symbol.hasInstance becomes popular will likely remain that way.
JSValueOperand value(this, node->child1());
SpeculateCellOperand constructor(this, node->child2());
JSValueOperand hasInstanceValue(this, node->child3());
GPRTemporary result(this);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg constructorGPR = constructor.gpr();
JSValueRegs hasInstanceRegs = hasInstanceValue.jsValueRegs();
GPRReg resultGPR = result.gpr();
MacroAssembler::Jump slowCase = m_jit.jump();
addSlowPathGenerator(slowPathCall(slowCase, this, operationInstanceOfCustom, resultGPR, valueRegs, constructorGPR, hasInstanceRegs));
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileIsCellWithType(Node* node)
{
switch (node->child1().useKind()) {
case UntypedUse: {
JSValueOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value, PayloadWord);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg resultGPR = result.gpr();
JITCompiler::Jump isNotCell = m_jit.branchIfNotCell(valueRegs);
m_jit.compare8(JITCompiler::Equal,
JITCompiler::Address(valueRegs.payloadGPR(), JSCell::typeInfoTypeOffset()),
TrustedImm32(node->queriedType()),
resultGPR);
blessBoolean(resultGPR);
JITCompiler::Jump done = m_jit.jump();
isNotCell.link(&m_jit);
moveFalseTo(resultGPR);
done.link(&m_jit);
blessedBooleanResult(resultGPR, node);
return;
}
case CellUse: {
SpeculateCellOperand cell(this, node->child1());
GPRTemporary result(this, Reuse, cell);
GPRReg cellGPR = cell.gpr();
GPRReg resultGPR = result.gpr();
m_jit.compare8(JITCompiler::Equal,
JITCompiler::Address(cellGPR, JSCell::typeInfoTypeOffset()),
TrustedImm32(node->queriedType()),
resultGPR);
blessBoolean(resultGPR);
blessedBooleanResult(resultGPR, node);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
void SpeculativeJIT::compileIsTypedArrayView(Node* node)
{
JSValueOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value, PayloadWord);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg resultGPR = result.gpr();
JITCompiler::Jump isNotCell = m_jit.branchIfNotCell(valueRegs);
m_jit.load8(JITCompiler::Address(valueRegs.payloadGPR(), JSCell::typeInfoTypeOffset()), resultGPR);
m_jit.sub32(TrustedImm32(FirstTypedArrayType), resultGPR);
m_jit.compare32(JITCompiler::Below,
resultGPR,
TrustedImm32(NumberOfTypedArrayTypesExcludingDataView),
resultGPR);
blessBoolean(resultGPR);
JITCompiler::Jump done = m_jit.jump();
isNotCell.link(&m_jit);
moveFalseTo(resultGPR);
done.link(&m_jit);
blessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileToObjectOrCallObjectConstructor(Node* node)
{
RELEASE_ASSERT(node->child1().useKind() == UntypedUse);
JSValueOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value, PayloadWord);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg resultGPR = result.gpr();
MacroAssembler::JumpList slowCases;
slowCases.append(m_jit.branchIfNotCell(valueRegs));
slowCases.append(m_jit.branchIfNotObject(valueRegs.payloadGPR()));
m_jit.move(valueRegs.payloadGPR(), resultGPR);
if (node->op() == ToObject)
addSlowPathGenerator(slowPathCall(slowCases, this, operationToObject, resultGPR, m_jit.graph().globalObjectFor(node->origin.semantic), valueRegs, identifierUID(node->identifierNumber())));
else
addSlowPathGenerator(slowPathCall(slowCases, this, operationCallObjectConstructor, resultGPR, TrustedImmPtr(node->cellOperand()), valueRegs));
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileArithAdd(Node* node)
{
switch (node->binaryUseKind()) {
case Int32Use: {
ASSERT(!shouldCheckNegativeZero(node->arithMode()));
if (node->child2()->isInt32Constant()) {
SpeculateInt32Operand op1(this, node->child1());
GPRTemporary result(this, Reuse, op1);
GPRReg gpr1 = op1.gpr();
int32_t imm2 = node->child2()->asInt32();
GPRReg gprResult = result.gpr();
if (!shouldCheckOverflow(node->arithMode())) {
m_jit.add32(Imm32(imm2), gpr1, gprResult);
int32Result(gprResult, node);
return;
}
MacroAssembler::Jump check = m_jit.branchAdd32(MacroAssembler::Overflow, gpr1, Imm32(imm2), gprResult);
if (gpr1 == gprResult) {
speculationCheck(Overflow, JSValueRegs(), 0, check,
SpeculationRecovery(SpeculativeAddImmediate, gpr1, imm2));
} else
speculationCheck(Overflow, JSValueRegs(), 0, check);
int32Result(gprResult, node);
return;
}
SpeculateInt32Operand op1(this, node->child1());
SpeculateInt32Operand op2(this, node->child2());
GPRTemporary result(this, Reuse, op1, op2);
GPRReg gpr1 = op1.gpr();
GPRReg gpr2 = op2.gpr();
GPRReg gprResult = result.gpr();
if (!shouldCheckOverflow(node->arithMode()))
m_jit.add32(gpr1, gpr2, gprResult);
else {
MacroAssembler::Jump check = m_jit.branchAdd32(MacroAssembler::Overflow, gpr1, gpr2, gprResult);
if (gpr1 == gprResult)
speculationCheck(Overflow, JSValueRegs(), 0, check, SpeculationRecovery(SpeculativeAdd, gprResult, gpr2));
else if (gpr2 == gprResult)
speculationCheck(Overflow, JSValueRegs(), 0, check, SpeculationRecovery(SpeculativeAdd, gprResult, gpr1));
else
speculationCheck(Overflow, JSValueRegs(), 0, check);
}
int32Result(gprResult, node);
return;
}
#if USE(JSVALUE64)
case Int52RepUse: {
ASSERT(shouldCheckOverflow(node->arithMode()));
ASSERT(!shouldCheckNegativeZero(node->arithMode()));
// Will we need an overflow check? If we can prove that neither input can be
// Int52 then the overflow check will not be necessary.
if (!m_state.forNode(node->child1()).couldBeType(SpecInt52Only)
&& !m_state.forNode(node->child2()).couldBeType(SpecInt52Only)) {
SpeculateWhicheverInt52Operand op1(this, node->child1());
SpeculateWhicheverInt52Operand op2(this, node->child2(), op1);
GPRTemporary result(this, Reuse, op1);
m_jit.add64(op1.gpr(), op2.gpr(), result.gpr());
int52Result(result.gpr(), node, op1.format());
return;
}
SpeculateInt52Operand op1(this, node->child1());
SpeculateInt52Operand op2(this, node->child2());
GPRTemporary result(this);
m_jit.move(op1.gpr(), result.gpr());
speculationCheck(
Int52Overflow, JSValueRegs(), 0,
m_jit.branchAdd64(MacroAssembler::Overflow, op2.gpr(), result.gpr()));
int52Result(result.gpr(), node);
return;
}
#endif // USE(JSVALUE64)
case DoubleRepUse: {
SpeculateDoubleOperand op1(this, node->child1());
SpeculateDoubleOperand op2(this, node->child2());
FPRTemporary result(this, op1, op2);
FPRReg reg1 = op1.fpr();
FPRReg reg2 = op2.fpr();
m_jit.addDouble(reg1, reg2, result.fpr());
doubleResult(result.fpr(), node);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
void SpeculativeJIT::compileMakeRope(Node* node)
{
ASSERT(node->child1().useKind() == KnownStringUse);
ASSERT(node->child2().useKind() == KnownStringUse);
ASSERT(!node->child3() || node->child3().useKind() == KnownStringUse);
SpeculateCellOperand op1(this, node->child1());
SpeculateCellOperand op2(this, node->child2());
SpeculateCellOperand op3(this, node->child3());
GPRTemporary result(this);
GPRTemporary allocator(this);
GPRTemporary scratch(this);
GPRReg opGPRs[3];
unsigned numOpGPRs;
opGPRs[0] = op1.gpr();
opGPRs[1] = op2.gpr();
if (node->child3()) {
opGPRs[2] = op3.gpr();
numOpGPRs = 3;
} else {
opGPRs[2] = InvalidGPRReg;
numOpGPRs = 2;
}
GPRReg resultGPR = result.gpr();
GPRReg allocatorGPR = allocator.gpr();
GPRReg scratchGPR = scratch.gpr();
JITCompiler::JumpList slowPath;
Allocator allocatorValue = subspaceFor<JSRopeString>(*m_jit.vm())->allocatorForNonVirtual(sizeof(JSRopeString), AllocatorForMode::AllocatorIfExists);
emitAllocateJSCell(resultGPR, JITAllocator::constant(allocatorValue), allocatorGPR, TrustedImmPtr(m_jit.graph().registerStructure(m_jit.vm()->stringStructure.get())), scratchGPR, slowPath);
m_jit.storePtr(TrustedImmPtr(nullptr), JITCompiler::Address(resultGPR, JSString::offsetOfValue()));
for (unsigned i = 0; i < numOpGPRs; ++i)
m_jit.storePtr(opGPRs[i], JITCompiler::Address(resultGPR, JSRopeString::offsetOfFibers() + sizeof(WriteBarrier<JSString>) * i));
for (unsigned i = numOpGPRs; i < JSRopeString::s_maxInternalRopeLength; ++i)
m_jit.storePtr(TrustedImmPtr(nullptr), JITCompiler::Address(resultGPR, JSRopeString::offsetOfFibers() + sizeof(WriteBarrier<JSString>) * i));
m_jit.load16(JITCompiler::Address(opGPRs[0], JSString::offsetOfFlags()), scratchGPR);
m_jit.load32(JITCompiler::Address(opGPRs[0], JSString::offsetOfLength()), allocatorGPR);
if (!ASSERT_DISABLED) {
JITCompiler::Jump ok = m_jit.branch32(
JITCompiler::GreaterThanOrEqual, allocatorGPR, TrustedImm32(0));
m_jit.abortWithReason(DFGNegativeStringLength);
ok.link(&m_jit);
}
for (unsigned i = 1; i < numOpGPRs; ++i) {
m_jit.and16(JITCompiler::Address(opGPRs[i], JSString::offsetOfFlags()), scratchGPR);
speculationCheck(
Uncountable, JSValueSource(), nullptr,
m_jit.branchAdd32(
JITCompiler::Overflow,
JITCompiler::Address(opGPRs[i], JSString::offsetOfLength()), allocatorGPR));
}
m_jit.and32(JITCompiler::TrustedImm32(JSString::Is8Bit), scratchGPR);
m_jit.store16(scratchGPR, JITCompiler::Address(resultGPR, JSString::offsetOfFlags()));
if (!ASSERT_DISABLED) {
JITCompiler::Jump ok = m_jit.branch32(
JITCompiler::GreaterThanOrEqual, allocatorGPR, TrustedImm32(0));
m_jit.abortWithReason(DFGNegativeStringLength);
ok.link(&m_jit);
}
m_jit.store32(allocatorGPR, JITCompiler::Address(resultGPR, JSString::offsetOfLength()));
m_jit.mutatorFence(*m_jit.vm());
switch (numOpGPRs) {
case 2:
addSlowPathGenerator(slowPathCall(
slowPath, this, operationMakeRope2, resultGPR, opGPRs[0], opGPRs[1]));
break;
case 3:
addSlowPathGenerator(slowPathCall(
slowPath, this, operationMakeRope3, resultGPR, opGPRs[0], opGPRs[1], opGPRs[2]));
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileArithAbs(Node* node)
{
switch (node->child1().useKind()) {
case Int32Use: {
SpeculateStrictInt32Operand op1(this, node->child1());
GPRTemporary result(this, Reuse, op1);
GPRTemporary scratch(this);
m_jit.move(op1.gpr(), result.gpr());
m_jit.rshift32(result.gpr(), MacroAssembler::TrustedImm32(31), scratch.gpr());
m_jit.add32(scratch.gpr(), result.gpr());
m_jit.xor32(scratch.gpr(), result.gpr());
if (shouldCheckOverflow(node->arithMode()))
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchTest32(MacroAssembler::Signed, result.gpr()));
int32Result(result.gpr(), node);
break;
}
case DoubleRepUse: {
SpeculateDoubleOperand op1(this, node->child1());
FPRTemporary result(this);
m_jit.absDouble(op1.fpr(), result.fpr());
doubleResult(result.fpr(), node);
break;
}
default: {
DFG_ASSERT(m_jit.graph(), node, node->child1().useKind() == UntypedUse, node->child1().useKind());
JSValueOperand op1(this, node->child1());
JSValueRegs op1Regs = op1.jsValueRegs();
flushRegisters();
FPRResult result(this);
callOperation(operationArithAbs, result.fpr(), op1Regs);
m_jit.exceptionCheck();
doubleResult(result.fpr(), node);
break;
}
}
}
void SpeculativeJIT::compileArithClz32(Node* node)
{
if (node->child1().useKind() == Int32Use || node->child1().useKind() == KnownInt32Use) {
SpeculateInt32Operand value(this, node->child1());
GPRTemporary result(this, Reuse, value);
GPRReg valueReg = value.gpr();
GPRReg resultReg = result.gpr();
m_jit.countLeadingZeros32(valueReg, resultReg);
int32Result(resultReg, node);
return;
}
JSValueOperand op1(this, node->child1());
JSValueRegs op1Regs = op1.jsValueRegs();
GPRTemporary result(this);
GPRReg resultReg = result.gpr();
flushRegisters();
callOperation(operationArithClz32, resultReg, op1Regs);
m_jit.exceptionCheck();
int32Result(resultReg, node);
}
void SpeculativeJIT::compileArithDoubleUnaryOp(Node* node, double (*doubleFunction)(double), double (*operation)(ExecState*, EncodedJSValue))
{
if (node->child1().useKind() == DoubleRepUse) {
SpeculateDoubleOperand op1(this, node->child1());
FPRReg op1FPR = op1.fpr();
flushRegisters();
FPRResult result(this);
callOperation(doubleFunction, result.fpr(), op1FPR);
doubleResult(result.fpr(), node);
return;
}
JSValueOperand op1(this, node->child1());
JSValueRegs op1Regs = op1.jsValueRegs();
flushRegisters();
FPRResult result(this);
callOperation(operation, result.fpr(), op1Regs);
m_jit.exceptionCheck();
doubleResult(result.fpr(), node);
}
void SpeculativeJIT::compileArithSub(Node* node)
{
switch (node->binaryUseKind()) {
case Int32Use: {
ASSERT(!shouldCheckNegativeZero(node->arithMode()));
if (node->child2()->isInt32Constant()) {
SpeculateInt32Operand op1(this, node->child1());
int32_t imm2 = node->child2()->asInt32();
GPRTemporary result(this);
if (!shouldCheckOverflow(node->arithMode())) {
m_jit.move(op1.gpr(), result.gpr());
m_jit.sub32(Imm32(imm2), result.gpr());
} else {
GPRTemporary scratch(this);
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchSub32(MacroAssembler::Overflow, op1.gpr(), Imm32(imm2), result.gpr(), scratch.gpr()));
}
int32Result(result.gpr(), node);
return;
}
if (node->child1()->isInt32Constant()) {
int32_t imm1 = node->child1()->asInt32();
SpeculateInt32Operand op2(this, node->child2());
GPRTemporary result(this);
m_jit.move(Imm32(imm1), result.gpr());
if (!shouldCheckOverflow(node->arithMode()))
m_jit.sub32(op2.gpr(), result.gpr());
else
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchSub32(MacroAssembler::Overflow, op2.gpr(), result.gpr()));
int32Result(result.gpr(), node);
return;
}
SpeculateInt32Operand op1(this, node->child1());
SpeculateInt32Operand op2(this, node->child2());
GPRTemporary result(this);
if (!shouldCheckOverflow(node->arithMode())) {
m_jit.move(op1.gpr(), result.gpr());
m_jit.sub32(op2.gpr(), result.gpr());
} else
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchSub32(MacroAssembler::Overflow, op1.gpr(), op2.gpr(), result.gpr()));
int32Result(result.gpr(), node);
return;
}
#if USE(JSVALUE64)
case Int52RepUse: {
ASSERT(shouldCheckOverflow(node->arithMode()));
ASSERT(!shouldCheckNegativeZero(node->arithMode()));
// Will we need an overflow check? If we can prove that neither input can be
// Int52 then the overflow check will not be necessary.
if (!m_state.forNode(node->child1()).couldBeType(SpecInt52Only)
&& !m_state.forNode(node->child2()).couldBeType(SpecInt52Only)) {
SpeculateWhicheverInt52Operand op1(this, node->child1());
SpeculateWhicheverInt52Operand op2(this, node->child2(), op1);
GPRTemporary result(this, Reuse, op1);
m_jit.move(op1.gpr(), result.gpr());
m_jit.sub64(op2.gpr(), result.gpr());
int52Result(result.gpr(), node, op1.format());
return;
}
SpeculateInt52Operand op1(this, node->child1());
SpeculateInt52Operand op2(this, node->child2());
GPRTemporary result(this);
m_jit.move(op1.gpr(), result.gpr());
speculationCheck(
Int52Overflow, JSValueRegs(), 0,
m_jit.branchSub64(MacroAssembler::Overflow, op2.gpr(), result.gpr()));
int52Result(result.gpr(), node);
return;
}
#endif // USE(JSVALUE64)
case DoubleRepUse: {
SpeculateDoubleOperand op1(this, node->child1());
SpeculateDoubleOperand op2(this, node->child2());
FPRTemporary result(this, op1);
FPRReg reg1 = op1.fpr();
FPRReg reg2 = op2.fpr();
m_jit.subDouble(reg1, reg2, result.fpr());
doubleResult(result.fpr(), node);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
return;
}
}
void SpeculativeJIT::compileValueNegate(Node* node)
{
CodeBlock* baselineCodeBlock = m_jit.graph().baselineCodeBlockFor(node->origin.semantic);
ArithProfile* arithProfile = baselineCodeBlock->arithProfileForBytecodeOffset(node->origin.semantic.bytecodeIndex);
Instruction* instruction = &baselineCodeBlock->instructions()[node->origin.semantic.bytecodeIndex];
JITNegIC* negIC = m_jit.codeBlock()->addJITNegIC(arithProfile, instruction);
auto repatchingFunction = operationArithNegateOptimize;
auto nonRepatchingFunction = operationArithNegate;
bool needsScratchGPRReg = true;
compileMathIC(node, negIC, needsScratchGPRReg, repatchingFunction, nonRepatchingFunction);
}
void SpeculativeJIT::compileArithNegate(Node* node)
{
switch (node->child1().useKind()) {
case Int32Use: {
SpeculateInt32Operand op1(this, node->child1());
GPRTemporary result(this);
m_jit.move(op1.gpr(), result.gpr());
// Note: there is no notion of being not used as a number, but someone
// caring about negative zero.
if (!shouldCheckOverflow(node->arithMode()))
m_jit.neg32(result.gpr());
else if (!shouldCheckNegativeZero(node->arithMode()))
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchNeg32(MacroAssembler::Overflow, result.gpr()));
else {
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchTest32(MacroAssembler::Zero, result.gpr(), TrustedImm32(0x7fffffff)));
m_jit.neg32(result.gpr());
}
int32Result(result.gpr(), node);
return;
}
#if USE(JSVALUE64)
case Int52RepUse: {
ASSERT(shouldCheckOverflow(node->arithMode()));
if (!m_state.forNode(node->child1()).couldBeType(SpecInt52Only)) {
SpeculateWhicheverInt52Operand op1(this, node->child1());
GPRTemporary result(this);
GPRReg op1GPR = op1.gpr();
GPRReg resultGPR = result.gpr();
m_jit.move(op1GPR, resultGPR);
m_jit.neg64(resultGPR);
if (shouldCheckNegativeZero(node->arithMode())) {
speculationCheck(
NegativeZero, JSValueRegs(), 0,
m_jit.branchTest64(MacroAssembler::Zero, resultGPR));
}
int52Result(resultGPR, node, op1.format());
return;
}
SpeculateInt52Operand op1(this, node->child1());
GPRTemporary result(this);
GPRReg op1GPR = op1.gpr();
GPRReg resultGPR = result.gpr();
m_jit.move(op1GPR, resultGPR);
speculationCheck(
Int52Overflow, JSValueRegs(), 0,
m_jit.branchNeg64(MacroAssembler::Overflow, resultGPR));
if (shouldCheckNegativeZero(node->arithMode())) {
speculationCheck(
NegativeZero, JSValueRegs(), 0,
m_jit.branchTest64(MacroAssembler::Zero, resultGPR));
}
int52Result(resultGPR, node);
return;
}
#endif // USE(JSVALUE64)
case DoubleRepUse: {
SpeculateDoubleOperand op1(this, node->child1());
FPRTemporary result(this);
m_jit.negateDouble(op1.fpr(), result.fpr());
doubleResult(result.fpr(), node);
return;
}
default: {
RELEASE_ASSERT_NOT_REACHED();
}
}
}
template <typename Generator, typename RepatchingFunction, typename NonRepatchingFunction>
void SpeculativeJIT::compileMathIC(Node* node, JITUnaryMathIC<Generator>* mathIC, bool needsScratchGPRReg, RepatchingFunction repatchingFunction, NonRepatchingFunction nonRepatchingFunction)
{
GPRReg scratchGPR = InvalidGPRReg;
std::optional<GPRTemporary> gprScratch;
if (needsScratchGPRReg) {
gprScratch.emplace(this);
scratchGPR = gprScratch->gpr();
}
JSValueOperand childOperand(this, node->child1());
JSValueRegs childRegs = childOperand.jsValueRegs();
#if USE(JSVALUE64)
GPRTemporary result(this, Reuse, childOperand);
JSValueRegs resultRegs(result.gpr());
#else
GPRTemporary resultTag(this);
GPRTemporary resultPayload(this);
JSValueRegs resultRegs(resultPayload.gpr(), resultTag.gpr());
#endif
#if ENABLE(MATH_IC_STATS)
auto inlineStart = m_jit.label();
#endif
Box<MathICGenerationState> icGenerationState = Box<MathICGenerationState>::create();
mathIC->m_generator = Generator(resultRegs, childRegs, scratchGPR);
bool shouldEmitProfiling = false;
bool generatedInline = mathIC->generateInline(m_jit, *icGenerationState, shouldEmitProfiling);
if (generatedInline) {
ASSERT(!icGenerationState->slowPathJumps.empty());
Vector<SilentRegisterSavePlan> savePlans;
silentSpillAllRegistersImpl(false, savePlans, resultRegs);
auto done = m_jit.label();
addSlowPathGeneratorLambda([=, savePlans = WTFMove(savePlans)] () {
icGenerationState->slowPathJumps.link(&m_jit);
icGenerationState->slowPathStart = m_jit.label();
#if ENABLE(MATH_IC_STATS)
auto slowPathStart = m_jit.label();
#endif
silentSpill(savePlans);
if (icGenerationState->shouldSlowPathRepatch)
icGenerationState->slowPathCall = callOperation(bitwise_cast<J_JITOperation_EJMic>(repatchingFunction), resultRegs, childRegs, TrustedImmPtr(mathIC));
else
icGenerationState->slowPathCall = callOperation(nonRepatchingFunction, resultRegs, childRegs);
silentFill(savePlans);
m_jit.exceptionCheck();
m_jit.jump().linkTo(done, &m_jit);
m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
mathIC->finalizeInlineCode(*icGenerationState, linkBuffer);
});
#if ENABLE(MATH_IC_STATS)
auto slowPathEnd = m_jit.label();
m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
size_t size = static_cast<char*>(linkBuffer.locationOf(slowPathEnd).executableAddress()) - static_cast<char*>(linkBuffer.locationOf(slowPathStart).executableAddress());
mathIC->m_generatedCodeSize += size;
});
#endif
});
} else {
flushRegisters();
callOperation(nonRepatchingFunction, resultRegs, childRegs);
m_jit.exceptionCheck();
}
#if ENABLE(MATH_IC_STATS)
auto inlineEnd = m_jit.label();
m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
size_t size = static_cast<char*>(linkBuffer.locationOf(inlineEnd).executableAddress()) - static_cast<char*>(linkBuffer.locationOf(inlineStart).executableAddress());
mathIC->m_generatedCodeSize += size;
});
#endif
jsValueResult(resultRegs, node);
return;
}
void SpeculativeJIT::compileArithMul(Node* node)
{
switch (node->binaryUseKind()) {
case Int32Use: {
if (node->child2()->isInt32Constant()) {
SpeculateInt32Operand op1(this, node->child1());
GPRTemporary result(this);
int32_t imm = node->child2()->asInt32();
GPRReg op1GPR = op1.gpr();
GPRReg resultGPR = result.gpr();
if (!shouldCheckOverflow(node->arithMode()))
m_jit.mul32(Imm32(imm), op1GPR, resultGPR);
else {
speculationCheck(Overflow, JSValueRegs(), 0,
m_jit.branchMul32(MacroAssembler::Overflow, op1GPR, Imm32(imm), resultGPR));
}
// The only way to create negative zero with a constant is:
// -negative-op1 * 0.
// -zero-op1 * negative constant.
if (shouldCheckNegativeZero(node->arithMode())) {
if (!imm)
speculationCheck(NegativeZero, JSValueRegs(), 0, m_jit.branchTest32(MacroAssembler::Signed, op1GPR));
else if (imm < 0) {
if (shouldCheckOverflow(node->arithMode()))
speculationCheck(NegativeZero, JSValueRegs(), 0, m_jit.branchTest32(MacroAssembler::Zero, resultGPR));
else
speculationCheck(NegativeZero, JSValueRegs(), 0, m_jit.branchTest32(MacroAssembler::Zero, op1GPR));
}
}
int32Result(resultGPR, node);
return;
}
SpeculateInt32Operand op1(this, node->child1());
SpeculateInt32Operand op2(this, node->child2());
GPRTemporary result(this);
GPRReg reg1 = op1.gpr();
GPRReg reg2 = op2.gpr();
// We can perform truncated multiplications if we get to this point, because if the
// fixup phase could not prove that it would be safe, it would have turned us into
// a double multiplication.
if (!shouldCheckOverflow(node->arithMode()))
m_jit.mul32(reg1, reg2, result.gpr());
else {
speculationCheck(
Overflow, JSValueRegs(), 0,
m_jit.branchMul32(MacroAssembler::Overflow, reg1, reg2, result.gpr()));
}
// Check for negative zero, if the users of this node care about such things.
if (shouldCheckNegativeZero(node->arithMode())) {
MacroAssembler::Jump resultNonZero = m_jit.branchTest32(MacroAssembler::NonZero, result.gpr());
speculationCheck(NegativeZero, JSValueRegs(), 0, m_jit.branchTest32(MacroAssembler::Signed, reg1));
speculationCheck(NegativeZero, JSValueRegs(), 0, m_jit.branchTest32(MacroAssembler::Signed, reg2));
resultNonZero.link(&m_jit);
}
int32Result(result.gpr(), node);
return;
}
#if USE(JSVALUE64)
case Int52RepUse: {
ASSERT(shouldCheckOverflow(node->arithMode()));
// This is super clever. We want to do an int52 multiplication and check the
// int52 overflow bit. There is no direct hardware support for this, but we do
// have the ability to do an int64 multiplication and check the int64 overflow
// bit. We leverage that. Consider that a, b are int52 numbers inside int64
// registers, with the high 12 bits being sign-extended. We can do:
//
// (a * (b << 12))
//
// This will give us a left-shifted int52 (value is in high 52 bits, low 16
// bits are zero) plus the int52 overflow bit. I.e. whether this 64-bit
// multiplication overflows is identical to whether the 'a * b' 52-bit
// multiplication overflows.
//
// In our nomenclature, this is:
//
// strictInt52(a) * int52(b) => int52
//
// That is "strictInt52" means unshifted and "int52" means left-shifted by 16
// bits.
//
// We don't care which of op1 or op2 serves as the left-shifted operand, so
// we just do whatever is more convenient for op1 and have op2 do the
// opposite. This ensures that we do at most one shift.
SpeculateWhicheverInt52Operand op1(this, node->child1());
SpeculateWhicheverInt52Operand op2(this, node->child2(), OppositeShift, op1);
GPRTemporary result(this);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRReg resultGPR = result.gpr();
m_jit.move(op1GPR, resultGPR);
speculationCheck(
Int52Overflow, JSValueRegs(), 0,
m_jit.branchMul64(MacroAssembler::Overflow, op2GPR, resultGPR));
if (shouldCheckNegativeZero(node->arithMode())) {
MacroAssembler::Jump resultNonZero = m_jit.branchTest64(
MacroAssembler::NonZero, resultGPR);
speculationCheck(
NegativeZero, JSValueRegs(), 0,
m_jit.branch64(MacroAssembler::LessThan, op1GPR, TrustedImm32(0)));
speculationCheck(
NegativeZero, JSValueRegs(), 0,
m_jit.branch64(MacroAssembler::LessThan, op2GPR, TrustedImm32(0)));
resultNonZero.link(&m_jit);
}
int52Result(resultGPR, node);
return;
}
#endif // USE(JSVALUE64)
case DoubleRepUse: {
SpeculateDoubleOperand op1(this, node->child1());
SpeculateDoubleOperand op2(this, node->child2());
FPRTemporary result(this, op1, op2);
FPRReg reg1 = op1.fpr();
FPRReg reg2 = op2.fpr();
m_jit.mulDouble(reg1, reg2, result.fpr());
doubleResult(result.fpr(), node);
return;
}
case UntypedUse: {
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
if (isKnownNotNumber(leftChild.node()) || isKnownNotNumber(rightChild.node())) {
JSValueOperand left(this, leftChild);
JSValueOperand right(this, rightChild);
JSValueRegs leftRegs = left.jsValueRegs();
JSValueRegs rightRegs = right.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationValueMul, resultRegs, leftRegs, rightRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
#if USE(JSVALUE64)
bool needsScratchGPRReg = true;
bool needsScratchFPRReg = false;
#else
bool needsScratchGPRReg = true;
bool needsScratchFPRReg = true;
#endif
CodeBlock* baselineCodeBlock = m_jit.graph().baselineCodeBlockFor(node->origin.semantic);
ArithProfile* arithProfile = baselineCodeBlock->arithProfileForBytecodeOffset(node->origin.semantic.bytecodeIndex);
Instruction* instruction = &baselineCodeBlock->instructions()[node->origin.semantic.bytecodeIndex];
JITMulIC* mulIC = m_jit.codeBlock()->addJITMulIC(arithProfile, instruction);
auto repatchingFunction = operationValueMulOptimize;
auto nonRepatchingFunction = operationValueMul;
compileMathIC(node, mulIC, needsScratchGPRReg, needsScratchFPRReg, repatchingFunction, nonRepatchingFunction);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
return;
}
}
void SpeculativeJIT::compileArithDiv(Node* node)
{
switch (node->binaryUseKind()) {
case Int32Use: {
#if CPU(X86) || CPU(X86_64)
SpeculateInt32Operand op1(this, node->child1());
SpeculateInt32Operand op2(this, node->child2());
GPRTemporary eax(this, X86Registers::eax);
GPRTemporary edx(this, X86Registers::edx);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRReg op2TempGPR;
GPRReg temp;
if (op2GPR == X86Registers::eax || op2GPR == X86Registers::edx) {
op2TempGPR = allocate();
temp = op2TempGPR;
} else {
op2TempGPR = InvalidGPRReg;
if (op1GPR == X86Registers::eax)
temp = X86Registers::edx;
else
temp = X86Registers::eax;
}
ASSERT(temp != op1GPR);
ASSERT(temp != op2GPR);
m_jit.add32(JITCompiler::TrustedImm32(1), op2GPR, temp);
JITCompiler::Jump safeDenominator = m_jit.branch32(JITCompiler::Above, temp, JITCompiler::TrustedImm32(1));
JITCompiler::JumpList done;
if (shouldCheckOverflow(node->arithMode())) {
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchTest32(JITCompiler::Zero, op2GPR));
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branch32(JITCompiler::Equal, op1GPR, TrustedImm32(-2147483647-1)));
} else {
// This is the case where we convert the result to an int after we're done, and we
// already know that the denominator is either -1 or 0. So, if the denominator is
// zero, then the result should be zero. If the denominator is not zero (i.e. it's
// -1) and the numerator is -2^31 then the result should be -2^31. Otherwise we
// are happy to fall through to a normal division, since we're just dividing
// something by negative 1.
JITCompiler::Jump notZero = m_jit.branchTest32(JITCompiler::NonZero, op2GPR);
m_jit.move(TrustedImm32(0), eax.gpr());
done.append(m_jit.jump());
notZero.link(&m_jit);
JITCompiler::Jump notNeg2ToThe31 =
m_jit.branch32(JITCompiler::NotEqual, op1GPR, TrustedImm32(-2147483647-1));
m_jit.zeroExtend32ToPtr(op1GPR, eax.gpr());
done.append(m_jit.jump());
notNeg2ToThe31.link(&m_jit);
}
safeDenominator.link(&m_jit);
// If the user cares about negative zero, then speculate that we're not about
// to produce negative zero.
if (shouldCheckNegativeZero(node->arithMode())) {
MacroAssembler::Jump numeratorNonZero = m_jit.branchTest32(MacroAssembler::NonZero, op1GPR);
speculationCheck(NegativeZero, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::LessThan, op2GPR, TrustedImm32(0)));
numeratorNonZero.link(&m_jit);
}
if (op2TempGPR != InvalidGPRReg) {
m_jit.move(op2GPR, op2TempGPR);
op2GPR = op2TempGPR;
}
m_jit.move(op1GPR, eax.gpr());
m_jit.x86ConvertToDoubleWord32();
m_jit.x86Div32(op2GPR);
if (op2TempGPR != InvalidGPRReg)
unlock(op2TempGPR);
// Check that there was no remainder. If there had been, then we'd be obligated to
// produce a double result instead.
if (shouldCheckOverflow(node->arithMode()))
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchTest32(JITCompiler::NonZero, edx.gpr()));
done.link(&m_jit);
int32Result(eax.gpr(), node);
#elif HAVE(ARM_IDIV_INSTRUCTIONS) || CPU(ARM64)
SpeculateInt32Operand op1(this, node->child1());
SpeculateInt32Operand op2(this, node->child2());
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRTemporary quotient(this);
GPRTemporary multiplyAnswer(this);
// If the user cares about negative zero, then speculate that we're not about
// to produce negative zero.
if (shouldCheckNegativeZero(node->arithMode())) {
MacroAssembler::Jump numeratorNonZero = m_jit.branchTest32(MacroAssembler::NonZero, op1GPR);
speculationCheck(NegativeZero, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::LessThan, op2GPR, TrustedImm32(0)));
numeratorNonZero.link(&m_jit);
}
if (shouldCheckOverflow(node->arithMode()))
speculationCheck(Overflow, JSValueRegs(), nullptr, m_jit.branchTest32(MacroAssembler::Zero, op2GPR));
m_jit.assembler().sdiv<32>(quotient.gpr(), op1GPR, op2GPR);
// Check that there was no remainder. If there had been, then we'd be obligated to
// produce a double result instead.
if (shouldCheckOverflow(node->arithMode())) {
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchMul32(JITCompiler::Overflow, quotient.gpr(), op2GPR, multiplyAnswer.gpr()));
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branch32(JITCompiler::NotEqual, multiplyAnswer.gpr(), op1GPR));
}
int32Result(quotient.gpr(), node);
#else
RELEASE_ASSERT_NOT_REACHED();
#endif
break;
}
case DoubleRepUse: {
SpeculateDoubleOperand op1(this, node->child1());
SpeculateDoubleOperand op2(this, node->child2());
FPRTemporary result(this, op1);
FPRReg reg1 = op1.fpr();
FPRReg reg2 = op2.fpr();
m_jit.divDouble(reg1, reg2, result.fpr());
doubleResult(result.fpr(), node);
break;
}
case UntypedUse: {
Edge& leftChild = node->child1();
Edge& rightChild = node->child2();
if (isKnownNotNumber(leftChild.node()) || isKnownNotNumber(rightChild.node())) {
JSValueOperand left(this, leftChild);
JSValueOperand right(this, rightChild);
JSValueRegs leftRegs = left.jsValueRegs();
JSValueRegs rightRegs = right.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationValueDiv, resultRegs, leftRegs, rightRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
std::optional<JSValueOperand> left;
std::optional<JSValueOperand> right;
JSValueRegs leftRegs;
JSValueRegs rightRegs;
FPRTemporary leftNumber(this);
FPRTemporary rightNumber(this);
FPRReg leftFPR = leftNumber.fpr();
FPRReg rightFPR = rightNumber.fpr();
FPRTemporary fprScratch(this);
FPRReg scratchFPR = fprScratch.fpr();
#if USE(JSVALUE64)
GPRTemporary result(this);
JSValueRegs resultRegs = JSValueRegs(result.gpr());
GPRTemporary scratch(this);
GPRReg scratchGPR = scratch.gpr();
#else
GPRTemporary resultTag(this);
GPRTemporary resultPayload(this);
JSValueRegs resultRegs = JSValueRegs(resultPayload.gpr(), resultTag.gpr());
GPRReg scratchGPR = resultTag.gpr();
#endif
SnippetOperand leftOperand(m_state.forNode(leftChild).resultType());
SnippetOperand rightOperand(m_state.forNode(rightChild).resultType());
if (leftChild->isInt32Constant())
leftOperand.setConstInt32(leftChild->asInt32());
#if USE(JSVALUE64)
else if (leftChild->isDoubleConstant())
leftOperand.setConstDouble(leftChild->asNumber());
#endif
if (leftOperand.isConst()) {
// The snippet generator only supports 1 argument as a constant.
// Ignore the rightChild's const-ness.
} else if (rightChild->isInt32Constant())
rightOperand.setConstInt32(rightChild->asInt32());
#if USE(JSVALUE64)
else if (rightChild->isDoubleConstant())
rightOperand.setConstDouble(rightChild->asNumber());
#endif
RELEASE_ASSERT(!leftOperand.isConst() || !rightOperand.isConst());
if (!leftOperand.isConst()) {
left.emplace(this, leftChild);
leftRegs = left->jsValueRegs();
}
if (!rightOperand.isConst()) {
right.emplace(this, rightChild);
rightRegs = right->jsValueRegs();
}
JITDivGenerator gen(leftOperand, rightOperand, resultRegs, leftRegs, rightRegs,
leftFPR, rightFPR, scratchGPR, scratchFPR);
gen.generateFastPath(m_jit);
ASSERT(gen.didEmitFastPath());
gen.endJumpList().append(m_jit.jump());
gen.slowPathJumpList().link(&m_jit);
silentSpillAllRegisters(resultRegs);
if (leftOperand.isConst()) {
leftRegs = resultRegs;
m_jit.moveValue(leftChild->asJSValue(), leftRegs);
}
if (rightOperand.isConst()) {
rightRegs = resultRegs;
m_jit.moveValue(rightChild->asJSValue(), rightRegs);
}
callOperation(operationValueDiv, resultRegs, leftRegs, rightRegs);
silentFillAllRegisters();
m_jit.exceptionCheck();
gen.endJumpList().link(&m_jit);
jsValueResult(resultRegs, node);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
void SpeculativeJIT::compileArithFRound(Node* node)
{
if (node->child1().useKind() == DoubleRepUse) {
SpeculateDoubleOperand op1(this, node->child1());
FPRTemporary result(this, op1);
m_jit.convertDoubleToFloat(op1.fpr(), result.fpr());
m_jit.convertFloatToDouble(result.fpr(), result.fpr());
doubleResult(result.fpr(), node);
return;
}
JSValueOperand op1(this, node->child1());
JSValueRegs op1Regs = op1.jsValueRegs();
flushRegisters();
FPRResult result(this);
callOperation(operationArithFRound, result.fpr(), op1Regs);
m_jit.exceptionCheck();
doubleResult(result.fpr(), node);
}
void SpeculativeJIT::compileArithMod(Node* node)
{
switch (node->binaryUseKind()) {
case Int32Use: {
// In the fast path, the dividend value could be the final result
// (in case of |dividend| < |divisor|), so we speculate it as strict int32.
SpeculateStrictInt32Operand op1(this, node->child1());
if (node->child2()->isInt32Constant()) {
int32_t divisor = node->child2()->asInt32();
if (divisor > 1 && hasOneBitSet(divisor)) {
unsigned logarithm = WTF::fastLog2(static_cast<uint32_t>(divisor));
GPRReg dividendGPR = op1.gpr();
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
// This is what LLVM generates. It's pretty crazy. Here's my
// attempt at understanding it.
// First, compute either divisor - 1, or 0, depending on whether
// the dividend is negative:
//
// If dividend < 0: resultGPR = divisor - 1
// If dividend >= 0: resultGPR = 0
m_jit.move(dividendGPR, resultGPR);
m_jit.rshift32(TrustedImm32(31), resultGPR);
m_jit.urshift32(TrustedImm32(32 - logarithm), resultGPR);
// Add in the dividend, so that:
//
// If dividend < 0: resultGPR = dividend + divisor - 1
// If dividend >= 0: resultGPR = dividend
m_jit.add32(dividendGPR, resultGPR);
// Mask so as to only get the *high* bits. This rounds down
// (towards negative infinity) resultGPR to the nearest multiple
// of divisor, so that:
//
// If dividend < 0: resultGPR = floor((dividend + divisor - 1) / divisor)
// If dividend >= 0: resultGPR = floor(dividend / divisor)
//
// Note that this can be simplified to:
//
// If dividend < 0: resultGPR = ceil(dividend / divisor)
// If dividend >= 0: resultGPR = floor(dividend / divisor)
//
// Note that if the dividend is negative, resultGPR will also be negative.
// Regardless of the sign of dividend, resultGPR will be rounded towards
// zero, because of how things are conditionalized.
m_jit.and32(TrustedImm32(-divisor), resultGPR);
// Subtract resultGPR from dividendGPR, which yields the remainder:
//
// resultGPR = dividendGPR - resultGPR
m_jit.neg32(resultGPR);
m_jit.add32(dividendGPR, resultGPR);
if (shouldCheckNegativeZero(node->arithMode())) {
// Check that we're not about to create negative zero.
JITCompiler::Jump numeratorPositive = m_jit.branch32(JITCompiler::GreaterThanOrEqual, dividendGPR, TrustedImm32(0));
speculationCheck(NegativeZero, JSValueRegs(), 0, m_jit.branchTest32(JITCompiler::Zero, resultGPR));
numeratorPositive.link(&m_jit);
}
int32Result(resultGPR, node);
return;
}
}
#if CPU(X86) || CPU(X86_64)
if (node->child2()->isInt32Constant()) {
int32_t divisor = node->child2()->asInt32();
if (divisor && divisor != -1) {
GPRReg op1Gpr = op1.gpr();
GPRTemporary eax(this, X86Registers::eax);
GPRTemporary edx(this, X86Registers::edx);
GPRTemporary scratch(this);
GPRReg scratchGPR = scratch.gpr();
GPRReg op1SaveGPR;
if (op1Gpr == X86Registers::eax || op1Gpr == X86Registers::edx) {
op1SaveGPR = allocate();
ASSERT(op1Gpr != op1SaveGPR);
m_jit.move(op1Gpr, op1SaveGPR);
} else
op1SaveGPR = op1Gpr;
ASSERT(op1SaveGPR != X86Registers::eax);
ASSERT(op1SaveGPR != X86Registers::edx);
m_jit.move(op1Gpr, eax.gpr());
m_jit.move(TrustedImm32(divisor), scratchGPR);
m_jit.x86ConvertToDoubleWord32();
m_jit.x86Div32(scratchGPR);
if (shouldCheckNegativeZero(node->arithMode())) {
JITCompiler::Jump numeratorPositive = m_jit.branch32(JITCompiler::GreaterThanOrEqual, op1SaveGPR, TrustedImm32(0));
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchTest32(JITCompiler::Zero, edx.gpr()));
numeratorPositive.link(&m_jit);
}
if (op1SaveGPR != op1Gpr)
unlock(op1SaveGPR);
int32Result(edx.gpr(), node);
return;
}
}
#endif
SpeculateInt32Operand op2(this, node->child2());
#if CPU(X86) || CPU(X86_64)
GPRTemporary eax(this, X86Registers::eax);
GPRTemporary edx(this, X86Registers::edx);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRReg op2TempGPR;
GPRReg temp;
GPRReg op1SaveGPR;
if (op2GPR == X86Registers::eax || op2GPR == X86Registers::edx) {
op2TempGPR = allocate();
temp = op2TempGPR;
} else {
op2TempGPR = InvalidGPRReg;
if (op1GPR == X86Registers::eax)
temp = X86Registers::edx;
else
temp = X86Registers::eax;
}
if (op1GPR == X86Registers::eax || op1GPR == X86Registers::edx) {
op1SaveGPR = allocate();
ASSERT(op1GPR != op1SaveGPR);
m_jit.move(op1GPR, op1SaveGPR);
} else
op1SaveGPR = op1GPR;
ASSERT(temp != op1GPR);
ASSERT(temp != op2GPR);
ASSERT(op1SaveGPR != X86Registers::eax);
ASSERT(op1SaveGPR != X86Registers::edx);
m_jit.add32(JITCompiler::TrustedImm32(1), op2GPR, temp);
JITCompiler::Jump safeDenominator = m_jit.branch32(JITCompiler::Above, temp, JITCompiler::TrustedImm32(1));
JITCompiler::JumpList done;
// FIXME: -2^31 / -1 will actually yield negative zero, so we could have a
// separate case for that. But it probably doesn't matter so much.
if (shouldCheckOverflow(node->arithMode())) {
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchTest32(JITCompiler::Zero, op2GPR));
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branch32(JITCompiler::Equal, op1GPR, TrustedImm32(-2147483647-1)));
} else {
// This is the case where we convert the result to an int after we're done, and we
// already know that the denominator is either -1 or 0. So, if the denominator is
// zero, then the result should be zero. If the denominator is not zero (i.e. it's
// -1) and the numerator is -2^31 then the result should be 0. Otherwise we are
// happy to fall through to a normal division, since we're just dividing something
// by negative 1.
JITCompiler::Jump notZero = m_jit.branchTest32(JITCompiler::NonZero, op2GPR);
m_jit.move(TrustedImm32(0), edx.gpr());
done.append(m_jit.jump());
notZero.link(&m_jit);
JITCompiler::Jump notNeg2ToThe31 =
m_jit.branch32(JITCompiler::NotEqual, op1GPR, TrustedImm32(-2147483647-1));
m_jit.move(TrustedImm32(0), edx.gpr());
done.append(m_jit.jump());
notNeg2ToThe31.link(&m_jit);
}
safeDenominator.link(&m_jit);
if (op2TempGPR != InvalidGPRReg) {
m_jit.move(op2GPR, op2TempGPR);
op2GPR = op2TempGPR;
}
m_jit.move(op1GPR, eax.gpr());
m_jit.x86ConvertToDoubleWord32();
m_jit.x86Div32(op2GPR);
if (op2TempGPR != InvalidGPRReg)
unlock(op2TempGPR);
// Check that we're not about to create negative zero.
if (shouldCheckNegativeZero(node->arithMode())) {
JITCompiler::Jump numeratorPositive = m_jit.branch32(JITCompiler::GreaterThanOrEqual, op1SaveGPR, TrustedImm32(0));
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchTest32(JITCompiler::Zero, edx.gpr()));
numeratorPositive.link(&m_jit);
}
if (op1SaveGPR != op1GPR)
unlock(op1SaveGPR);
done.link(&m_jit);
int32Result(edx.gpr(), node);
#elif HAVE(ARM_IDIV_INSTRUCTIONS) || CPU(ARM64)
GPRTemporary temp(this);
GPRTemporary quotientThenRemainder(this);
GPRTemporary multiplyAnswer(this);
GPRReg dividendGPR = op1.gpr();
GPRReg divisorGPR = op2.gpr();
GPRReg quotientThenRemainderGPR = quotientThenRemainder.gpr();
GPRReg multiplyAnswerGPR = multiplyAnswer.gpr();
JITCompiler::JumpList done;
if (shouldCheckOverflow(node->arithMode()))
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchTest32(JITCompiler::Zero, divisorGPR));
else {
JITCompiler::Jump denominatorNotZero = m_jit.branchTest32(JITCompiler::NonZero, divisorGPR);
// We know that the low 32-bit of divisorGPR is 0, but we don't know if the high bits are.
// So, use TrustedImm32(0) on ARM instead because done expects the result to be in DataFormatInt32.
// Using an immediate 0 doesn't cost anything extra on ARM.
m_jit.move(TrustedImm32(0), quotientThenRemainderGPR);
done.append(m_jit.jump());
denominatorNotZero.link(&m_jit);
}
m_jit.assembler().sdiv<32>(quotientThenRemainderGPR, dividendGPR, divisorGPR);
// FIXME: It seems like there are cases where we don't need this? What if we have
// arithMode() == Arith::Unchecked?
// https://bugs.webkit.org/show_bug.cgi?id=126444
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchMul32(JITCompiler::Overflow, quotientThenRemainderGPR, divisorGPR, multiplyAnswerGPR));
#if HAVE(ARM_IDIV_INSTRUCTIONS)
m_jit.assembler().sub(quotientThenRemainderGPR, dividendGPR, multiplyAnswerGPR);
#else
m_jit.assembler().sub<32>(quotientThenRemainderGPR, dividendGPR, multiplyAnswerGPR);
#endif
// If the user cares about negative zero, then speculate that we're not about
// to produce negative zero.
if (shouldCheckNegativeZero(node->arithMode())) {
// Check that we're not about to create negative zero.
JITCompiler::Jump numeratorPositive = m_jit.branch32(JITCompiler::GreaterThanOrEqual, dividendGPR, TrustedImm32(0));
speculationCheck(Overflow, JSValueRegs(), 0, m_jit.branchTest32(JITCompiler::Zero, quotientThenRemainderGPR));
numeratorPositive.link(&m_jit);
}
done.link(&m_jit);
int32Result(quotientThenRemainderGPR, node);
#else // not architecture that can do integer division
RELEASE_ASSERT_NOT_REACHED();
#endif
return;
}
case DoubleRepUse: {
SpeculateDoubleOperand op1(this, node->child1());
SpeculateDoubleOperand op2(this, node->child2());
FPRReg op1FPR = op1.fpr();
FPRReg op2FPR = op2.fpr();
flushRegisters();
FPRResult result(this);
using OperationType = D_JITOperation_DD;
callOperation<OperationType>(jsMod, result.fpr(), op1FPR, op2FPR);
doubleResult(result.fpr(), node);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
return;
}
}
void SpeculativeJIT::compileArithRounding(Node* node)
{
if (node->child1().useKind() == DoubleRepUse) {
SpeculateDoubleOperand value(this, node->child1());
FPRReg valueFPR = value.fpr();
auto setResult = [&] (FPRReg resultFPR) {
if (producesInteger(node->arithRoundingMode())) {
GPRTemporary roundedResultAsInt32(this);
FPRTemporary scratch(this);
FPRReg scratchFPR = scratch.fpr();
GPRReg resultGPR = roundedResultAsInt32.gpr();
JITCompiler::JumpList failureCases;
m_jit.branchConvertDoubleToInt32(resultFPR, resultGPR, failureCases, scratchFPR, shouldCheckNegativeZero(node->arithRoundingMode()));
speculationCheck(Overflow, JSValueRegs(), node, failureCases);
int32Result(resultGPR, node);
} else
doubleResult(resultFPR, node);
};
if (m_jit.supportsFloatingPointRounding()) {
switch (node->op()) {
case ArithRound: {
FPRTemporary result(this);
FPRReg resultFPR = result.fpr();
if (producesInteger(node->arithRoundingMode()) && !shouldCheckNegativeZero(node->arithRoundingMode())) {
static const double halfConstant = 0.5;
m_jit.loadDouble(TrustedImmPtr(&halfConstant), resultFPR);
m_jit.addDouble(valueFPR, resultFPR);
m_jit.floorDouble(resultFPR, resultFPR);
} else {
m_jit.ceilDouble(valueFPR, resultFPR);
FPRTemporary realPart(this);
FPRReg realPartFPR = realPart.fpr();
m_jit.subDouble(resultFPR, valueFPR, realPartFPR);
FPRTemporary scratch(this);
FPRReg scratchFPR = scratch.fpr();
static const double halfConstant = 0.5;
m_jit.loadDouble(TrustedImmPtr(&halfConstant), scratchFPR);
JITCompiler::Jump shouldUseCeiled = m_jit.branchDouble(JITCompiler::DoubleLessThanOrEqual, realPartFPR, scratchFPR);
static const double oneConstant = -1.0;
m_jit.loadDouble(TrustedImmPtr(&oneConstant), scratchFPR);
m_jit.addDouble(scratchFPR, resultFPR);
shouldUseCeiled.link(&m_jit);
}
setResult(resultFPR);
return;
}
case ArithFloor: {
FPRTemporary rounded(this);
FPRReg resultFPR = rounded.fpr();
m_jit.floorDouble(valueFPR, resultFPR);
setResult(resultFPR);
return;
}
case ArithCeil: {
FPRTemporary rounded(this);
FPRReg resultFPR = rounded.fpr();
m_jit.ceilDouble(valueFPR, resultFPR);
setResult(resultFPR);
return;
}
case ArithTrunc: {
FPRTemporary rounded(this);
FPRReg resultFPR = rounded.fpr();
m_jit.roundTowardZeroDouble(valueFPR, resultFPR);
setResult(resultFPR);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
} else {
flushRegisters();
FPRResult roundedResultAsDouble(this);
FPRReg resultFPR = roundedResultAsDouble.fpr();
using OperationType = D_JITOperation_D;
if (node->op() == ArithRound)
callOperation<OperationType>(jsRound, resultFPR, valueFPR);
else if (node->op() == ArithFloor)
callOperation<OperationType>(floor, resultFPR, valueFPR);
else if (node->op() == ArithCeil)
callOperation<OperationType>(ceil, resultFPR, valueFPR);
else {
ASSERT(node->op() == ArithTrunc);
callOperation<OperationType>(trunc, resultFPR, valueFPR);
}
setResult(resultFPR);
}
return;
}
DFG_ASSERT(m_jit.graph(), node, node->child1().useKind() == UntypedUse, node->child1().useKind());
JSValueOperand argument(this, node->child1());
JSValueRegs argumentRegs = argument.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
J_JITOperation_EJ operation = nullptr;
if (node->op() == ArithRound)
operation = operationArithRound;
else if (node->op() == ArithFloor)
operation = operationArithFloor;
else if (node->op() == ArithCeil)
operation = operationArithCeil;
else {
ASSERT(node->op() == ArithTrunc);
operation = operationArithTrunc;
}
callOperation(operation, resultRegs, argumentRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileArithUnary(Node* node)
{
compileArithDoubleUnaryOp(node, arithUnaryFunction(node->arithUnaryType()), arithUnaryOperation(node->arithUnaryType()));
}
void SpeculativeJIT::compileArithSqrt(Node* node)
{
if (node->child1().useKind() == DoubleRepUse) {
SpeculateDoubleOperand op1(this, node->child1());
FPRReg op1FPR = op1.fpr();
if (!MacroAssembler::supportsFloatingPointSqrt() || !Options::useArchitectureSpecificOptimizations()) {
flushRegisters();
FPRResult result(this);
callOperation<D_JITOperation_D>(sqrt, result.fpr(), op1FPR);
doubleResult(result.fpr(), node);
} else {
FPRTemporary result(this, op1);
m_jit.sqrtDouble(op1.fpr(), result.fpr());
doubleResult(result.fpr(), node);
}
return;
}
JSValueOperand op1(this, node->child1());
JSValueRegs op1Regs = op1.jsValueRegs();
flushRegisters();
FPRResult result(this);
callOperation(operationArithSqrt, result.fpr(), op1Regs);
m_jit.exceptionCheck();
doubleResult(result.fpr(), node);
}
void SpeculativeJIT::compileArithMinMax(Node* node)
{
switch (node->binaryUseKind()) {
case Int32Use: {
SpeculateStrictInt32Operand op1(this, node->child1());
SpeculateStrictInt32Operand op2(this, node->child2());
GPRTemporary result(this, Reuse, op1);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRReg resultGPR = result.gpr();
MacroAssembler::Jump op1Less = m_jit.branch32(node->op() == ArithMin ? MacroAssembler::LessThan : MacroAssembler::GreaterThan, op1GPR, op2GPR);
m_jit.move(op2GPR, resultGPR);
if (op1GPR != resultGPR) {
MacroAssembler::Jump done = m_jit.jump();
op1Less.link(&m_jit);
m_jit.move(op1GPR, resultGPR);
done.link(&m_jit);
} else
op1Less.link(&m_jit);
int32Result(resultGPR, node);
break;
}
case DoubleRepUse: {
SpeculateDoubleOperand op1(this, node->child1());
SpeculateDoubleOperand op2(this, node->child2());
FPRTemporary result(this, op1);
FPRReg op1FPR = op1.fpr();
FPRReg op2FPR = op2.fpr();
FPRReg resultFPR = result.fpr();
MacroAssembler::JumpList done;
MacroAssembler::Jump op1Less = m_jit.branchDouble(node->op() == ArithMin ? MacroAssembler::DoubleLessThan : MacroAssembler::DoubleGreaterThan, op1FPR, op2FPR);
// op2 is eather the lesser one or one of then is NaN
MacroAssembler::Jump op2Less = m_jit.branchDouble(node->op() == ArithMin ? MacroAssembler::DoubleGreaterThanOrEqual : MacroAssembler::DoubleLessThanOrEqual, op1FPR, op2FPR);
// Unordered case. We don't know which of op1, op2 is NaN. Manufacture NaN by adding
// op1 + op2 and putting it into result.
m_jit.addDouble(op1FPR, op2FPR, resultFPR);
done.append(m_jit.jump());
op2Less.link(&m_jit);
m_jit.moveDouble(op2FPR, resultFPR);
if (op1FPR != resultFPR) {
done.append(m_jit.jump());
op1Less.link(&m_jit);
m_jit.moveDouble(op1FPR, resultFPR);
} else
op1Less.link(&m_jit);
done.link(&m_jit);
doubleResult(resultFPR, node);
break;
}
default:
DFG_CRASH(m_jit.graph(), node, "Bad use kind");
break;
}
}
// For small positive integers , it is worth doing a tiny inline loop to exponentiate the base.
// Every register is clobbered by this helper.
static MacroAssembler::Jump compileArithPowIntegerFastPath(JITCompiler& assembler, FPRReg xOperand, GPRReg yOperand, FPRReg result)
{
MacroAssembler::JumpList skipFastPath;
skipFastPath.append(assembler.branch32(MacroAssembler::Above, yOperand, MacroAssembler::TrustedImm32(maxExponentForIntegerMathPow)));
static const double oneConstant = 1.0;
assembler.loadDouble(MacroAssembler::TrustedImmPtr(&oneConstant), result);
MacroAssembler::Label startLoop(assembler.label());
MacroAssembler::Jump exponentIsEven = assembler.branchTest32(MacroAssembler::Zero, yOperand, MacroAssembler::TrustedImm32(1));
assembler.mulDouble(xOperand, result);
exponentIsEven.link(&assembler);
assembler.mulDouble(xOperand, xOperand);
assembler.rshift32(MacroAssembler::TrustedImm32(1), yOperand);
assembler.branchTest32(MacroAssembler::NonZero, yOperand).linkTo(startLoop, &assembler);
MacroAssembler::Jump skipSlowPath = assembler.jump();
skipFastPath.link(&assembler);
return skipSlowPath;
}
void SpeculativeJIT::compileArithPow(Node* node)
{
if (node->child2().useKind() == Int32Use) {
SpeculateDoubleOperand xOperand(this, node->child1());
SpeculateInt32Operand yOperand(this, node->child2());
FPRReg xOperandfpr = xOperand.fpr();
GPRReg yOperandGpr = yOperand.gpr();
FPRTemporary yOperandfpr(this);
flushRegisters();
FPRResult result(this);
FPRReg resultFpr = result.fpr();
FPRTemporary xOperandCopy(this);
FPRReg xOperandCopyFpr = xOperandCopy.fpr();
m_jit.moveDouble(xOperandfpr, xOperandCopyFpr);
GPRTemporary counter(this);
GPRReg counterGpr = counter.gpr();
m_jit.move(yOperandGpr, counterGpr);
MacroAssembler::Jump skipFallback = compileArithPowIntegerFastPath(m_jit, xOperandCopyFpr, counterGpr, resultFpr);
m_jit.convertInt32ToDouble(yOperandGpr, yOperandfpr.fpr());
callOperation(operationMathPow, resultFpr, xOperandfpr, yOperandfpr.fpr());
skipFallback.link(&m_jit);
doubleResult(resultFpr, node);
return;
}
if (node->child2()->isDoubleConstant()) {
double exponent = node->child2()->asNumber();
static const double infinityConstant = std::numeric_limits<double>::infinity();
static const double minusInfinityConstant = -std::numeric_limits<double>::infinity();
if (exponent == 0.5) {
SpeculateDoubleOperand xOperand(this, node->child1());
FPRTemporary result(this);
FPRReg xOperandFpr = xOperand.fpr();
FPRReg resultFpr = result.fpr();
m_jit.moveZeroToDouble(resultFpr);
MacroAssembler::Jump xIsZeroOrNegativeZero = m_jit.branchDouble(MacroAssembler::DoubleEqual, xOperandFpr, resultFpr);
m_jit.loadDouble(TrustedImmPtr(&minusInfinityConstant), resultFpr);
MacroAssembler::Jump xIsMinusInfinity = m_jit.branchDouble(MacroAssembler::DoubleEqual, xOperandFpr, resultFpr);
m_jit.sqrtDouble(xOperandFpr, resultFpr);
MacroAssembler::Jump doneWithSqrt = m_jit.jump();
xIsMinusInfinity.link(&m_jit);
if (isX86())
m_jit.loadDouble(TrustedImmPtr(&infinityConstant), resultFpr);
else
m_jit.absDouble(resultFpr, resultFpr);
xIsZeroOrNegativeZero.link(&m_jit);
doneWithSqrt.link(&m_jit);
doubleResult(resultFpr, node);
return;
}
if (exponent == -0.5) {
SpeculateDoubleOperand xOperand(this, node->child1());
FPRTemporary scratch(this);
FPRTemporary result(this);
FPRReg xOperandFpr = xOperand.fpr();
FPRReg scratchFPR = scratch.fpr();
FPRReg resultFpr = result.fpr();
m_jit.moveZeroToDouble(resultFpr);
MacroAssembler::Jump xIsZeroOrNegativeZero = m_jit.branchDouble(MacroAssembler::DoubleEqual, xOperandFpr, resultFpr);
m_jit.loadDouble(TrustedImmPtr(&minusInfinityConstant), resultFpr);
MacroAssembler::Jump xIsMinusInfinity = m_jit.branchDouble(MacroAssembler::DoubleEqual, xOperandFpr, resultFpr);
static const double oneConstant = 1.;
m_jit.loadDouble(TrustedImmPtr(&oneConstant), resultFpr);
m_jit.sqrtDouble(xOperandFpr, scratchFPR);
m_jit.divDouble(resultFpr, scratchFPR, resultFpr);
MacroAssembler::Jump doneWithSqrt = m_jit.jump();
xIsZeroOrNegativeZero.link(&m_jit);
m_jit.loadDouble(TrustedImmPtr(&infinityConstant), resultFpr);
MacroAssembler::Jump doneWithBaseZero = m_jit.jump();
xIsMinusInfinity.link(&m_jit);
m_jit.moveZeroToDouble(resultFpr);
doneWithBaseZero.link(&m_jit);
doneWithSqrt.link(&m_jit);
doubleResult(resultFpr, node);
return;
}
}
SpeculateDoubleOperand xOperand(this, node->child1());
SpeculateDoubleOperand yOperand(this, node->child2());
FPRReg xOperandfpr = xOperand.fpr();
FPRReg yOperandfpr = yOperand.fpr();
flushRegisters();
FPRResult result(this);
FPRReg resultFpr = result.fpr();
FPRTemporary xOperandCopy(this);
FPRReg xOperandCopyFpr = xOperandCopy.fpr();
FPRTemporary scratch(this);
FPRReg scratchFpr = scratch.fpr();
GPRTemporary yOperandInteger(this);
GPRReg yOperandIntegerGpr = yOperandInteger.gpr();
MacroAssembler::JumpList failedExponentConversionToInteger;
m_jit.branchConvertDoubleToInt32(yOperandfpr, yOperandIntegerGpr, failedExponentConversionToInteger, scratchFpr, false);
m_jit.moveDouble(xOperandfpr, xOperandCopyFpr);
MacroAssembler::Jump skipFallback = compileArithPowIntegerFastPath(m_jit, xOperandCopyFpr, yOperandInteger.gpr(), resultFpr);
failedExponentConversionToInteger.link(&m_jit);
callOperation(operationMathPow, resultFpr, xOperandfpr, yOperandfpr);
skipFallback.link(&m_jit);
doubleResult(resultFpr, node);
}
// Returns true if the compare is fused with a subsequent branch.
bool SpeculativeJIT::compare(Node* node, MacroAssembler::RelationalCondition condition, MacroAssembler::DoubleCondition doubleCondition, S_JITOperation_EJJ operation)
{
if (compilePeepHoleBranch(node, condition, doubleCondition, operation))
return true;
if (node->isBinaryUseKind(Int32Use)) {
compileInt32Compare(node, condition);
return false;
}
#if USE(JSVALUE64)
if (node->isBinaryUseKind(Int52RepUse)) {
compileInt52Compare(node, condition);
return false;
}
#endif // USE(JSVALUE64)
if (node->isBinaryUseKind(DoubleRepUse)) {
compileDoubleCompare(node, doubleCondition);
return false;
}
if (node->isBinaryUseKind(StringUse)) {
if (node->op() == CompareEq)
compileStringEquality(node);
else
compileStringCompare(node, condition);
return false;
}
if (node->isBinaryUseKind(StringIdentUse)) {
if (node->op() == CompareEq)
compileStringIdentEquality(node);
else
compileStringIdentCompare(node, condition);
return false;
}
if (node->op() == CompareEq) {
if (node->isBinaryUseKind(BooleanUse)) {
compileBooleanCompare(node, condition);
return false;
}
if (node->isBinaryUseKind(SymbolUse)) {
compileSymbolEquality(node);
return false;
}
if (node->isBinaryUseKind(ObjectUse)) {
compileObjectEquality(node);
return false;
}
if (node->isBinaryUseKind(ObjectUse, ObjectOrOtherUse)) {
compileObjectToObjectOrOtherEquality(node->child1(), node->child2());
return false;
}
if (node->isBinaryUseKind(ObjectOrOtherUse, ObjectUse)) {
compileObjectToObjectOrOtherEquality(node->child2(), node->child1());
return false;
}
if (!needsTypeCheck(node->child1(), SpecOther)) {
nonSpeculativeNonPeepholeCompareNullOrUndefined(node->child2());
return false;
}
if (!needsTypeCheck(node->child2(), SpecOther)) {
nonSpeculativeNonPeepholeCompareNullOrUndefined(node->child1());
return false;
}
}
nonSpeculativeNonPeepholeCompare(node, condition, operation);
return false;
}
void SpeculativeJIT::compileCompareUnsigned(Node* node, MacroAssembler::RelationalCondition condition)
{
compileInt32Compare(node, condition);
}
bool SpeculativeJIT::compileStrictEq(Node* node)
{
if (node->isBinaryUseKind(BooleanUse)) {
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
compilePeepHoleBooleanBranch(node, branchNode, MacroAssembler::Equal);
use(node->child1());
use(node->child2());
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
compileBooleanCompare(node, MacroAssembler::Equal);
return false;
}
if (node->isBinaryUseKind(Int32Use)) {
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
compilePeepHoleInt32Branch(node, branchNode, MacroAssembler::Equal);
use(node->child1());
use(node->child2());
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
compileInt32Compare(node, MacroAssembler::Equal);
return false;
}
#if USE(JSVALUE64)
if (node->isBinaryUseKind(Int52RepUse)) {
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
compilePeepHoleInt52Branch(node, branchNode, MacroAssembler::Equal);
use(node->child1());
use(node->child2());
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
compileInt52Compare(node, MacroAssembler::Equal);
return false;
}
#endif // USE(JSVALUE64)
if (node->isBinaryUseKind(DoubleRepUse)) {
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
compilePeepHoleDoubleBranch(node, branchNode, MacroAssembler::DoubleEqual);
use(node->child1());
use(node->child2());
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
compileDoubleCompare(node, MacroAssembler::DoubleEqual);
return false;
}
if (node->isBinaryUseKind(SymbolUse)) {
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
compilePeepHoleSymbolEquality(node, branchNode);
use(node->child1());
use(node->child2());
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
compileSymbolEquality(node);
return false;
}
if (node->isBinaryUseKind(BigIntUse)) {
compileBigIntEquality(node);
return false;
}
if (node->isBinaryUseKind(SymbolUse, UntypedUse)) {
compileSymbolUntypedEquality(node, node->child1(), node->child2());
return false;
}
if (node->isBinaryUseKind(UntypedUse, SymbolUse)) {
compileSymbolUntypedEquality(node, node->child2(), node->child1());
return false;
}
if (node->isBinaryUseKind(StringUse)) {
compileStringEquality(node);
return false;
}
if (node->isBinaryUseKind(StringIdentUse)) {
compileStringIdentEquality(node);
return false;
}
if (node->isBinaryUseKind(ObjectUse, UntypedUse)) {
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
compilePeepHoleObjectStrictEquality(node->child1(), node->child2(), branchNode);
use(node->child1());
use(node->child2());
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
compileObjectStrictEquality(node->child1(), node->child2());
return false;
}
if (node->isBinaryUseKind(UntypedUse, ObjectUse)) {
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
compilePeepHoleObjectStrictEquality(node->child2(), node->child1(), branchNode);
use(node->child1());
use(node->child2());
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
compileObjectStrictEquality(node->child2(), node->child1());
return false;
}
if (node->isBinaryUseKind(ObjectUse)) {
unsigned branchIndexInBlock = detectPeepHoleBranch();
if (branchIndexInBlock != UINT_MAX) {
Node* branchNode = m_block->at(branchIndexInBlock);
compilePeepHoleObjectEquality(node, branchNode);
use(node->child1());
use(node->child2());
m_indexInBlock = branchIndexInBlock;
m_currentNode = branchNode;
return true;
}
compileObjectEquality(node);
return false;
}
if (node->isBinaryUseKind(MiscUse, UntypedUse)
|| node->isBinaryUseKind(UntypedUse, MiscUse)) {
compileMiscStrictEq(node);
return false;
}
if (node->isBinaryUseKind(StringIdentUse, NotStringVarUse)) {
compileStringIdentToNotStringVarEquality(node, node->child1(), node->child2());
return false;
}
if (node->isBinaryUseKind(NotStringVarUse, StringIdentUse)) {
compileStringIdentToNotStringVarEquality(node, node->child2(), node->child1());
return false;
}
if (node->isBinaryUseKind(StringUse, UntypedUse)) {
compileStringToUntypedEquality(node, node->child1(), node->child2());
return false;
}
if (node->isBinaryUseKind(UntypedUse, StringUse)) {
compileStringToUntypedEquality(node, node->child2(), node->child1());
return false;
}
RELEASE_ASSERT(node->isBinaryUseKind(UntypedUse));
return nonSpeculativeStrictEq(node);
}
void SpeculativeJIT::compileBooleanCompare(Node* node, MacroAssembler::RelationalCondition condition)
{
SpeculateBooleanOperand op1(this, node->child1());
SpeculateBooleanOperand op2(this, node->child2());
GPRTemporary result(this);
m_jit.compare32(condition, op1.gpr(), op2.gpr(), result.gpr());
unblessedBooleanResult(result.gpr(), node);
}
void SpeculativeJIT::compileInt32Compare(Node* node, MacroAssembler::RelationalCondition condition)
{
if (node->child1()->isInt32Constant()) {
SpeculateInt32Operand op2(this, node->child2());
GPRTemporary result(this, Reuse, op2);
int32_t imm = node->child1()->asInt32();
m_jit.compare32(condition, JITCompiler::Imm32(imm), op2.gpr(), result.gpr());
unblessedBooleanResult(result.gpr(), node);
} else if (node->child2()->isInt32Constant()) {
SpeculateInt32Operand op1(this, node->child1());
GPRTemporary result(this, Reuse, op1);
int32_t imm = node->child2()->asInt32();
m_jit.compare32(condition, op1.gpr(), JITCompiler::Imm32(imm), result.gpr());
unblessedBooleanResult(result.gpr(), node);
} else {
SpeculateInt32Operand op1(this, node->child1());
SpeculateInt32Operand op2(this, node->child2());
GPRTemporary result(this, Reuse, op1, op2);
m_jit.compare32(condition, op1.gpr(), op2.gpr(), result.gpr());
unblessedBooleanResult(result.gpr(), node);
}
}
void SpeculativeJIT::compileDoubleCompare(Node* node, MacroAssembler::DoubleCondition condition)
{
SpeculateDoubleOperand op1(this, node->child1());
SpeculateDoubleOperand op2(this, node->child2());
GPRTemporary result(this);
FPRReg op1FPR = op1.fpr();
FPRReg op2FPR = op2.fpr();
GPRReg resultGPR = result.gpr();
m_jit.compareDouble(condition, op1FPR, op2FPR, resultGPR);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileObjectEquality(Node* node)
{
SpeculateCellOperand op1(this, node->child1());
SpeculateCellOperand op2(this, node->child2());
GPRTemporary result(this, Reuse, op1);
GPRReg op1GPR = op1.gpr();
GPRReg op2GPR = op2.gpr();
GPRReg resultGPR = result.gpr();
if (masqueradesAsUndefinedWatchpointIsStillValid()) {
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(op1GPR), node->child1(), SpecObject, m_jit.branchIfNotObject(op1GPR));
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(op2GPR), node->child2(), SpecObject, m_jit.branchIfNotObject(op2GPR));
} else {
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(op1GPR), node->child1(), SpecObject, m_jit.branchIfNotObject(op1GPR));
speculationCheck(BadType, JSValueSource::unboxedCell(op1GPR), node->child1(),
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(op1GPR, JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(op2GPR), node->child2(), SpecObject, m_jit.branchIfNotObject(op2GPR));
speculationCheck(BadType, JSValueSource::unboxedCell(op2GPR), node->child2(),
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(op2GPR, JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
}
m_jit.comparePtr(MacroAssembler::Equal, op1GPR, op2GPR, resultGPR);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileSymbolEquality(Node* node)
{
SpeculateCellOperand left(this, node->child1());
SpeculateCellOperand right(this, node->child2());
GPRTemporary result(this, Reuse, left, right);
GPRReg leftGPR = left.gpr();
GPRReg rightGPR = right.gpr();
GPRReg resultGPR = result.gpr();
speculateSymbol(node->child1(), leftGPR);
speculateSymbol(node->child2(), rightGPR);
m_jit.comparePtr(JITCompiler::Equal, leftGPR, rightGPR, resultGPR);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compilePeepHoleSymbolEquality(Node* node, Node* branchNode)
{
SpeculateCellOperand left(this, node->child1());
SpeculateCellOperand right(this, node->child2());
GPRReg leftGPR = left.gpr();
GPRReg rightGPR = right.gpr();
speculateSymbol(node->child1(), leftGPR);
speculateSymbol(node->child2(), rightGPR);
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
if (taken == nextBlock()) {
branchPtr(JITCompiler::NotEqual, leftGPR, rightGPR, notTaken);
jump(taken);
} else {
branchPtr(JITCompiler::Equal, leftGPR, rightGPR, taken);
jump(notTaken);
}
}
void SpeculativeJIT::compileStringEquality(
Node* node, GPRReg leftGPR, GPRReg rightGPR, GPRReg lengthGPR, GPRReg leftTempGPR,
GPRReg rightTempGPR, GPRReg leftTemp2GPR, GPRReg rightTemp2GPR,
JITCompiler::JumpList fastTrue, JITCompiler::JumpList fastFalse)
{
JITCompiler::JumpList trueCase;
JITCompiler::JumpList falseCase;
JITCompiler::JumpList slowCase;
trueCase.append(fastTrue);
falseCase.append(fastFalse);
m_jit.load32(MacroAssembler::Address(leftGPR, JSString::offsetOfLength()), lengthGPR);
falseCase.append(m_jit.branch32(
MacroAssembler::NotEqual,
MacroAssembler::Address(rightGPR, JSString::offsetOfLength()),
lengthGPR));
trueCase.append(m_jit.branchTest32(MacroAssembler::Zero, lengthGPR));
m_jit.loadPtr(MacroAssembler::Address(leftGPR, JSString::offsetOfValue()), leftTempGPR);
m_jit.loadPtr(MacroAssembler::Address(rightGPR, JSString::offsetOfValue()), rightTempGPR);
slowCase.append(m_jit.branchTestPtr(MacroAssembler::Zero, leftTempGPR));
slowCase.append(m_jit.branchTestPtr(MacroAssembler::Zero, rightTempGPR));
slowCase.append(m_jit.branchTest32(
MacroAssembler::Zero,
MacroAssembler::Address(leftTempGPR, StringImpl::flagsOffset()),
TrustedImm32(StringImpl::flagIs8Bit())));
slowCase.append(m_jit.branchTest32(
MacroAssembler::Zero,
MacroAssembler::Address(rightTempGPR, StringImpl::flagsOffset()),
TrustedImm32(StringImpl::flagIs8Bit())));
m_jit.loadPtr(MacroAssembler::Address(leftTempGPR, StringImpl::dataOffset()), leftTempGPR);
m_jit.loadPtr(MacroAssembler::Address(rightTempGPR, StringImpl::dataOffset()), rightTempGPR);
MacroAssembler::Label loop = m_jit.label();
m_jit.sub32(TrustedImm32(1), lengthGPR);
// This isn't going to generate the best code on x86. But that's OK, it's still better
// than not inlining.
m_jit.load8(MacroAssembler::BaseIndex(leftTempGPR, lengthGPR, MacroAssembler::TimesOne), leftTemp2GPR);
m_jit.load8(MacroAssembler::BaseIndex(rightTempGPR, lengthGPR, MacroAssembler::TimesOne), rightTemp2GPR);
falseCase.append(m_jit.branch32(MacroAssembler::NotEqual, leftTemp2GPR, rightTemp2GPR));
m_jit.branchTest32(MacroAssembler::NonZero, lengthGPR).linkTo(loop, &m_jit);
trueCase.link(&m_jit);
moveTrueTo(leftTempGPR);
JITCompiler::Jump done = m_jit.jump();
falseCase.link(&m_jit);
moveFalseTo(leftTempGPR);
done.link(&m_jit);
addSlowPathGenerator(
slowPathCall(
slowCase, this, operationCompareStringEq, leftTempGPR, leftGPR, rightGPR));
blessedBooleanResult(leftTempGPR, node);
}
void SpeculativeJIT::compileStringEquality(Node* node)
{
SpeculateCellOperand left(this, node->child1());
SpeculateCellOperand right(this, node->child2());
GPRTemporary length(this);
GPRTemporary leftTemp(this);
GPRTemporary rightTemp(this);
GPRTemporary leftTemp2(this, Reuse, left);
GPRTemporary rightTemp2(this, Reuse, right);
GPRReg leftGPR = left.gpr();
GPRReg rightGPR = right.gpr();
GPRReg lengthGPR = length.gpr();
GPRReg leftTempGPR = leftTemp.gpr();
GPRReg rightTempGPR = rightTemp.gpr();
GPRReg leftTemp2GPR = leftTemp2.gpr();
GPRReg rightTemp2GPR = rightTemp2.gpr();
speculateString(node->child1(), leftGPR);
// It's safe to branch around the type check below, since proving that the values are
// equal does indeed prove that the right value is a string.
JITCompiler::Jump fastTrue = m_jit.branchPtr(MacroAssembler::Equal, leftGPR, rightGPR);
speculateString(node->child2(), rightGPR);
compileStringEquality(
node, leftGPR, rightGPR, lengthGPR, leftTempGPR, rightTempGPR, leftTemp2GPR,
rightTemp2GPR, fastTrue, JITCompiler::Jump());
}
void SpeculativeJIT::compileStringToUntypedEquality(Node* node, Edge stringEdge, Edge untypedEdge)
{
SpeculateCellOperand left(this, stringEdge);
JSValueOperand right(this, untypedEdge, ManualOperandSpeculation);
GPRTemporary length(this);
GPRTemporary leftTemp(this);
GPRTemporary rightTemp(this);
GPRTemporary leftTemp2(this, Reuse, left);
GPRTemporary rightTemp2(this);
GPRReg leftGPR = left.gpr();
JSValueRegs rightRegs = right.jsValueRegs();
GPRReg lengthGPR = length.gpr();
GPRReg leftTempGPR = leftTemp.gpr();
GPRReg rightTempGPR = rightTemp.gpr();
GPRReg leftTemp2GPR = leftTemp2.gpr();
GPRReg rightTemp2GPR = rightTemp2.gpr();
speculateString(stringEdge, leftGPR);
JITCompiler::JumpList fastTrue;
JITCompiler::JumpList fastFalse;
fastFalse.append(m_jit.branchIfNotCell(rightRegs));
// It's safe to branch around the type check below, since proving that the values are
// equal does indeed prove that the right value is a string.
fastTrue.append(m_jit.branchPtr(
MacroAssembler::Equal, leftGPR, rightRegs.payloadGPR()));
fastFalse.append(m_jit.branchIfNotString(rightRegs.payloadGPR()));
compileStringEquality(
node, leftGPR, rightRegs.payloadGPR(), lengthGPR, leftTempGPR, rightTempGPR, leftTemp2GPR,
rightTemp2GPR, fastTrue, fastFalse);
}
void SpeculativeJIT::compileStringIdentEquality(Node* node)
{
SpeculateCellOperand left(this, node->child1());
SpeculateCellOperand right(this, node->child2());
GPRTemporary leftTemp(this);
GPRTemporary rightTemp(this);
GPRReg leftGPR = left.gpr();
GPRReg rightGPR = right.gpr();
GPRReg leftTempGPR = leftTemp.gpr();
GPRReg rightTempGPR = rightTemp.gpr();
speculateString(node->child1(), leftGPR);
speculateString(node->child2(), rightGPR);
speculateStringIdentAndLoadStorage(node->child1(), leftGPR, leftTempGPR);
speculateStringIdentAndLoadStorage(node->child2(), rightGPR, rightTempGPR);
m_jit.comparePtr(MacroAssembler::Equal, leftTempGPR, rightTempGPR, leftTempGPR);
unblessedBooleanResult(leftTempGPR, node);
}
void SpeculativeJIT::compileStringIdentToNotStringVarEquality(
Node* node, Edge stringEdge, Edge notStringVarEdge)
{
SpeculateCellOperand left(this, stringEdge);
JSValueOperand right(this, notStringVarEdge, ManualOperandSpeculation);
GPRTemporary leftTemp(this);
GPRTemporary rightTemp(this);
GPRReg leftTempGPR = leftTemp.gpr();
GPRReg rightTempGPR = rightTemp.gpr();
GPRReg leftGPR = left.gpr();
JSValueRegs rightRegs = right.jsValueRegs();
speculateString(stringEdge, leftGPR);
speculateStringIdentAndLoadStorage(stringEdge, leftGPR, leftTempGPR);
moveFalseTo(rightTempGPR);
JITCompiler::JumpList notString;
notString.append(m_jit.branchIfNotCell(rightRegs));
notString.append(m_jit.branchIfNotString(rightRegs.payloadGPR()));
speculateStringIdentAndLoadStorage(notStringVarEdge, rightRegs.payloadGPR(), rightTempGPR);
m_jit.comparePtr(MacroAssembler::Equal, leftTempGPR, rightTempGPR, rightTempGPR);
notString.link(&m_jit);
unblessedBooleanResult(rightTempGPR, node);
}
void SpeculativeJIT::compileStringCompare(Node* node, MacroAssembler::RelationalCondition condition)
{
SpeculateCellOperand left(this, node->child1());
SpeculateCellOperand right(this, node->child2());
GPRReg leftGPR = left.gpr();
GPRReg rightGPR = right.gpr();
speculateString(node->child1(), leftGPR);
speculateString(node->child2(), rightGPR);
C_JITOperation_B_EJssJss compareFunction = nullptr;
if (condition == MacroAssembler::LessThan)
compareFunction = operationCompareStringLess;
else if (condition == MacroAssembler::LessThanOrEqual)
compareFunction = operationCompareStringLessEq;
else if (condition == MacroAssembler::GreaterThan)
compareFunction = operationCompareStringGreater;
else if (condition == MacroAssembler::GreaterThanOrEqual)
compareFunction = operationCompareStringGreaterEq;
else
RELEASE_ASSERT_NOT_REACHED();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
flushRegisters();
callOperation(compareFunction, resultGPR, leftGPR, rightGPR);
m_jit.exceptionCheck();
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileStringIdentCompare(Node* node, MacroAssembler::RelationalCondition condition)
{
SpeculateCellOperand left(this, node->child1());
SpeculateCellOperand right(this, node->child2());
GPRFlushedCallResult result(this);
GPRTemporary leftTemp(this);
GPRTemporary rightTemp(this);
GPRReg leftGPR = left.gpr();
GPRReg rightGPR = right.gpr();
GPRReg resultGPR = result.gpr();
GPRReg leftTempGPR = leftTemp.gpr();
GPRReg rightTempGPR = rightTemp.gpr();
speculateString(node->child1(), leftGPR);
speculateString(node->child2(), rightGPR);
C_JITOperation_TT compareFunction = nullptr;
if (condition == MacroAssembler::LessThan)
compareFunction = operationCompareStringImplLess;
else if (condition == MacroAssembler::LessThanOrEqual)
compareFunction = operationCompareStringImplLessEq;
else if (condition == MacroAssembler::GreaterThan)
compareFunction = operationCompareStringImplGreater;
else if (condition == MacroAssembler::GreaterThanOrEqual)
compareFunction = operationCompareStringImplGreaterEq;
else
RELEASE_ASSERT_NOT_REACHED();
speculateStringIdentAndLoadStorage(node->child1(), leftGPR, leftTempGPR);
speculateStringIdentAndLoadStorage(node->child2(), rightGPR, rightTempGPR);
flushRegisters();
callOperation(compareFunction, resultGPR, leftTempGPR, rightTempGPR);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileSameValue(Node* node)
{
if (node->isBinaryUseKind(DoubleRepUse)) {
SpeculateDoubleOperand arg1(this, node->child1());
SpeculateDoubleOperand arg2(this, node->child2());
GPRTemporary result(this);
GPRTemporary temp(this);
GPRTemporary temp2(this);
FPRReg arg1FPR = arg1.fpr();
FPRReg arg2FPR = arg2.fpr();
GPRReg resultGPR = result.gpr();
GPRReg tempGPR = temp.gpr();
GPRReg temp2GPR = temp2.gpr();
#if USE(JSVALUE64)
m_jit.moveDoubleTo64(arg1FPR, tempGPR);
m_jit.moveDoubleTo64(arg2FPR, temp2GPR);
auto trueCase = m_jit.branch64(CCallHelpers::Equal, tempGPR, temp2GPR);
#else
GPRTemporary temp3(this);
GPRReg temp3GPR = temp3.gpr();
m_jit.moveDoubleToInts(arg1FPR, tempGPR, temp2GPR);
m_jit.moveDoubleToInts(arg2FPR, temp3GPR, resultGPR);
auto notEqual = m_jit.branch32(CCallHelpers::NotEqual, tempGPR, temp3GPR);
auto trueCase = m_jit.branch32(CCallHelpers::Equal, temp2GPR, resultGPR);
notEqual.link(&m_jit);
#endif
m_jit.compareDouble(CCallHelpers::DoubleNotEqualOrUnordered, arg1FPR, arg1FPR, tempGPR);
m_jit.compareDouble(CCallHelpers::DoubleNotEqualOrUnordered, arg2FPR, arg2FPR, temp2GPR);
m_jit.and32(tempGPR, temp2GPR, resultGPR);
auto done = m_jit.jump();
trueCase.link(&m_jit);
m_jit.move(CCallHelpers::TrustedImm32(1), resultGPR);
done.link(&m_jit);
unblessedBooleanResult(resultGPR, node);
return;
}
ASSERT(node->isBinaryUseKind(UntypedUse));
JSValueOperand arg1(this, node->child1());
JSValueOperand arg2(this, node->child2());
JSValueRegs arg1Regs = arg1.jsValueRegs();
JSValueRegs arg2Regs = arg2.jsValueRegs();
arg1.use();
arg2.use();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationSameValue, resultGPR, arg1Regs, arg2Regs);
m_jit.exceptionCheck();
unblessedBooleanResult(resultGPR, node, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::compileStringZeroLength(Node* node)
{
SpeculateCellOperand str(this, node->child1());
GPRReg strGPR = str.gpr();
// Make sure that this is a string.
speculateString(node->child1(), strGPR);
GPRTemporary eq(this);
GPRReg eqGPR = eq.gpr();
// Fetch the length field from the string object.
m_jit.test32(MacroAssembler::Zero, MacroAssembler::Address(strGPR, JSString::offsetOfLength()), MacroAssembler::TrustedImm32(-1), eqGPR);
unblessedBooleanResult(eqGPR, node);
}
void SpeculativeJIT::compileLogicalNotStringOrOther(Node* node)
{
JSValueOperand value(this, node->child1(), ManualOperandSpeculation);
GPRTemporary temp(this);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg tempGPR = temp.gpr();
JITCompiler::Jump notCell = m_jit.branchIfNotCell(valueRegs);
GPRReg cellGPR = valueRegs.payloadGPR();
DFG_TYPE_CHECK(
valueRegs, node->child1(), (~SpecCellCheck) | SpecString, m_jit.branchIfNotString(cellGPR));
m_jit.test32(
JITCompiler::Zero, JITCompiler::Address(cellGPR, JSString::offsetOfLength()),
JITCompiler::TrustedImm32(-1), tempGPR);
JITCompiler::Jump done = m_jit.jump();
notCell.link(&m_jit);
DFG_TYPE_CHECK(
valueRegs, node->child1(), SpecCellCheck | SpecOther, m_jit.branchIfNotOther(valueRegs, tempGPR));
m_jit.move(TrustedImm32(1), tempGPR);
done.link(&m_jit);
unblessedBooleanResult(tempGPR, node);
}
void SpeculativeJIT::emitStringBranch(Edge nodeUse, BasicBlock* taken, BasicBlock* notTaken)
{
SpeculateCellOperand str(this, nodeUse);
speculateString(nodeUse, str.gpr());
branchTest32(JITCompiler::NonZero, MacroAssembler::Address(str.gpr(), JSString::offsetOfLength()), taken);
jump(notTaken);
noResult(m_currentNode);
}
void SpeculativeJIT::emitStringOrOtherBranch(Edge nodeUse, BasicBlock* taken, BasicBlock* notTaken)
{
JSValueOperand value(this, nodeUse, ManualOperandSpeculation);
GPRTemporary temp(this);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg tempGPR = temp.gpr();
JITCompiler::Jump notCell = m_jit.branchIfNotCell(valueRegs);
GPRReg cellGPR = valueRegs.payloadGPR();
DFG_TYPE_CHECK(valueRegs, nodeUse, (~SpecCellCheck) | SpecString, m_jit.branchIfNotString(cellGPR));
branchTest32(
JITCompiler::Zero, JITCompiler::Address(cellGPR, JSString::offsetOfLength()),
JITCompiler::TrustedImm32(-1), notTaken);
jump(taken, ForceJump);
notCell.link(&m_jit);
DFG_TYPE_CHECK(
valueRegs, nodeUse, SpecCellCheck | SpecOther, m_jit.branchIfNotOther(valueRegs, tempGPR));
jump(notTaken);
noResult(m_currentNode);
}
void SpeculativeJIT::compileConstantStoragePointer(Node* node)
{
GPRTemporary storage(this);
GPRReg storageGPR = storage.gpr();
m_jit.move(TrustedImmPtr(node->storagePointer()), storageGPR);
storageResult(storageGPR, node);
}
void SpeculativeJIT::cageTypedArrayStorage(GPRReg storageReg)
{
#if GIGACAGE_ENABLED
if (!Gigacage::shouldBeEnabled())
return;
if (Gigacage::canPrimitiveGigacageBeDisabled()) {
if (m_jit.vm()->primitiveGigacageEnabled().isStillValid())
m_jit.graph().watchpoints().addLazily(m_jit.vm()->primitiveGigacageEnabled());
else
return;
}
m_jit.cage(Gigacage::Primitive, storageReg);
#else
UNUSED_PARAM(storageReg);
#endif
}
void SpeculativeJIT::compileGetIndexedPropertyStorage(Node* node)
{
SpeculateCellOperand base(this, node->child1());
GPRReg baseReg = base.gpr();
GPRTemporary storage(this);
GPRReg storageReg = storage.gpr();
switch (node->arrayMode().type()) {
case Array::String:
m_jit.loadPtr(MacroAssembler::Address(baseReg, JSString::offsetOfValue()), storageReg);
addSlowPathGenerator(
slowPathCall(
m_jit.branchTest32(MacroAssembler::Zero, storageReg),
this, operationResolveRope, storageReg, baseReg));
m_jit.loadPtr(MacroAssembler::Address(storageReg, StringImpl::dataOffset()), storageReg);
break;
default:
auto typedArrayType = node->arrayMode().typedArrayType();
ASSERT_UNUSED(typedArrayType, isTypedView(typedArrayType));
m_jit.loadPtr(JITCompiler::Address(baseReg, JSArrayBufferView::offsetOfVector()), storageReg);
cageTypedArrayStorage(storageReg);
break;
}
storageResult(storageReg, node);
}
void SpeculativeJIT::compileGetTypedArrayByteOffset(Node* node)
{
SpeculateCellOperand base(this, node->child1());
GPRTemporary vector(this);
GPRTemporary data(this);
GPRReg baseGPR = base.gpr();
GPRReg vectorGPR = vector.gpr();
GPRReg dataGPR = data.gpr();
ASSERT(baseGPR != vectorGPR);
ASSERT(baseGPR != dataGPR);
ASSERT(vectorGPR != dataGPR);
GPRReg arrayBufferGPR = dataGPR;
JITCompiler::Jump emptyByteOffset = m_jit.branch32(
MacroAssembler::NotEqual,
MacroAssembler::Address(baseGPR, JSArrayBufferView::offsetOfMode()),
TrustedImm32(WastefulTypedArray));
m_jit.loadPtr(MacroAssembler::Address(baseGPR, JSArrayBufferView::offsetOfVector()), vectorGPR);
JITCompiler::Jump nullVector = m_jit.branchTestPtr(JITCompiler::Zero, vectorGPR);
m_jit.loadPtr(MacroAssembler::Address(baseGPR, JSObject::butterflyOffset()), dataGPR);
m_jit.cage(Gigacage::JSValue, dataGPR);
cageTypedArrayStorage(vectorGPR);
m_jit.loadPtr(MacroAssembler::Address(dataGPR, Butterfly::offsetOfArrayBuffer()), arrayBufferGPR);
// FIXME: This needs caging.
// https://bugs.webkit.org/show_bug.cgi?id=175515
m_jit.loadPtr(MacroAssembler::Address(arrayBufferGPR, ArrayBuffer::offsetOfData()), dataGPR);
m_jit.subPtr(dataGPR, vectorGPR);
JITCompiler::Jump done = m_jit.jump();
emptyByteOffset.link(&m_jit);
m_jit.move(TrustedImmPtr(nullptr), vectorGPR);
done.link(&m_jit);
nullVector.link(&m_jit);
int32Result(vectorGPR, node);
}
void SpeculativeJIT::compileGetByValOnDirectArguments(Node* node)
{
SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
JSValueRegsTemporary result(this);
GPRTemporary scratch(this);
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
JSValueRegs resultRegs = result.regs();
GPRReg scratchReg = scratch.gpr();
if (!m_compileOkay)
return;
ASSERT(ArrayMode(Array::DirectArguments, Array::Read).alreadyChecked(m_jit.graph(), node, m_state.forNode(m_graph.varArgChild(node, 0))));
speculationCheck(
ExoticObjectMode, JSValueSource(), 0,
m_jit.branchTestPtr(
MacroAssembler::NonZero,
MacroAssembler::Address(baseReg, DirectArguments::offsetOfMappedArguments())));
m_jit.load32(CCallHelpers::Address(baseReg, DirectArguments::offsetOfLength()), scratchReg);
auto isOutOfBounds = m_jit.branch32(CCallHelpers::AboveOrEqual, propertyReg, scratchReg);
if (node->arrayMode().isInBounds())
speculationCheck(OutOfBounds, JSValueSource(), 0, isOutOfBounds);
m_jit.loadValue(
MacroAssembler::BaseIndex(
baseReg, propertyReg, MacroAssembler::TimesEight, DirectArguments::storageOffset()),
resultRegs);
if (!node->arrayMode().isInBounds()) {
addSlowPathGenerator(
slowPathCall(
isOutOfBounds, this, operationGetByValObjectInt,
extractResult(resultRegs), baseReg, propertyReg));
}
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileGetByValOnScopedArguments(Node* node)
{
SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
JSValueRegsTemporary result(this);
GPRTemporary scratch(this);
GPRTemporary scratch2(this);
GPRTemporary indexMask(this);
GPRReg baseReg = base.gpr();
GPRReg propertyReg = property.gpr();
JSValueRegs resultRegs = result.regs();
GPRReg scratchReg = scratch.gpr();
GPRReg scratch2Reg = scratch2.gpr();
GPRReg indexMaskReg = indexMask.gpr();
if (!m_compileOkay)
return;
ASSERT(ArrayMode(Array::ScopedArguments, Array::Read).alreadyChecked(m_jit.graph(), node, m_state.forNode(m_graph.varArgChild(node, 0))));
m_jit.loadPtr(
MacroAssembler::Address(baseReg, ScopedArguments::offsetOfStorage()), resultRegs.payloadGPR());
m_jit.xorPtr(TrustedImmPtr(ScopedArgumentsPoison::key()), resultRegs.payloadGPR());
m_jit.load32(
MacroAssembler::Address(resultRegs.payloadGPR(), ScopedArguments::offsetOfTotalLengthInStorage()),
scratchReg);
speculationCheck(
ExoticObjectMode, JSValueSource(), nullptr,
m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, scratchReg));
m_jit.emitPreparePreciseIndexMask32(propertyReg, scratchReg, indexMaskReg);
m_jit.loadPtr(MacroAssembler::Address(baseReg, ScopedArguments::offsetOfTable()), scratchReg);
m_jit.xorPtr(TrustedImmPtr(ScopedArgumentsPoison::key()), scratchReg);
m_jit.load32(
MacroAssembler::Address(scratchReg, ScopedArgumentsTable::offsetOfLength()), scratch2Reg);
MacroAssembler::Jump overflowArgument = m_jit.branch32(
MacroAssembler::AboveOrEqual, propertyReg, scratch2Reg);
m_jit.loadPtr(MacroAssembler::Address(baseReg, ScopedArguments::offsetOfScope()), scratch2Reg);
m_jit.xorPtr(TrustedImmPtr(ScopedArgumentsPoison::key()), scratch2Reg);
m_jit.loadPtr(
MacroAssembler::Address(scratchReg, ScopedArgumentsTable::offsetOfArguments()),
scratchReg);
m_jit.load32(
MacroAssembler::BaseIndex(scratchReg, propertyReg, MacroAssembler::TimesFour),
scratchReg);
speculationCheck(
ExoticObjectMode, JSValueSource(), nullptr,
m_jit.branch32(
MacroAssembler::Equal, scratchReg, TrustedImm32(ScopeOffset::invalidOffset)));
m_jit.loadValue(
MacroAssembler::BaseIndex(
scratch2Reg, propertyReg, MacroAssembler::TimesEight,
JSLexicalEnvironment::offsetOfVariables()),
resultRegs);
MacroAssembler::Jump done = m_jit.jump();
overflowArgument.link(&m_jit);
m_jit.sub32(propertyReg, scratch2Reg);
m_jit.neg32(scratch2Reg);
m_jit.loadValue(
MacroAssembler::BaseIndex(
resultRegs.payloadGPR(), scratch2Reg, MacroAssembler::TimesEight),
resultRegs);
speculationCheck(ExoticObjectMode, JSValueSource(), nullptr, m_jit.branchIfEmpty(resultRegs));
done.link(&m_jit);
m_jit.andPtr(indexMaskReg, resultRegs.payloadGPR());
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileGetScope(Node* node)
{
SpeculateCellOperand function(this, node->child1());
GPRTemporary result(this, Reuse, function);
m_jit.loadPtr(JITCompiler::Address(function.gpr(), JSFunction::offsetOfScopeChain()), result.gpr());
cellResult(result.gpr(), node);
}
void SpeculativeJIT::compileSkipScope(Node* node)
{
SpeculateCellOperand scope(this, node->child1());
GPRTemporary result(this, Reuse, scope);
m_jit.loadPtr(JITCompiler::Address(scope.gpr(), JSScope::offsetOfNext()), result.gpr());
cellResult(result.gpr(), node);
}
void SpeculativeJIT::compileGetGlobalObject(Node* node)
{
SpeculateCellOperand object(this, node->child1());
GPRTemporary result(this);
GPRTemporary scratch(this);
m_jit.emitLoadStructure(*m_jit.vm(), object.gpr(), result.gpr(), scratch.gpr());
m_jit.loadPtr(JITCompiler::Address(result.gpr(), Structure::globalObjectOffset()), result.gpr());
cellResult(result.gpr(), node);
}
void SpeculativeJIT::compileGetGlobalThis(Node* node)
{
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
auto* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
m_jit.loadPtr(globalObject->addressOfGlobalThis(), resultGPR);
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileGetArrayLength(Node* node)
{
switch (node->arrayMode().type()) {
case Array::Undecided:
case Array::Int32:
case Array::Double:
case Array::Contiguous: {
StorageOperand storage(this, node->child2());
GPRTemporary result(this, Reuse, storage);
GPRReg storageReg = storage.gpr();
GPRReg resultReg = result.gpr();
m_jit.load32(MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength()), resultReg);
int32Result(resultReg, node);
break;
}
case Array::ArrayStorage:
case Array::SlowPutArrayStorage: {
StorageOperand storage(this, node->child2());
GPRTemporary result(this, Reuse, storage);
GPRReg storageReg = storage.gpr();
GPRReg resultReg = result.gpr();
m_jit.load32(MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength()), resultReg);
speculationCheck(Uncountable, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::LessThan, resultReg, MacroAssembler::TrustedImm32(0)));
int32Result(resultReg, node);
break;
}
case Array::String: {
SpeculateCellOperand base(this, node->child1());
GPRTemporary result(this, Reuse, base);
GPRReg baseGPR = base.gpr();
GPRReg resultGPR = result.gpr();
m_jit.load32(MacroAssembler::Address(baseGPR, JSString::offsetOfLength()), resultGPR);
int32Result(resultGPR, node);
break;
}
case Array::DirectArguments: {
SpeculateCellOperand base(this, node->child1());
GPRTemporary result(this, Reuse, base);
GPRReg baseReg = base.gpr();
GPRReg resultReg = result.gpr();
if (!m_compileOkay)
return;
ASSERT(ArrayMode(Array::DirectArguments, Array::Read).alreadyChecked(m_jit.graph(), node, m_state.forNode(node->child1())));
speculationCheck(
ExoticObjectMode, JSValueSource(), 0,
m_jit.branchTestPtr(
MacroAssembler::NonZero,
MacroAssembler::Address(baseReg, DirectArguments::offsetOfMappedArguments())));
m_jit.load32(
MacroAssembler::Address(baseReg, DirectArguments::offsetOfLength()), resultReg);
int32Result(resultReg, node);
break;
}
case Array::ScopedArguments: {
SpeculateCellOperand base(this, node->child1());
GPRTemporary result(this);
GPRReg baseReg = base.gpr();
GPRReg resultReg = result.gpr();
if (!m_compileOkay)
return;
ASSERT(ArrayMode(Array::ScopedArguments, Array::Read).alreadyChecked(m_jit.graph(), node, m_state.forNode(node->child1())));
m_jit.loadPtr(
MacroAssembler::Address(baseReg, ScopedArguments::offsetOfStorage()), resultReg);
m_jit.xorPtr(TrustedImmPtr(ScopedArgumentsPoison::key()), resultReg);
speculationCheck(
ExoticObjectMode, JSValueSource(), 0,
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(resultReg, ScopedArguments::offsetOfOverrodeThingsInStorage())));
m_jit.load32(
MacroAssembler::Address(resultReg, ScopedArguments::offsetOfTotalLengthInStorage()), resultReg);
int32Result(resultReg, node);
break;
}
default: {
ASSERT(node->arrayMode().isSomeTypedArrayView());
SpeculateCellOperand base(this, node->child1());
GPRTemporary result(this, Reuse, base);
GPRReg baseGPR = base.gpr();
GPRReg resultGPR = result.gpr();
m_jit.load32(MacroAssembler::Address(baseGPR, JSArrayBufferView::offsetOfLength()), resultGPR);
int32Result(resultGPR, node);
break;
} }
}
void SpeculativeJIT::compileCheckStringIdent(Node* node)
{
SpeculateCellOperand string(this, node->child1());
GPRTemporary storage(this);
GPRReg stringGPR = string.gpr();
GPRReg storageGPR = storage.gpr();
speculateString(node->child1(), stringGPR);
speculateStringIdentAndLoadStorage(node->child1(), stringGPR, storageGPR);
UniquedStringImpl* uid = node->uidOperand();
speculationCheck(
BadIdent, JSValueSource(), nullptr,
m_jit.branchPtr(JITCompiler::NotEqual, storageGPR, TrustedImmPtr(uid)));
noResult(node);
}
template <typename ClassType>
void SpeculativeJIT::compileNewFunctionCommon(GPRReg resultGPR, RegisteredStructure structure, GPRReg scratch1GPR, GPRReg scratch2GPR, GPRReg scopeGPR, MacroAssembler::JumpList& slowPath, size_t size, FunctionExecutable* executable)
{
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObjectWithKnownSize<ClassType>(resultGPR, TrustedImmPtr(structure), butterfly, scratch1GPR, scratch2GPR, slowPath, size);
m_jit.storePtr(scopeGPR, JITCompiler::Address(resultGPR, JSFunction::offsetOfScopeChain()));
m_jit.storePtr(TrustedImmPtr::weakPoisonedPointer<JSFunctionPoison>(m_jit.graph(), executable), JITCompiler::Address(resultGPR, JSFunction::offsetOfExecutable()));
m_jit.storePtr(TrustedImmPtr(nullptr), JITCompiler::Address(resultGPR, JSFunction::offsetOfRareData()));
m_jit.mutatorFence(*m_jit.vm());
}
void SpeculativeJIT::compileNewFunction(Node* node)
{
NodeType nodeType = node->op();
ASSERT(nodeType == NewFunction || nodeType == NewGeneratorFunction || nodeType == NewAsyncFunction || nodeType == NewAsyncGeneratorFunction);
SpeculateCellOperand scope(this, node->child1());
GPRReg scopeGPR = scope.gpr();
FunctionExecutable* executable = node->castOperand<FunctionExecutable*>();
if (executable->singletonFunction()->isStillValid()) {
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
flushRegisters();
if (nodeType == NewGeneratorFunction)
callOperation(operationNewGeneratorFunction, resultGPR, scopeGPR, executable);
else if (nodeType == NewAsyncFunction)
callOperation(operationNewAsyncFunction, resultGPR, scopeGPR, executable);
else if (nodeType == NewAsyncGeneratorFunction)
callOperation(operationNewAsyncGeneratorFunction, resultGPR, scopeGPR, executable);
else
callOperation(operationNewFunction, resultGPR, scopeGPR, executable);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
return;
}
RegisteredStructure structure = m_jit.graph().registerStructure(
[&] () {
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
switch (nodeType) {
case NewGeneratorFunction:
return globalObject->generatorFunctionStructure();
case NewAsyncFunction:
return globalObject->asyncFunctionStructure();
case NewAsyncGeneratorFunction:
return globalObject->asyncGeneratorFunctionStructure();
case NewFunction:
return JSFunction::selectStructureForNewFuncExp(globalObject, node->castOperand<FunctionExecutable*>());
default:
RELEASE_ASSERT_NOT_REACHED();
}
}());
GPRTemporary result(this);
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRReg resultGPR = result.gpr();
GPRReg scratch1GPR = scratch1.gpr();
GPRReg scratch2GPR = scratch2.gpr();
JITCompiler::JumpList slowPath;
if (nodeType == NewFunction) {
compileNewFunctionCommon<JSFunction>(resultGPR, structure, scratch1GPR, scratch2GPR, scopeGPR, slowPath, JSFunction::allocationSize(0), executable);
addSlowPathGenerator(slowPathCall(slowPath, this, operationNewFunctionWithInvalidatedReallocationWatchpoint, resultGPR, scopeGPR, executable));
}
if (nodeType == NewGeneratorFunction) {
compileNewFunctionCommon<JSGeneratorFunction>(resultGPR, structure, scratch1GPR, scratch2GPR, scopeGPR, slowPath, JSGeneratorFunction::allocationSize(0), executable);
addSlowPathGenerator(slowPathCall(slowPath, this, operationNewGeneratorFunctionWithInvalidatedReallocationWatchpoint, resultGPR, scopeGPR, executable));
}
if (nodeType == NewAsyncFunction) {
compileNewFunctionCommon<JSAsyncFunction>(resultGPR, structure, scratch1GPR, scratch2GPR, scopeGPR, slowPath, JSAsyncFunction::allocationSize(0), executable);
addSlowPathGenerator(slowPathCall(slowPath, this, operationNewAsyncFunctionWithInvalidatedReallocationWatchpoint, resultGPR, scopeGPR, executable));
}
if (nodeType == NewAsyncGeneratorFunction) {
compileNewFunctionCommon<JSAsyncGeneratorFunction>(resultGPR, structure, scratch1GPR, scratch2GPR, scopeGPR, slowPath, JSAsyncGeneratorFunction::allocationSize(0), executable);
addSlowPathGenerator(slowPathCall(slowPath, this, operationNewAsyncGeneratorFunctionWithInvalidatedReallocationWatchpoint, resultGPR, scopeGPR, executable));
}
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileSetFunctionName(Node* node)
{
SpeculateCellOperand func(this, node->child1());
GPRReg funcGPR = func.gpr();
JSValueOperand nameValue(this, node->child2());
JSValueRegs nameValueRegs = nameValue.jsValueRegs();
flushRegisters();
callOperation(operationSetFunctionName, funcGPR, nameValueRegs);
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compileLoadVarargs(Node* node)
{
LoadVarargsData* data = node->loadVarargsData();
JSValueRegs argumentsRegs;
{
JSValueOperand arguments(this, node->child1());
argumentsRegs = arguments.jsValueRegs();
flushRegisters();
}
callOperation(operationSizeOfVarargs, GPRInfo::returnValueGPR, argumentsRegs, data->offset);
m_jit.exceptionCheck();
lock(GPRInfo::returnValueGPR);
{
JSValueOperand arguments(this, node->child1());
argumentsRegs = arguments.jsValueRegs();
flushRegisters();
}
unlock(GPRInfo::returnValueGPR);
// FIXME: There is a chance that we will call an effectful length property twice. This is safe
// from the standpoint of the VM's integrity, but it's subtly wrong from a spec compliance
// standpoint. The best solution would be one where we can exit *into* the op_call_varargs right
// past the sizing.
// https://bugs.webkit.org/show_bug.cgi?id=141448
GPRReg argCountIncludingThisGPR =
JITCompiler::selectScratchGPR(GPRInfo::returnValueGPR, argumentsRegs);
m_jit.add32(TrustedImm32(1), GPRInfo::returnValueGPR, argCountIncludingThisGPR);
speculationCheck(
VarargsOverflow, JSValueSource(), Edge(), m_jit.branch32(
MacroAssembler::Above,
GPRInfo::returnValueGPR,
argCountIncludingThisGPR));
speculationCheck(
VarargsOverflow, JSValueSource(), Edge(), m_jit.branch32(
MacroAssembler::Above,
argCountIncludingThisGPR,
TrustedImm32(data->limit)));
m_jit.store32(argCountIncludingThisGPR, JITCompiler::payloadFor(data->machineCount));
callOperation(operationLoadVarargs, data->machineStart.offset(), argumentsRegs, data->offset, GPRInfo::returnValueGPR, data->mandatoryMinimum);
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compileForwardVarargs(Node* node)
{
LoadVarargsData* data = node->loadVarargsData();
InlineCallFrame* inlineCallFrame;
if (node->child1())
inlineCallFrame = node->child1()->origin.semantic.inlineCallFrame;
else
inlineCallFrame = node->origin.semantic.inlineCallFrame;
GPRTemporary length(this);
JSValueRegsTemporary temp(this);
GPRReg lengthGPR = length.gpr();
JSValueRegs tempRegs = temp.regs();
emitGetLength(inlineCallFrame, lengthGPR, /* includeThis = */ true);
if (data->offset)
m_jit.sub32(TrustedImm32(data->offset), lengthGPR);
speculationCheck(
VarargsOverflow, JSValueSource(), Edge(), m_jit.branch32(
MacroAssembler::Above,
lengthGPR, TrustedImm32(data->limit)));
m_jit.store32(lengthGPR, JITCompiler::payloadFor(data->machineCount));
VirtualRegister sourceStart = JITCompiler::argumentsStart(inlineCallFrame) + data->offset;
VirtualRegister targetStart = data->machineStart;
m_jit.sub32(TrustedImm32(1), lengthGPR);
// First have a loop that fills in the undefined slots in case of an arity check failure.
m_jit.move(TrustedImm32(data->mandatoryMinimum), tempRegs.payloadGPR());
JITCompiler::Jump done = m_jit.branch32(JITCompiler::BelowOrEqual, tempRegs.payloadGPR(), lengthGPR);
JITCompiler::Label loop = m_jit.label();
m_jit.sub32(TrustedImm32(1), tempRegs.payloadGPR());
m_jit.storeTrustedValue(
jsUndefined(),
JITCompiler::BaseIndex(
GPRInfo::callFrameRegister, tempRegs.payloadGPR(), JITCompiler::TimesEight,
targetStart.offset() * sizeof(EncodedJSValue)));
m_jit.branch32(JITCompiler::Above, tempRegs.payloadGPR(), lengthGPR).linkTo(loop, &m_jit);
done.link(&m_jit);
// And then fill in the actual argument values.
done = m_jit.branchTest32(JITCompiler::Zero, lengthGPR);
loop = m_jit.label();
m_jit.sub32(TrustedImm32(1), lengthGPR);
m_jit.loadValue(
JITCompiler::BaseIndex(
GPRInfo::callFrameRegister, lengthGPR, JITCompiler::TimesEight,
sourceStart.offset() * sizeof(EncodedJSValue)),
tempRegs);
m_jit.storeValue(
tempRegs,
JITCompiler::BaseIndex(
GPRInfo::callFrameRegister, lengthGPR, JITCompiler::TimesEight,
targetStart.offset() * sizeof(EncodedJSValue)));
m_jit.branchTest32(JITCompiler::NonZero, lengthGPR).linkTo(loop, &m_jit);
done.link(&m_jit);
noResult(node);
}
void SpeculativeJIT::compileCreateActivation(Node* node)
{
SymbolTable* table = node->castOperand<SymbolTable*>();
RegisteredStructure structure = m_jit.graph().registerStructure(m_jit.graph().globalObjectFor(
node->origin.semantic)->activationStructure());
SpeculateCellOperand scope(this, node->child1());
GPRReg scopeGPR = scope.gpr();
JSValue initializationValue = node->initializationValueForActivation();
ASSERT(initializationValue == jsUndefined() || initializationValue == jsTDZValue());
if (table->singletonScope()->isStillValid()) {
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
#if USE(JSVALUE32_64)
JSValueRegsTemporary initialization(this);
JSValueRegs initializationRegs = initialization.regs();
m_jit.moveTrustedValue(initializationValue, initializationRegs);
#endif
flushRegisters();
#if USE(JSVALUE64)
callOperation(operationCreateActivationDirect,
resultGPR, structure, scopeGPR, table, TrustedImm64(JSValue::encode(initializationValue)));
#else
callOperation(operationCreateActivationDirect,
resultGPR, structure, scopeGPR, table, initializationRegs);
#endif
m_jit.exceptionCheck();
cellResult(resultGPR, node);
return;
}
GPRTemporary result(this);
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRReg resultGPR = result.gpr();
GPRReg scratch1GPR = scratch1.gpr();
GPRReg scratch2GPR = scratch2.gpr();
#if USE(JSVALUE32_64)
JSValueRegsTemporary initialization(this);
JSValueRegs initializationRegs = initialization.regs();
m_jit.moveTrustedValue(initializationValue, initializationRegs);
#endif
JITCompiler::JumpList slowPath;
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObjectWithKnownSize<JSLexicalEnvironment>(
resultGPR, TrustedImmPtr(structure), butterfly, scratch1GPR, scratch2GPR,
slowPath, JSLexicalEnvironment::allocationSize(table));
// Don't need a memory barriers since we just fast-created the activation, so the
// activation must be young.
m_jit.storePtr(scopeGPR, JITCompiler::Address(resultGPR, JSScope::offsetOfNext()));
m_jit.storePtr(
TrustedImmPtr(node->cellOperand()),
JITCompiler::Address(resultGPR, JSLexicalEnvironment::offsetOfSymbolTable()));
// Must initialize all members to undefined or the TDZ empty value.
for (unsigned i = 0; i < table->scopeSize(); ++i) {
m_jit.storeTrustedValue(
initializationValue,
JITCompiler::Address(
resultGPR, JSLexicalEnvironment::offsetOfVariable(ScopeOffset(i))));
}
m_jit.mutatorFence(*m_jit.vm());
#if USE(JSVALUE64)
addSlowPathGenerator(
slowPathCall(
slowPath, this, operationCreateActivationDirect, resultGPR, structure, scopeGPR, table, TrustedImm64(JSValue::encode(initializationValue))));
#else
addSlowPathGenerator(
slowPathCall(
slowPath, this, operationCreateActivationDirect, resultGPR, structure, scopeGPR, table, initializationRegs));
#endif
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileCreateDirectArguments(Node* node)
{
// FIXME: A more effective way of dealing with the argument count and callee is to have
// them be explicit arguments to this node.
// https://bugs.webkit.org/show_bug.cgi?id=142207
GPRTemporary result(this);
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRTemporary length;
GPRReg resultGPR = result.gpr();
GPRReg scratch1GPR = scratch1.gpr();
GPRReg scratch2GPR = scratch2.gpr();
GPRReg lengthGPR = InvalidGPRReg;
JSValueRegs valueRegs = JSValueRegs::withTwoAvailableRegs(scratch1GPR, scratch2GPR);
unsigned minCapacity = m_jit.graph().baselineCodeBlockFor(node->origin.semantic)->numParameters() - 1;
unsigned knownLength;
bool lengthIsKnown; // if false, lengthGPR will have the length.
if (node->origin.semantic.inlineCallFrame
&& !node->origin.semantic.inlineCallFrame->isVarargs()) {
knownLength = node->origin.semantic.inlineCallFrame->argumentCountIncludingThis - 1;
lengthIsKnown = true;
} else {
knownLength = UINT_MAX;
lengthIsKnown = false;
GPRTemporary realLength(this);
length.adopt(realLength);
lengthGPR = length.gpr();
VirtualRegister argumentCountRegister = m_jit.argumentCount(node->origin.semantic);
m_jit.load32(JITCompiler::payloadFor(argumentCountRegister), lengthGPR);
m_jit.sub32(TrustedImm32(1), lengthGPR);
}
RegisteredStructure structure =
m_jit.graph().registerStructure(m_jit.graph().globalObjectFor(node->origin.semantic)->directArgumentsStructure());
// Use a different strategy for allocating the object depending on whether we know its
// size statically.
JITCompiler::JumpList slowPath;
if (lengthIsKnown) {
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObjectWithKnownSize<DirectArguments>(
resultGPR, TrustedImmPtr(structure), butterfly, scratch1GPR, scratch2GPR,
slowPath, DirectArguments::allocationSize(std::max(knownLength, minCapacity)));
m_jit.store32(
TrustedImm32(knownLength),
JITCompiler::Address(resultGPR, DirectArguments::offsetOfLength()));
} else {
JITCompiler::Jump tooFewArguments;
if (minCapacity) {
tooFewArguments =
m_jit.branch32(JITCompiler::Below, lengthGPR, TrustedImm32(minCapacity));
}
m_jit.lshift32(lengthGPR, TrustedImm32(3), scratch1GPR);
m_jit.add32(TrustedImm32(DirectArguments::storageOffset()), scratch1GPR);
if (minCapacity) {
JITCompiler::Jump done = m_jit.jump();
tooFewArguments.link(&m_jit);
m_jit.move(TrustedImm32(DirectArguments::allocationSize(minCapacity)), scratch1GPR);
done.link(&m_jit);
}
emitAllocateVariableSizedJSObject<DirectArguments>(
resultGPR, TrustedImmPtr(structure), scratch1GPR, scratch1GPR, scratch2GPR,
slowPath);
m_jit.store32(
lengthGPR, JITCompiler::Address(resultGPR, DirectArguments::offsetOfLength()));
}
m_jit.store32(
TrustedImm32(minCapacity),
JITCompiler::Address(resultGPR, DirectArguments::offsetOfMinCapacity()));
m_jit.storePtr(
TrustedImmPtr(nullptr), JITCompiler::Address(resultGPR, DirectArguments::offsetOfMappedArguments()));
m_jit.storePtr(
TrustedImmPtr(nullptr), JITCompiler::Address(resultGPR, DirectArguments::offsetOfModifiedArgumentsDescriptor()));
if (lengthIsKnown) {
addSlowPathGenerator(
slowPathCall(
slowPath, this, operationCreateDirectArguments, resultGPR, structure,
knownLength, minCapacity));
} else {
auto generator = std::make_unique<CallCreateDirectArgumentsSlowPathGenerator>(
slowPath, this, resultGPR, structure, lengthGPR, minCapacity);
addSlowPathGenerator(WTFMove(generator));
}
if (node->origin.semantic.inlineCallFrame) {
if (node->origin.semantic.inlineCallFrame->isClosureCall) {
m_jit.loadPtr(
JITCompiler::addressFor(
node->origin.semantic.inlineCallFrame->calleeRecovery.virtualRegister()),
scratch1GPR);
} else {
m_jit.move(
TrustedImmPtr::weakPointer(
m_jit.graph(), node->origin.semantic.inlineCallFrame->calleeRecovery.constant().asCell()),
scratch1GPR);
}
} else
m_jit.loadPtr(JITCompiler::addressFor(CallFrameSlot::callee), scratch1GPR);
// Don't need a memory barriers since we just fast-created the activation, so the
// activation must be young.
m_jit.storePtr(
scratch1GPR, JITCompiler::Address(resultGPR, DirectArguments::offsetOfCallee()));
VirtualRegister start = m_jit.argumentsStart(node->origin.semantic);
if (lengthIsKnown) {
for (unsigned i = 0; i < std::max(knownLength, minCapacity); ++i) {
m_jit.loadValue(JITCompiler::addressFor(start + i), valueRegs);
m_jit.storeValue(
valueRegs, JITCompiler::Address(resultGPR, DirectArguments::offsetOfSlot(i)));
}
} else {
JITCompiler::Jump done;
if (minCapacity) {
JITCompiler::Jump startLoop = m_jit.branch32(
JITCompiler::AboveOrEqual, lengthGPR, TrustedImm32(minCapacity));
m_jit.move(TrustedImm32(minCapacity), lengthGPR);
startLoop.link(&m_jit);
} else
done = m_jit.branchTest32(MacroAssembler::Zero, lengthGPR);
JITCompiler::Label loop = m_jit.label();
m_jit.sub32(TrustedImm32(1), lengthGPR);
m_jit.loadValue(
JITCompiler::BaseIndex(
GPRInfo::callFrameRegister, lengthGPR, JITCompiler::TimesEight,
start.offset() * static_cast<int>(sizeof(Register))),
valueRegs);
m_jit.storeValue(
valueRegs,
JITCompiler::BaseIndex(
resultGPR, lengthGPR, JITCompiler::TimesEight,
DirectArguments::storageOffset()));
m_jit.branchTest32(MacroAssembler::NonZero, lengthGPR).linkTo(loop, &m_jit);
if (done.isSet())
done.link(&m_jit);
}
m_jit.mutatorFence(*m_jit.vm());
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileGetFromArguments(Node* node)
{
SpeculateCellOperand arguments(this, node->child1());
JSValueRegsTemporary result(this);
GPRReg argumentsGPR = arguments.gpr();
JSValueRegs resultRegs = result.regs();
m_jit.loadValue(JITCompiler::Address(argumentsGPR, DirectArguments::offsetOfSlot(node->capturedArgumentsOffset().offset())), resultRegs);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compilePutToArguments(Node* node)
{
SpeculateCellOperand arguments(this, node->child1());
JSValueOperand value(this, node->child2());
GPRReg argumentsGPR = arguments.gpr();
JSValueRegs valueRegs = value.jsValueRegs();
m_jit.storeValue(valueRegs, JITCompiler::Address(argumentsGPR, DirectArguments::offsetOfSlot(node->capturedArgumentsOffset().offset())));
noResult(node);
}
void SpeculativeJIT::compileGetArgument(Node* node)
{
GPRTemporary argumentCount(this);
JSValueRegsTemporary result(this);
GPRReg argumentCountGPR = argumentCount.gpr();
JSValueRegs resultRegs = result.regs();
m_jit.load32(CCallHelpers::payloadFor(m_jit.argumentCount(node->origin.semantic)), argumentCountGPR);
auto argumentOutOfBounds = m_jit.branch32(CCallHelpers::LessThanOrEqual, argumentCountGPR, CCallHelpers::TrustedImm32(node->argumentIndex()));
m_jit.loadValue(CCallHelpers::addressFor(CCallHelpers::argumentsStart(node->origin.semantic) + node->argumentIndex() - 1), resultRegs);
auto done = m_jit.jump();
argumentOutOfBounds.link(&m_jit);
m_jit.moveValue(jsUndefined(), resultRegs);
done.link(&m_jit);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileCreateScopedArguments(Node* node)
{
SpeculateCellOperand scope(this, node->child1());
GPRReg scopeGPR = scope.gpr();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
flushRegisters();
// We set up the arguments ourselves, because we have the whole register file and we can
// set them up directly into the argument registers. This also means that we don't have to
// invent a four-argument-register shuffle.
// Arguments: 0:exec, 1:structure, 2:start, 3:length, 4:callee, 5:scope
// Do the scopeGPR first, since it might alias an argument register.
m_jit.setupArgument(5, [&] (GPRReg destGPR) { m_jit.move(scopeGPR, destGPR); });
// These other things could be done in any order.
m_jit.setupArgument(4, [&] (GPRReg destGPR) { emitGetCallee(node->origin.semantic, destGPR); });
m_jit.setupArgument(3, [&] (GPRReg destGPR) { emitGetLength(node->origin.semantic, destGPR); });
m_jit.setupArgument(2, [&] (GPRReg destGPR) { emitGetArgumentStart(node->origin.semantic, destGPR); });
m_jit.setupArgument(
1, [&] (GPRReg destGPR) {
m_jit.move(
TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.globalObjectFor(node->origin.semantic)->scopedArgumentsStructure()),
destGPR);
});
m_jit.setupArgument(0, [&] (GPRReg destGPR) { m_jit.move(GPRInfo::callFrameRegister, destGPR); });
appendCallSetResult(operationCreateScopedArguments, resultGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileCreateClonedArguments(Node* node)
{
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
flushRegisters();
// We set up the arguments ourselves, because we have the whole register file and we can
// set them up directly into the argument registers.
// Arguments: 0:exec, 1:structure, 2:start, 3:length, 4:callee
m_jit.setupArgument(4, [&] (GPRReg destGPR) { emitGetCallee(node->origin.semantic, destGPR); });
m_jit.setupArgument(3, [&] (GPRReg destGPR) { emitGetLength(node->origin.semantic, destGPR); });
m_jit.setupArgument(2, [&] (GPRReg destGPR) { emitGetArgumentStart(node->origin.semantic, destGPR); });
m_jit.setupArgument(
1, [&] (GPRReg destGPR) {
m_jit.move(
TrustedImmPtr::weakPointer(
m_jit.graph(), m_jit.globalObjectFor(node->origin.semantic)->clonedArgumentsStructure()),
destGPR);
});
m_jit.setupArgument(0, [&] (GPRReg destGPR) { m_jit.move(GPRInfo::callFrameRegister, destGPR); });
appendCallSetResult(operationCreateClonedArguments, resultGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileCreateRest(Node* node)
{
ASSERT(node->op() == CreateRest);
#if !CPU(X86)
if (m_jit.graph().isWatchingHavingABadTimeWatchpoint(node)) {
SpeculateStrictInt32Operand arrayLength(this, node->child1());
GPRTemporary arrayResult(this);
GPRReg arrayLengthGPR = arrayLength.gpr();
GPRReg arrayResultGPR = arrayResult.gpr();
bool shouldAllowForArrayStorageStructureForLargeArrays = false;
ASSERT(m_jit.graph().globalObjectFor(node->origin.semantic)->restParameterStructure()->indexingMode() == ArrayWithContiguous || m_jit.graph().globalObjectFor(node->origin.semantic)->isHavingABadTime());
compileAllocateNewArrayWithSize(m_jit.graph().globalObjectFor(node->origin.semantic), arrayResultGPR, arrayLengthGPR, ArrayWithContiguous, shouldAllowForArrayStorageStructureForLargeArrays);
GPRTemporary argumentsStart(this);
GPRReg argumentsStartGPR = argumentsStart.gpr();
emitGetArgumentStart(node->origin.semantic, argumentsStartGPR);
GPRTemporary butterfly(this);
GPRTemporary currentLength(this);
JSValueRegsTemporary value(this);
JSValueRegs valueRegs = value.regs();
GPRReg currentLengthGPR = currentLength.gpr();
GPRReg butterflyGPR = butterfly.gpr();
m_jit.loadPtr(MacroAssembler::Address(arrayResultGPR, JSObject::butterflyOffset()), butterflyGPR);
CCallHelpers::Jump skipLoop = m_jit.branch32(MacroAssembler::Equal, arrayLengthGPR, TrustedImm32(0));
m_jit.zeroExtend32ToPtr(arrayLengthGPR, currentLengthGPR);
m_jit.addPtr(Imm32(sizeof(Register) * node->numberOfArgumentsToSkip()), argumentsStartGPR);
auto loop = m_jit.label();
m_jit.sub32(TrustedImm32(1), currentLengthGPR);
m_jit.loadValue(JITCompiler::BaseIndex(argumentsStartGPR, currentLengthGPR, MacroAssembler::TimesEight), valueRegs);
m_jit.storeValue(valueRegs, MacroAssembler::BaseIndex(butterflyGPR, currentLengthGPR, MacroAssembler::TimesEight));
m_jit.branch32(MacroAssembler::NotEqual, currentLengthGPR, TrustedImm32(0)).linkTo(loop, &m_jit);
skipLoop.link(&m_jit);
cellResult(arrayResultGPR, node);
return;
}
#endif // !CPU(X86)
SpeculateStrictInt32Operand arrayLength(this, node->child1());
GPRTemporary argumentsStart(this);
GPRTemporary numberOfArgumentsToSkip(this);
GPRReg arrayLengthGPR = arrayLength.gpr();
GPRReg argumentsStartGPR = argumentsStart.gpr();
emitGetArgumentStart(node->origin.semantic, argumentsStartGPR);
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationCreateRest, resultGPR, argumentsStartGPR, Imm32(node->numberOfArgumentsToSkip()), arrayLengthGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileSpread(Node* node)
{
ASSERT(node->op() == Spread);
SpeculateCellOperand operand(this, node->child1());
GPRReg argument = operand.gpr();
if (node->child1().useKind() == ArrayUse)
speculateArray(node->child1(), argument);
if (m_jit.graph().canDoFastSpread(node, m_state.forNode(node->child1()))) {
#if USE(JSVALUE64)
GPRTemporary result(this);
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRTemporary length(this);
FPRTemporary doubleRegister(this);
GPRReg resultGPR = result.gpr();
GPRReg scratch1GPR = scratch1.gpr();
GPRReg scratch2GPR = scratch2.gpr();
GPRReg lengthGPR = length.gpr();
FPRReg doubleFPR = doubleRegister.fpr();
MacroAssembler::JumpList slowPath;
m_jit.load8(MacroAssembler::Address(argument, JSCell::indexingTypeAndMiscOffset()), scratch1GPR);
m_jit.and32(TrustedImm32(IndexingShapeMask), scratch1GPR);
m_jit.sub32(TrustedImm32(Int32Shape), scratch1GPR);
slowPath.append(m_jit.branch32(MacroAssembler::Above, scratch1GPR, TrustedImm32(ContiguousShape - Int32Shape)));
m_jit.loadPtr(MacroAssembler::Address(argument, JSObject::butterflyOffset()), lengthGPR);
m_jit.load32(MacroAssembler::Address(lengthGPR, Butterfly::offsetOfPublicLength()), lengthGPR);
static_assert(sizeof(JSValue) == 8 && 1 << 3 == 8, "This is strongly assumed in the code below.");
m_jit.move(lengthGPR, scratch1GPR);
m_jit.lshift32(TrustedImm32(3), scratch1GPR);
m_jit.add32(TrustedImm32(JSFixedArray::offsetOfData()), scratch1GPR);
m_jit.emitAllocateVariableSizedCell<JSFixedArray>(*m_jit.vm(), resultGPR, TrustedImmPtr(m_jit.graph().registerStructure(m_jit.graph().m_vm.fixedArrayStructure.get())), scratch1GPR, scratch1GPR, scratch2GPR, slowPath);
m_jit.store32(lengthGPR, MacroAssembler::Address(resultGPR, JSFixedArray::offsetOfSize()));
m_jit.loadPtr(MacroAssembler::Address(argument, JSObject::butterflyOffset()), scratch1GPR);
MacroAssembler::JumpList done;
m_jit.load8(MacroAssembler::Address(argument, JSCell::indexingTypeAndMiscOffset()), scratch2GPR);
m_jit.and32(TrustedImm32(IndexingShapeMask), scratch2GPR);
auto isDoubleArray = m_jit.branch32(MacroAssembler::Equal, scratch2GPR, TrustedImm32(DoubleShape));
{
done.append(m_jit.branchTest32(MacroAssembler::Zero, lengthGPR));
auto loopStart = m_jit.label();
m_jit.sub32(TrustedImm32(1), lengthGPR);
m_jit.load64(MacroAssembler::BaseIndex(scratch1GPR, lengthGPR, MacroAssembler::TimesEight), scratch2GPR);
auto notEmpty = m_jit.branchIfNotEmpty(scratch2GPR);
m_jit.move(TrustedImm64(JSValue::encode(jsUndefined())), scratch2GPR);
notEmpty.link(&m_jit);
m_jit.store64(scratch2GPR, MacroAssembler::BaseIndex(resultGPR, lengthGPR, MacroAssembler::TimesEight, JSFixedArray::offsetOfData()));
m_jit.branchTest32(MacroAssembler::NonZero, lengthGPR).linkTo(loopStart, &m_jit);
done.append(m_jit.jump());
}
isDoubleArray.link(&m_jit);
{
done.append(m_jit.branchTest32(MacroAssembler::Zero, lengthGPR));
auto loopStart = m_jit.label();
m_jit.sub32(TrustedImm32(1), lengthGPR);
m_jit.loadDouble(MacroAssembler::BaseIndex(scratch1GPR, lengthGPR, MacroAssembler::TimesEight), doubleFPR);
auto notEmpty = m_jit.branchIfNotNaN(doubleFPR);
m_jit.move(TrustedImm64(JSValue::encode(jsUndefined())), scratch2GPR);
auto doStore = m_jit.jump();
notEmpty.link(&m_jit);
m_jit.boxDouble(doubleFPR, scratch2GPR);
doStore.link(&m_jit);
m_jit.store64(scratch2GPR, MacroAssembler::BaseIndex(resultGPR, lengthGPR, MacroAssembler::TimesEight, JSFixedArray::offsetOfData()));
m_jit.branchTest32(MacroAssembler::NonZero, lengthGPR).linkTo(loopStart, &m_jit);
done.append(m_jit.jump());
}
m_jit.mutatorFence(*m_jit.vm());
slowPath.link(&m_jit);
addSlowPathGenerator(slowPathCall(m_jit.jump(), this, operationSpreadFastArray, resultGPR, argument));
done.link(&m_jit);
cellResult(resultGPR, node);
#else
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationSpreadFastArray, resultGPR, argument);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
#endif // USE(JSVALUE64)
} else {
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationSpreadGeneric, resultGPR, argument);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
}
void SpeculativeJIT::compileNewArray(Node* node)
{
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
if (!globalObject->isHavingABadTime() && !hasAnyArrayStorage(node->indexingType())) {
RegisteredStructure structure = m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(node->indexingType()));
DFG_ASSERT(m_jit.graph(), node, structure->indexingType() == node->indexingType(), structure->indexingType(), node->indexingType());
ASSERT(
hasUndecided(structure->indexingType())
|| hasInt32(structure->indexingType())
|| hasDouble(structure->indexingType())
|| hasContiguous(structure->indexingType()));
unsigned numElements = node->numChildren();
unsigned vectorLengthHint = node->vectorLengthHint();
ASSERT(vectorLengthHint >= numElements);
GPRTemporary result(this);
GPRTemporary storage(this);
GPRReg resultGPR = result.gpr();
GPRReg storageGPR = storage.gpr();
emitAllocateRawObject(resultGPR, structure, storageGPR, numElements, vectorLengthHint);
// At this point, one way or another, resultGPR and storageGPR have pointers to
// the JSArray and the Butterfly, respectively.
ASSERT(!hasUndecided(structure->indexingType()) || !node->numChildren());
for (unsigned operandIdx = 0; operandIdx < node->numChildren(); ++operandIdx) {
Edge use = m_jit.graph().m_varArgChildren[node->firstChild() + operandIdx];
switch (node->indexingType()) {
case ALL_BLANK_INDEXING_TYPES:
case ALL_UNDECIDED_INDEXING_TYPES:
CRASH();
break;
case ALL_DOUBLE_INDEXING_TYPES: {
SpeculateDoubleOperand operand(this, use);
FPRReg opFPR = operand.fpr();
DFG_TYPE_CHECK(
JSValueRegs(), use, SpecDoubleReal,
m_jit.branchIfNaN(opFPR));
m_jit.storeDouble(opFPR, MacroAssembler::Address(storageGPR, sizeof(double) * operandIdx));
break;
}
case ALL_INT32_INDEXING_TYPES:
case ALL_CONTIGUOUS_INDEXING_TYPES: {
JSValueOperand operand(this, use, ManualOperandSpeculation);
JSValueRegs operandRegs = operand.jsValueRegs();
if (hasInt32(node->indexingType())) {
DFG_TYPE_CHECK(
operandRegs, use, SpecInt32Only,
m_jit.branchIfNotInt32(operandRegs));
}
m_jit.storeValue(operandRegs, MacroAssembler::Address(storageGPR, sizeof(JSValue) * operandIdx));
break;
}
default:
CRASH();
break;
}
}
// Yuck, we should *really* have a way of also returning the storageGPR. But
// that's the least of what's wrong with this code. We really shouldn't be
// allocating the array after having computed - and probably spilled to the
// stack - all of the things that will go into the array. The solution to that
// bigger problem will also likely fix the redundancy in reloading the storage
// pointer that we currently have.
cellResult(resultGPR, node);
return;
}
if (!node->numChildren()) {
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationNewEmptyArray, result.gpr(), m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(node->indexingType())));
m_jit.exceptionCheck();
cellResult(result.gpr(), node);
return;
}
size_t scratchSize = sizeof(EncodedJSValue) * node->numChildren();
ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(scratchSize);
EncodedJSValue* buffer = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : nullptr;
for (unsigned operandIdx = 0; operandIdx < node->numChildren(); ++operandIdx) {
// Need to perform the speculations that this node promises to perform. If we're
// emitting code here and the indexing type is not array storage then there is
// probably something hilarious going on and we're already failing at all the
// things, but at least we're going to be sound.
Edge use = m_jit.graph().m_varArgChildren[node->firstChild() + operandIdx];
switch (node->indexingType()) {
case ALL_BLANK_INDEXING_TYPES:
case ALL_UNDECIDED_INDEXING_TYPES:
CRASH();
break;
case ALL_DOUBLE_INDEXING_TYPES: {
SpeculateDoubleOperand operand(this, use);
FPRReg opFPR = operand.fpr();
DFG_TYPE_CHECK(
JSValueRegs(), use, SpecDoubleReal,
m_jit.branchIfNaN(opFPR));
#if USE(JSVALUE64)
JSValueRegsTemporary scratch(this);
JSValueRegs scratchRegs = scratch.regs();
m_jit.boxDouble(opFPR, scratchRegs);
m_jit.storeValue(scratchRegs, buffer + operandIdx);
#else
m_jit.storeDouble(opFPR, TrustedImmPtr(buffer + operandIdx));
#endif
operand.use();
break;
}
case ALL_INT32_INDEXING_TYPES:
case ALL_CONTIGUOUS_INDEXING_TYPES:
case ALL_ARRAY_STORAGE_INDEXING_TYPES: {
JSValueOperand operand(this, use, ManualOperandSpeculation);
JSValueRegs operandRegs = operand.jsValueRegs();
if (hasInt32(node->indexingType())) {
DFG_TYPE_CHECK(
operandRegs, use, SpecInt32Only,
m_jit.branchIfNotInt32(operandRegs));
}
m_jit.storeValue(operandRegs, buffer + operandIdx);
operand.use();
break;
}
default:
CRASH();
break;
}
}
flushRegisters();
if (scratchSize) {
GPRTemporary scratch(this);
// Tell GC mark phase how much of the scratch buffer is active during call.
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), scratch.gpr());
m_jit.storePtr(TrustedImmPtr(scratchSize), scratch.gpr());
}
GPRFlushedCallResult result(this);
callOperation(
operationNewArray, result.gpr(), m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(node->indexingType())),
static_cast<void*>(buffer), size_t(node->numChildren()));
m_jit.exceptionCheck();
if (scratchSize) {
GPRTemporary scratch(this);
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), scratch.gpr());
m_jit.storePtr(TrustedImmPtr(nullptr), scratch.gpr());
}
cellResult(result.gpr(), node, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::compileNewArrayWithSpread(Node* node)
{
ASSERT(node->op() == NewArrayWithSpread);
#if USE(JSVALUE64)
if (m_jit.graph().isWatchingHavingABadTimeWatchpoint(node)) {
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
BitVector* bitVector = node->bitVector();
{
unsigned startLength = 0;
for (unsigned i = 0; i < node->numChildren(); ++i) {
if (!bitVector->get(i))
++startLength;
}
GPRTemporary length(this);
GPRReg lengthGPR = length.gpr();
m_jit.move(TrustedImm32(startLength), lengthGPR);
for (unsigned i = 0; i < node->numChildren(); ++i) {
if (bitVector->get(i)) {
Edge use = m_jit.graph().varArgChild(node, i);
SpeculateCellOperand fixedArray(this, use);
GPRReg fixedArrayGPR = fixedArray.gpr();
speculationCheck(Overflow, JSValueRegs(), nullptr, m_jit.branchAdd32(MacroAssembler::Overflow, MacroAssembler::Address(fixedArrayGPR, JSFixedArray::offsetOfSize()), lengthGPR));
}
}
bool shouldAllowForArrayStorageStructureForLargeArrays = false;
ASSERT(m_jit.graph().globalObjectFor(node->origin.semantic)->restParameterStructure()->indexingType() == ArrayWithContiguous || m_jit.graph().globalObjectFor(node->origin.semantic)->isHavingABadTime());
compileAllocateNewArrayWithSize(m_jit.graph().globalObjectFor(node->origin.semantic), resultGPR, lengthGPR, ArrayWithContiguous, shouldAllowForArrayStorageStructureForLargeArrays);
}
GPRTemporary index(this);
GPRReg indexGPR = index.gpr();
GPRTemporary storage(this);
GPRReg storageGPR = storage.gpr();
m_jit.move(TrustedImm32(0), indexGPR);
m_jit.loadPtr(MacroAssembler::Address(resultGPR, JSObject::butterflyOffset()), storageGPR);
for (unsigned i = 0; i < node->numChildren(); ++i) {
Edge use = m_jit.graph().varArgChild(node, i);
if (bitVector->get(i)) {
SpeculateCellOperand fixedArray(this, use);
GPRReg fixedArrayGPR = fixedArray.gpr();
GPRTemporary fixedIndex(this);
GPRReg fixedIndexGPR = fixedIndex.gpr();
GPRTemporary item(this);
GPRReg itemGPR = item.gpr();
GPRTemporary fixedLength(this);
GPRReg fixedLengthGPR = fixedLength.gpr();
m_jit.load32(MacroAssembler::Address(fixedArrayGPR, JSFixedArray::offsetOfSize()), fixedLengthGPR);
m_jit.move(TrustedImm32(0), fixedIndexGPR);
auto done = m_jit.branchPtr(MacroAssembler::AboveOrEqual, fixedIndexGPR, fixedLengthGPR);
auto loopStart = m_jit.label();
m_jit.load64(
MacroAssembler::BaseIndex(fixedArrayGPR, fixedIndexGPR, MacroAssembler::TimesEight, JSFixedArray::offsetOfData()),
itemGPR);
m_jit.store64(itemGPR, MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight));
m_jit.addPtr(TrustedImm32(1), fixedIndexGPR);
m_jit.addPtr(TrustedImm32(1), indexGPR);
m_jit.branchPtr(MacroAssembler::Below, fixedIndexGPR, fixedLengthGPR).linkTo(loopStart, &m_jit);
done.link(&m_jit);
} else {
JSValueOperand item(this, use);
GPRReg itemGPR = item.gpr();
m_jit.store64(itemGPR, MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight));
m_jit.addPtr(TrustedImm32(1), indexGPR);
}
}
cellResult(resultGPR, node);
return;
}
#endif // USE(JSVALUE64)
ASSERT(node->numChildren());
size_t scratchSize = sizeof(EncodedJSValue) * node->numChildren();
ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(scratchSize);
EncodedJSValue* buffer = static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer());
BitVector* bitVector = node->bitVector();
for (unsigned i = 0; i < node->numChildren(); ++i) {
Edge use = m_jit.graph().m_varArgChildren[node->firstChild() + i];
if (bitVector->get(i)) {
SpeculateCellOperand fixedArray(this, use);
GPRReg arrayGPR = fixedArray.gpr();
#if USE(JSVALUE64)
m_jit.store64(arrayGPR, &buffer[i]);
#else
char* pointer = static_cast<char*>(static_cast<void*>(&buffer[i]));
m_jit.store32(arrayGPR, pointer + PayloadOffset);
m_jit.store32(TrustedImm32(JSValue::CellTag), pointer + TagOffset);
#endif
} else {
JSValueOperand input(this, use);
JSValueRegs inputRegs = input.jsValueRegs();
m_jit.storeValue(inputRegs, &buffer[i]);
}
}
{
GPRTemporary scratch(this);
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), scratch.gpr());
m_jit.storePtr(TrustedImmPtr(scratchSize), MacroAssembler::Address(scratch.gpr()));
}
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationNewArrayWithSpreadSlow, resultGPR, buffer, node->numChildren());
m_jit.exceptionCheck();
{
GPRTemporary scratch(this);
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), scratch.gpr());
m_jit.storePtr(TrustedImmPtr(nullptr), MacroAssembler::Address(scratch.gpr()));
}
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileGetRestLength(Node* node)
{
ASSERT(node->op() == GetRestLength);
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
emitGetLength(node->origin.semantic, resultGPR);
CCallHelpers::Jump hasNonZeroLength = m_jit.branch32(MacroAssembler::Above, resultGPR, Imm32(node->numberOfArgumentsToSkip()));
m_jit.move(TrustedImm32(0), resultGPR);
CCallHelpers::Jump done = m_jit.jump();
hasNonZeroLength.link(&m_jit);
if (node->numberOfArgumentsToSkip())
m_jit.sub32(TrustedImm32(node->numberOfArgumentsToSkip()), resultGPR);
done.link(&m_jit);
int32Result(resultGPR, node);
}
void SpeculativeJIT::emitPopulateSliceIndex(Edge& target, GPRReg length, GPRReg result)
{
if (target->isInt32Constant()) {
int32_t value = target->asInt32();
if (value == 0) {
m_jit.move(TrustedImm32(0), result);
return;
}
MacroAssembler::JumpList done;
if (value > 0) {
m_jit.move(TrustedImm32(value), result);
done.append(m_jit.branch32(MacroAssembler::BelowOrEqual, result, length));
m_jit.move(length, result);
} else {
ASSERT(value != 0);
m_jit.move(length, result);
done.append(m_jit.branchAdd32(MacroAssembler::PositiveOrZero, TrustedImm32(value), result));
m_jit.move(TrustedImm32(0), result);
}
done.link(&m_jit);
return;
}
SpeculateInt32Operand index(this, target);
GPRReg indexGPR = index.gpr();
MacroAssembler::JumpList done;
auto isPositive = m_jit.branch32(MacroAssembler::GreaterThanOrEqual, indexGPR, TrustedImm32(0));
m_jit.move(length, result);
done.append(m_jit.branchAdd32(MacroAssembler::PositiveOrZero, indexGPR, result));
m_jit.move(TrustedImm32(0), result);
done.append(m_jit.jump());
isPositive.link(&m_jit);
m_jit.move(indexGPR, result);
done.append(m_jit.branch32(MacroAssembler::BelowOrEqual, result, length));
m_jit.move(length, result);
done.link(&m_jit);
}
void SpeculativeJIT::compileArraySlice(Node* node)
{
ASSERT(node->op() == ArraySlice);
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
GPRTemporary temp(this);
StorageOperand storage(this, m_jit.graph().varArgChild(node, node->numChildren() - 1));
GPRTemporary result(this);
GPRReg storageGPR = storage.gpr();
GPRReg resultGPR = result.gpr();
GPRReg tempGPR = temp.gpr();
if (node->numChildren() == 2)
m_jit.load32(MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), tempGPR);
else {
ASSERT(node->numChildren() == 3 || node->numChildren() == 4);
GPRTemporary tempLength(this);
GPRReg lengthGPR = tempLength.gpr();
m_jit.load32(MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), lengthGPR);
if (node->numChildren() == 4)
emitPopulateSliceIndex(m_jit.graph().varArgChild(node, 2), lengthGPR, tempGPR);
else
m_jit.move(lengthGPR, tempGPR);
if (m_jit.graph().varArgChild(node, 1)->isInt32Constant() && m_jit.graph().varArgChild(node, 1)->asInt32() == 0) {
// Do nothing for array.slice(0, end) or array.slice(0) cases.
// `tempGPR` already points to the size of a newly created array.
} else {
GPRTemporary tempStartIndex(this);
GPRReg startGPR = tempStartIndex.gpr();
emitPopulateSliceIndex(m_jit.graph().varArgChild(node, 1), lengthGPR, startGPR);
auto tooBig = m_jit.branch32(MacroAssembler::Above, startGPR, tempGPR);
m_jit.sub32(startGPR, tempGPR); // the size of the array we'll make.
auto done = m_jit.jump();
tooBig.link(&m_jit);
m_jit.move(TrustedImm32(0), tempGPR);
done.link(&m_jit);
}
}
GPRTemporary temp3(this);
GPRReg tempValue = temp3.gpr();
{
SpeculateCellOperand cell(this, m_jit.graph().varArgChild(node, 0));
m_jit.load8(MacroAssembler::Address(cell.gpr(), JSCell::indexingTypeAndMiscOffset()), tempValue);
// We can ignore the writability of the cell since we won't write to the source.
m_jit.and32(TrustedImm32(AllWritableArrayTypesAndHistory), tempValue);
}
{
JSValueRegsTemporary emptyValue(this);
JSValueRegs emptyValueRegs = emptyValue.regs();
GPRTemporary storage(this);
GPRReg storageResultGPR = storage.gpr();
GPRReg sizeGPR = tempGPR;
CCallHelpers::JumpList done;
auto emitMoveEmptyValue = [&] (JSValue v) {
m_jit.moveValue(v, emptyValueRegs);
};
auto isContiguous = m_jit.branch32(MacroAssembler::Equal, tempValue, TrustedImm32(ArrayWithContiguous));
auto isInt32 = m_jit.branch32(MacroAssembler::Equal, tempValue, TrustedImm32(ArrayWithInt32));
// When we emit an ArraySlice, we dominate the use of the array by a CheckStructure
// to ensure the incoming array is one to be one of the original array structures
// with one of the following indexing shapes: Int32, Contiguous, Double. Therefore,
// we're a double array here.
m_jit.move(TrustedImmPtr(m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithDouble))), tempValue);
emitMoveEmptyValue(jsNaN());
done.append(m_jit.jump());
isContiguous.link(&m_jit);
m_jit.move(TrustedImmPtr(m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithContiguous))), tempValue);
emitMoveEmptyValue(JSValue());
done.append(m_jit.jump());
isInt32.link(&m_jit);
m_jit.move(TrustedImmPtr(m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithInt32))), tempValue);
emitMoveEmptyValue(JSValue());
done.link(&m_jit);
MacroAssembler::JumpList slowCases;
m_jit.move(TrustedImmPtr(nullptr), storageResultGPR);
// Enable the fast case on 64-bit platforms, where a sufficient amount of GP registers should be available.
// Other platforms could support the same approach with custom code, but that is not currently worth the extra code maintenance.
if (is64Bit()) {
GPRTemporary scratch(this);
GPRTemporary scratch2(this);
GPRReg scratchGPR = scratch.gpr();
GPRReg scratch2GPR = scratch2.gpr();
emitAllocateButterfly(storageResultGPR, sizeGPR, scratchGPR, scratch2GPR, resultGPR, slowCases);
emitInitializeButterfly(storageResultGPR, sizeGPR, emptyValueRegs, scratchGPR);
emitAllocateJSObject<JSArray>(resultGPR, tempValue, storageResultGPR, scratchGPR, scratch2GPR, slowCases);
m_jit.mutatorFence(*m_jit.vm());
} else {
slowCases.append(m_jit.jump());
}
addSlowPathGenerator(std::make_unique<CallArrayAllocatorWithVariableStructureVariableSizeSlowPathGenerator>(
slowCases, this, operationNewArrayWithSize, resultGPR, tempValue, sizeGPR, storageResultGPR));
}
GPRTemporary temp4(this);
GPRReg loadIndex = temp4.gpr();
if (node->numChildren() == 2) {
m_jit.load32(MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), tempGPR);
m_jit.move(TrustedImm32(0), loadIndex);
} else {
m_jit.load32(MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), tempValue);
if (node->numChildren() == 4)
emitPopulateSliceIndex(m_jit.graph().varArgChild(node, 2), tempValue, tempGPR);
else
m_jit.move(tempValue, tempGPR);
emitPopulateSliceIndex(m_jit.graph().varArgChild(node, 1), tempValue, loadIndex);
}
GPRTemporary temp5(this);
GPRReg storeIndex = temp5.gpr();
m_jit.move(TrustedImmPtr(nullptr), storeIndex);
GPRTemporary temp2(this);
GPRReg resultButterfly = temp2.gpr();
m_jit.loadPtr(MacroAssembler::Address(resultGPR, JSObject::butterflyOffset()), resultButterfly);
m_jit.zeroExtend32ToPtr(tempGPR, tempGPR);
m_jit.zeroExtend32ToPtr(loadIndex, loadIndex);
auto done = m_jit.branchPtr(MacroAssembler::AboveOrEqual, loadIndex, tempGPR);
auto loop = m_jit.label();
#if USE(JSVALUE64)
m_jit.load64(
MacroAssembler::BaseIndex(storageGPR, loadIndex, MacroAssembler::TimesEight), tempValue);
m_jit.store64(
tempValue, MacroAssembler::BaseIndex(resultButterfly, storeIndex, MacroAssembler::TimesEight));
#else
m_jit.load32(
MacroAssembler::BaseIndex(storageGPR, loadIndex, MacroAssembler::TimesEight, PayloadOffset), tempValue);
m_jit.store32(
tempValue, MacroAssembler::BaseIndex(resultButterfly, storeIndex, MacroAssembler::TimesEight, PayloadOffset));
m_jit.load32(
MacroAssembler::BaseIndex(storageGPR, loadIndex, MacroAssembler::TimesEight, TagOffset), tempValue);
m_jit.store32(
tempValue, MacroAssembler::BaseIndex(resultButterfly, storeIndex, MacroAssembler::TimesEight, TagOffset));
#endif // USE(JSVALUE64)
m_jit.addPtr(TrustedImm32(1), loadIndex);
m_jit.addPtr(TrustedImm32(1), storeIndex);
m_jit.branchPtr(MacroAssembler::Below, loadIndex, tempGPR).linkTo(loop, &m_jit);
done.link(&m_jit);
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileArrayIndexOf(Node* node)
{
ASSERT(node->op() == ArrayIndexOf);
StorageOperand storage(this, m_jit.graph().varArgChild(node, node->numChildren() == 3 ? 2 : 3));
GPRTemporary index(this);
GPRTemporary tempLength(this);
GPRReg storageGPR = storage.gpr();
GPRReg indexGPR = index.gpr();
GPRReg lengthGPR = tempLength.gpr();
m_jit.load32(MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), lengthGPR);
if (node->numChildren() == 4)
emitPopulateSliceIndex(m_jit.graph().varArgChild(node, 2), lengthGPR, indexGPR);
else
m_jit.move(TrustedImm32(0), indexGPR);
Edge& searchElementEdge = m_jit.graph().varArgChild(node, 1);
switch (searchElementEdge.useKind()) {
case Int32Use:
case ObjectUse:
case SymbolUse:
case OtherUse: {
auto emitLoop = [&] (auto emitCompare) {
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.clearRegisterAllocationOffsets();
#endif
m_jit.zeroExtend32ToPtr(lengthGPR, lengthGPR);
m_jit.zeroExtend32ToPtr(indexGPR, indexGPR);
auto loop = m_jit.label();
auto notFound = m_jit.branch32(CCallHelpers::Equal, indexGPR, lengthGPR);
auto found = emitCompare();
m_jit.add32(TrustedImm32(1), indexGPR);
m_jit.jump().linkTo(loop, &m_jit);
notFound.link(&m_jit);
m_jit.move(TrustedImm32(-1), indexGPR);
found.link(&m_jit);
int32Result(indexGPR, node);
};
if (searchElementEdge.useKind() == Int32Use) {
ASSERT(node->arrayMode().type() == Array::Int32);
#if USE(JSVALUE64)
JSValueOperand searchElement(this, searchElementEdge, ManualOperandSpeculation);
JSValueRegs searchElementRegs = searchElement.jsValueRegs();
speculateInt32(searchElementEdge, searchElementRegs);
GPRReg searchElementGPR = searchElementRegs.payloadGPR();
#else
SpeculateInt32Operand searchElement(this, searchElementEdge);
GPRReg searchElementGPR = searchElement.gpr();
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
#endif
emitLoop([&] () {
#if USE(JSVALUE64)
auto found = m_jit.branch64(CCallHelpers::Equal, MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight), searchElementGPR);
#else
auto skip = m_jit.branch32(CCallHelpers::NotEqual, MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight, TagOffset), TrustedImm32(JSValue::Int32Tag));
m_jit.load32(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight, PayloadOffset), tempGPR);
auto found = m_jit.branch32(CCallHelpers::Equal, tempGPR, searchElementGPR);
skip.link(&m_jit);
#endif
return found;
});
return;
}
if (searchElementEdge.useKind() == OtherUse) {
ASSERT(node->arrayMode().type() == Array::Contiguous);
JSValueOperand searchElement(this, searchElementEdge, ManualOperandSpeculation);
GPRTemporary temp(this);
JSValueRegs searchElementRegs = searchElement.jsValueRegs();
GPRReg tempGPR = temp.gpr();
speculateOther(searchElementEdge, searchElementRegs, tempGPR);
emitLoop([&] () {
#if USE(JSVALUE64)
auto found = m_jit.branch64(CCallHelpers::Equal, MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight), searchElementRegs.payloadGPR());
#else
m_jit.load32(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight, TagOffset), tempGPR);
auto found = m_jit.branch32(CCallHelpers::Equal, tempGPR, searchElementRegs.tagGPR());
#endif
return found;
});
return;
}
ASSERT(node->arrayMode().type() == Array::Contiguous);
SpeculateCellOperand searchElement(this, searchElementEdge);
GPRReg searchElementGPR = searchElement.gpr();
if (searchElementEdge.useKind() == ObjectUse)
speculateObject(searchElementEdge, searchElementGPR);
else {
ASSERT(searchElementEdge.useKind() == SymbolUse);
speculateSymbol(searchElementEdge, searchElementGPR);
}
#if USE(JSVALUE32_64)
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
#endif
emitLoop([&] () {
#if USE(JSVALUE64)
auto found = m_jit.branch64(CCallHelpers::Equal, MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight), searchElementGPR);
#else
auto skip = m_jit.branch32(CCallHelpers::NotEqual, MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight, TagOffset), TrustedImm32(JSValue::CellTag));
m_jit.load32(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight, PayloadOffset), tempGPR);
auto found = m_jit.branch32(CCallHelpers::Equal, tempGPR, searchElementGPR);
skip.link(&m_jit);
#endif
return found;
});
return;
}
case DoubleRepUse: {
ASSERT(node->arrayMode().type() == Array::Double);
SpeculateDoubleOperand searchElement(this, searchElementEdge);
FPRTemporary tempDouble(this);
FPRReg searchElementFPR = searchElement.fpr();
FPRReg tempFPR = tempDouble.fpr();
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.clearRegisterAllocationOffsets();
#endif
m_jit.zeroExtend32ToPtr(lengthGPR, lengthGPR);
m_jit.zeroExtend32ToPtr(indexGPR, indexGPR);
auto loop = m_jit.label();
auto notFound = m_jit.branch32(CCallHelpers::Equal, indexGPR, lengthGPR);
m_jit.loadDouble(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight), tempFPR);
auto found = m_jit.branchDouble(CCallHelpers::DoubleEqual, tempFPR, searchElementFPR);
m_jit.add32(TrustedImm32(1), indexGPR);
m_jit.jump().linkTo(loop, &m_jit);
notFound.link(&m_jit);
m_jit.move(TrustedImm32(-1), indexGPR);
found.link(&m_jit);
int32Result(indexGPR, node);
return;
}
case StringUse: {
ASSERT(node->arrayMode().type() == Array::Contiguous);
SpeculateCellOperand searchElement(this, searchElementEdge);
GPRReg searchElementGPR = searchElement.gpr();
speculateString(searchElementEdge, searchElementGPR);
flushRegisters();
callOperation(operationArrayIndexOfString, lengthGPR, storageGPR, searchElementGPR, indexGPR);
m_jit.exceptionCheck();
int32Result(lengthGPR, node);
return;
}
case UntypedUse: {
JSValueOperand searchElement(this, searchElementEdge);
JSValueRegs searchElementRegs = searchElement.jsValueRegs();
flushRegisters();
switch (node->arrayMode().type()) {
case Array::Double:
callOperation(operationArrayIndexOfValueDouble, lengthGPR, storageGPR, searchElementRegs, indexGPR);
break;
case Array::Int32:
case Array::Contiguous:
callOperation(operationArrayIndexOfValueInt32OrContiguous, lengthGPR, storageGPR, searchElementRegs, indexGPR);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
m_jit.exceptionCheck();
int32Result(lengthGPR, node);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
return;
}
}
void SpeculativeJIT::compileArrayPush(Node* node)
{
ASSERT(node->arrayMode().isJSArray());
Edge& storageEdge = m_jit.graph().varArgChild(node, 0);
Edge& arrayEdge = m_jit.graph().varArgChild(node, 1);
SpeculateCellOperand base(this, arrayEdge);
GPRTemporary storageLength(this);
GPRReg baseGPR = base.gpr();
GPRReg storageLengthGPR = storageLength.gpr();
StorageOperand storage(this, storageEdge);
GPRReg storageGPR = storage.gpr();
unsigned elementOffset = 2;
unsigned elementCount = node->numChildren() - elementOffset;
#if USE(JSVALUE32_64)
GPRTemporary tag(this);
GPRReg tagGPR = tag.gpr();
JSValueRegs resultRegs { tagGPR, storageLengthGPR };
#else
JSValueRegs resultRegs { storageLengthGPR };
#endif
auto getStorageBufferAddress = [&] (GPRReg storageGPR, GPRReg indexGPR, int32_t offset, GPRReg bufferGPR) {
static_assert(sizeof(JSValue) == 8 && 1 << 3 == 8, "This is strongly assumed in the code below.");
m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight, offset), bufferGPR);
};
switch (node->arrayMode().type()) {
case Array::Int32:
case Array::Contiguous: {
if (elementCount == 1) {
Edge& element = m_jit.graph().varArgChild(node, elementOffset);
JSValueOperand value(this, element, ManualOperandSpeculation);
JSValueRegs valueRegs = value.jsValueRegs();
if (node->arrayMode().type() == Array::Int32)
DFG_ASSERT(m_jit.graph(), node, !needsTypeCheck(element, SpecInt32Only));
m_jit.load32(MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), storageLengthGPR);
MacroAssembler::Jump slowPath = m_jit.branch32(MacroAssembler::AboveOrEqual, storageLengthGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfVectorLength()));
m_jit.storeValue(valueRegs, MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight));
m_jit.add32(TrustedImm32(1), storageLengthGPR);
m_jit.store32(storageLengthGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
m_jit.boxInt32(storageLengthGPR, resultRegs);
addSlowPathGenerator(
slowPathCall(slowPath, this, operationArrayPush, resultRegs, valueRegs, baseGPR));
jsValueResult(resultRegs, node);
return;
}
GPRTemporary buffer(this);
GPRReg bufferGPR = buffer.gpr();
m_jit.load32(MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), storageLengthGPR);
m_jit.move(storageLengthGPR, bufferGPR);
m_jit.add32(TrustedImm32(elementCount), bufferGPR);
MacroAssembler::Jump slowPath = m_jit.branch32(MacroAssembler::Above, bufferGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfVectorLength()));
m_jit.store32(bufferGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
getStorageBufferAddress(storageGPR, storageLengthGPR, 0, bufferGPR);
m_jit.add32(TrustedImm32(elementCount), storageLengthGPR);
m_jit.boxInt32(storageLengthGPR, resultRegs);
auto storageDone = m_jit.jump();
slowPath.link(&m_jit);
size_t scratchSize = sizeof(EncodedJSValue) * elementCount;
ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(scratchSize);
m_jit.move(TrustedImmPtr(static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer())), bufferGPR);
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), storageLengthGPR);
m_jit.storePtr(TrustedImmPtr(scratchSize), MacroAssembler::Address(storageLengthGPR));
storageDone.link(&m_jit);
for (unsigned elementIndex = 0; elementIndex < elementCount; ++elementIndex) {
Edge& element = m_jit.graph().varArgChild(node, elementIndex + elementOffset);
JSValueOperand value(this, element, ManualOperandSpeculation);
JSValueRegs valueRegs = value.jsValueRegs();
if (node->arrayMode().type() == Array::Int32)
DFG_ASSERT(m_jit.graph(), node, !needsTypeCheck(element, SpecInt32Only));
m_jit.storeValue(valueRegs, MacroAssembler::Address(bufferGPR, sizeof(EncodedJSValue) * elementIndex));
value.use();
}
MacroAssembler::Jump fastPath = m_jit.branchPtr(MacroAssembler::NotEqual, bufferGPR, TrustedImmPtr(static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer())));
addSlowPathGenerator(slowPathCall(m_jit.jump(), this, operationArrayPushMultiple, resultRegs, baseGPR, bufferGPR, TrustedImm32(elementCount)));
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), bufferGPR);
m_jit.storePtr(TrustedImmPtr(nullptr), MacroAssembler::Address(bufferGPR));
base.use();
storage.use();
fastPath.link(&m_jit);
jsValueResult(resultRegs, node, DataFormatJS, UseChildrenCalledExplicitly);
return;
}
case Array::Double: {
if (elementCount == 1) {
Edge& element = m_jit.graph().varArgChild(node, elementOffset);
SpeculateDoubleOperand value(this, element);
FPRReg valueFPR = value.fpr();
DFG_ASSERT(m_jit.graph(), node, !needsTypeCheck(element, SpecDoubleReal));
m_jit.load32(MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), storageLengthGPR);
MacroAssembler::Jump slowPath = m_jit.branch32(MacroAssembler::AboveOrEqual, storageLengthGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfVectorLength()));
m_jit.storeDouble(valueFPR, MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight));
m_jit.add32(TrustedImm32(1), storageLengthGPR);
m_jit.store32(storageLengthGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
m_jit.boxInt32(storageLengthGPR, resultRegs);
addSlowPathGenerator(
slowPathCall(slowPath, this, operationArrayPushDouble, resultRegs, valueFPR, baseGPR));
jsValueResult(resultRegs, node);
return;
}
GPRTemporary buffer(this);
GPRReg bufferGPR = buffer.gpr();
m_jit.load32(MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), storageLengthGPR);
m_jit.move(storageLengthGPR, bufferGPR);
m_jit.add32(TrustedImm32(elementCount), bufferGPR);
MacroAssembler::Jump slowPath = m_jit.branch32(MacroAssembler::Above, bufferGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfVectorLength()));
m_jit.store32(bufferGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
getStorageBufferAddress(storageGPR, storageLengthGPR, 0, bufferGPR);
m_jit.add32(TrustedImm32(elementCount), storageLengthGPR);
m_jit.boxInt32(storageLengthGPR, resultRegs);
auto storageDone = m_jit.jump();
slowPath.link(&m_jit);
size_t scratchSize = sizeof(double) * elementCount;
ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(scratchSize);
m_jit.move(TrustedImmPtr(static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer())), bufferGPR);
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), storageLengthGPR);
m_jit.storePtr(TrustedImmPtr(scratchSize), MacroAssembler::Address(storageLengthGPR));
storageDone.link(&m_jit);
for (unsigned elementIndex = 0; elementIndex < elementCount; ++elementIndex) {
Edge& element = m_jit.graph().varArgChild(node, elementIndex + elementOffset);
SpeculateDoubleOperand value(this, element);
FPRReg valueFPR = value.fpr();
DFG_ASSERT(m_jit.graph(), node, !needsTypeCheck(element, SpecDoubleReal));
m_jit.storeDouble(valueFPR, MacroAssembler::Address(bufferGPR, sizeof(double) * elementIndex));
value.use();
}
MacroAssembler::Jump fastPath = m_jit.branchPtr(MacroAssembler::NotEqual, bufferGPR, TrustedImmPtr(static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer())));
addSlowPathGenerator(slowPathCall(m_jit.jump(), this, operationArrayPushDoubleMultiple, resultRegs, baseGPR, bufferGPR, TrustedImm32(elementCount)));
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), bufferGPR);
m_jit.storePtr(TrustedImmPtr(nullptr), MacroAssembler::Address(bufferGPR));
base.use();
storage.use();
fastPath.link(&m_jit);
jsValueResult(resultRegs, node, DataFormatJS, UseChildrenCalledExplicitly);
return;
}
case Array::ArrayStorage: {
// This ensures that the result of ArrayPush is Int32 in AI.
int32_t largestPositiveInt32Length = 0x7fffffff - elementCount;
if (elementCount == 1) {
Edge& element = m_jit.graph().varArgChild(node, elementOffset);
JSValueOperand value(this, element);
JSValueRegs valueRegs = value.jsValueRegs();
m_jit.load32(MacroAssembler::Address(storageGPR, ArrayStorage::lengthOffset()), storageLengthGPR);
// Refuse to handle bizarre lengths.
speculationCheck(Uncountable, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::Above, storageLengthGPR, TrustedImm32(largestPositiveInt32Length)));
MacroAssembler::Jump slowPath = m_jit.branch32(MacroAssembler::AboveOrEqual, storageLengthGPR, MacroAssembler::Address(storageGPR, ArrayStorage::vectorLengthOffset()));
m_jit.storeValue(valueRegs, MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()));
m_jit.add32(TrustedImm32(1), storageLengthGPR);
m_jit.store32(storageLengthGPR, MacroAssembler::Address(storageGPR, ArrayStorage::lengthOffset()));
m_jit.add32(TrustedImm32(1), MacroAssembler::Address(storageGPR, OBJECT_OFFSETOF(ArrayStorage, m_numValuesInVector)));
m_jit.boxInt32(storageLengthGPR, resultRegs);
addSlowPathGenerator(
slowPathCall(slowPath, this, operationArrayPush, resultRegs, valueRegs, baseGPR));
jsValueResult(resultRegs, node);
return;
}
GPRTemporary buffer(this);
GPRReg bufferGPR = buffer.gpr();
m_jit.load32(MacroAssembler::Address(storageGPR, ArrayStorage::lengthOffset()), storageLengthGPR);
// Refuse to handle bizarre lengths.
speculationCheck(Uncountable, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::Above, storageLengthGPR, TrustedImm32(largestPositiveInt32Length)));
m_jit.move(storageLengthGPR, bufferGPR);
m_jit.add32(TrustedImm32(elementCount), bufferGPR);
MacroAssembler::Jump slowPath = m_jit.branch32(MacroAssembler::Above, bufferGPR, MacroAssembler::Address(storageGPR, ArrayStorage::vectorLengthOffset()));
m_jit.store32(bufferGPR, MacroAssembler::Address(storageGPR, ArrayStorage::lengthOffset()));
getStorageBufferAddress(storageGPR, storageLengthGPR, ArrayStorage::vectorOffset(), bufferGPR);
m_jit.add32(TrustedImm32(elementCount), MacroAssembler::Address(storageGPR, OBJECT_OFFSETOF(ArrayStorage, m_numValuesInVector)));
m_jit.add32(TrustedImm32(elementCount), storageLengthGPR);
m_jit.boxInt32(storageLengthGPR, resultRegs);
auto storageDone = m_jit.jump();
slowPath.link(&m_jit);
size_t scratchSize = sizeof(EncodedJSValue) * elementCount;
ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(scratchSize);
m_jit.move(TrustedImmPtr(static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer())), bufferGPR);
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), storageLengthGPR);
m_jit.storePtr(TrustedImmPtr(scratchSize), MacroAssembler::Address(storageLengthGPR));
storageDone.link(&m_jit);
for (unsigned elementIndex = 0; elementIndex < elementCount; ++elementIndex) {
Edge& element = m_jit.graph().varArgChild(node, elementIndex + elementOffset);
JSValueOperand value(this, element);
JSValueRegs valueRegs = value.jsValueRegs();
m_jit.storeValue(valueRegs, MacroAssembler::Address(bufferGPR, sizeof(EncodedJSValue) * elementIndex));
value.use();
}
MacroAssembler::Jump fastPath = m_jit.branchPtr(MacroAssembler::NotEqual, bufferGPR, TrustedImmPtr(static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer())));
addSlowPathGenerator(
slowPathCall(m_jit.jump(), this, operationArrayPushMultiple, resultRegs, baseGPR, bufferGPR, TrustedImm32(elementCount)));
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), bufferGPR);
m_jit.storePtr(TrustedImmPtr(nullptr), MacroAssembler::Address(bufferGPR));
base.use();
storage.use();
fastPath.link(&m_jit);
jsValueResult(resultRegs, node, DataFormatJS, UseChildrenCalledExplicitly);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void SpeculativeJIT::compileNotifyWrite(Node* node)
{
WatchpointSet* set = node->watchpointSet();
JITCompiler::Jump slowCase = m_jit.branch8(
JITCompiler::NotEqual,
JITCompiler::AbsoluteAddress(set->addressOfState()),
TrustedImm32(IsInvalidated));
addSlowPathGenerator(
slowPathCall(slowCase, this, operationNotifyWrite, NeedToSpill, ExceptionCheckRequirement::CheckNotNeeded, NoResult, set));
noResult(node);
}
void SpeculativeJIT::compileIsObject(Node* node)
{
JSValueOperand value(this, node->child1());
GPRTemporary result(this, Reuse, value, TagWord);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg resultGPR = result.gpr();
JITCompiler::Jump isNotCell = m_jit.branchIfNotCell(valueRegs);
m_jit.compare8(JITCompiler::AboveOrEqual,
JITCompiler::Address(valueRegs.payloadGPR(), JSCell::typeInfoTypeOffset()),
TrustedImm32(ObjectType),
resultGPR);
JITCompiler::Jump done = m_jit.jump();
isNotCell.link(&m_jit);
m_jit.move(TrustedImm32(0), resultGPR);
done.link(&m_jit);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileIsObjectOrNull(Node* node)
{
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
JSValueOperand value(this, node->child1());
JSValueRegs valueRegs = value.jsValueRegs();
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
JITCompiler::Jump isCell = m_jit.branchIfCell(valueRegs);
JITCompiler::Jump isNull = m_jit.branchIfEqual(valueRegs, jsNull());
JITCompiler::Jump isNonNullNonCell = m_jit.jump();
isCell.link(&m_jit);
JITCompiler::Jump isFunction = m_jit.branchIfFunction(valueRegs.payloadGPR());
JITCompiler::Jump notObject = m_jit.branchIfNotObject(valueRegs.payloadGPR());
JITCompiler::Jump slowPath = m_jit.branchTest8(
JITCompiler::NonZero,
JITCompiler::Address(valueRegs.payloadGPR(), JSCell::typeInfoFlagsOffset()),
TrustedImm32(MasqueradesAsUndefined | OverridesGetCallData));
isNull.link(&m_jit);
m_jit.move(TrustedImm32(1), resultGPR);
JITCompiler::Jump done = m_jit.jump();
isNonNullNonCell.link(&m_jit);
isFunction.link(&m_jit);
notObject.link(&m_jit);
m_jit.move(TrustedImm32(0), resultGPR);
addSlowPathGenerator(
slowPathCall(
slowPath, this, operationObjectIsObject, resultGPR, globalObject,
valueRegs.payloadGPR()));
done.link(&m_jit);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileIsFunction(Node* node)
{
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
JSValueOperand value(this, node->child1());
JSValueRegs valueRegs = value.jsValueRegs();
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
JITCompiler::Jump notCell = m_jit.branchIfNotCell(valueRegs);
JITCompiler::Jump isFunction = m_jit.branchIfFunction(valueRegs.payloadGPR());
JITCompiler::Jump notObject = m_jit.branchIfNotObject(valueRegs.payloadGPR());
JITCompiler::Jump slowPath = m_jit.branchTest8(
JITCompiler::NonZero,
JITCompiler::Address(valueRegs.payloadGPR(), JSCell::typeInfoFlagsOffset()),
TrustedImm32(MasqueradesAsUndefined | OverridesGetCallData));
notCell.link(&m_jit);
notObject.link(&m_jit);
m_jit.move(TrustedImm32(0), resultGPR);
JITCompiler::Jump done = m_jit.jump();
isFunction.link(&m_jit);
m_jit.move(TrustedImm32(1), resultGPR);
addSlowPathGenerator(
slowPathCall(
slowPath, this, operationObjectIsFunction, resultGPR, globalObject,
valueRegs.payloadGPR()));
done.link(&m_jit);
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileTypeOf(Node* node)
{
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
JSValueOperand value(this, node->child1());
JSValueRegs valueRegs = value.jsValueRegs();
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
JITCompiler::JumpList done;
JITCompiler::Jump slowPath;
m_jit.emitTypeOf(
valueRegs, resultGPR,
[&] (TypeofType type, bool fallsThrough) {
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.vm()->smallStrings.typeString(type)), resultGPR);
if (!fallsThrough)
done.append(m_jit.jump());
},
[&] (JITCompiler::Jump theSlowPath) {
slowPath = theSlowPath;
});
done.link(&m_jit);
addSlowPathGenerator(
slowPathCall(
slowPath, this, operationTypeOfObject, resultGPR, globalObject,
valueRegs.payloadGPR()));
cellResult(resultGPR, node);
}
void SpeculativeJIT::emitStructureCheck(Node* node, GPRReg cellGPR, GPRReg tempGPR)
{
ASSERT(node->structureSet().size());
if (node->structureSet().size() == 1) {
speculationCheck(
BadCache, JSValueSource::unboxedCell(cellGPR), 0,
m_jit.branchWeakStructure(
JITCompiler::NotEqual,
JITCompiler::Address(cellGPR, JSCell::structureIDOffset()),
node->structureSet()[0]));
} else {
std::unique_ptr<GPRTemporary> structure;
GPRReg structureGPR;
if (tempGPR == InvalidGPRReg) {
structure = std::make_unique<GPRTemporary>(this);
structureGPR = structure->gpr();
} else
structureGPR = tempGPR;
m_jit.load32(JITCompiler::Address(cellGPR, JSCell::structureIDOffset()), structureGPR);
JITCompiler::JumpList done;
for (size_t i = 0; i < node->structureSet().size() - 1; ++i) {
done.append(
m_jit.branchWeakStructure(JITCompiler::Equal, structureGPR, node->structureSet()[i]));
}
speculationCheck(
BadCache, JSValueSource::unboxedCell(cellGPR), 0,
m_jit.branchWeakStructure(
JITCompiler::NotEqual, structureGPR, node->structureSet().last()));
done.link(&m_jit);
}
}
void SpeculativeJIT::compileCheckCell(Node* node)
{
SpeculateCellOperand cell(this, node->child1());
speculationCheck(BadCell, JSValueSource::unboxedCell(cell.gpr()), node->child1(), m_jit.branchWeakPtr(JITCompiler::NotEqual, cell.gpr(), node->cellOperand()->cell()));
noResult(node);
}
void SpeculativeJIT::compileCheckNotEmpty(Node* node)
{
JSValueOperand operand(this, node->child1());
JSValueRegs regs = operand.jsValueRegs();
speculationCheck(TDZFailure, JSValueSource(), nullptr, m_jit.branchIfEmpty(regs));
noResult(node);
}
void SpeculativeJIT::compileCheckStructure(Node* node)
{
switch (node->child1().useKind()) {
case CellUse:
case KnownCellUse: {
SpeculateCellOperand cell(this, node->child1());
emitStructureCheck(node, cell.gpr(), InvalidGPRReg);
noResult(node);
return;
}
case CellOrOtherUse: {
JSValueOperand value(this, node->child1(), ManualOperandSpeculation);
GPRTemporary temp(this);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg tempGPR = temp.gpr();
JITCompiler::Jump cell = m_jit.branchIfCell(valueRegs);
DFG_TYPE_CHECK(
valueRegs, node->child1(), SpecCell | SpecOther,
m_jit.branchIfNotOther(valueRegs, tempGPR));
JITCompiler::Jump done = m_jit.jump();
cell.link(&m_jit);
emitStructureCheck(node, valueRegs.payloadGPR(), tempGPR);
done.link(&m_jit);
noResult(node);
return;
}
default:
DFG_CRASH(m_jit.graph(), node, "Bad use kind");
return;
}
}
void SpeculativeJIT::compileAllocatePropertyStorage(Node* node)
{
ASSERT(!node->transition()->previous->outOfLineCapacity());
ASSERT(initialOutOfLineCapacity == node->transition()->next->outOfLineCapacity());
size_t size = initialOutOfLineCapacity * sizeof(JSValue);
Allocator allocator = m_jit.vm()->jsValueGigacageAuxiliarySpace.allocatorForNonVirtual(size, AllocatorForMode::AllocatorIfExists);
if (!allocator || node->transition()->previous->couldHaveIndexingHeader()) {
SpeculateCellOperand base(this, node->child1());
GPRReg baseGPR = base.gpr();
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationAllocateComplexPropertyStorageWithInitialCapacity, result.gpr(), baseGPR);
m_jit.exceptionCheck();
storageResult(result.gpr(), node);
return;
}
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRTemporary scratch3(this);
GPRReg scratchGPR1 = scratch1.gpr();
GPRReg scratchGPR2 = scratch2.gpr();
GPRReg scratchGPR3 = scratch3.gpr();
JITCompiler::JumpList slowPath;
m_jit.emitAllocate(scratchGPR1, JITAllocator::constant(allocator), scratchGPR2, scratchGPR3, slowPath);
m_jit.addPtr(JITCompiler::TrustedImm32(size + sizeof(IndexingHeader)), scratchGPR1);
addSlowPathGenerator(
slowPathCall(slowPath, this, operationAllocateSimplePropertyStorageWithInitialCapacity, scratchGPR1));
for (ptrdiff_t offset = 0; offset < static_cast<ptrdiff_t>(size); offset += sizeof(void*))
m_jit.storePtr(TrustedImmPtr(nullptr), JITCompiler::Address(scratchGPR1, -(offset + sizeof(JSValue) + sizeof(void*))));
storageResult(scratchGPR1, node);
}
void SpeculativeJIT::compileReallocatePropertyStorage(Node* node)
{
size_t oldSize = node->transition()->previous->outOfLineCapacity() * sizeof(JSValue);
size_t newSize = oldSize * outOfLineGrowthFactor;
ASSERT(newSize == node->transition()->next->outOfLineCapacity() * sizeof(JSValue));
Allocator allocator = m_jit.vm()->jsValueGigacageAuxiliarySpace.allocatorForNonVirtual(newSize, AllocatorForMode::AllocatorIfExists);
if (!allocator || node->transition()->previous->couldHaveIndexingHeader()) {
SpeculateCellOperand base(this, node->child1());
GPRReg baseGPR = base.gpr();
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationAllocateComplexPropertyStorage, result.gpr(), baseGPR, newSize / sizeof(JSValue));
m_jit.exceptionCheck();
storageResult(result.gpr(), node);
return;
}
StorageOperand oldStorage(this, node->child2());
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRTemporary scratch3(this);
GPRReg oldStorageGPR = oldStorage.gpr();
GPRReg scratchGPR1 = scratch1.gpr();
GPRReg scratchGPR2 = scratch2.gpr();
GPRReg scratchGPR3 = scratch3.gpr();
JITCompiler::JumpList slowPath;
m_jit.emitAllocate(scratchGPR1, JITAllocator::constant(allocator), scratchGPR2, scratchGPR3, slowPath);
m_jit.addPtr(JITCompiler::TrustedImm32(newSize + sizeof(IndexingHeader)), scratchGPR1);
addSlowPathGenerator(
slowPathCall(slowPath, this, operationAllocateSimplePropertyStorage, scratchGPR1, newSize / sizeof(JSValue)));
for (ptrdiff_t offset = oldSize; offset < static_cast<ptrdiff_t>(newSize); offset += sizeof(void*))
m_jit.storePtr(TrustedImmPtr(nullptr), JITCompiler::Address(scratchGPR1, -(offset + sizeof(JSValue) + sizeof(void*))));
// We have scratchGPR1 = new storage, scratchGPR2 = scratch
for (ptrdiff_t offset = 0; offset < static_cast<ptrdiff_t>(oldSize); offset += sizeof(void*)) {
m_jit.loadPtr(JITCompiler::Address(oldStorageGPR, -(offset + sizeof(JSValue) + sizeof(void*))), scratchGPR2);
m_jit.storePtr(scratchGPR2, JITCompiler::Address(scratchGPR1, -(offset + sizeof(JSValue) + sizeof(void*))));
}
storageResult(scratchGPR1, node);
}
void SpeculativeJIT::compileNukeStructureAndSetButterfly(Node* node)
{
SpeculateCellOperand base(this, node->child1());
StorageOperand storage(this, node->child2());
GPRReg baseGPR = base.gpr();
GPRReg storageGPR = storage.gpr();
m_jit.nukeStructureAndStoreButterfly(*m_jit.vm(), storageGPR, baseGPR);
noResult(node);
}
void SpeculativeJIT::compileGetButterfly(Node* node)
{
SpeculateCellOperand base(this, node->child1());
GPRTemporary result(this, Reuse, base);
GPRReg baseGPR = base.gpr();
GPRReg resultGPR = result.gpr();
m_jit.loadPtr(JITCompiler::Address(baseGPR, JSObject::butterflyOffset()), resultGPR);
storageResult(resultGPR, node);
}
static void allocateTemporaryRegistersForSnippet(SpeculativeJIT* jit, Vector<GPRTemporary>& gpHolders, Vector<FPRTemporary>& fpHolders, Vector<GPRReg>& gpScratch, Vector<FPRReg>& fpScratch, Snippet& snippet)
{
for (unsigned i = 0; i < snippet.numGPScratchRegisters; ++i) {
GPRTemporary temporary(jit);
gpScratch.append(temporary.gpr());
gpHolders.append(WTFMove(temporary));
}
for (unsigned i = 0; i < snippet.numFPScratchRegisters; ++i) {
FPRTemporary temporary(jit);
fpScratch.append(temporary.fpr());
fpHolders.append(WTFMove(temporary));
}
}
void SpeculativeJIT::compileCallDOM(Node* node)
{
const DOMJIT::Signature* signature = node->signature();
// FIXME: We should have a way to call functions with the vector of registers.
// https://bugs.webkit.org/show_bug.cgi?id=163099
Vector<Variant<SpeculateCellOperand, SpeculateInt32Operand, SpeculateBooleanOperand>, JSC_DOMJIT_SIGNATURE_MAX_ARGUMENTS_INCLUDING_THIS> operands;
Vector<GPRReg, JSC_DOMJIT_SIGNATURE_MAX_ARGUMENTS_INCLUDING_THIS> regs;
auto appendCell = [&](Edge& edge) {
SpeculateCellOperand operand(this, edge);
regs.append(operand.gpr());
operands.append(WTFMove(operand));
};
auto appendString = [&](Edge& edge) {
SpeculateCellOperand operand(this, edge);
GPRReg gpr = operand.gpr();
regs.append(gpr);
speculateString(edge, gpr);
operands.append(WTFMove(operand));
};
auto appendInt32 = [&](Edge& edge) {
SpeculateInt32Operand operand(this, edge);
regs.append(operand.gpr());
operands.append(WTFMove(operand));
};
auto appendBoolean = [&](Edge& edge) {
SpeculateBooleanOperand operand(this, edge);
regs.append(operand.gpr());
operands.append(WTFMove(operand));
};
unsigned index = 0;
m_jit.graph().doToChildren(node, [&](Edge edge) {
if (!index)
appendCell(edge);
else {
switch (signature->arguments[index - 1]) {
case SpecString:
appendString(edge);
break;
case SpecInt32Only:
appendInt32(edge);
break;
case SpecBoolean:
appendBoolean(edge);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
++index;
});
JSValueRegsTemporary result(this);
JSValueRegs resultRegs = result.regs();
flushRegisters();
assertIsTaggedWith(reinterpret_cast<void*>(signature->unsafeFunction), CFunctionPtrTag);
unsigned argumentCountIncludingThis = signature->argumentCount + 1;
switch (argumentCountIncludingThis) {
case 1:
callOperation(reinterpret_cast<J_JITOperation_EP>(signature->unsafeFunction), extractResult(resultRegs), regs[0]);
break;
case 2:
callOperation(reinterpret_cast<J_JITOperation_EPP>(signature->unsafeFunction), extractResult(resultRegs), regs[0], regs[1]);
break;
case 3:
callOperation(reinterpret_cast<J_JITOperation_EPPP>(signature->unsafeFunction), extractResult(resultRegs), regs[0], regs[1], regs[2]);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileCallDOMGetter(Node* node)
{
DOMJIT::CallDOMGetterSnippet* snippet = node->callDOMGetterData()->snippet;
if (!snippet) {
FunctionPtr<OperationPtrTag> getter = node->callDOMGetterData()->customAccessorGetter;
SpeculateCellOperand base(this, node->child1());
JSValueRegsTemporary result(this);
JSValueRegs resultRegs = result.regs();
GPRReg baseGPR = base.gpr();
flushRegisters();
m_jit.setupArguments<J_JITOperation_EJI>(CCallHelpers::CellValue(baseGPR), identifierUID(node->callDOMGetterData()->identifierNumber));
m_jit.storePtr(GPRInfo::callFrameRegister, &m_jit.vm()->topCallFrame);
m_jit.emitStoreCodeOrigin(m_currentNode->origin.semantic);
m_jit.appendCall(getter.retagged<CFunctionPtrTag>());
m_jit.setupResults(resultRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
Vector<GPRReg> gpScratch;
Vector<FPRReg> fpScratch;
Vector<SnippetParams::Value> regs;
JSValueRegsTemporary result(this);
regs.append(result.regs());
Edge& baseEdge = node->child1();
SpeculateCellOperand base(this, baseEdge);
regs.append(SnippetParams::Value(base.gpr(), m_state.forNode(baseEdge).value()));
std::optional<SpeculateCellOperand> globalObject;
if (snippet->requireGlobalObject) {
Edge& globalObjectEdge = node->child2();
globalObject.emplace(this, globalObjectEdge);
regs.append(SnippetParams::Value(globalObject->gpr(), m_state.forNode(globalObjectEdge).value()));
}
Vector<GPRTemporary> gpTempraries;
Vector<FPRTemporary> fpTempraries;
allocateTemporaryRegistersForSnippet(this, gpTempraries, fpTempraries, gpScratch, fpScratch, *snippet);
SnippetParams params(this, WTFMove(regs), WTFMove(gpScratch), WTFMove(fpScratch));
snippet->generator()->run(m_jit, params);
jsValueResult(result.regs(), node);
}
void SpeculativeJIT::compileCheckSubClass(Node* node)
{
const ClassInfo* classInfo = node->classInfo();
if (!classInfo->checkSubClassSnippet) {
SpeculateCellOperand base(this, node->child1());
GPRTemporary other(this);
GPRTemporary specified(this);
GPRReg baseGPR = base.gpr();
GPRReg otherGPR = other.gpr();
GPRReg specifiedGPR = specified.gpr();
m_jit.emitLoadStructure(*m_jit.vm(), baseGPR, otherGPR, specifiedGPR);
m_jit.loadPtr(CCallHelpers::Address(otherGPR, Structure::classInfoOffset()), otherGPR);
#if USE(JSVALUE64)
m_jit.move(CCallHelpers::TrustedImm64(GlobalDataPoison::key()), specifiedGPR);
m_jit.xor64(specifiedGPR, otherGPR);
#endif
m_jit.move(CCallHelpers::TrustedImmPtr(node->classInfo()), specifiedGPR);
CCallHelpers::Label loop = m_jit.label();
auto done = m_jit.branchPtr(CCallHelpers::Equal, otherGPR, specifiedGPR);
m_jit.loadPtr(CCallHelpers::Address(otherGPR, ClassInfo::offsetOfParentClass()), otherGPR);
m_jit.branchTestPtr(CCallHelpers::NonZero, otherGPR).linkTo(loop, &m_jit);
speculationCheck(BadType, JSValueSource::unboxedCell(baseGPR), node->child1(), m_jit.jump());
done.link(&m_jit);
noResult(node);
return;
}
Ref<Snippet> snippet = classInfo->checkSubClassSnippet();
Vector<GPRReg> gpScratch;
Vector<FPRReg> fpScratch;
Vector<SnippetParams::Value> regs;
SpeculateCellOperand base(this, node->child1());
GPRReg baseGPR = base.gpr();
regs.append(SnippetParams::Value(baseGPR, m_state.forNode(node->child1()).value()));
Vector<GPRTemporary> gpTempraries;
Vector<FPRTemporary> fpTempraries;
allocateTemporaryRegistersForSnippet(this, gpTempraries, fpTempraries, gpScratch, fpScratch, snippet.get());
SnippetParams params(this, WTFMove(regs), WTFMove(gpScratch), WTFMove(fpScratch));
CCallHelpers::JumpList failureCases = snippet->generator()->run(m_jit, params);
speculationCheck(BadType, JSValueSource::unboxedCell(baseGPR), node->child1(), failureCases);
noResult(node);
}
GPRReg SpeculativeJIT::temporaryRegisterForPutByVal(GPRTemporary& temporary, ArrayMode arrayMode)
{
if (!putByValWillNeedExtraRegister(arrayMode))
return InvalidGPRReg;
GPRTemporary realTemporary(this);
temporary.adopt(realTemporary);
return temporary.gpr();
}
void SpeculativeJIT::compileToStringOrCallStringConstructorOrStringValueOf(Node* node)
{
ASSERT(node->op() != StringValueOf || node->child1().useKind() == UntypedUse);
switch (node->child1().useKind()) {
case NotCellUse: {
JSValueOperand op1(this, node->child1(), ManualOperandSpeculation);
JSValueRegs op1Regs = op1.jsValueRegs();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
speculateNotCell(node->child1(), op1Regs);
flushRegisters();
if (node->op() == ToString)
callOperation(operationToString, resultGPR, op1Regs);
else {
ASSERT(node->op() == CallStringConstructor);
callOperation(operationCallStringConstructor, resultGPR, op1Regs);
}
m_jit.exceptionCheck();
cellResult(resultGPR, node);
return;
}
case UntypedUse: {
JSValueOperand op1(this, node->child1());
JSValueRegs op1Regs = op1.jsValueRegs();
GPRReg op1PayloadGPR = op1Regs.payloadGPR();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
flushRegisters();
JITCompiler::Jump done;
if (node->child1()->prediction() & SpecString) {
JITCompiler::Jump slowPath1 = m_jit.branchIfNotCell(op1.jsValueRegs());
JITCompiler::Jump slowPath2 = m_jit.branchIfNotString(op1PayloadGPR);
m_jit.move(op1PayloadGPR, resultGPR);
done = m_jit.jump();
slowPath1.link(&m_jit);
slowPath2.link(&m_jit);
}
if (node->op() == ToString)
callOperation(operationToString, resultGPR, op1Regs);
else if (node->op() == StringValueOf)
callOperation(operationStringValueOf, resultGPR, op1Regs);
else {
ASSERT(node->op() == CallStringConstructor);
callOperation(operationCallStringConstructor, resultGPR, op1Regs);
}
m_jit.exceptionCheck();
if (done.isSet())
done.link(&m_jit);
cellResult(resultGPR, node);
return;
}
case Int32Use:
case Int52RepUse:
case DoubleRepUse:
compileNumberToStringWithValidRadixConstant(node, 10);
return;
default:
break;
}
SpeculateCellOperand op1(this, node->child1());
GPRReg op1GPR = op1.gpr();
switch (node->child1().useKind()) {
case StringObjectUse: {
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
speculateStringObject(node->child1(), op1GPR);
m_interpreter.filter(node->child1(), SpecStringObject);
m_jit.loadPtr(JITCompiler::Address(op1GPR, JSWrapperObject::internalValueCellOffset()), resultGPR);
cellResult(resultGPR, node);
break;
}
case StringOrStringObjectUse: {
GPRTemporary result(this);
GPRReg resultGPR = result.gpr();
m_jit.load32(JITCompiler::Address(op1GPR, JSCell::structureIDOffset()), resultGPR);
JITCompiler::Jump isString = m_jit.branchWeakStructure(
JITCompiler::Equal,
resultGPR,
m_jit.graph().registerStructure(m_jit.vm()->stringStructure.get()));
speculateStringObjectForStructure(node->child1(), resultGPR);
m_jit.loadPtr(JITCompiler::Address(op1GPR, JSWrapperObject::internalValueCellOffset()), resultGPR);
JITCompiler::Jump done = m_jit.jump();
isString.link(&m_jit);
m_jit.move(op1GPR, resultGPR);
done.link(&m_jit);
m_interpreter.filter(node->child1(), SpecString | SpecStringObject);
cellResult(resultGPR, node);
break;
}
case CellUse: {
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
// We flush registers instead of silent spill/fill because in this mode we
// believe that most likely the input is not a string, and we need to take
// slow path.
flushRegisters();
JITCompiler::Jump done;
if (node->child1()->prediction() & SpecString) {
JITCompiler::Jump needCall = m_jit.branchIfNotString(op1GPR);
m_jit.move(op1GPR, resultGPR);
done = m_jit.jump();
needCall.link(&m_jit);
}
if (node->op() == ToString)
callOperation(operationToStringOnCell, resultGPR, op1GPR);
else {
ASSERT(node->op() == CallStringConstructor);
callOperation(operationCallStringConstructorOnCell, resultGPR, op1GPR);
}
m_jit.exceptionCheck();
if (done.isSet())
done.link(&m_jit);
cellResult(resultGPR, node);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void SpeculativeJIT::compileNumberToStringWithValidRadixConstant(Node* node)
{
compileNumberToStringWithValidRadixConstant(node, node->validRadixConstant());
}
void SpeculativeJIT::compileNumberToStringWithValidRadixConstant(Node* node, int32_t radix)
{
auto callToString = [&] (auto operation, GPRReg resultGPR, auto valueReg) {
flushRegisters();
callOperation(operation, resultGPR, valueReg, TrustedImm32(radix));
m_jit.exceptionCheck();
cellResult(resultGPR, node);
};
switch (node->child1().useKind()) {
case Int32Use: {
SpeculateStrictInt32Operand value(this, node->child1());
GPRFlushedCallResult result(this);
callToString(operationInt32ToStringWithValidRadix, result.gpr(), value.gpr());
break;
}
#if USE(JSVALUE64)
case Int52RepUse: {
SpeculateStrictInt52Operand value(this, node->child1());
GPRFlushedCallResult result(this);
callToString(operationInt52ToStringWithValidRadix, result.gpr(), value.gpr());
break;
}
#endif
case DoubleRepUse: {
SpeculateDoubleOperand value(this, node->child1());
GPRFlushedCallResult result(this);
callToString(operationDoubleToStringWithValidRadix, result.gpr(), value.fpr());
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void SpeculativeJIT::compileNumberToStringWithRadix(Node* node)
{
bool validRadixIsGuaranteed = false;
if (node->child2()->isInt32Constant()) {
int32_t radix = node->child2()->asInt32();
if (radix >= 2 && radix <= 36)
validRadixIsGuaranteed = true;
}
auto callToString = [&] (auto operation, GPRReg resultGPR, auto valueReg, GPRReg radixGPR) {
flushRegisters();
callOperation(operation, resultGPR, valueReg, radixGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
};
switch (node->child1().useKind()) {
case Int32Use: {
SpeculateStrictInt32Operand value(this, node->child1());
SpeculateStrictInt32Operand radix(this, node->child2());
GPRFlushedCallResult result(this);
callToString(validRadixIsGuaranteed ? operationInt32ToStringWithValidRadix : operationInt32ToString, result.gpr(), value.gpr(), radix.gpr());
break;
}
#if USE(JSVALUE64)
case Int52RepUse: {
SpeculateStrictInt52Operand value(this, node->child1());
SpeculateStrictInt32Operand radix(this, node->child2());
GPRFlushedCallResult result(this);
callToString(validRadixIsGuaranteed ? operationInt52ToStringWithValidRadix : operationInt52ToString, result.gpr(), value.gpr(), radix.gpr());
break;
}
#endif
case DoubleRepUse: {
SpeculateDoubleOperand value(this, node->child1());
SpeculateStrictInt32Operand radix(this, node->child2());
GPRFlushedCallResult result(this);
callToString(validRadixIsGuaranteed ? operationDoubleToStringWithValidRadix : operationDoubleToString, result.gpr(), value.fpr(), radix.gpr());
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void SpeculativeJIT::compileNewStringObject(Node* node)
{
SpeculateCellOperand operand(this, node->child1());
GPRTemporary result(this);
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRReg operandGPR = operand.gpr();
GPRReg resultGPR = result.gpr();
GPRReg scratch1GPR = scratch1.gpr();
GPRReg scratch2GPR = scratch2.gpr();
JITCompiler::JumpList slowPath;
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObject<StringObject>(
resultGPR, TrustedImmPtr(node->structure()), butterfly, scratch1GPR, scratch2GPR,
slowPath);
m_jit.storePtr(
TrustedImmPtr(PoisonedClassInfoPtr(StringObject::info()).bits()),
JITCompiler::Address(resultGPR, JSDestructibleObject::classInfoOffset()));
#if USE(JSVALUE64)
m_jit.store64(
operandGPR, JITCompiler::Address(resultGPR, JSWrapperObject::internalValueOffset()));
#else
m_jit.store32(
TrustedImm32(JSValue::CellTag),
JITCompiler::Address(resultGPR, JSWrapperObject::internalValueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.tag)));
m_jit.store32(
operandGPR,
JITCompiler::Address(resultGPR, JSWrapperObject::internalValueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)));
#endif
m_jit.mutatorFence(*m_jit.vm());
addSlowPathGenerator(slowPathCall(
slowPath, this, operationNewStringObject, resultGPR, operandGPR, node->structure()));
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileNewTypedArrayWithSize(Node* node)
{
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
auto typedArrayType = node->typedArrayType();
RegisteredStructure structure = m_jit.graph().registerStructure(globalObject->typedArrayStructureConcurrently(typedArrayType));
RELEASE_ASSERT(structure.get());
SpeculateInt32Operand size(this, node->child1());
GPRReg sizeGPR = size.gpr();
GPRTemporary result(this);
GPRTemporary storage(this);
GPRTemporary scratch(this);
GPRTemporary scratch2(this);
GPRReg resultGPR = result.gpr();
GPRReg storageGPR = storage.gpr();
GPRReg scratchGPR = scratch.gpr();
GPRReg scratchGPR2 = scratch2.gpr();
JITCompiler::JumpList slowCases;
m_jit.move(TrustedImmPtr(nullptr), storageGPR);
slowCases.append(m_jit.branch32(
MacroAssembler::Above, sizeGPR, TrustedImm32(JSArrayBufferView::fastSizeLimit)));
m_jit.move(sizeGPR, scratchGPR);
m_jit.lshift32(TrustedImm32(logElementSize(typedArrayType)), scratchGPR);
if (elementSize(typedArrayType) < 8) {
m_jit.add32(TrustedImm32(7), scratchGPR);
m_jit.and32(TrustedImm32(~7), scratchGPR);
}
m_jit.emitAllocateVariableSized(
storageGPR, m_jit.vm()->primitiveGigacageAuxiliarySpace, scratchGPR, scratchGPR,
scratchGPR2, slowCases);
MacroAssembler::Jump done = m_jit.branchTest32(MacroAssembler::Zero, sizeGPR);
m_jit.move(sizeGPR, scratchGPR);
if (elementSize(typedArrayType) != 4) {
if (elementSize(typedArrayType) > 4)
m_jit.lshift32(TrustedImm32(logElementSize(typedArrayType) - 2), scratchGPR);
else {
if (elementSize(typedArrayType) > 1)
m_jit.lshift32(TrustedImm32(logElementSize(typedArrayType)), scratchGPR);
m_jit.add32(TrustedImm32(3), scratchGPR);
m_jit.urshift32(TrustedImm32(2), scratchGPR);
}
}
MacroAssembler::Label loop = m_jit.label();
m_jit.sub32(TrustedImm32(1), scratchGPR);
m_jit.store32(
TrustedImm32(0),
MacroAssembler::BaseIndex(storageGPR, scratchGPR, MacroAssembler::TimesFour));
m_jit.branchTest32(MacroAssembler::NonZero, scratchGPR).linkTo(loop, &m_jit);
done.link(&m_jit);
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObject<JSArrayBufferView>(
resultGPR, TrustedImmPtr(structure), butterfly, scratchGPR, scratchGPR2,
slowCases);
m_jit.storePtr(
storageGPR,
MacroAssembler::Address(resultGPR, JSArrayBufferView::offsetOfVector()));
m_jit.store32(
sizeGPR,
MacroAssembler::Address(resultGPR, JSArrayBufferView::offsetOfLength()));
m_jit.store32(
TrustedImm32(FastTypedArray),
MacroAssembler::Address(resultGPR, JSArrayBufferView::offsetOfMode()));
m_jit.mutatorFence(*m_jit.vm());
addSlowPathGenerator(slowPathCall(
slowCases, this, operationNewTypedArrayWithSizeForType(typedArrayType),
resultGPR, structure, sizeGPR, storageGPR));
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileNewRegexp(Node* node)
{
RegExp* regexp = node->castOperand<RegExp*>();
ASSERT(regexp->isValid());
GPRTemporary result(this);
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
JSValueOperand lastIndex(this, node->child1());
GPRReg resultGPR = result.gpr();
GPRReg scratch1GPR = scratch1.gpr();
GPRReg scratch2GPR = scratch2.gpr();
JSValueRegs lastIndexRegs = lastIndex.jsValueRegs();
JITCompiler::JumpList slowPath;
auto structure = m_jit.graph().registerStructure(m_jit.graph().globalObjectFor(node->origin.semantic)->regExpStructure());
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObject<RegExpObject>(resultGPR, TrustedImmPtr(structure), butterfly, scratch1GPR, scratch2GPR, slowPath);
m_jit.storePtr(
TrustedImmPtr(node->cellOperand()),
CCallHelpers::Address(resultGPR, RegExpObject::offsetOfRegExp()));
m_jit.storeValue(lastIndexRegs, CCallHelpers::Address(resultGPR, RegExpObject::offsetOfLastIndex()));
m_jit.store8(TrustedImm32(true), CCallHelpers::Address(resultGPR, RegExpObject::offsetOfLastIndexIsWritable()));
m_jit.mutatorFence(*m_jit.vm());
addSlowPathGenerator(slowPathCall(slowPath, this, operationNewRegexpWithLastIndex, resultGPR, regexp, lastIndexRegs));
cellResult(resultGPR, node);
}
void SpeculativeJIT::speculateCellTypeWithoutTypeFiltering(
Edge edge, GPRReg cellGPR, JSType jsType)
{
speculationCheck(
BadType, JSValueSource::unboxedCell(cellGPR), edge,
m_jit.branchIfNotType(cellGPR, jsType));
}
void SpeculativeJIT::speculateCellType(
Edge edge, GPRReg cellGPR, SpeculatedType specType, JSType jsType)
{
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(cellGPR), edge, specType,
m_jit.branchIfNotType(cellGPR, jsType));
}
void SpeculativeJIT::speculateInt32(Edge edge)
{
if (!needsTypeCheck(edge, SpecInt32Only))
return;
(SpeculateInt32Operand(this, edge)).gpr();
}
void SpeculativeJIT::speculateNumber(Edge edge)
{
if (!needsTypeCheck(edge, SpecBytecodeNumber))
return;
JSValueOperand value(this, edge, ManualOperandSpeculation);
#if USE(JSVALUE64)
GPRReg gpr = value.gpr();
typeCheck(
JSValueRegs(gpr), edge, SpecBytecodeNumber,
m_jit.branchIfNotNumber(gpr));
#else
IGNORE_WARNINGS_BEGIN("enum-compare")
static_assert(JSValue::Int32Tag >= JSValue::LowestTag, "Int32Tag is included in >= JSValue::LowestTag range.");
IGNORE_WARNINGS_END
GPRReg tagGPR = value.tagGPR();
DFG_TYPE_CHECK(
value.jsValueRegs(), edge, ~SpecInt32Only,
m_jit.branchIfInt32(tagGPR));
DFG_TYPE_CHECK(
value.jsValueRegs(), edge, SpecBytecodeNumber,
m_jit.branch32(MacroAssembler::AboveOrEqual, tagGPR, TrustedImm32(JSValue::LowestTag)));
#endif
}
void SpeculativeJIT::speculateRealNumber(Edge edge)
{
if (!needsTypeCheck(edge, SpecBytecodeRealNumber))
return;
JSValueOperand op1(this, edge, ManualOperandSpeculation);
FPRTemporary result(this);
JSValueRegs op1Regs = op1.jsValueRegs();
FPRReg resultFPR = result.fpr();
#if USE(JSVALUE64)
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
m_jit.unboxDoubleWithoutAssertions(op1Regs.gpr(), tempGPR, resultFPR);
#else
FPRTemporary temp(this);
FPRReg tempFPR = temp.fpr();
unboxDouble(op1Regs.tagGPR(), op1Regs.payloadGPR(), resultFPR, tempFPR);
#endif
JITCompiler::Jump done = m_jit.branchIfNotNaN(resultFPR);
typeCheck(op1Regs, edge, SpecBytecodeRealNumber, m_jit.branchIfNotInt32(op1Regs));
done.link(&m_jit);
}
void SpeculativeJIT::speculateDoubleRepReal(Edge edge)
{
if (!needsTypeCheck(edge, SpecDoubleReal))
return;
SpeculateDoubleOperand operand(this, edge);
FPRReg fpr = operand.fpr();
typeCheck(
JSValueRegs(), edge, SpecDoubleReal,
m_jit.branchIfNaN(fpr));
}
void SpeculativeJIT::speculateBoolean(Edge edge)
{
if (!needsTypeCheck(edge, SpecBoolean))
return;
(SpeculateBooleanOperand(this, edge)).gpr();
}
void SpeculativeJIT::speculateCell(Edge edge)
{
if (!needsTypeCheck(edge, SpecCellCheck))
return;
(SpeculateCellOperand(this, edge)).gpr();
}
void SpeculativeJIT::speculateCellOrOther(Edge edge)
{
if (!needsTypeCheck(edge, SpecCellCheck | SpecOther))
return;
JSValueOperand operand(this, edge, ManualOperandSpeculation);
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
MacroAssembler::Jump ok = m_jit.branchIfCell(operand.jsValueRegs());
DFG_TYPE_CHECK(
operand.jsValueRegs(), edge, SpecCellCheck | SpecOther,
m_jit.branchIfNotOther(operand.jsValueRegs(), tempGPR));
ok.link(&m_jit);
}
void SpeculativeJIT::speculateObject(Edge edge, GPRReg cell)
{
DFG_TYPE_CHECK(JSValueSource::unboxedCell(cell), edge, SpecObject, m_jit.branchIfNotObject(cell));
}
void SpeculativeJIT::speculateObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecObject))
return;
SpeculateCellOperand operand(this, edge);
speculateObject(edge, operand.gpr());
}
void SpeculativeJIT::speculateFunction(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecFunction, JSFunctionType);
}
void SpeculativeJIT::speculateFunction(Edge edge)
{
if (!needsTypeCheck(edge, SpecFunction))
return;
SpeculateCellOperand operand(this, edge);
speculateFunction(edge, operand.gpr());
}
void SpeculativeJIT::speculateFinalObject(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecFinalObject, FinalObjectType);
}
void SpeculativeJIT::speculateFinalObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecFinalObject))
return;
SpeculateCellOperand operand(this, edge);
speculateFinalObject(edge, operand.gpr());
}
void SpeculativeJIT::speculateRegExpObject(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecRegExpObject, RegExpObjectType);
}
void SpeculativeJIT::speculateRegExpObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecRegExpObject))
return;
SpeculateCellOperand operand(this, edge);
speculateRegExpObject(edge, operand.gpr());
}
void SpeculativeJIT::speculateArray(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecArray, ArrayType);
}
void SpeculativeJIT::speculateArray(Edge edge)
{
if (!needsTypeCheck(edge, SpecArray))
return;
SpeculateCellOperand operand(this, edge);
speculateArray(edge, operand.gpr());
}
void SpeculativeJIT::speculateProxyObject(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecProxyObject, ProxyObjectType);
}
void SpeculativeJIT::speculateProxyObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecProxyObject))
return;
SpeculateCellOperand operand(this, edge);
speculateProxyObject(edge, operand.gpr());
}
void SpeculativeJIT::speculateDerivedArray(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecDerivedArray, DerivedArrayType);
}
void SpeculativeJIT::speculateDerivedArray(Edge edge)
{
if (!needsTypeCheck(edge, SpecDerivedArray))
return;
SpeculateCellOperand operand(this, edge);
speculateDerivedArray(edge, operand.gpr());
}
void SpeculativeJIT::speculateMapObject(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecMapObject, JSMapType);
}
void SpeculativeJIT::speculateMapObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecMapObject))
return;
SpeculateCellOperand operand(this, edge);
speculateMapObject(edge, operand.gpr());
}
void SpeculativeJIT::speculateSetObject(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecSetObject, JSSetType);
}
void SpeculativeJIT::speculateSetObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecSetObject))
return;
SpeculateCellOperand operand(this, edge);
speculateSetObject(edge, operand.gpr());
}
void SpeculativeJIT::speculateWeakMapObject(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecWeakMapObject, JSWeakMapType);
}
void SpeculativeJIT::speculateWeakMapObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecWeakMapObject))
return;
SpeculateCellOperand operand(this, edge);
speculateWeakMapObject(edge, operand.gpr());
}
void SpeculativeJIT::speculateWeakSetObject(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecWeakSetObject, JSWeakSetType);
}
void SpeculativeJIT::speculateWeakSetObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecWeakSetObject))
return;
SpeculateCellOperand operand(this, edge);
speculateWeakSetObject(edge, operand.gpr());
}
void SpeculativeJIT::speculateDataViewObject(Edge edge, GPRReg cell)
{
speculateCellType(edge, cell, SpecDataViewObject, DataViewType);
}
void SpeculativeJIT::speculateDataViewObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecDataViewObject))
return;
SpeculateCellOperand operand(this, edge);
speculateDataViewObject(edge, operand.gpr());
}
void SpeculativeJIT::speculateObjectOrOther(Edge edge)
{
if (!needsTypeCheck(edge, SpecObject | SpecOther))
return;
JSValueOperand operand(this, edge, ManualOperandSpeculation);
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
MacroAssembler::Jump notCell = m_jit.branchIfNotCell(operand.jsValueRegs());
GPRReg gpr = operand.jsValueRegs().payloadGPR();
DFG_TYPE_CHECK(
operand.jsValueRegs(), edge, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(gpr));
MacroAssembler::Jump done = m_jit.jump();
notCell.link(&m_jit);
DFG_TYPE_CHECK(
operand.jsValueRegs(), edge, SpecCellCheck | SpecOther,
m_jit.branchIfNotOther(operand.jsValueRegs(), tempGPR));
done.link(&m_jit);
}
void SpeculativeJIT::speculateString(Edge edge, GPRReg cell)
{
DFG_TYPE_CHECK(
JSValueSource::unboxedCell(cell), edge, SpecString | ~SpecCellCheck, m_jit.branchIfNotString(cell));
}
void SpeculativeJIT::speculateStringOrOther(Edge edge, JSValueRegs regs, GPRReg scratch)
{
JITCompiler::Jump notCell = m_jit.branchIfNotCell(regs);
GPRReg cell = regs.payloadGPR();
DFG_TYPE_CHECK(regs, edge, (~SpecCellCheck) | SpecString, m_jit.branchIfNotString(cell));
JITCompiler::Jump done = m_jit.jump();
notCell.link(&m_jit);
DFG_TYPE_CHECK(regs, edge, SpecCellCheck | SpecOther, m_jit.branchIfNotOther(regs, scratch));
done.link(&m_jit);
}
void SpeculativeJIT::speculateStringOrOther(Edge edge)
{
if (!needsTypeCheck(edge, SpecString | SpecOther))
return;
JSValueOperand operand(this, edge, ManualOperandSpeculation);
GPRTemporary temp(this);
JSValueRegs regs = operand.jsValueRegs();
GPRReg tempGPR = temp.gpr();
speculateStringOrOther(edge, regs, tempGPR);
}
void SpeculativeJIT::speculateStringIdentAndLoadStorage(Edge edge, GPRReg string, GPRReg storage)
{
m_jit.loadPtr(MacroAssembler::Address(string, JSString::offsetOfValue()), storage);
if (!needsTypeCheck(edge, SpecStringIdent | ~SpecString))
return;
speculationCheck(
BadType, JSValueSource::unboxedCell(string), edge,
m_jit.branchTestPtr(MacroAssembler::Zero, storage));
speculationCheck(
BadType, JSValueSource::unboxedCell(string), edge, m_jit.branchTest32(
MacroAssembler::Zero,
MacroAssembler::Address(storage, StringImpl::flagsOffset()),
MacroAssembler::TrustedImm32(StringImpl::flagIsAtomic())));
m_interpreter.filter(edge, SpecStringIdent | ~SpecString);
}
void SpeculativeJIT::speculateStringIdent(Edge edge, GPRReg string)
{
if (!needsTypeCheck(edge, SpecStringIdent))
return;
GPRTemporary temp(this);
speculateStringIdentAndLoadStorage(edge, string, temp.gpr());
}
void SpeculativeJIT::speculateStringIdent(Edge edge)
{
if (!needsTypeCheck(edge, SpecStringIdent))
return;
SpeculateCellOperand operand(this, edge);
GPRReg gpr = operand.gpr();
speculateString(edge, gpr);
speculateStringIdent(edge, gpr);
}
void SpeculativeJIT::speculateString(Edge edge)
{
if (!needsTypeCheck(edge, SpecString))
return;
SpeculateCellOperand operand(this, edge);
speculateString(edge, operand.gpr());
}
void SpeculativeJIT::speculateStringObject(Edge edge, GPRReg gpr)
{
speculateStringObjectForStructure(edge, JITCompiler::Address(gpr, JSCell::structureIDOffset()));
}
void SpeculativeJIT::speculateStringObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecStringObject))
return;
SpeculateCellOperand operand(this, edge);
GPRReg gpr = operand.gpr();
if (!needsTypeCheck(edge, SpecStringObject))
return;
speculateStringObject(edge, gpr);
m_interpreter.filter(edge, SpecStringObject);
}
void SpeculativeJIT::speculateStringOrStringObject(Edge edge)
{
if (!needsTypeCheck(edge, SpecString | SpecStringObject))
return;
SpeculateCellOperand operand(this, edge);
GPRReg gpr = operand.gpr();
if (!needsTypeCheck(edge, SpecString | SpecStringObject))
return;
GPRTemporary structureID(this);
GPRReg structureIDGPR = structureID.gpr();
m_jit.load32(JITCompiler::Address(gpr, JSCell::structureIDOffset()), structureIDGPR);
JITCompiler::Jump isString = m_jit.branchWeakStructure(
JITCompiler::Equal,
structureIDGPR,
m_jit.graph().registerStructure(m_jit.vm()->stringStructure.get()));
speculateStringObjectForStructure(edge, structureIDGPR);
isString.link(&m_jit);
m_interpreter.filter(edge, SpecString | SpecStringObject);
}
void SpeculativeJIT::speculateNotStringVar(Edge edge)
{
JSValueOperand operand(this, edge, ManualOperandSpeculation);
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
JITCompiler::Jump notCell = m_jit.branchIfNotCell(operand.jsValueRegs());
GPRReg cell = operand.jsValueRegs().payloadGPR();
JITCompiler::Jump notString = m_jit.branchIfNotString(cell);
speculateStringIdentAndLoadStorage(edge, cell, tempGPR);
notString.link(&m_jit);
notCell.link(&m_jit);
}
void SpeculativeJIT::speculateNotSymbol(Edge edge)
{
if (!needsTypeCheck(edge, ~SpecSymbol))
return;
JSValueOperand operand(this, edge, ManualOperandSpeculation);
auto valueRegs = operand.jsValueRegs();
GPRReg value = valueRegs.payloadGPR();
JITCompiler::Jump notCell;
bool needsCellCheck = needsTypeCheck(edge, SpecCell);
if (needsCellCheck)
notCell = m_jit.branchIfNotCell(valueRegs);
speculationCheck(BadType, JSValueSource::unboxedCell(value), edge.node(), m_jit.branchIfSymbol(value));
if (needsCellCheck)
notCell.link(&m_jit);
m_interpreter.filter(edge, ~SpecSymbol);
}
void SpeculativeJIT::speculateSymbol(Edge edge, GPRReg cell)
{
DFG_TYPE_CHECK(JSValueSource::unboxedCell(cell), edge, ~SpecCellCheck | SpecSymbol, m_jit.branchIfNotSymbol(cell));
}
void SpeculativeJIT::speculateSymbol(Edge edge)
{
if (!needsTypeCheck(edge, SpecSymbol))
return;
SpeculateCellOperand operand(this, edge);
speculateSymbol(edge, operand.gpr());
}
void SpeculativeJIT::speculateBigInt(Edge edge, GPRReg cell)
{
DFG_TYPE_CHECK(JSValueSource::unboxedCell(cell), edge, ~SpecCellCheck | SpecBigInt, m_jit.branchIfNotBigInt(cell));
}
void SpeculativeJIT::speculateBigInt(Edge edge)
{
if (!needsTypeCheck(edge, SpecBigInt))
return;
SpeculateCellOperand operand(this, edge);
speculateBigInt(edge, operand.gpr());
}
void SpeculativeJIT::speculateNotCell(Edge edge, JSValueRegs regs)
{
DFG_TYPE_CHECK(regs, edge, ~SpecCellCheck, m_jit.branchIfCell(regs));
}
void SpeculativeJIT::speculateNotCell(Edge edge)
{
if (!needsTypeCheck(edge, ~SpecCellCheck))
return;
JSValueOperand operand(this, edge, ManualOperandSpeculation);
speculateNotCell(edge, operand.jsValueRegs());
}
void SpeculativeJIT::speculateOther(Edge edge, JSValueRegs regs, GPRReg tempGPR)
{
DFG_TYPE_CHECK(regs, edge, SpecOther, m_jit.branchIfNotOther(regs, tempGPR));
}
void SpeculativeJIT::speculateOther(Edge edge, JSValueRegs regs)
{
if (!needsTypeCheck(edge, SpecOther))
return;
GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();
speculateOther(edge, regs, tempGPR);
}
void SpeculativeJIT::speculateOther(Edge edge)
{
if (!needsTypeCheck(edge, SpecOther))
return;
JSValueOperand operand(this, edge, ManualOperandSpeculation);
speculateOther(edge, operand.jsValueRegs());
}
void SpeculativeJIT::speculateMisc(Edge edge, JSValueRegs regs)
{
#if USE(JSVALUE64)
DFG_TYPE_CHECK(
regs, edge, SpecMisc,
m_jit.branch64(MacroAssembler::Above, regs.gpr(), MacroAssembler::TrustedImm64(TagBitTypeOther | TagBitBool | TagBitUndefined)));
#else
IGNORE_WARNINGS_BEGIN("enum-compare")
static_assert(JSValue::Int32Tag >= JSValue::UndefinedTag, "Int32Tag is included in >= JSValue::UndefinedTag range.");
IGNORE_WARNINGS_END
DFG_TYPE_CHECK(
regs, edge, ~SpecInt32Only,
m_jit.branchIfInt32(regs.tagGPR()));
DFG_TYPE_CHECK(
regs, edge, SpecMisc,
m_jit.branch32(MacroAssembler::Below, regs.tagGPR(), MacroAssembler::TrustedImm32(JSValue::UndefinedTag)));
#endif
}
void SpeculativeJIT::speculateMisc(Edge edge)
{
if (!needsTypeCheck(edge, SpecMisc))
return;
JSValueOperand operand(this, edge, ManualOperandSpeculation);
speculateMisc(edge, operand.jsValueRegs());
}
void SpeculativeJIT::speculate(Node*, Edge edge)
{
switch (edge.useKind()) {
case UntypedUse:
break;
case KnownInt32Use:
ASSERT(!needsTypeCheck(edge, SpecInt32Only));
break;
case DoubleRepUse:
ASSERT(!needsTypeCheck(edge, SpecFullDouble));
break;
case Int52RepUse:
ASSERT(!needsTypeCheck(edge, SpecAnyInt));
break;
case KnownCellUse:
ASSERT(!needsTypeCheck(edge, SpecCell));
break;
case KnownStringUse:
ASSERT(!needsTypeCheck(edge, SpecString));
break;
case KnownPrimitiveUse:
ASSERT(!needsTypeCheck(edge, SpecHeapTop & ~SpecObject));
break;
case Int32Use:
speculateInt32(edge);
break;
case NumberUse:
speculateNumber(edge);
break;
case RealNumberUse:
speculateRealNumber(edge);
break;
case DoubleRepRealUse:
speculateDoubleRepReal(edge);
break;
#if USE(JSVALUE64)
case AnyIntUse:
speculateAnyInt(edge);
break;
case DoubleRepAnyIntUse:
speculateDoubleRepAnyInt(edge);
break;
#endif
case BooleanUse:
speculateBoolean(edge);
break;
case KnownBooleanUse:
ASSERT(!needsTypeCheck(edge, SpecBoolean));
break;
case CellUse:
speculateCell(edge);
break;
case CellOrOtherUse:
speculateCellOrOther(edge);
break;
case ObjectUse:
speculateObject(edge);
break;
case FunctionUse:
speculateFunction(edge);
break;
case ArrayUse:
speculateArray(edge);
break;
case FinalObjectUse:
speculateFinalObject(edge);
break;
case RegExpObjectUse:
speculateRegExpObject(edge);
break;
case ProxyObjectUse:
speculateProxyObject(edge);
break;
case DerivedArrayUse:
speculateDerivedArray(edge);
break;
case MapObjectUse:
speculateMapObject(edge);
break;
case SetObjectUse:
speculateSetObject(edge);
break;
case WeakMapObjectUse:
speculateWeakMapObject(edge);
break;
case WeakSetObjectUse:
speculateWeakSetObject(edge);
break;
case DataViewObjectUse:
speculateDataViewObject(edge);
break;
case ObjectOrOtherUse:
speculateObjectOrOther(edge);
break;
case StringIdentUse:
speculateStringIdent(edge);
break;
case StringUse:
speculateString(edge);
break;
case StringOrOtherUse:
speculateStringOrOther(edge);
break;
case SymbolUse:
speculateSymbol(edge);
break;
case BigIntUse:
speculateBigInt(edge);
break;
case StringObjectUse:
speculateStringObject(edge);
break;
case StringOrStringObjectUse:
speculateStringOrStringObject(edge);
break;
case NotStringVarUse:
speculateNotStringVar(edge);
break;
case NotSymbolUse:
speculateNotSymbol(edge);
break;
case NotCellUse:
speculateNotCell(edge);
break;
case KnownOtherUse:
ASSERT(!needsTypeCheck(edge, SpecOther));
break;
case OtherUse:
speculateOther(edge);
break;
case MiscUse:
speculateMisc(edge);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
void SpeculativeJIT::emitSwitchIntJump(
SwitchData* data, GPRReg value, GPRReg scratch, GPRReg poisonScratch)
{
SimpleJumpTable& table = m_jit.codeBlock()->switchJumpTable(data->switchTableIndex);
table.ensureCTITable();
m_jit.sub32(Imm32(table.min), value);
addBranch(
m_jit.branch32(JITCompiler::AboveOrEqual, value, Imm32(table.ctiOffsets.size())),
data->fallThrough.block);
UNUSED_PARAM(poisonScratch); // Placate the 32-bit build.
#if USE(JSVALUE64)
m_jit.move(TrustedImm64(JITCodePoison::key()), poisonScratch);
#endif
m_jit.move(TrustedImmPtr(table.ctiOffsets.begin()), scratch);
m_jit.loadPtr(JITCompiler::BaseIndex(scratch, value, JITCompiler::timesPtr()), scratch);
#if USE(JSVALUE64)
m_jit.xor64(poisonScratch, scratch);
#endif
m_jit.jump(scratch, JSSwitchPtrTag);
data->didUseJumpTable = true;
}
void SpeculativeJIT::emitSwitchImm(Node* node, SwitchData* data)
{
switch (node->child1().useKind()) {
case Int32Use: {
SpeculateInt32Operand value(this, node->child1());
GPRTemporary temp(this);
GPRTemporary temp2(this);
emitSwitchIntJump(data, value.gpr(), temp.gpr(), temp2.gpr());
noResult(node);
break;
}
case UntypedUse: {
JSValueOperand value(this, node->child1());
GPRTemporary temp(this);
GPRTemporary temp2(this);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg scratch = temp.gpr();
GPRReg scratch2 = temp2.gpr();
value.use();
auto notInt32 = m_jit.branchIfNotInt32(valueRegs);
emitSwitchIntJump(data, valueRegs.payloadGPR(), scratch, scratch2);
notInt32.link(&m_jit);
addBranch(m_jit.branchIfNotNumber(valueRegs, scratch), data->fallThrough.block);
silentSpillAllRegisters(scratch);
callOperation(operationFindSwitchImmTargetForDouble, scratch, valueRegs, data->switchTableIndex);
silentFillAllRegisters();
m_jit.jump(scratch, JSSwitchPtrTag);
noResult(node, UseChildrenCalledExplicitly);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
void SpeculativeJIT::emitSwitchCharStringJump(
SwitchData* data, GPRReg value, GPRReg scratch, GPRReg scratch2)
{
addBranch(
m_jit.branch32(
MacroAssembler::NotEqual,
MacroAssembler::Address(value, JSString::offsetOfLength()),
TrustedImm32(1)),
data->fallThrough.block);
m_jit.loadPtr(MacroAssembler::Address(value, JSString::offsetOfValue()), scratch);
addSlowPathGenerator(
slowPathCall(
m_jit.branchTestPtr(MacroAssembler::Zero, scratch),
this, operationResolveRope, scratch, value));
m_jit.loadPtr(MacroAssembler::Address(scratch, StringImpl::dataOffset()), value);
JITCompiler::Jump is8Bit = m_jit.branchTest32(
MacroAssembler::NonZero,
MacroAssembler::Address(scratch, StringImpl::flagsOffset()),
TrustedImm32(StringImpl::flagIs8Bit()));
m_jit.load16(MacroAssembler::Address(value), scratch);
JITCompiler::Jump ready = m_jit.jump();
is8Bit.link(&m_jit);
m_jit.load8(MacroAssembler::Address(value), scratch);
ready.link(&m_jit);
emitSwitchIntJump(data, scratch, value, scratch2);
}
void SpeculativeJIT::emitSwitchChar(Node* node, SwitchData* data)
{
switch (node->child1().useKind()) {
case StringUse: {
SpeculateCellOperand op1(this, node->child1());
GPRTemporary temp(this);
GPRTemporary temp2(this);
GPRReg op1GPR = op1.gpr();
GPRReg tempGPR = temp.gpr();
GPRReg temp2GPR = temp2.gpr();
op1.use();
speculateString(node->child1(), op1GPR);
emitSwitchCharStringJump(data, op1GPR, tempGPR, temp2GPR);
noResult(node, UseChildrenCalledExplicitly);
break;
}
case UntypedUse: {
JSValueOperand op1(this, node->child1());
GPRTemporary temp(this);
GPRTemporary temp2(this);
JSValueRegs op1Regs = op1.jsValueRegs();
GPRReg tempGPR = temp.gpr();
GPRReg temp2GPR = temp2.gpr();
op1.use();
addBranch(m_jit.branchIfNotCell(op1Regs), data->fallThrough.block);
addBranch(m_jit.branchIfNotString(op1Regs.payloadGPR()), data->fallThrough.block);
emitSwitchCharStringJump(data, op1Regs.payloadGPR(), tempGPR, temp2GPR);
noResult(node, UseChildrenCalledExplicitly);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
namespace {
struct CharacterCase {
bool operator<(const CharacterCase& other) const
{
return character < other.character;
}
LChar character;
unsigned begin;
unsigned end;
};
} // anonymous namespace
void SpeculativeJIT::emitBinarySwitchStringRecurse(
SwitchData* data, const Vector<SpeculativeJIT::StringSwitchCase>& cases,
unsigned numChecked, unsigned begin, unsigned end, GPRReg buffer, GPRReg length,
GPRReg temp, unsigned alreadyCheckedLength, bool checkedExactLength)
{
static const bool verbose = false;
if (verbose) {
dataLog("We're down to the following cases, alreadyCheckedLength = ", alreadyCheckedLength, ":\n");
for (unsigned i = begin; i < end; ++i) {
dataLog(" ", cases[i].string, "\n");
}
}
if (begin == end) {
jump(data->fallThrough.block, ForceJump);
return;
}
unsigned minLength = cases[begin].string->length();
unsigned commonChars = minLength;
bool allLengthsEqual = true;
for (unsigned i = begin + 1; i < end; ++i) {
unsigned myCommonChars = numChecked;
for (unsigned j = numChecked;
j < std::min(cases[begin].string->length(), cases[i].string->length());
++j) {
if (cases[begin].string->at(j) != cases[i].string->at(j)) {
if (verbose)
dataLog("string(", cases[i].string, ")[", j, "] != string(", cases[begin].string, ")[", j, "]\n");
break;
}
myCommonChars++;
}
commonChars = std::min(commonChars, myCommonChars);
if (minLength != cases[i].string->length())
allLengthsEqual = false;
minLength = std::min(minLength, cases[i].string->length());
}
if (checkedExactLength) {
RELEASE_ASSERT(alreadyCheckedLength == minLength);
RELEASE_ASSERT(allLengthsEqual);
}
RELEASE_ASSERT(minLength >= commonChars);
if (verbose)
dataLog("length = ", minLength, ", commonChars = ", commonChars, ", allLengthsEqual = ", allLengthsEqual, "\n");
if (!allLengthsEqual && alreadyCheckedLength < minLength)
branch32(MacroAssembler::Below, length, Imm32(minLength), data->fallThrough.block);
if (allLengthsEqual && (alreadyCheckedLength < minLength || !checkedExactLength))
branch32(MacroAssembler::NotEqual, length, Imm32(minLength), data->fallThrough.block);
for (unsigned i = numChecked; i < commonChars; ++i) {
branch8(
MacroAssembler::NotEqual, MacroAssembler::Address(buffer, i),
TrustedImm32(cases[begin].string->at(i)), data->fallThrough.block);
}
if (minLength == commonChars) {
// This is the case where one of the cases is a prefix of all of the other cases.
// We've already checked that the input string is a prefix of all of the cases,
// so we just check length to jump to that case.
if (!ASSERT_DISABLED) {
ASSERT(cases[begin].string->length() == commonChars);
for (unsigned i = begin + 1; i < end; ++i)
ASSERT(cases[i].string->length() > commonChars);
}
if (allLengthsEqual) {
RELEASE_ASSERT(end == begin + 1);
jump(cases[begin].target, ForceJump);
return;
}
branch32(MacroAssembler::Equal, length, Imm32(commonChars), cases[begin].target);
// We've checked if the length is >= minLength, and then we checked if the
// length is == commonChars. We get to this point if it is >= minLength but not
// == commonChars. Hence we know that it now must be > minLength, i.e., that
// it's >= minLength + 1.
emitBinarySwitchStringRecurse(
data, cases, commonChars, begin + 1, end, buffer, length, temp, minLength + 1, false);
return;
}
// At this point we know that the string is longer than commonChars, and we've only
// verified commonChars. Use a binary switch on the next unchecked character, i.e.
// string[commonChars].
RELEASE_ASSERT(end >= begin + 2);
m_jit.load8(MacroAssembler::Address(buffer, commonChars), temp);
Vector<CharacterCase> characterCases;
CharacterCase currentCase;
currentCase.character = cases[begin].string->at(commonChars);
currentCase.begin = begin;
currentCase.end = begin + 1;
for (unsigned i = begin + 1; i < end; ++i) {
if (cases[i].string->at(commonChars) != currentCase.character) {
if (verbose)
dataLog("string(", cases[i].string, ")[", commonChars, "] != string(", cases[begin].string, ")[", commonChars, "]\n");
currentCase.end = i;
characterCases.append(currentCase);
currentCase.character = cases[i].string->at(commonChars);
currentCase.begin = i;
currentCase.end = i + 1;
} else
currentCase.end = i + 1;
}
characterCases.append(currentCase);
Vector<int64_t> characterCaseValues;
for (unsigned i = 0; i < characterCases.size(); ++i)
characterCaseValues.append(characterCases[i].character);
BinarySwitch binarySwitch(temp, characterCaseValues, BinarySwitch::Int32);
while (binarySwitch.advance(m_jit)) {
const CharacterCase& myCase = characterCases[binarySwitch.caseIndex()];
emitBinarySwitchStringRecurse(
data, cases, commonChars + 1, myCase.begin, myCase.end, buffer, length,
temp, minLength, allLengthsEqual);
}
addBranch(binarySwitch.fallThrough(), data->fallThrough.block);
}
void SpeculativeJIT::emitSwitchStringOnString(SwitchData* data, GPRReg string)
{
data->didUseJumpTable = true;
bool canDoBinarySwitch = true;
unsigned totalLength = 0;
for (unsigned i = data->cases.size(); i--;) {
StringImpl* string = data->cases[i].value.stringImpl();
if (!string->is8Bit()) {
canDoBinarySwitch = false;
break;
}
if (string->length() > Options::maximumBinaryStringSwitchCaseLength()) {
canDoBinarySwitch = false;
break;
}
totalLength += string->length();
}
if (!canDoBinarySwitch || totalLength > Options::maximumBinaryStringSwitchTotalLength()) {
flushRegisters();
callOperation(
operationSwitchString, string, static_cast<size_t>(data->switchTableIndex), string);
m_jit.exceptionCheck();
m_jit.jump(string, JSSwitchPtrTag);
return;
}
GPRTemporary length(this);
GPRTemporary temp(this);
GPRReg lengthGPR = length.gpr();
GPRReg tempGPR = temp.gpr();
m_jit.load32(MacroAssembler::Address(string, JSString::offsetOfLength()), lengthGPR);
m_jit.loadPtr(MacroAssembler::Address(string, JSString::offsetOfValue()), tempGPR);
MacroAssembler::JumpList slowCases;
slowCases.append(m_jit.branchTestPtr(MacroAssembler::Zero, tempGPR));
slowCases.append(m_jit.branchTest32(
MacroAssembler::Zero,
MacroAssembler::Address(tempGPR, StringImpl::flagsOffset()),
TrustedImm32(StringImpl::flagIs8Bit())));
m_jit.loadPtr(MacroAssembler::Address(tempGPR, StringImpl::dataOffset()), string);
Vector<StringSwitchCase> cases;
for (unsigned i = 0; i < data->cases.size(); ++i) {
cases.append(
StringSwitchCase(data->cases[i].value.stringImpl(), data->cases[i].target.block));
}
std::sort(cases.begin(), cases.end());
emitBinarySwitchStringRecurse(
data, cases, 0, 0, cases.size(), string, lengthGPR, tempGPR, 0, false);
slowCases.link(&m_jit);
silentSpillAllRegisters(string);
callOperation(operationSwitchString, string, static_cast<size_t>(data->switchTableIndex), string);
silentFillAllRegisters();
m_jit.exceptionCheck();
m_jit.jump(string, JSSwitchPtrTag);
}
void SpeculativeJIT::emitSwitchString(Node* node, SwitchData* data)
{
switch (node->child1().useKind()) {
case StringIdentUse: {
SpeculateCellOperand op1(this, node->child1());
GPRTemporary temp(this);
GPRReg op1GPR = op1.gpr();
GPRReg tempGPR = temp.gpr();
speculateString(node->child1(), op1GPR);
speculateStringIdentAndLoadStorage(node->child1(), op1GPR, tempGPR);
Vector<int64_t> identifierCaseValues;
for (unsigned i = 0; i < data->cases.size(); ++i) {
identifierCaseValues.append(
static_cast<int64_t>(bitwise_cast<intptr_t>(data->cases[i].value.stringImpl())));
}
BinarySwitch binarySwitch(tempGPR, identifierCaseValues, BinarySwitch::IntPtr);
while (binarySwitch.advance(m_jit))
jump(data->cases[binarySwitch.caseIndex()].target.block, ForceJump);
addBranch(binarySwitch.fallThrough(), data->fallThrough.block);
noResult(node);
break;
}
case StringUse: {
SpeculateCellOperand op1(this, node->child1());
GPRReg op1GPR = op1.gpr();
op1.use();
speculateString(node->child1(), op1GPR);
emitSwitchStringOnString(data, op1GPR);
noResult(node, UseChildrenCalledExplicitly);
break;
}
case UntypedUse: {
JSValueOperand op1(this, node->child1());
JSValueRegs op1Regs = op1.jsValueRegs();
op1.use();
addBranch(m_jit.branchIfNotCell(op1Regs), data->fallThrough.block);
addBranch(m_jit.branchIfNotString(op1Regs.payloadGPR()), data->fallThrough.block);
emitSwitchStringOnString(data, op1Regs.payloadGPR());
noResult(node, UseChildrenCalledExplicitly);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
void SpeculativeJIT::emitSwitch(Node* node)
{
SwitchData* data = node->switchData();
switch (data->kind) {
case SwitchImm: {
emitSwitchImm(node, data);
return;
}
case SwitchChar: {
emitSwitchChar(node, data);
return;
}
case SwitchString: {
emitSwitchString(node, data);
return;
}
case SwitchCell: {
DFG_CRASH(m_jit.graph(), node, "Bad switch kind");
return;
} }
RELEASE_ASSERT_NOT_REACHED();
}
void SpeculativeJIT::addBranch(const MacroAssembler::JumpList& jump, BasicBlock* destination)
{
for (unsigned i = jump.jumps().size(); i--;)
addBranch(jump.jumps()[i], destination);
}
void SpeculativeJIT::linkBranches()
{
for (auto& branch : m_branches)
branch.jump.linkTo(m_jit.blockHeads()[branch.destination->index], &m_jit);
}
void SpeculativeJIT::compileStoreBarrier(Node* node)
{
ASSERT(node->op() == StoreBarrier || node->op() == FencedStoreBarrier);
bool isFenced = node->op() == FencedStoreBarrier;
SpeculateCellOperand base(this, node->child1());
GPRTemporary scratch1(this);
GPRReg baseGPR = base.gpr();
GPRReg scratch1GPR = scratch1.gpr();
JITCompiler::JumpList ok;
if (isFenced) {
ok.append(m_jit.barrierBranch(*m_jit.vm(), baseGPR, scratch1GPR));
JITCompiler::Jump noFence = m_jit.jumpIfMutatorFenceNotNeeded(*m_jit.vm());
m_jit.memoryFence();
ok.append(m_jit.barrierBranchWithoutFence(baseGPR));
noFence.link(&m_jit);
} else
ok.append(m_jit.barrierBranchWithoutFence(baseGPR));
silentSpillAllRegisters(InvalidGPRReg);
callOperation(operationWriteBarrierSlowPath, baseGPR);
silentFillAllRegisters();
ok.link(&m_jit);
noResult(node);
}
void SpeculativeJIT::compilePutAccessorById(Node* node)
{
SpeculateCellOperand base(this, node->child1());
SpeculateCellOperand accessor(this, node->child2());
GPRReg baseGPR = base.gpr();
GPRReg accessorGPR = accessor.gpr();
flushRegisters();
callOperation(node->op() == PutGetterById ? operationPutGetterById : operationPutSetterById, NoResult, baseGPR, identifierUID(node->identifierNumber()), node->accessorAttributes(), accessorGPR);
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compilePutGetterSetterById(Node* node)
{
SpeculateCellOperand base(this, node->child1());
JSValueOperand getter(this, node->child2());
JSValueOperand setter(this, node->child3());
#if USE(JSVALUE64)
GPRReg baseGPR = base.gpr();
GPRReg getterGPR = getter.gpr();
GPRReg setterGPR = setter.gpr();
flushRegisters();
callOperation(operationPutGetterSetter, NoResult, baseGPR, identifierUID(node->identifierNumber()), node->accessorAttributes(), getterGPR, setterGPR);
#else
// These JSValues may be JSUndefined OR JSFunction*.
// At that time,
// 1. If the JSValue is JSUndefined, its payload becomes nullptr.
// 2. If the JSValue is JSFunction*, its payload becomes JSFunction*.
// So extract payload and pass it to operationPutGetterSetter. This hack is used as the same way in baseline JIT.
GPRReg baseGPR = base.gpr();
JSValueRegs getterRegs = getter.jsValueRegs();
JSValueRegs setterRegs = setter.jsValueRegs();
flushRegisters();
callOperation(operationPutGetterSetter, NoResult, baseGPR, identifierUID(node->identifierNumber()), node->accessorAttributes(), getterRegs.payloadGPR(), setterRegs.payloadGPR());
#endif
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compileResolveScope(Node* node)
{
SpeculateCellOperand scope(this, node->child1());
GPRReg scopeGPR = scope.gpr();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
flushRegisters();
callOperation(operationResolveScope, resultGPR, scopeGPR, identifierUID(node->identifierNumber()));
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileResolveScopeForHoistingFuncDeclInEval(Node* node)
{
SpeculateCellOperand scope(this, node->child1());
GPRReg scopeGPR = scope.gpr();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationResolveScopeForHoistingFuncDeclInEval, resultRegs, scopeGPR, identifierUID(node->identifierNumber()));
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileGetGlobalVariable(Node* node)
{
JSValueRegsTemporary result(this);
JSValueRegs resultRegs = result.regs();
m_jit.loadValue(node->variablePointer(), resultRegs);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compilePutGlobalVariable(Node* node)
{
JSValueOperand value(this, node->child2());
JSValueRegs valueRegs = value.jsValueRegs();
m_jit.storeValue(valueRegs, node->variablePointer());
noResult(node);
}
void SpeculativeJIT::compileGetDynamicVar(Node* node)
{
SpeculateCellOperand scope(this, node->child1());
GPRReg scopeGPR = scope.gpr();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationGetDynamicVar, resultRegs, scopeGPR, identifierUID(node->identifierNumber()), node->getPutInfo());
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compilePutDynamicVar(Node* node)
{
SpeculateCellOperand scope(this, node->child1());
JSValueOperand value(this, node->child2());
GPRReg scopeGPR = scope.gpr();
JSValueRegs valueRegs = value.jsValueRegs();
flushRegisters();
callOperation(operationPutDynamicVar, NoResult, scopeGPR, valueRegs, identifierUID(node->identifierNumber()), node->getPutInfo());
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compileGetClosureVar(Node* node)
{
SpeculateCellOperand base(this, node->child1());
JSValueRegsTemporary result(this);
GPRReg baseGPR = base.gpr();
JSValueRegs resultRegs = result.regs();
m_jit.loadValue(JITCompiler::Address(baseGPR, JSLexicalEnvironment::offsetOfVariable(node->scopeOffset())), resultRegs);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compilePutClosureVar(Node* node)
{
SpeculateCellOperand base(this, node->child1());
JSValueOperand value(this, node->child2());
GPRReg baseGPR = base.gpr();
JSValueRegs valueRegs = value.jsValueRegs();
m_jit.storeValue(valueRegs, JITCompiler::Address(baseGPR, JSLexicalEnvironment::offsetOfVariable(node->scopeOffset())));
noResult(node);
}
void SpeculativeJIT::compilePutAccessorByVal(Node* node)
{
SpeculateCellOperand base(this, node->child1());
JSValueOperand subscript(this, node->child2());
SpeculateCellOperand accessor(this, node->child3());
auto operation = node->op() == PutGetterByVal ? operationPutGetterByVal : operationPutSetterByVal;
GPRReg baseGPR = base.gpr();
JSValueRegs subscriptRegs = subscript.jsValueRegs();
GPRReg accessorGPR = accessor.gpr();
flushRegisters();
callOperation(operation, NoResult, baseGPR, subscriptRegs, node->accessorAttributes(), accessorGPR);
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compileGetRegExpObjectLastIndex(Node* node)
{
SpeculateCellOperand regExp(this, node->child1());
JSValueRegsTemporary result(this);
GPRReg regExpGPR = regExp.gpr();
JSValueRegs resultRegs = result.regs();
speculateRegExpObject(node->child1(), regExpGPR);
m_jit.loadValue(JITCompiler::Address(regExpGPR, RegExpObject::offsetOfLastIndex()), resultRegs);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileSetRegExpObjectLastIndex(Node* node)
{
SpeculateCellOperand regExp(this, node->child1());
JSValueOperand value(this, node->child2());
GPRReg regExpGPR = regExp.gpr();
JSValueRegs valueRegs = value.jsValueRegs();
if (!node->ignoreLastIndexIsWritable()) {
speculateRegExpObject(node->child1(), regExpGPR);
speculationCheck(
ExoticObjectMode, JSValueRegs(), nullptr,
m_jit.branchTest8(
JITCompiler::Zero,
JITCompiler::Address(regExpGPR, RegExpObject::offsetOfLastIndexIsWritable())));
}
m_jit.storeValue(valueRegs, JITCompiler::Address(regExpGPR, RegExpObject::offsetOfLastIndex()));
noResult(node);
}
void SpeculativeJIT::compileRegExpExec(Node* node)
{
bool sample = false;
if (sample)
m_jit.incrementSuperSamplerCount();
SpeculateCellOperand globalObject(this, node->child1());
GPRReg globalObjectGPR = globalObject.gpr();
if (node->child2().useKind() == RegExpObjectUse) {
if (node->child3().useKind() == StringUse) {
SpeculateCellOperand base(this, node->child2());
SpeculateCellOperand argument(this, node->child3());
GPRReg baseGPR = base.gpr();
GPRReg argumentGPR = argument.gpr();
speculateRegExpObject(node->child2(), baseGPR);
speculateString(node->child3(), argumentGPR);
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationRegExpExecString, resultRegs, globalObjectGPR, baseGPR, argumentGPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
if (sample)
m_jit.decrementSuperSamplerCount();
return;
}
SpeculateCellOperand base(this, node->child2());
JSValueOperand argument(this, node->child3());
GPRReg baseGPR = base.gpr();
JSValueRegs argumentRegs = argument.jsValueRegs();
speculateRegExpObject(node->child2(), baseGPR);
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationRegExpExec, resultRegs, globalObjectGPR, baseGPR, argumentRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
if (sample)
m_jit.decrementSuperSamplerCount();
return;
}
JSValueOperand base(this, node->child2());
JSValueOperand argument(this, node->child3());
JSValueRegs baseRegs = base.jsValueRegs();
JSValueRegs argumentRegs = argument.jsValueRegs();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationRegExpExecGeneric, resultRegs, globalObjectGPR, baseRegs, argumentRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
if (sample)
m_jit.decrementSuperSamplerCount();
}
void SpeculativeJIT::compileRegExpTest(Node* node)
{
SpeculateCellOperand globalObject(this, node->child1());
GPRReg globalObjectGPR = globalObject.gpr();
if (node->child2().useKind() == RegExpObjectUse) {
if (node->child3().useKind() == StringUse) {
SpeculateCellOperand base(this, node->child2());
SpeculateCellOperand argument(this, node->child3());
GPRReg baseGPR = base.gpr();
GPRReg argumentGPR = argument.gpr();
speculateRegExpObject(node->child2(), baseGPR);
speculateString(node->child3(), argumentGPR);
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationRegExpTestString, result.gpr(), globalObjectGPR, baseGPR, argumentGPR);
m_jit.exceptionCheck();
unblessedBooleanResult(result.gpr(), node);
return;
}
SpeculateCellOperand base(this, node->child2());
JSValueOperand argument(this, node->child3());
GPRReg baseGPR = base.gpr();
JSValueRegs argumentRegs = argument.jsValueRegs();
speculateRegExpObject(node->child2(), baseGPR);
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationRegExpTest, result.gpr(), globalObjectGPR, baseGPR, argumentRegs);
m_jit.exceptionCheck();
unblessedBooleanResult(result.gpr(), node);
return;
}
JSValueOperand base(this, node->child2());
JSValueOperand argument(this, node->child3());
JSValueRegs baseRegs = base.jsValueRegs();
JSValueRegs argumentRegs = argument.jsValueRegs();
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationRegExpTestGeneric, result.gpr(), globalObjectGPR, baseRegs, argumentRegs);
m_jit.exceptionCheck();
unblessedBooleanResult(result.gpr(), node);
}
void SpeculativeJIT::compileStringReplace(Node* node)
{
ASSERT(node->op() == StringReplace || node->op() == StringReplaceRegExp);
bool sample = false;
if (sample)
m_jit.incrementSuperSamplerCount();
if (node->child1().useKind() == StringUse
&& node->child2().useKind() == RegExpObjectUse
&& node->child3().useKind() == StringUse) {
if (JSString* replace = node->child3()->dynamicCastConstant<JSString*>(*m_jit.vm())) {
if (!replace->length()) {
SpeculateCellOperand string(this, node->child1());
SpeculateCellOperand regExp(this, node->child2());
GPRReg stringGPR = string.gpr();
GPRReg regExpGPR = regExp.gpr();
speculateString(node->child1(), stringGPR);
speculateRegExpObject(node->child2(), regExpGPR);
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationStringProtoFuncReplaceRegExpEmptyStr, result.gpr(), stringGPR, regExpGPR);
m_jit.exceptionCheck();
cellResult(result.gpr(), node);
if (sample)
m_jit.decrementSuperSamplerCount();
return;
}
}
SpeculateCellOperand string(this, node->child1());
SpeculateCellOperand regExp(this, node->child2());
SpeculateCellOperand replace(this, node->child3());
GPRReg stringGPR = string.gpr();
GPRReg regExpGPR = regExp.gpr();
GPRReg replaceGPR = replace.gpr();
speculateString(node->child1(), stringGPR);
speculateRegExpObject(node->child2(), regExpGPR);
speculateString(node->child3(), replaceGPR);
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationStringProtoFuncReplaceRegExpString, result.gpr(), stringGPR, regExpGPR, replaceGPR);
m_jit.exceptionCheck();
cellResult(result.gpr(), node);
if (sample)
m_jit.decrementSuperSamplerCount();
return;
}
// If we fixed up the edge of child2, we inserted a Check(@child2, String).
OperandSpeculationMode child2SpeculationMode = AutomaticOperandSpeculation;
if (node->child2().useKind() == StringUse)
child2SpeculationMode = ManualOperandSpeculation;
JSValueOperand string(this, node->child1());
JSValueOperand search(this, node->child2(), child2SpeculationMode);
JSValueOperand replace(this, node->child3());
JSValueRegs stringRegs = string.jsValueRegs();
JSValueRegs searchRegs = search.jsValueRegs();
JSValueRegs replaceRegs = replace.jsValueRegs();
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationStringProtoFuncReplaceGeneric, result.gpr(), stringRegs, searchRegs, replaceRegs);
m_jit.exceptionCheck();
cellResult(result.gpr(), node);
if (sample)
m_jit.decrementSuperSamplerCount();
}
void SpeculativeJIT::compileRegExpExecNonGlobalOrSticky(Node* node)
{
SpeculateCellOperand globalObject(this, node->child1());
SpeculateCellOperand argument(this, node->child2());
GPRReg globalObjectGPR = globalObject.gpr();
GPRReg argumentGPR = argument.gpr();
speculateString(node->child2(), argumentGPR);
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(
operationRegExpExecNonGlobalOrSticky, resultRegs,
globalObjectGPR, TrustedImmPtr(node->cellOperand()), argumentGPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileRegExpMatchFastGlobal(Node* node)
{
SpeculateCellOperand globalObject(this, node->child1());
SpeculateCellOperand argument(this, node->child2());
GPRReg globalObjectGPR = globalObject.gpr();
GPRReg argumentGPR = argument.gpr();
speculateString(node->child2(), argumentGPR);
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(
operationRegExpMatchFastGlobalString, resultRegs,
globalObjectGPR, TrustedImmPtr(node->cellOperand()), argumentGPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileRegExpMatchFast(Node* node)
{
SpeculateCellOperand globalObject(this, node->child1());
SpeculateCellOperand base(this, node->child2());
SpeculateCellOperand argument(this, node->child3());
GPRReg globalObjectGPR = globalObject.gpr();
GPRReg baseGPR = base.gpr();
GPRReg argumentGPR = argument.gpr();
speculateRegExpObject(node->child2(), baseGPR);
speculateString(node->child3(), argumentGPR);
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(
operationRegExpMatchFastString, resultRegs,
globalObjectGPR, baseGPR, argumentGPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileLazyJSConstant(Node* node)
{
JSValueRegsTemporary result(this);
JSValueRegs resultRegs = result.regs();
node->lazyJSValue().emit(m_jit, resultRegs);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileMaterializeNewObject(Node* node)
{
RegisteredStructure structure = node->structureSet().at(0);
ASSERT(m_jit.graph().varArgChild(node, 0)->dynamicCastConstant<Structure*>(*m_jit.vm()) == structure.get());
ObjectMaterializationData& data = node->objectMaterializationData();
IndexingType indexingType = structure->indexingType();
bool hasIndexingHeader = hasIndexedProperties(indexingType);
int32_t publicLength = 0;
int32_t vectorLength = 0;
if (hasIndexingHeader) {
for (unsigned i = data.m_properties.size(); i--;) {
Edge edge = m_jit.graph().varArgChild(node, 1 + i);
switch (data.m_properties[i].kind()) {
case PublicLengthPLoc:
publicLength = edge->asInt32();
break;
case VectorLengthPLoc:
vectorLength = edge->asInt32();
break;
default:
break;
}
}
}
GPRTemporary result(this);
GPRTemporary storage(this);
GPRReg resultGPR = result.gpr();
GPRReg storageGPR = storage.gpr();
emitAllocateRawObject(resultGPR, structure, storageGPR, 0, vectorLength);
m_jit.store32(
JITCompiler::TrustedImm32(publicLength),
JITCompiler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
for (unsigned i = data.m_properties.size(); i--;) {
Edge edge = m_jit.graph().varArgChild(node, 1 + i);
PromotedLocationDescriptor descriptor = data.m_properties[i];
switch (descriptor.kind()) {
case IndexedPropertyPLoc: {
JSValueOperand value(this, edge);
m_jit.storeValue(
value.jsValueRegs(),
JITCompiler::Address(storageGPR, sizeof(EncodedJSValue) * descriptor.info()));
break;
}
case NamedPropertyPLoc: {
StringImpl* uid = m_jit.graph().identifiers()[descriptor.info()];
for (PropertyMapEntry entry : structure->getPropertiesConcurrently()) {
if (uid != entry.key)
continue;
JSValueOperand value(this, edge);
GPRReg baseGPR = isInlineOffset(entry.offset) ? resultGPR : storageGPR;
m_jit.storeValue(
value.jsValueRegs(),
JITCompiler::Address(baseGPR, offsetRelativeToBase(entry.offset)));
}
break;
}
default:
break;
}
}
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileRecordRegExpCachedResult(Node* node)
{
Edge constructorEdge = m_jit.graph().varArgChild(node, 0);
Edge regExpEdge = m_jit.graph().varArgChild(node, 1);
Edge stringEdge = m_jit.graph().varArgChild(node, 2);
Edge startEdge = m_jit.graph().varArgChild(node, 3);
Edge endEdge = m_jit.graph().varArgChild(node, 4);
SpeculateCellOperand constructor(this, constructorEdge);
SpeculateCellOperand regExp(this, regExpEdge);
SpeculateCellOperand string(this, stringEdge);
SpeculateInt32Operand start(this, startEdge);
SpeculateInt32Operand end(this, endEdge);
GPRReg constructorGPR = constructor.gpr();
GPRReg regExpGPR = regExp.gpr();
GPRReg stringGPR = string.gpr();
GPRReg startGPR = start.gpr();
GPRReg endGPR = end.gpr();
ptrdiff_t offset = RegExpConstructor::offsetOfCachedResult();
m_jit.storePtr(
regExpGPR,
JITCompiler::Address(constructorGPR, offset + RegExpCachedResult::offsetOfLastRegExp()));
m_jit.storePtr(
stringGPR,
JITCompiler::Address(constructorGPR, offset + RegExpCachedResult::offsetOfLastInput()));
m_jit.store32(
startGPR,
JITCompiler::Address(
constructorGPR,
offset + RegExpCachedResult::offsetOfResult() + OBJECT_OFFSETOF(MatchResult, start)));
m_jit.store32(
endGPR,
JITCompiler::Address(
constructorGPR,
offset + RegExpCachedResult::offsetOfResult() + OBJECT_OFFSETOF(MatchResult, end)));
m_jit.store8(
TrustedImm32(0),
JITCompiler::Address(constructorGPR, offset + RegExpCachedResult::offsetOfReified()));
noResult(node);
}
void SpeculativeJIT::compileDefineDataProperty(Node* node)
{
#if USE(JSVALUE64)
static_assert(GPRInfo::numberOfRegisters >= 5, "We are assuming we have enough registers to make this call without incrementally setting up the arguments.");
#else
static_assert(GPRInfo::numberOfRegisters >= 6, "We are assuming we have enough registers to make this call without incrementally setting up the arguments.");
#endif
SpeculateCellOperand base(this, m_jit.graph().varArgChild(node, 0));
GPRReg baseGPR = base.gpr();
JSValueOperand value(this, m_jit.graph().varArgChild(node, 2));
JSValueRegs valueRegs = value.jsValueRegs();
SpeculateInt32Operand attributes(this, m_jit.graph().varArgChild(node, 3));
GPRReg attributesGPR = attributes.gpr();
Edge& propertyEdge = m_jit.graph().varArgChild(node, 1);
switch (propertyEdge.useKind()) {
case StringUse: {
SpeculateCellOperand property(this, propertyEdge);
GPRReg propertyGPR = property.gpr();
speculateString(propertyEdge, propertyGPR);
useChildren(node);
flushRegisters();
callOperation(operationDefineDataPropertyString, NoResult, baseGPR, propertyGPR, valueRegs, attributesGPR);
m_jit.exceptionCheck();
break;
}
case StringIdentUse: {
SpeculateCellOperand property(this, propertyEdge);
GPRTemporary ident(this);
GPRReg propertyGPR = property.gpr();
GPRReg identGPR = ident.gpr();
speculateString(propertyEdge, propertyGPR);
speculateStringIdentAndLoadStorage(propertyEdge, propertyGPR, identGPR);
useChildren(node);
flushRegisters();
callOperation(operationDefineDataPropertyStringIdent, NoResult, baseGPR, identGPR, valueRegs, attributesGPR);
m_jit.exceptionCheck();
break;
}
case SymbolUse: {
SpeculateCellOperand property(this, propertyEdge);
GPRReg propertyGPR = property.gpr();
speculateSymbol(propertyEdge, propertyGPR);
useChildren(node);
flushRegisters();
callOperation(operationDefineDataPropertySymbol, NoResult, baseGPR, propertyGPR, valueRegs, attributesGPR);
m_jit.exceptionCheck();
break;
}
case UntypedUse: {
JSValueOperand property(this, propertyEdge);
JSValueRegs propertyRegs = property.jsValueRegs();
useChildren(node);
flushRegisters();
callOperation(operationDefineDataProperty, NoResult, baseGPR, propertyRegs, valueRegs, attributesGPR);
m_jit.exceptionCheck();
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
noResult(node, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::compileDefineAccessorProperty(Node* node)
{
#if USE(JSVALUE64)
static_assert(GPRInfo::numberOfRegisters >= 5, "We are assuming we have enough registers to make this call without incrementally setting up the arguments.");
#else
static_assert(GPRInfo::numberOfRegisters >= 6, "We are assuming we have enough registers to make this call without incrementally setting up the arguments.");
#endif
SpeculateCellOperand base(this, m_jit.graph().varArgChild(node, 0));
GPRReg baseGPR = base.gpr();
SpeculateCellOperand getter(this, m_jit.graph().varArgChild(node, 2));
GPRReg getterGPR = getter.gpr();
SpeculateCellOperand setter(this, m_jit.graph().varArgChild(node, 3));
GPRReg setterGPR = setter.gpr();
SpeculateInt32Operand attributes(this, m_jit.graph().varArgChild(node, 4));
GPRReg attributesGPR = attributes.gpr();
Edge& propertyEdge = m_jit.graph().varArgChild(node, 1);
switch (propertyEdge.useKind()) {
case StringUse: {
SpeculateCellOperand property(this, propertyEdge);
GPRReg propertyGPR = property.gpr();
speculateString(propertyEdge, propertyGPR);
useChildren(node);
flushRegisters();
callOperation(operationDefineAccessorPropertyString, NoResult, baseGPR, propertyGPR, getterGPR, setterGPR, attributesGPR);
m_jit.exceptionCheck();
break;
}
case StringIdentUse: {
SpeculateCellOperand property(this, propertyEdge);
GPRTemporary ident(this);
GPRReg propertyGPR = property.gpr();
GPRReg identGPR = ident.gpr();
speculateString(propertyEdge, propertyGPR);
speculateStringIdentAndLoadStorage(propertyEdge, propertyGPR, identGPR);
useChildren(node);
flushRegisters();
callOperation(operationDefineAccessorPropertyStringIdent, NoResult, baseGPR, identGPR, getterGPR, setterGPR, attributesGPR);
m_jit.exceptionCheck();
break;
}
case SymbolUse: {
SpeculateCellOperand property(this, propertyEdge);
GPRReg propertyGPR = property.gpr();
speculateSymbol(propertyEdge, propertyGPR);
useChildren(node);
flushRegisters();
callOperation(operationDefineAccessorPropertySymbol, NoResult, baseGPR, propertyGPR, getterGPR, setterGPR, attributesGPR);
m_jit.exceptionCheck();
break;
}
case UntypedUse: {
JSValueOperand property(this, propertyEdge);
JSValueRegs propertyRegs = property.jsValueRegs();
useChildren(node);
flushRegisters();
callOperation(operationDefineAccessorProperty, NoResult, baseGPR, propertyRegs, getterGPR, setterGPR, attributesGPR);
m_jit.exceptionCheck();
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
noResult(node, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::emitAllocateButterfly(GPRReg storageResultGPR, GPRReg sizeGPR, GPRReg scratch1, GPRReg scratch2, GPRReg scratch3, MacroAssembler::JumpList& slowCases)
{
RELEASE_ASSERT(RegisterSet(storageResultGPR, sizeGPR, scratch1, scratch2, scratch3).numberOfSetGPRs() == 5);
ASSERT((1 << 3) == sizeof(JSValue));
m_jit.zeroExtend32ToPtr(sizeGPR, scratch1);
m_jit.lshift32(TrustedImm32(3), scratch1);
m_jit.add32(TrustedImm32(sizeof(IndexingHeader)), scratch1, scratch2);
m_jit.emitAllocateVariableSized(
storageResultGPR, m_jit.vm()->jsValueGigacageAuxiliarySpace, scratch2, scratch1, scratch3, slowCases);
m_jit.addPtr(TrustedImm32(sizeof(IndexingHeader)), storageResultGPR);
m_jit.store32(sizeGPR, MacroAssembler::Address(storageResultGPR, Butterfly::offsetOfPublicLength()));
m_jit.store32(sizeGPR, MacroAssembler::Address(storageResultGPR, Butterfly::offsetOfVectorLength()));
}
void SpeculativeJIT::compileNormalizeMapKey(Node* node)
{
ASSERT(node->child1().useKind() == UntypedUse);
JSValueOperand key(this, node->child1());
JSValueRegsTemporary result(this, Reuse, key);
GPRTemporary scratch(this);
FPRTemporary doubleValue(this);
FPRTemporary temp(this);
JSValueRegs keyRegs = key.jsValueRegs();
JSValueRegs resultRegs = result.regs();
GPRReg scratchGPR = scratch.gpr();
FPRReg doubleValueFPR = doubleValue.fpr();
FPRReg tempFPR = temp.fpr();
CCallHelpers::JumpList passThroughCases;
passThroughCases.append(m_jit.branchIfNotNumber(keyRegs, scratchGPR));
passThroughCases.append(m_jit.branchIfInt32(keyRegs));
#if USE(JSVALUE64)
m_jit.unboxDoubleWithoutAssertions(keyRegs.gpr(), scratchGPR, doubleValueFPR);
#else
unboxDouble(keyRegs.tagGPR(), keyRegs.payloadGPR(), doubleValueFPR, tempFPR);
#endif
passThroughCases.append(m_jit.branchIfNaN(doubleValueFPR));
m_jit.truncateDoubleToInt32(doubleValueFPR, scratchGPR);
m_jit.convertInt32ToDouble(scratchGPR, tempFPR);
passThroughCases.append(m_jit.branchDouble(JITCompiler::DoubleNotEqual, doubleValueFPR, tempFPR));
m_jit.boxInt32(scratchGPR, resultRegs);
auto done = m_jit.jump();
passThroughCases.link(&m_jit);
m_jit.moveValueRegs(keyRegs, resultRegs);
done.link(&m_jit);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileGetMapBucketHead(Node* node)
{
SpeculateCellOperand map(this, node->child1());
GPRTemporary bucket(this);
GPRReg mapGPR = map.gpr();
GPRReg bucketGPR = bucket.gpr();
if (node->child1().useKind() == MapObjectUse)
speculateMapObject(node->child1(), mapGPR);
else if (node->child1().useKind() == SetObjectUse)
speculateSetObject(node->child1(), mapGPR);
else
RELEASE_ASSERT_NOT_REACHED();
ASSERT(HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::offsetOfHead() == HashMapImpl<HashMapBucket<HashMapBucketDataKeyValue>>::offsetOfHead());
m_jit.loadPtr(MacroAssembler::Address(mapGPR, HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::offsetOfHead()), bucketGPR);
cellResult(bucketGPR, node);
}
void SpeculativeJIT::compileGetMapBucketNext(Node* node)
{
SpeculateCellOperand bucket(this, node->child1());
GPRTemporary result(this);
GPRReg bucketGPR = bucket.gpr();
GPRReg resultGPR = result.gpr();
ASSERT(HashMapBucket<HashMapBucketDataKey>::offsetOfNext() == HashMapBucket<HashMapBucketDataKeyValue>::offsetOfNext());
ASSERT(HashMapBucket<HashMapBucketDataKey>::offsetOfKey() == HashMapBucket<HashMapBucketDataKeyValue>::offsetOfKey());
m_jit.loadPtr(MacroAssembler::Address(bucketGPR, HashMapBucket<HashMapBucketDataKeyValue>::offsetOfNext()), resultGPR);
MacroAssembler::Label loop = m_jit.label();
auto notBucket = m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR);
#if USE(JSVALUE32_64)
auto done = m_jit.branch32(MacroAssembler::NotEqual, MacroAssembler::Address(resultGPR, HashMapBucket<HashMapBucketDataKeyValue>::offsetOfKey() + TagOffset), TrustedImm32(JSValue::EmptyValueTag));
#else
auto done = m_jit.branchTest64(MacroAssembler::NonZero, MacroAssembler::Address(resultGPR, HashMapBucket<HashMapBucketDataKeyValue>::offsetOfKey()));
#endif
m_jit.loadPtr(MacroAssembler::Address(resultGPR, HashMapBucket<HashMapBucketDataKeyValue>::offsetOfNext()), resultGPR);
m_jit.jump().linkTo(loop, &m_jit);
notBucket.link(&m_jit);
JSCell* sentinel = nullptr;
if (node->bucketOwnerType() == BucketOwnerType::Map)
sentinel = m_jit.vm()->sentinelMapBucket.get();
else {
ASSERT(node->bucketOwnerType() == BucketOwnerType::Set);
sentinel = m_jit.vm()->sentinelSetBucket.get();
}
m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), sentinel), resultGPR);
done.link(&m_jit);
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileLoadKeyFromMapBucket(Node* node)
{
SpeculateCellOperand bucket(this, node->child1());
JSValueRegsTemporary result(this);
GPRReg bucketGPR = bucket.gpr();
JSValueRegs resultRegs = result.regs();
m_jit.loadValue(MacroAssembler::Address(bucketGPR, HashMapBucket<HashMapBucketDataKeyValue>::offsetOfKey()), resultRegs);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileLoadValueFromMapBucket(Node* node)
{
SpeculateCellOperand bucket(this, node->child1());
JSValueRegsTemporary result(this);
GPRReg bucketGPR = bucket.gpr();
JSValueRegs resultRegs = result.regs();
m_jit.loadValue(MacroAssembler::Address(bucketGPR, HashMapBucket<HashMapBucketDataKeyValue>::offsetOfValue()), resultRegs);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileExtractValueFromWeakMapGet(Node* node)
{
JSValueOperand value(this, node->child1());
JSValueRegsTemporary result(this, Reuse, value);
JSValueRegs valueRegs = value.jsValueRegs();
JSValueRegs resultRegs = result.regs();
#if USE(JSVALUE64)
m_jit.moveValueRegs(valueRegs, resultRegs);
auto done = m_jit.branchTestPtr(CCallHelpers::NonZero, resultRegs.payloadGPR());
m_jit.moveValue(jsUndefined(), resultRegs);
done.link(&m_jit);
#else
auto isEmpty = m_jit.branchIfEmpty(valueRegs.tagGPR());
m_jit.moveValueRegs(valueRegs, resultRegs);
auto done = m_jit.jump();
isEmpty.link(&m_jit);
m_jit.moveValue(jsUndefined(), resultRegs);
done.link(&m_jit);
#endif
jsValueResult(resultRegs, node, DataFormatJS);
}
void SpeculativeJIT::compileThrow(Node* node)
{
JSValueOperand value(this, node->child1());
JSValueRegs valueRegs = value.jsValueRegs();
flushRegisters();
callOperation(operationThrowDFG, valueRegs);
m_jit.exceptionCheck();
m_jit.breakpoint();
noResult(node);
}
void SpeculativeJIT::compileThrowStaticError(Node* node)
{
SpeculateCellOperand message(this, node->child1());
GPRReg messageGPR = message.gpr();
speculateString(node->child1(), messageGPR);
flushRegisters();
callOperation(operationThrowStaticError, messageGPR, node->errorType());
m_jit.exceptionCheck();
m_jit.breakpoint();
noResult(node);
}
void SpeculativeJIT::compileGetEnumerableLength(Node* node)
{
SpeculateCellOperand enumerator(this, node->child1());
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
m_jit.load32(MacroAssembler::Address(enumerator.gpr(), JSPropertyNameEnumerator::indexedLengthOffset()), resultGPR);
int32Result(resultGPR, node);
}
void SpeculativeJIT::compileHasGenericProperty(Node* node)
{
JSValueOperand base(this, node->child1());
SpeculateCellOperand property(this, node->child2());
JSValueRegs baseRegs = base.jsValueRegs();
GPRReg propertyGPR = property.gpr();
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationHasGenericProperty, resultRegs, baseRegs, propertyGPR);
m_jit.exceptionCheck();
blessedBooleanResult(resultRegs.payloadGPR(), node);
}
void SpeculativeJIT::compileToIndexString(Node* node)
{
SpeculateInt32Operand index(this, node->child1());
GPRReg indexGPR = index.gpr();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationToIndexString, resultGPR, indexGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compilePutByIdFlush(Node* node)
{
SpeculateCellOperand base(this, node->child1());
JSValueOperand value(this, node->child2());
GPRTemporary scratch(this);
GPRReg baseGPR = base.gpr();
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg scratchGPR = scratch.gpr();
flushRegisters();
cachedPutById(node->origin.semantic, baseGPR, valueRegs, scratchGPR, node->identifierNumber(), NotDirect, MacroAssembler::Jump(), DontSpill);
noResult(node);
}
void SpeculativeJIT::compilePutById(Node* node)
{
SpeculateCellOperand base(this, node->child1());
JSValueOperand value(this, node->child2());
GPRTemporary scratch(this);
GPRReg baseGPR = base.gpr();
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg scratchGPR = scratch.gpr();
cachedPutById(node->origin.semantic, baseGPR, valueRegs, scratchGPR, node->identifierNumber(), NotDirect);
noResult(node);
}
void SpeculativeJIT::compilePutByIdDirect(Node* node)
{
SpeculateCellOperand base(this, node->child1());
JSValueOperand value(this, node->child2());
GPRTemporary scratch(this);
GPRReg baseGPR = base.gpr();
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg scratchGPR = scratch.gpr();
cachedPutById(node->origin.semantic, baseGPR, valueRegs, scratchGPR, node->identifierNumber(), Direct);
noResult(node);
}
void SpeculativeJIT::compilePutByIdWithThis(Node* node)
{
JSValueOperand base(this, node->child1());
JSValueRegs baseRegs = base.jsValueRegs();
JSValueOperand thisValue(this, node->child2());
JSValueRegs thisRegs = thisValue.jsValueRegs();
JSValueOperand value(this, node->child3());
JSValueRegs valueRegs = value.jsValueRegs();
flushRegisters();
callOperation(m_jit.isStrictModeFor(node->origin.semantic) ? operationPutByIdWithThisStrict : operationPutByIdWithThis,
NoResult, baseRegs, thisRegs, valueRegs, identifierUID(node->identifierNumber()));
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compileGetByOffset(Node* node)
{
StorageOperand storage(this, node->child1());
JSValueRegsTemporary result(this, Reuse, storage);
GPRReg storageGPR = storage.gpr();
JSValueRegs resultRegs = result.regs();
StorageAccessData& storageAccessData = node->storageAccessData();
m_jit.loadValue(JITCompiler::Address(storageGPR, offsetRelativeToBase(storageAccessData.offset)), resultRegs);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compilePutByOffset(Node* node)
{
StorageOperand storage(this, node->child1());
JSValueOperand value(this, node->child3());
GPRReg storageGPR = storage.gpr();
JSValueRegs valueRegs = value.jsValueRegs();
speculate(node, node->child2());
StorageAccessData& storageAccessData = node->storageAccessData();
m_jit.storeValue(valueRegs, JITCompiler::Address(storageGPR, offsetRelativeToBase(storageAccessData.offset)));
noResult(node);
}
void SpeculativeJIT::compileMatchStructure(Node* node)
{
SpeculateCellOperand base(this, node->child1());
GPRTemporary temp(this);
GPRReg baseGPR = base.gpr();
GPRReg tempGPR = temp.gpr();
m_jit.load32(JITCompiler::Address(baseGPR, JSCell::structureIDOffset()), tempGPR);
auto& variants = node->matchStructureData().variants;
Vector<int64_t> cases;
for (MatchStructureVariant& variant : variants)
cases.append(bitwise_cast<int32_t>(variant.structure->id()));
BinarySwitch binarySwitch(tempGPR, cases, BinarySwitch::Int32);
JITCompiler::JumpList done;
while (binarySwitch.advance(m_jit)) {
m_jit.boxBooleanPayload(variants[binarySwitch.caseIndex()].result, tempGPR);
done.append(m_jit.jump());
}
speculationCheck(BadCache, JSValueRegs(), node, binarySwitch.fallThrough());
done.link(&m_jit);
blessedBooleanResult(tempGPR, node);
}
void SpeculativeJIT::compileHasStructureProperty(Node* node)
{
JSValueOperand base(this, node->child1());
SpeculateCellOperand property(this, node->child2());
SpeculateCellOperand enumerator(this, node->child3());
JSValueRegsTemporary result(this);
JSValueRegs baseRegs = base.jsValueRegs();
GPRReg propertyGPR = property.gpr();
JSValueRegs resultRegs = result.regs();
CCallHelpers::JumpList wrongStructure;
wrongStructure.append(m_jit.branchIfNotCell(baseRegs));
m_jit.load32(MacroAssembler::Address(baseRegs.payloadGPR(), JSCell::structureIDOffset()), resultRegs.payloadGPR());
wrongStructure.append(m_jit.branch32(MacroAssembler::NotEqual,
resultRegs.payloadGPR(),
MacroAssembler::Address(enumerator.gpr(), JSPropertyNameEnumerator::cachedStructureIDOffset())));
moveTrueTo(resultRegs.payloadGPR());
MacroAssembler::Jump done = m_jit.jump();
done.link(&m_jit);
addSlowPathGenerator(slowPathCall(wrongStructure, this, operationHasGenericProperty, resultRegs, baseRegs, propertyGPR));
blessedBooleanResult(resultRegs.payloadGPR(), node);
}
void SpeculativeJIT::compileGetPropertyEnumerator(Node* node)
{
if (node->child1().useKind() == CellUse) {
SpeculateCellOperand base(this, node->child1());
GPRReg baseGPR = base.gpr();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationGetPropertyEnumeratorCell, resultGPR, baseGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
return;
}
JSValueOperand base(this, node->child1());
JSValueRegs baseRegs = base.jsValueRegs();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationGetPropertyEnumerator, resultGPR, baseRegs);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileGetEnumeratorPname(Node* node)
{
ASSERT(node->op() == GetEnumeratorStructurePname || node->op() == GetEnumeratorGenericPname);
SpeculateCellOperand enumerator(this, node->child1());
SpeculateStrictInt32Operand index(this, node->child2());
GPRTemporary scratch(this);
JSValueRegsTemporary result(this);
GPRReg enumeratorGPR = enumerator.gpr();
GPRReg indexGPR = index.gpr();
GPRReg scratchGPR = scratch.gpr();
JSValueRegs resultRegs = result.regs();
MacroAssembler::Jump inBounds = m_jit.branch32(MacroAssembler::Below, indexGPR,
MacroAssembler::Address(enumeratorGPR, (node->op() == GetEnumeratorStructurePname)
? JSPropertyNameEnumerator::endStructurePropertyIndexOffset()
: JSPropertyNameEnumerator::endGenericPropertyIndexOffset()));
m_jit.moveValue(jsNull(), resultRegs);
MacroAssembler::Jump done = m_jit.jump();
inBounds.link(&m_jit);
m_jit.loadPtr(MacroAssembler::Address(enumeratorGPR, JSPropertyNameEnumerator::cachedPropertyNamesVectorOffset()), scratchGPR);
m_jit.loadPtr(MacroAssembler::BaseIndex(scratchGPR, indexGPR, MacroAssembler::ScalePtr), resultRegs.payloadGPR());
#if USE(JSVALUE32_64)
m_jit.move(MacroAssembler::TrustedImm32(JSValue::CellTag), resultRegs.tagGPR());
#endif
done.link(&m_jit);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileGetExecutable(Node* node)
{
SpeculateCellOperand function(this, node->child1());
GPRTemporary result(this, Reuse, function);
GPRReg functionGPR = function.gpr();
GPRReg resultGPR = result.gpr();
speculateCellType(node->child1(), functionGPR, SpecFunction, JSFunctionType);
m_jit.loadPtr(JITCompiler::Address(functionGPR, JSFunction::offsetOfExecutable()), resultGPR);
#if USE(JSVALUE64)
m_jit.xorPtr(JITCompiler::TrustedImmPtr(JSFunctionPoison::key()), resultGPR);
#endif
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileGetGetter(Node* node)
{
SpeculateCellOperand op1(this, node->child1());
GPRTemporary result(this, Reuse, op1);
GPRReg op1GPR = op1.gpr();
GPRReg resultGPR = result.gpr();
m_jit.loadPtr(JITCompiler::Address(op1GPR, GetterSetter::offsetOfGetter()), resultGPR);
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileGetSetter(Node* node)
{
SpeculateCellOperand op1(this, node->child1());
GPRTemporary result(this, Reuse, op1);
GPRReg op1GPR = op1.gpr();
GPRReg resultGPR = result.gpr();
m_jit.loadPtr(JITCompiler::Address(op1GPR, GetterSetter::offsetOfSetter()), resultGPR);
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileGetCallee(Node* node)
{
GPRTemporary result(this);
m_jit.loadPtr(JITCompiler::payloadFor(CallFrameSlot::callee), result.gpr());
cellResult(result.gpr(), node);
}
void SpeculativeJIT::compileSetCallee(Node* node)
{
SpeculateCellOperand callee(this, node->child1());
m_jit.storeCell(callee.gpr(), JITCompiler::payloadFor(CallFrameSlot::callee));
noResult(node);
}
void SpeculativeJIT::compileGetArgumentCountIncludingThis(Node* node)
{
GPRTemporary result(this);
VirtualRegister argumentCountRegister;
if (InlineCallFrame* inlineCallFrame = node->argumentsInlineCallFrame())
argumentCountRegister = inlineCallFrame->argumentCountRegister;
else
argumentCountRegister = VirtualRegister(CallFrameSlot::argumentCount);
m_jit.load32(JITCompiler::payloadFor(argumentCountRegister), result.gpr());
int32Result(result.gpr(), node);
}
void SpeculativeJIT::compileSetArgumentCountIncludingThis(Node* node)
{
m_jit.store32(TrustedImm32(node->argumentCountIncludingThis()), JITCompiler::payloadFor(CallFrameSlot::argumentCount));
noResult(node);
}
void SpeculativeJIT::compileStrCat(Node* node)
{
JSValueOperand op1(this, node->child1(), ManualOperandSpeculation);
JSValueOperand op2(this, node->child2(), ManualOperandSpeculation);
JSValueOperand op3(this, node->child3(), ManualOperandSpeculation);
JSValueRegs op1Regs = op1.jsValueRegs();
JSValueRegs op2Regs = op2.jsValueRegs();
JSValueRegs op3Regs;
if (node->child3())
op3Regs = op3.jsValueRegs();
flushRegisters();
GPRFlushedCallResult result(this);
if (node->child3())
callOperation(operationStrCat3, result.gpr(), op1Regs, op2Regs, op3Regs);
else
callOperation(operationStrCat2, result.gpr(), op1Regs, op2Regs);
m_jit.exceptionCheck();
cellResult(result.gpr(), node);
}
void SpeculativeJIT::compileNewArrayBuffer(Node* node)
{
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
auto* array = node->castOperand<JSImmutableButterfly*>();
IndexingType indexingMode = node->indexingMode();
RegisteredStructure structure = m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(indexingMode));
if (!globalObject->isHavingABadTime() && !hasAnyArrayStorage(indexingMode)) {
GPRTemporary result(this);
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRReg resultGPR = result.gpr();
GPRReg scratch1GPR = scratch1.gpr();
GPRReg scratch2GPR = scratch2.gpr();
MacroAssembler::JumpList slowCases;
emitAllocateJSObject<JSArray>(resultGPR, TrustedImmPtr(structure), TrustedImmPtr(array->toButterfly()), scratch1GPR, scratch2GPR, slowCases);
addSlowPathGenerator(slowPathCall(slowCases, this, operationNewArrayBuffer, result.gpr(), structure, array));
DFG_ASSERT(m_jit.graph(), node, indexingMode & IsArray, indexingMode);
cellResult(resultGPR, node);
return;
}
flushRegisters();
GPRFlushedCallResult result(this);
callOperation(operationNewArrayBuffer, result.gpr(), m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(node->indexingType())), TrustedImmPtr(node->cellOperand()));
m_jit.exceptionCheck();
cellResult(result.gpr(), node);
}
void SpeculativeJIT::compileNewArrayWithSize(Node* node)
{
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
if (!globalObject->isHavingABadTime() && !hasAnyArrayStorage(node->indexingType())) {
SpeculateStrictInt32Operand size(this, node->child1());
GPRTemporary result(this);
GPRReg sizeGPR = size.gpr();
GPRReg resultGPR = result.gpr();
compileAllocateNewArrayWithSize(globalObject, resultGPR, sizeGPR, node->indexingType());
cellResult(resultGPR, node);
return;
}
SpeculateStrictInt32Operand size(this, node->child1());
GPRReg sizeGPR = size.gpr();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
GPRReg structureGPR = AssemblyHelpers::selectScratchGPR(sizeGPR);
MacroAssembler::Jump bigLength = m_jit.branch32(MacroAssembler::AboveOrEqual, sizeGPR, TrustedImm32(MIN_ARRAY_STORAGE_CONSTRUCTION_LENGTH));
m_jit.move(TrustedImmPtr(m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(node->indexingType()))), structureGPR);
MacroAssembler::Jump done = m_jit.jump();
bigLength.link(&m_jit);
m_jit.move(TrustedImmPtr(m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithArrayStorage))), structureGPR);
done.link(&m_jit);
callOperation(operationNewArrayWithSize, resultGPR, structureGPR, sizeGPR, nullptr);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileNewTypedArray(Node* node)
{
switch (node->child1().useKind()) {
case Int32Use:
compileNewTypedArrayWithSize(node);
break;
case UntypedUse: {
JSValueOperand argument(this, node->child1());
JSValueRegs argumentRegs = argument.jsValueRegs();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
callOperation(
operationNewTypedArrayWithOneArgumentForType(node->typedArrayType()),
resultGPR, m_jit.graph().registerStructure(globalObject->typedArrayStructureConcurrently(node->typedArrayType())), argumentRegs);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
void SpeculativeJIT::compileToThis(Node* node)
{
ASSERT(node->child1().useKind() == UntypedUse);
JSValueOperand thisValue(this, node->child1());
JSValueRegsTemporary temp(this);
JSValueRegs thisValueRegs = thisValue.jsValueRegs();
JSValueRegs tempRegs = temp.regs();
MacroAssembler::JumpList slowCases;
slowCases.append(m_jit.branchIfNotCell(thisValueRegs));
slowCases.append(
m_jit.branchTest8(
MacroAssembler::NonZero,
MacroAssembler::Address(thisValueRegs.payloadGPR(), JSCell::typeInfoFlagsOffset()),
MacroAssembler::TrustedImm32(OverridesToThis)));
m_jit.moveValueRegs(thisValueRegs, tempRegs);
J_JITOperation_EJ function;
if (m_jit.graph().executableFor(node->origin.semantic)->isStrictMode())
function = operationToThisStrict;
else
function = operationToThis;
addSlowPathGenerator(slowPathCall(slowCases, this, function, tempRegs, thisValueRegs));
jsValueResult(tempRegs, node);
}
void SpeculativeJIT::compileObjectCreate(Node* node)
{
switch (node->child1().useKind()) {
case ObjectUse: {
SpeculateCellOperand prototype(this, node->child1());
GPRReg prototypeGPR = prototype.gpr();
speculateObject(node->child1(), prototypeGPR);
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationObjectCreateObject, resultGPR, prototypeGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
break;
}
case UntypedUse: {
JSValueOperand prototype(this, node->child1());
JSValueRegs prototypeRegs = prototype.jsValueRegs();
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationObjectCreate, resultGPR, prototypeRegs);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
void SpeculativeJIT::compileCreateThis(Node* node)
{
// Note that there is not so much profit to speculate here. The only things we
// speculate on are (1) that it's a cell, since that eliminates cell checks
// later if the proto is reused, and (2) if we have a FinalObject prediction
// then we speculate because we want to get recompiled if it isn't (since
// otherwise we'd start taking slow path a lot).
SpeculateCellOperand callee(this, node->child1());
GPRTemporary result(this);
GPRTemporary allocator(this);
GPRTemporary structure(this);
GPRTemporary scratch(this);
GPRReg calleeGPR = callee.gpr();
GPRReg resultGPR = result.gpr();
GPRReg allocatorGPR = allocator.gpr();
GPRReg structureGPR = structure.gpr();
GPRReg scratchGPR = scratch.gpr();
// Rare data is only used to access the allocator & structure
// We can avoid using an additional GPR this way
GPRReg rareDataGPR = structureGPR;
GPRReg inlineCapacityGPR = rareDataGPR;
MacroAssembler::JumpList slowPath;
slowPath.append(m_jit.branchIfNotFunction(calleeGPR));
m_jit.loadPtr(JITCompiler::Address(calleeGPR, JSFunction::offsetOfRareData()), rareDataGPR);
slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, rareDataGPR));
m_jit.xorPtr(JITCompiler::TrustedImmPtr(JSFunctionPoison::key()), rareDataGPR);
m_jit.loadPtr(JITCompiler::Address(rareDataGPR, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfAllocator()), allocatorGPR);
m_jit.loadPtr(JITCompiler::Address(rareDataGPR, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfStructure()), structureGPR);
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObject(resultGPR, JITAllocator::variable(), allocatorGPR, structureGPR, butterfly, scratchGPR, slowPath);
m_jit.loadPtr(JITCompiler::Address(calleeGPR, JSFunction::offsetOfRareData()), rareDataGPR);
m_jit.xorPtr(JITCompiler::TrustedImmPtr(JSFunctionPoison::key()), rareDataGPR);
m_jit.load32(JITCompiler::Address(rareDataGPR, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfInlineCapacity()), inlineCapacityGPR);
m_jit.emitInitializeInlineStorage(resultGPR, inlineCapacityGPR);
m_jit.mutatorFence(*m_jit.vm());
addSlowPathGenerator(slowPathCall(slowPath, this, operationCreateThis, resultGPR, calleeGPR, node->inlineCapacity()));
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileNewObject(Node* node)
{
GPRTemporary result(this);
GPRTemporary allocator(this);
GPRTemporary scratch(this);
GPRReg resultGPR = result.gpr();
GPRReg allocatorGPR = allocator.gpr();
GPRReg scratchGPR = scratch.gpr();
MacroAssembler::JumpList slowPath;
RegisteredStructure structure = node->structure();
size_t allocationSize = JSFinalObject::allocationSize(structure->inlineCapacity());
Allocator allocatorValue = subspaceFor<JSFinalObject>(*m_jit.vm())->allocatorForNonVirtual(allocationSize, AllocatorForMode::AllocatorIfExists);
if (!allocatorValue)
slowPath.append(m_jit.jump());
else {
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObject(resultGPR, JITAllocator::constant(allocatorValue), allocatorGPR, TrustedImmPtr(structure), butterfly, scratchGPR, slowPath);
m_jit.emitInitializeInlineStorage(resultGPR, structure->inlineCapacity());
m_jit.mutatorFence(*m_jit.vm());
}
addSlowPathGenerator(slowPathCall(slowPath, this, operationNewObject, resultGPR, structure));
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileToPrimitive(Node* node)
{
DFG_ASSERT(m_jit.graph(), node, node->child1().useKind() == UntypedUse, node->child1().useKind());
JSValueOperand argument(this, node->child1());
JSValueRegsTemporary result(this, Reuse, argument);
JSValueRegs argumentRegs = argument.jsValueRegs();
JSValueRegs resultRegs = result.regs();
argument.use();
MacroAssembler::Jump alreadyPrimitive = m_jit.branchIfNotCell(argumentRegs);
MacroAssembler::Jump notPrimitive = m_jit.branchIfObject(argumentRegs.payloadGPR());
alreadyPrimitive.link(&m_jit);
m_jit.moveValueRegs(argumentRegs, resultRegs);
addSlowPathGenerator(slowPathCall(notPrimitive, this, operationToPrimitive, resultRegs, argumentRegs));
jsValueResult(resultRegs, node, DataFormatJS, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::compileLogShadowChickenPrologue(Node* node)
{
flushRegisters();
prepareForExternalCall();
m_jit.emitStoreCodeOrigin(node->origin.semantic);
GPRTemporary scratch1(this, GPRInfo::nonArgGPR0); // This must be a non-argument GPR.
GPRReg scratch1Reg = scratch1.gpr();
GPRTemporary scratch2(this);
GPRReg scratch2Reg = scratch2.gpr();
GPRTemporary shadowPacket(this);
GPRReg shadowPacketReg = shadowPacket.gpr();
m_jit.ensureShadowChickenPacket(*m_jit.vm(), shadowPacketReg, scratch1Reg, scratch2Reg);
SpeculateCellOperand scope(this, node->child1());
GPRReg scopeReg = scope.gpr();
m_jit.logShadowChickenProloguePacket(shadowPacketReg, scratch1Reg, scopeReg);
noResult(node);
}
void SpeculativeJIT::compileLogShadowChickenTail(Node* node)
{
flushRegisters();
prepareForExternalCall();
CallSiteIndex callSiteIndex = m_jit.emitStoreCodeOrigin(node->origin.semantic);
GPRTemporary scratch1(this, GPRInfo::nonArgGPR0); // This must be a non-argument GPR.
GPRReg scratch1Reg = scratch1.gpr();
GPRTemporary scratch2(this);
GPRReg scratch2Reg = scratch2.gpr();
GPRTemporary shadowPacket(this);
GPRReg shadowPacketReg = shadowPacket.gpr();
m_jit.ensureShadowChickenPacket(*m_jit.vm(), shadowPacketReg, scratch1Reg, scratch2Reg);
JSValueOperand thisValue(this, node->child1());
JSValueRegs thisRegs = thisValue.jsValueRegs();
SpeculateCellOperand scope(this, node->child2());
GPRReg scopeReg = scope.gpr();
m_jit.logShadowChickenTailPacket(shadowPacketReg, thisRegs, scopeReg, m_jit.codeBlock(), callSiteIndex);
noResult(node);
}
void SpeculativeJIT::compileSetAdd(Node* node)
{
SpeculateCellOperand set(this, node->child1());
JSValueOperand key(this, node->child2());
SpeculateInt32Operand hash(this, node->child3());
GPRReg setGPR = set.gpr();
JSValueRegs keyRegs = key.jsValueRegs();
GPRReg hashGPR = hash.gpr();
speculateSetObject(node->child1(), setGPR);
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationSetAdd, resultGPR, setGPR, keyRegs, hashGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileMapSet(Node* node)
{
SpeculateCellOperand map(this, m_jit.graph().varArgChild(node, 0));
JSValueOperand key(this, m_jit.graph().varArgChild(node, 1));
JSValueOperand value(this, m_jit.graph().varArgChild(node, 2));
SpeculateInt32Operand hash(this, m_jit.graph().varArgChild(node, 3));
GPRReg mapGPR = map.gpr();
JSValueRegs keyRegs = key.jsValueRegs();
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg hashGPR = hash.gpr();
speculateMapObject(m_jit.graph().varArgChild(node, 0), mapGPR);
flushRegisters();
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
callOperation(operationMapSet, resultGPR, mapGPR, keyRegs, valueRegs, hashGPR);
m_jit.exceptionCheck();
cellResult(resultGPR, node);
}
void SpeculativeJIT::compileWeakMapGet(Node* node)
{
GPRTemporary mask(this);
GPRTemporary buffer(this);
JSValueRegsTemporary result(this);
GPRReg maskGPR = mask.gpr();
GPRReg bufferGPR = buffer.gpr();
JSValueRegs resultRegs = result.regs();
GPRTemporary index;
GPRReg indexGPR { InvalidGPRReg };
{
SpeculateInt32Operand hash(this, node->child3());
GPRReg hashGPR = hash.gpr();
index = GPRTemporary(this, Reuse, hash);
indexGPR = index.gpr();
m_jit.move(hashGPR, indexGPR);
}
{
SpeculateCellOperand weakMap(this, node->child1());
GPRReg weakMapGPR = weakMap.gpr();
if (node->child1().useKind() == WeakMapObjectUse)
speculateWeakMapObject(node->child1(), weakMapGPR);
else
speculateWeakSetObject(node->child1(), weakMapGPR);
ASSERT(WeakMapImpl<WeakMapBucket<WeakMapBucketDataKey>>::offsetOfCapacity() == WeakMapImpl<WeakMapBucket<WeakMapBucketDataKeyValue>>::offsetOfCapacity());
ASSERT(WeakMapImpl<WeakMapBucket<WeakMapBucketDataKey>>::offsetOfBuffer() == WeakMapImpl<WeakMapBucket<WeakMapBucketDataKeyValue>>::offsetOfBuffer());
m_jit.load32(MacroAssembler::Address(weakMapGPR, WeakMapImpl<WeakMapBucket<WeakMapBucketDataKey>>::offsetOfCapacity()), maskGPR);
m_jit.loadPtr(MacroAssembler::Address(weakMapGPR, WeakMapImpl<WeakMapBucket<WeakMapBucketDataKey>>::offsetOfBuffer()), bufferGPR);
}
SpeculateCellOperand key(this, node->child2());
GPRReg keyGPR = key.gpr();
speculateObject(node->child2(), keyGPR);
#if USE(JSVALUE32_64)
GPRReg bucketGPR = resultRegs.tagGPR();
#else
GPRTemporary bucket(this);
GPRReg bucketGPR = bucket.gpr();
#endif
m_jit.sub32(TrustedImm32(1), maskGPR);
MacroAssembler::Label loop = m_jit.label();
m_jit.and32(maskGPR, indexGPR);
if (node->child1().useKind() == WeakSetObjectUse) {
static_assert(sizeof(WeakMapBucket<WeakMapBucketDataKey>) == sizeof(void*), "");
m_jit.zeroExtend32ToPtr(indexGPR, bucketGPR);
m_jit.lshiftPtr(MacroAssembler::Imm32(sizeof(void*) == 4 ? 2 : 3), bucketGPR);
m_jit.addPtr(bufferGPR, bucketGPR);
} else {
ASSERT(node->child1().useKind() == WeakMapObjectUse);
static_assert(sizeof(WeakMapBucket<WeakMapBucketDataKeyValue>) == 16, "");
m_jit.zeroExtend32ToPtr(indexGPR, bucketGPR);
m_jit.lshiftPtr(MacroAssembler::Imm32(4), bucketGPR);
m_jit.addPtr(bufferGPR, bucketGPR);
}
m_jit.loadPtr(MacroAssembler::Address(bucketGPR, WeakMapBucket<WeakMapBucketDataKeyValue>::offsetOfKey()), resultRegs.payloadGPR());
// They're definitely the same value, we found the bucket we were looking for!
// The deleted key comparison is also done with this.
auto found = m_jit.branchPtr(MacroAssembler::Equal, resultRegs.payloadGPR(), keyGPR);
auto notPresentInTable = m_jit.branchTestPtr(MacroAssembler::Zero, resultRegs.payloadGPR());
m_jit.add32(TrustedImm32(1), indexGPR);
m_jit.jump().linkTo(loop, &m_jit);
#if USE(JSVALUE32_64)
notPresentInTable.link(&m_jit);
m_jit.moveValue(JSValue(), resultRegs);
auto notPresentInTableDone = m_jit.jump();
found.link(&m_jit);
if (node->child1().useKind() == WeakSetObjectUse)
m_jit.move(TrustedImm32(JSValue::CellTag), resultRegs.tagGPR());
else
m_jit.loadValue(MacroAssembler::Address(bucketGPR, WeakMapBucket<WeakMapBucketDataKeyValue>::offsetOfValue()), resultRegs);
notPresentInTableDone.link(&m_jit);
#else
notPresentInTable.link(&m_jit);
found.link(&m_jit);
// In 64bit environment, Empty bucket has JSEmpty value. Empty key is JSEmpty.
// If empty bucket is found, we can use the same path used for the case of finding a bucket.
if (node->child1().useKind() == WeakMapObjectUse)
m_jit.loadValue(MacroAssembler::Address(bucketGPR, WeakMapBucket<WeakMapBucketDataKeyValue>::offsetOfValue()), resultRegs);
#endif
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileWeakSetAdd(Node* node)
{
SpeculateCellOperand set(this, node->child1());
SpeculateCellOperand key(this, node->child2());
SpeculateInt32Operand hash(this, node->child3());
GPRReg setGPR = set.gpr();
GPRReg keyGPR = key.gpr();
GPRReg hashGPR = hash.gpr();
speculateWeakSetObject(node->child1(), setGPR);
speculateObject(node->child2(), keyGPR);
flushRegisters();
callOperation(operationWeakSetAdd, setGPR, keyGPR, hashGPR);
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compileWeakMapSet(Node* node)
{
SpeculateCellOperand map(this, m_jit.graph().varArgChild(node, 0));
SpeculateCellOperand key(this, m_jit.graph().varArgChild(node, 1));
JSValueOperand value(this, m_jit.graph().varArgChild(node, 2));
SpeculateInt32Operand hash(this, m_jit.graph().varArgChild(node, 3));
GPRReg mapGPR = map.gpr();
GPRReg keyGPR = key.gpr();
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg hashGPR = hash.gpr();
speculateWeakMapObject(m_jit.graph().varArgChild(node, 0), mapGPR);
speculateObject(m_jit.graph().varArgChild(node, 1), keyGPR);
flushRegisters();
callOperation(operationWeakMapSet, mapGPR, keyGPR, valueRegs, hashGPR);
m_jit.exceptionCheck();
noResult(node);
}
void SpeculativeJIT::compileGetPrototypeOf(Node* node)
{
switch (node->child1().useKind()) {
case ArrayUse:
case FunctionUse:
case FinalObjectUse: {
SpeculateCellOperand object(this, node->child1());
GPRTemporary temp(this);
GPRTemporary temp2(this);
GPRReg objectGPR = object.gpr();
GPRReg tempGPR = temp.gpr();
GPRReg temp2GPR = temp2.gpr();
switch (node->child1().useKind()) {
case ArrayUse:
speculateArray(node->child1(), objectGPR);
break;
case FunctionUse:
speculateFunction(node->child1(), objectGPR);
break;
case FinalObjectUse:
speculateFinalObject(node->child1(), objectGPR);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
m_jit.emitLoadStructure(*m_jit.vm(), objectGPR, tempGPR, temp2GPR);
AbstractValue& value = m_state.forNode(node->child1());
if ((value.m_type && !(value.m_type & ~SpecObject)) && value.m_structure.isFinite()) {
bool hasPolyProto = false;
bool hasMonoProto = false;
value.m_structure.forEach([&] (RegisteredStructure structure) {
if (structure->hasPolyProto())
hasPolyProto = true;
else
hasMonoProto = true;
});
if (hasMonoProto && !hasPolyProto) {
#if USE(JSVALUE64)
m_jit.load64(MacroAssembler::Address(tempGPR, Structure::prototypeOffset()), tempGPR);
jsValueResult(tempGPR, node);
#else
m_jit.load32(MacroAssembler::Address(tempGPR, Structure::prototypeOffset() + TagOffset), temp2GPR);
m_jit.load32(MacroAssembler::Address(tempGPR, Structure::prototypeOffset() + PayloadOffset), tempGPR);
jsValueResult(temp2GPR, tempGPR, node);
#endif
return;
}
if (hasPolyProto && !hasMonoProto) {
#if USE(JSVALUE64)
m_jit.load64(JITCompiler::Address(objectGPR, offsetRelativeToBase(knownPolyProtoOffset)), tempGPR);
jsValueResult(tempGPR, node);
#else
m_jit.load32(JITCompiler::Address(objectGPR, offsetRelativeToBase(knownPolyProtoOffset) + TagOffset), temp2GPR);
m_jit.load32(JITCompiler::Address(objectGPR, offsetRelativeToBase(knownPolyProtoOffset) + PayloadOffset), tempGPR);
jsValueResult(temp2GPR, tempGPR, node);
#endif
return;
}
}
#if USE(JSVALUE64)
m_jit.load64(MacroAssembler::Address(tempGPR, Structure::prototypeOffset()), tempGPR);
auto hasMonoProto = m_jit.branchIfNotEmpty(tempGPR);
m_jit.load64(JITCompiler::Address(objectGPR, offsetRelativeToBase(knownPolyProtoOffset)), tempGPR);
hasMonoProto.link(&m_jit);
jsValueResult(tempGPR, node);
#else
m_jit.load32(MacroAssembler::Address(tempGPR, Structure::prototypeOffset() + TagOffset), temp2GPR);
m_jit.load32(MacroAssembler::Address(tempGPR, Structure::prototypeOffset() + PayloadOffset), tempGPR);
auto hasMonoProto = m_jit.branchIfNotEmpty(temp2GPR);
m_jit.load32(JITCompiler::Address(objectGPR, offsetRelativeToBase(knownPolyProtoOffset) + TagOffset), temp2GPR);
m_jit.load32(JITCompiler::Address(objectGPR, offsetRelativeToBase(knownPolyProtoOffset) + PayloadOffset), tempGPR);
hasMonoProto.link(&m_jit);
jsValueResult(temp2GPR, tempGPR, node);
#endif
return;
}
case ObjectUse: {
SpeculateCellOperand value(this, node->child1());
JSValueRegsTemporary result(this);
GPRReg valueGPR = value.gpr();
JSValueRegs resultRegs = result.regs();
speculateObject(node->child1(), valueGPR);
flushRegisters();
callOperation(operationGetPrototypeOfObject, resultRegs, valueGPR);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
default: {
JSValueOperand value(this, node->child1());
JSValueRegsTemporary result(this);
JSValueRegs valueRegs = value.jsValueRegs();
JSValueRegs resultRegs = result.regs();
flushRegisters();
callOperation(operationGetPrototypeOf, resultRegs, valueRegs);
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
return;
}
}
}
void SpeculativeJIT::compileIdentity(Node* node)
{
speculate(node, node->child1());
switch (node->child1().useKind()) {
#if USE(JSVALUE64)
case DoubleRepAnyIntUse:
#endif
case DoubleRepUse:
case DoubleRepRealUse: {
SpeculateDoubleOperand op(this, node->child1());
FPRTemporary scratch(this, op);
m_jit.moveDouble(op.fpr(), scratch.fpr());
doubleResult(scratch.fpr(), node);
break;
}
#if USE(JSVALUE64)
case Int52RepUse: {
SpeculateInt52Operand op(this, node->child1());
GPRTemporary result(this, Reuse, op);
m_jit.move(op.gpr(), result.gpr());
int52Result(result.gpr(), node);
break;
}
#endif
default: {
JSValueOperand op(this, node->child1(), ManualOperandSpeculation);
JSValueRegsTemporary result(this, Reuse, op);
JSValueRegs opRegs = op.jsValueRegs();
JSValueRegs resultRegs = result.regs();
m_jit.moveValueRegs(opRegs, resultRegs);
jsValueResult(resultRegs, node);
break;
}
}
}
void SpeculativeJIT::compileMiscStrictEq(Node* node)
{
JSValueOperand op1(this, node->child1(), ManualOperandSpeculation);
JSValueOperand op2(this, node->child2(), ManualOperandSpeculation);
GPRTemporary result(this);
if (node->child1().useKind() == MiscUse)
speculateMisc(node->child1(), op1.jsValueRegs());
if (node->child2().useKind() == MiscUse)
speculateMisc(node->child2(), op2.jsValueRegs());
#if USE(JSVALUE64)
m_jit.compare64(JITCompiler::Equal, op1.gpr(), op2.gpr(), result.gpr());
#else
m_jit.move(TrustedImm32(0), result.gpr());
JITCompiler::Jump notEqual = m_jit.branch32(JITCompiler::NotEqual, op1.tagGPR(), op2.tagGPR());
m_jit.compare32(JITCompiler::Equal, op1.payloadGPR(), op2.payloadGPR(), result.gpr());
notEqual.link(&m_jit);
#endif
unblessedBooleanResult(result.gpr(), node);
}
void SpeculativeJIT::emitInitializeButterfly(GPRReg storageGPR, GPRReg sizeGPR, JSValueRegs emptyValueRegs, GPRReg scratchGPR)
{
m_jit.zeroExtend32ToPtr(sizeGPR, scratchGPR);
MacroAssembler::Jump done = m_jit.branchTest32(MacroAssembler::Zero, scratchGPR);
MacroAssembler::Label loop = m_jit.label();
m_jit.sub32(TrustedImm32(1), scratchGPR);
m_jit.storeValue(emptyValueRegs, MacroAssembler::BaseIndex(storageGPR, scratchGPR, MacroAssembler::TimesEight));
m_jit.branchTest32(MacroAssembler::NonZero, scratchGPR).linkTo(loop, &m_jit);
done.link(&m_jit);
}
void SpeculativeJIT::compileAllocateNewArrayWithSize(JSGlobalObject* globalObject, GPRReg resultGPR, GPRReg sizeGPR, IndexingType indexingType, bool shouldConvertLargeSizeToArrayStorage)
{
GPRTemporary storage(this);
GPRTemporary scratch(this);
GPRTemporary scratch2(this);
GPRReg storageGPR = storage.gpr();
GPRReg scratchGPR = scratch.gpr();
GPRReg scratch2GPR = scratch2.gpr();
m_jit.move(TrustedImmPtr(nullptr), storageGPR);
MacroAssembler::JumpList slowCases;
if (shouldConvertLargeSizeToArrayStorage)
slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, sizeGPR, TrustedImm32(MIN_ARRAY_STORAGE_CONSTRUCTION_LENGTH)));
// We can use resultGPR as a scratch right now.
emitAllocateButterfly(storageGPR, sizeGPR, scratchGPR, scratch2GPR, resultGPR, slowCases);
#if USE(JSVALUE64)
JSValueRegs emptyValueRegs(scratchGPR);
if (hasDouble(indexingType))
m_jit.move(TrustedImm64(bitwise_cast<int64_t>(PNaN)), emptyValueRegs.gpr());
else
m_jit.move(TrustedImm64(JSValue::encode(JSValue())), emptyValueRegs.gpr());
#else
JSValueRegs emptyValueRegs(scratchGPR, scratch2GPR);
if (hasDouble(indexingType))
m_jit.moveValue(JSValue(JSValue::EncodeAsDouble, PNaN), emptyValueRegs);
else
m_jit.moveValue(JSValue(), emptyValueRegs);
#endif
emitInitializeButterfly(storageGPR, sizeGPR, emptyValueRegs, resultGPR);
RegisteredStructure structure = m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(indexingType));
emitAllocateJSObject<JSArray>(resultGPR, TrustedImmPtr(structure), storageGPR, scratchGPR, scratch2GPR, slowCases);
m_jit.mutatorFence(*m_jit.vm());
addSlowPathGenerator(std::make_unique<CallArrayAllocatorWithVariableSizeSlowPathGenerator>(
slowCases, this, operationNewArrayWithSize, resultGPR,
structure,
shouldConvertLargeSizeToArrayStorage ? m_jit.graph().registerStructure(globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithArrayStorage)) : structure,
sizeGPR, storageGPR));
}
void SpeculativeJIT::compileHasIndexedProperty(Node* node)
{
SpeculateCellOperand base(this, node->child1());
SpeculateStrictInt32Operand index(this, node->child2());
GPRTemporary result(this);
GPRReg baseGPR = base.gpr();
GPRReg indexGPR = index.gpr();
GPRReg resultGPR = result.gpr();
MacroAssembler::JumpList slowCases;
ArrayMode mode = node->arrayMode();
switch (mode.type()) {
case Array::Int32:
case Array::Contiguous: {
ASSERT(!!node->child3());
StorageOperand storage(this, node->child3());
GPRTemporary scratch(this);
GPRReg storageGPR = storage.gpr();
GPRReg scratchGPR = scratch.gpr();
MacroAssembler::Jump outOfBounds = m_jit.branch32(MacroAssembler::AboveOrEqual, indexGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
if (mode.isInBounds())
speculationCheck(OutOfBounds, JSValueRegs(), nullptr, outOfBounds);
else
slowCases.append(outOfBounds);
#if USE(JSVALUE64)
m_jit.load64(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight), scratchGPR);
slowCases.append(m_jit.branchIfEmpty(scratchGPR));
#else
m_jit.load32(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag)), scratchGPR);
slowCases.append(m_jit.branchIfEmpty(scratchGPR));
#endif
m_jit.move(TrustedImm32(1), resultGPR);
break;
}
case Array::Double: {
ASSERT(!!node->child3());
StorageOperand storage(this, node->child3());
FPRTemporary scratch(this);
FPRReg scratchFPR = scratch.fpr();
GPRReg storageGPR = storage.gpr();
MacroAssembler::Jump outOfBounds = m_jit.branch32(MacroAssembler::AboveOrEqual, indexGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
if (mode.isInBounds())
speculationCheck(OutOfBounds, JSValueRegs(), nullptr, outOfBounds);
else
slowCases.append(outOfBounds);
m_jit.loadDouble(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight), scratchFPR);
slowCases.append(m_jit.branchIfNaN(scratchFPR));
m_jit.move(TrustedImm32(1), resultGPR);
break;
}
case Array::ArrayStorage: {
ASSERT(!!node->child3());
StorageOperand storage(this, node->child3());
GPRTemporary scratch(this);
GPRReg storageGPR = storage.gpr();
GPRReg scratchGPR = scratch.gpr();
MacroAssembler::Jump outOfBounds = m_jit.branch32(MacroAssembler::AboveOrEqual, indexGPR, MacroAssembler::Address(storageGPR, ArrayStorage::vectorLengthOffset()));
if (mode.isInBounds())
speculationCheck(OutOfBounds, JSValueRegs(), nullptr, outOfBounds);
else
slowCases.append(outOfBounds);
#if USE(JSVALUE64)
m_jit.load64(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()), scratchGPR);
slowCases.append(m_jit.branchIfEmpty(scratchGPR));
#else
m_jit.load32(MacroAssembler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesEight, ArrayStorage::vectorOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), scratchGPR);
slowCases.append(m_jit.branchIfEmpty(scratchGPR));
#endif
m_jit.move(TrustedImm32(1), resultGPR);
break;
}
default: {
slowCases.append(m_jit.jump());
break;
}
}
addSlowPathGenerator(slowPathCall(slowCases, this, operationHasIndexedPropertyByInt, resultGPR, baseGPR, indexGPR, static_cast<int32_t>(node->internalMethodType())));
unblessedBooleanResult(resultGPR, node);
}
void SpeculativeJIT::compileGetDirectPname(Node* node)
{
Edge& baseEdge = m_jit.graph().varArgChild(node, 0);
Edge& propertyEdge = m_jit.graph().varArgChild(node, 1);
SpeculateCellOperand base(this, baseEdge);
SpeculateCellOperand property(this, propertyEdge);
GPRReg baseGPR = base.gpr();
GPRReg propertyGPR = property.gpr();
#if CPU(X86)
// Not enough registers on X86 for this code, so always use the slow path.
flushRegisters();
JSValueRegsFlushedCallResult result(this);
JSValueRegs resultRegs = result.regs();
callOperation(operationGetByValCell, resultRegs, baseGPR, CCallHelpers::CellValue(propertyGPR));
m_jit.exceptionCheck();
jsValueResult(resultRegs, node);
#else
Edge& indexEdge = m_jit.graph().varArgChild(node, 2);
Edge& enumeratorEdge = m_jit.graph().varArgChild(node, 3);
SpeculateStrictInt32Operand index(this, indexEdge);
SpeculateCellOperand enumerator(this, enumeratorEdge);
GPRTemporary scratch(this);
JSValueRegsTemporary result(this);
GPRReg indexGPR = index.gpr();
GPRReg enumeratorGPR = enumerator.gpr();
GPRReg scratchGPR = scratch.gpr();
JSValueRegs resultRegs = result.regs();
MacroAssembler::JumpList slowPath;
// Check the structure
m_jit.load32(MacroAssembler::Address(baseGPR, JSCell::structureIDOffset()), scratchGPR);
slowPath.append(
m_jit.branch32(
MacroAssembler::NotEqual,
scratchGPR,
MacroAssembler::Address(
enumeratorGPR, JSPropertyNameEnumerator::cachedStructureIDOffset())));
// Compute the offset
// If index is less than the enumerator's cached inline storage, then it's an inline access
MacroAssembler::Jump outOfLineAccess = m_jit.branch32(MacroAssembler::AboveOrEqual,
indexGPR, MacroAssembler::Address(enumeratorGPR, JSPropertyNameEnumerator::cachedInlineCapacityOffset()));
m_jit.loadValue(MacroAssembler::BaseIndex(baseGPR, indexGPR, MacroAssembler::TimesEight, JSObject::offsetOfInlineStorage()), resultRegs);
MacroAssembler::Jump done = m_jit.jump();
// Otherwise it's out of line
outOfLineAccess.link(&m_jit);
m_jit.loadPtr(MacroAssembler::Address(baseGPR, JSObject::butterflyOffset()), resultRegs.payloadGPR());
m_jit.move(indexGPR, scratchGPR);
m_jit.sub32(MacroAssembler::Address(enumeratorGPR, JSPropertyNameEnumerator::cachedInlineCapacityOffset()), scratchGPR);
m_jit.neg32(scratchGPR);
m_jit.signExtend32ToPtr(scratchGPR, scratchGPR);
int32_t offsetOfFirstProperty = static_cast<int32_t>(offsetInButterfly(firstOutOfLineOffset)) * sizeof(EncodedJSValue);
m_jit.loadValue(MacroAssembler::BaseIndex(resultRegs.payloadGPR(), scratchGPR, MacroAssembler::TimesEight, offsetOfFirstProperty), resultRegs);
done.link(&m_jit);
addSlowPathGenerator(slowPathCall(slowPath, this, operationGetByValCell, resultRegs, baseGPR, CCallHelpers::CellValue(propertyGPR)));
jsValueResult(resultRegs, node);
#endif
}
void SpeculativeJIT::compileExtractCatchLocal(Node* node)
{
JSValueRegsTemporary result(this);
JSValueRegs resultRegs = result.regs();
JSValue* ptr = &reinterpret_cast<JSValue*>(m_jit.jitCode()->common.catchOSREntryBuffer->dataBuffer())[node->catchOSREntryIndex()];
m_jit.loadValue(ptr, resultRegs);
jsValueResult(resultRegs, node);
}
void SpeculativeJIT::compileClearCatchLocals(Node* node)
{
ScratchBuffer* scratchBuffer = m_jit.jitCode()->common.catchOSREntryBuffer;
ASSERT(scratchBuffer);
GPRTemporary scratch(this);
GPRReg scratchGPR = scratch.gpr();
m_jit.move(TrustedImmPtr(scratchBuffer->addressOfActiveLength()), scratchGPR);
m_jit.storePtr(TrustedImmPtr(nullptr), scratchGPR);
noResult(node);
}
void SpeculativeJIT::compileProfileType(Node* node)
{
JSValueOperand value(this, node->child1());
GPRTemporary scratch1(this);
GPRTemporary scratch2(this);
GPRTemporary scratch3(this);
JSValueRegs valueRegs = value.jsValueRegs();
GPRReg scratch1GPR = scratch1.gpr();
GPRReg scratch2GPR = scratch2.gpr();
GPRReg scratch3GPR = scratch3.gpr();
MacroAssembler::JumpList jumpToEnd;
jumpToEnd.append(m_jit.branchIfEmpty(valueRegs));
TypeLocation* cachedTypeLocation = node->typeLocation();
// Compile in a predictive type check, if possible, to see if we can skip writing to the log.
// These typechecks are inlined to match those of the 64-bit JSValue type checks.
if (cachedTypeLocation->m_lastSeenType == TypeUndefined)
jumpToEnd.append(m_jit.branchIfUndefined(valueRegs));
else if (cachedTypeLocation->m_lastSeenType == TypeNull)
jumpToEnd.append(m_jit.branchIfNull(valueRegs));
else if (cachedTypeLocation->m_lastSeenType == TypeBoolean)
jumpToEnd.append(m_jit.branchIfBoolean(valueRegs, scratch1GPR));
else if (cachedTypeLocation->m_lastSeenType == TypeAnyInt)
jumpToEnd.append(m_jit.branchIfInt32(valueRegs));
else if (cachedTypeLocation->m_lastSeenType == TypeNumber)
jumpToEnd.append(m_jit.branchIfNumber(valueRegs, scratch1GPR));
else if (cachedTypeLocation->m_lastSeenType == TypeString) {
MacroAssembler::Jump isNotCell = m_jit.branchIfNotCell(valueRegs);
jumpToEnd.append(m_jit.branchIfString(valueRegs.payloadGPR()));
isNotCell.link(&m_jit);
}
// Load the TypeProfilerLog into Scratch2.
TypeProfilerLog* cachedTypeProfilerLog = m_jit.vm()->typeProfilerLog();
m_jit.move(TrustedImmPtr(cachedTypeProfilerLog), scratch2GPR);
// Load the next LogEntry into Scratch1.
m_jit.loadPtr(MacroAssembler::Address(scratch2GPR, TypeProfilerLog::currentLogEntryOffset()), scratch1GPR);
// Store the JSValue onto the log entry.
m_jit.storeValue(valueRegs, MacroAssembler::Address(scratch1GPR, TypeProfilerLog::LogEntry::valueOffset()));
// Store the structureID of the cell if valueRegs is a cell, otherwise, store 0 on the log entry.
MacroAssembler::Jump isNotCell = m_jit.branchIfNotCell(valueRegs);
m_jit.load32(MacroAssembler::Address(valueRegs.payloadGPR(), JSCell::structureIDOffset()), scratch3GPR);
m_jit.store32(scratch3GPR, MacroAssembler::Address(scratch1GPR, TypeProfilerLog::LogEntry::structureIDOffset()));
MacroAssembler::Jump skipIsCell = m_jit.jump();
isNotCell.link(&m_jit);
m_jit.store32(TrustedImm32(0), MacroAssembler::Address(scratch1GPR, TypeProfilerLog::LogEntry::structureIDOffset()));
skipIsCell.link(&m_jit);
// Store the typeLocation on the log entry.
m_jit.move(TrustedImmPtr(cachedTypeLocation), scratch3GPR);
m_jit.storePtr(scratch3GPR, MacroAssembler::Address(scratch1GPR, TypeProfilerLog::LogEntry::locationOffset()));
// Increment the current log entry.
m_jit.addPtr(TrustedImm32(sizeof(TypeProfilerLog::LogEntry)), scratch1GPR);
m_jit.storePtr(scratch1GPR, MacroAssembler::Address(scratch2GPR, TypeProfilerLog::currentLogEntryOffset()));
MacroAssembler::Jump clearLog = m_jit.branchPtr(MacroAssembler::Equal, scratch1GPR, TrustedImmPtr(cachedTypeProfilerLog->logEndPtr()));
addSlowPathGenerator(
slowPathCall(clearLog, this, operationProcessTypeProfilerLogDFG, NoResult));
jumpToEnd.link(&m_jit);
noResult(node);
}
void SpeculativeJIT::cachedPutById(CodeOrigin codeOrigin, GPRReg baseGPR, JSValueRegs valueRegs, GPRReg scratchGPR, unsigned identifierNumber, PutKind putKind, JITCompiler::Jump slowPathTarget, SpillRegistersMode spillMode)
{
RegisterSet usedRegisters = this->usedRegisters();
if (spillMode == DontSpill) {
// We've already flushed registers to the stack, we don't need to spill these.
usedRegisters.set(baseGPR, false);
usedRegisters.set(valueRegs, false);
}
CallSiteIndex callSite = m_jit.recordCallSiteAndGenerateExceptionHandlingOSRExitIfNeeded(codeOrigin, m_stream->size());
JITPutByIdGenerator gen(
m_jit.codeBlock(), codeOrigin, callSite, usedRegisters,
JSValueRegs::payloadOnly(baseGPR), valueRegs,
scratchGPR, m_jit.ecmaModeFor(codeOrigin), putKind);
gen.generateFastPath(m_jit);
JITCompiler::JumpList slowCases;
if (slowPathTarget.isSet())
slowCases.append(slowPathTarget);
slowCases.append(gen.slowPathJump());
auto slowPath = slowPathCall(
slowCases, this, gen.slowPathFunction(), NoResult, gen.stubInfo(), valueRegs,
CCallHelpers::CellValue(baseGPR), identifierUID(identifierNumber));
m_jit.addPutById(gen, slowPath.get());
addSlowPathGenerator(WTFMove(slowPath));
}
void SpeculativeJIT::nonSpeculativeNonPeepholeCompare(Node* node, MacroAssembler::RelationalCondition cond, S_JITOperation_EJJ helperFunction)
{
ASSERT(node->isBinaryUseKind(UntypedUse));
JSValueOperand arg1(this, node->child1());
JSValueOperand arg2(this, node->child2());
JSValueRegs arg1Regs = arg1.jsValueRegs();
JSValueRegs arg2Regs = arg2.jsValueRegs();
JITCompiler::JumpList slowPath;
if (isKnownNotInteger(node->child1().node()) || isKnownNotInteger(node->child2().node())) {
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
arg1.use();
arg2.use();
flushRegisters();
callOperation(helperFunction, resultGPR, arg1Regs, arg2Regs);
m_jit.exceptionCheck();
unblessedBooleanResult(resultGPR, node, UseChildrenCalledExplicitly);
return;
}
GPRTemporary result(this, Reuse, arg1, TagWord);
GPRReg resultGPR = result.gpr();
arg1.use();
arg2.use();
if (!isKnownInteger(node->child1().node()))
slowPath.append(m_jit.branchIfNotInt32(arg1Regs));
if (!isKnownInteger(node->child2().node()))
slowPath.append(m_jit.branchIfNotInt32(arg2Regs));
m_jit.compare32(cond, arg1Regs.payloadGPR(), arg2Regs.payloadGPR(), resultGPR);
if (!isKnownInteger(node->child1().node()) || !isKnownInteger(node->child2().node()))
addSlowPathGenerator(slowPathCall(slowPath, this, helperFunction, resultGPR, arg1Regs, arg2Regs));
unblessedBooleanResult(resultGPR, node, UseChildrenCalledExplicitly);
}
void SpeculativeJIT::nonSpeculativePeepholeBranch(Node* node, Node* branchNode, MacroAssembler::RelationalCondition cond, S_JITOperation_EJJ helperFunction)
{
BasicBlock* taken = branchNode->branchData()->taken.block;
BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
JITCompiler::ResultCondition callResultCondition = JITCompiler::NonZero;
// The branch instruction will branch to the taken block.
// If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
if (taken == nextBlock()) {
cond = JITCompiler::invert(cond);
callResultCondition = JITCompiler::Zero;
BasicBlock* tmp = taken;
taken = notTaken;
notTaken = tmp;
}
JSValueOperand arg1(this, node->child1());
JSValueOperand arg2(this, node->child2());
JSValueRegs arg1Regs = arg1.jsValueRegs();
JSValueRegs arg2Regs = arg2.jsValueRegs();
JITCompiler::JumpList slowPath;
if (isKnownNotInteger(node->child1().node()) || isKnownNotInteger(node->child2().node())) {
GPRFlushedCallResult result(this);
GPRReg resultGPR = result.gpr();
arg1.use();
arg2.use();
flushRegisters();
callOperation(helperFunction, resultGPR, arg1Regs, arg2Regs);
m_jit.exceptionCheck();
branchTest32(callResultCondition, resultGPR, taken);
} else {
GPRTemporary result(this, Reuse, arg2, TagWord);
GPRReg resultGPR = result.gpr();
arg1.use();
arg2.use();
if (!isKnownInteger(node->child1().node()))
slowPath.append(m_jit.branchIfNotInt32(arg1Regs));
if (!isKnownInteger(node->child2().node()))
slowPath.append(m_jit.branchIfNotInt32(arg2Regs));
branch32(cond, arg1Regs.payloadGPR(), arg2Regs.payloadGPR(), taken);
if (!isKnownInteger(node->child1().node()) || !isKnownInteger(node->child2().node())) {
jump(notTaken, ForceJump);
slowPath.link(&m_jit);
silentSpillAllRegisters(resultGPR);
callOperation(helperFunction, resultGPR, arg1Regs, arg2Regs);
silentFillAllRegisters();
m_jit.exceptionCheck();
branchTest32(callResultCondition, resultGPR, taken);
}
}
jump(notTaken);
m_indexInBlock = m_block->size() - 1;
m_currentNode = branchNode;
}
void SpeculativeJIT::compileBigIntEquality(Node* node)
{
// FIXME: [ESNext][BigInt] Create specialized version of strict equals for BigIntUse
// https://bugs.webkit.org/show_bug.cgi?id=182895
SpeculateCellOperand left(this, node->child1());
SpeculateCellOperand right(this, node->child2());
GPRTemporary result(this, Reuse, left);
GPRReg leftGPR = left.gpr();
GPRReg rightGPR = right.gpr();
GPRReg resultGPR = result.gpr();
left.use();
right.use();
speculateBigInt(node->child1(), leftGPR);
speculateBigInt(node->child2(), rightGPR);
JITCompiler::Jump notEqualCase = m_jit.branchPtr(JITCompiler::NotEqual, leftGPR, rightGPR);
m_jit.move(JITCompiler::TrustedImm32(1), resultGPR);
JITCompiler::Jump done = m_jit.jump();
notEqualCase.link(&m_jit);
silentSpillAllRegisters(resultGPR);
callOperation(operationCompareStrictEqCell, resultGPR, leftGPR, rightGPR);
silentFillAllRegisters();
done.link(&m_jit);
unblessedBooleanResult(resultGPR, node, UseChildrenCalledExplicitly);
}
} } // namespace JSC::DFG
#endif