blob: 2ff30501f66f1acdaf5dd8f78f5a5229eaeb8b91 [file] [log] [blame]
/*
* Copyright (C) 2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "WasmB3IRGenerator.h"
#if ENABLE(WEBASSEMBLY)
#include "B3BasicBlockInlines.h"
#include "B3CCallValue.h"
#include "B3Compile.h"
#include "B3ConstPtrValue.h"
#include "B3FixSSA.h"
#include "B3Generate.h"
#include "B3StackmapGenerationParams.h"
#include "B3SwitchValue.h"
#include "B3Validate.h"
#include "B3ValueInlines.h"
#include "B3Variable.h"
#include "B3VariableValue.h"
#include "B3WasmAddressValue.h"
#include "B3WasmBoundsCheckValue.h"
#include "JSCInlines.h"
#include "JSWebAssemblyInstance.h"
#include "JSWebAssemblyModule.h"
#include "JSWebAssemblyRuntimeError.h"
#include "VirtualRegister.h"
#include "WasmCallingConvention.h"
#include "WasmExceptionType.h"
#include "WasmFunctionParser.h"
#include "WasmMemory.h"
#include <wtf/Optional.h>
void dumpProcedure(void* ptr)
{
JSC::B3::Procedure* proc = static_cast<JSC::B3::Procedure*>(ptr);
proc->dump(WTF::dataFile());
}
namespace JSC { namespace Wasm {
using namespace B3;
namespace {
const bool verbose = false;
}
class B3IRGenerator {
public:
struct ControlData {
ControlData(Procedure& proc, Type signature, BlockType type, BasicBlock* continuation, BasicBlock* special = nullptr)
: blockType(type)
, continuation(continuation)
, special(special)
{
if (signature != Void)
result.append(proc.addVariable(toB3Type(signature)));
}
ControlData()
{
}
void dump(PrintStream& out) const
{
switch (type()) {
case BlockType::If:
out.print("If: ");
break;
case BlockType::Block:
out.print("Block: ");
break;
case BlockType::Loop:
out.print("Loop: ");
break;
case BlockType::TopLevel:
out.print("TopLevel: ");
break;
}
out.print("Continuation: ", *continuation, ", Special: ");
if (special)
out.print(*special);
else
out.print("None");
}
BlockType type() const { return blockType; }
bool hasNonVoidSignature() const { return result.size(); }
BasicBlock* targetBlockForBranch()
{
if (type() == BlockType::Loop)
return special;
return continuation;
}
void convertIfToBlock()
{
ASSERT(type() == BlockType::If);
blockType = BlockType::Block;
special = nullptr;
}
private:
friend class B3IRGenerator;
BlockType blockType;
BasicBlock* continuation;
BasicBlock* special;
Vector<Variable*, 1> result;
};
typedef Value* ExpressionType;
typedef ControlData ControlType;
typedef Vector<ExpressionType, 1> ExpressionList;
typedef Vector<Variable*, 1> ResultList;
typedef FunctionParser<B3IRGenerator>::ControlEntry ControlEntry;
static constexpr ExpressionType emptyExpression = nullptr;
typedef String ErrorType;
typedef UnexpectedType<ErrorType> UnexpectedResult;
typedef Expected<std::unique_ptr<WasmInternalFunction>, ErrorType> Result;
typedef Expected<void, ErrorType> PartialResult;
template <typename ...Args>
NEVER_INLINE UnexpectedResult WARN_UNUSED_RETURN fail(Args... args) const
{
using namespace FailureHelper; // See ADL comment in WasmParser.h.
return UnexpectedResult(makeString(ASCIILiteral("WebAssembly.Module failed compiling: "), makeString(args)...));
}
#define WASM_COMPILE_FAIL_IF(condition, ...) do { \
if (UNLIKELY(condition)) \
return fail(__VA_ARGS__); \
} while (0)
B3IRGenerator(VM&, const ModuleInformation&, Procedure&, WasmInternalFunction*, Vector<UnlinkedWasmToWasmCall>&);
PartialResult WARN_UNUSED_RETURN addArguments(const Signature*);
PartialResult WARN_UNUSED_RETURN addLocal(Type, uint32_t);
ExpressionType addConstant(Type, uint64_t);
// Locals
PartialResult WARN_UNUSED_RETURN getLocal(uint32_t index, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN setLocal(uint32_t index, ExpressionType value);
// Globals
PartialResult WARN_UNUSED_RETURN getGlobal(uint32_t index, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN setGlobal(uint32_t index, ExpressionType value);
// Memory
PartialResult WARN_UNUSED_RETURN load(LoadOpType, ExpressionType pointer, ExpressionType& result, uint32_t offset);
PartialResult WARN_UNUSED_RETURN store(StoreOpType, ExpressionType pointer, ExpressionType value, uint32_t offset);
PartialResult WARN_UNUSED_RETURN addGrowMemory(ExpressionType delta, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addCurrentMemory(ExpressionType& result);
// Basic operators
template<OpType>
PartialResult WARN_UNUSED_RETURN addOp(ExpressionType arg, ExpressionType& result);
template<OpType>
PartialResult WARN_UNUSED_RETURN addOp(ExpressionType left, ExpressionType right, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addSelect(ExpressionType condition, ExpressionType nonZero, ExpressionType zero, ExpressionType& result);
// Control flow
ControlData WARN_UNUSED_RETURN addTopLevel(Type signature);
ControlData WARN_UNUSED_RETURN addBlock(Type signature);
ControlData WARN_UNUSED_RETURN addLoop(Type signature);
PartialResult WARN_UNUSED_RETURN addIf(ExpressionType condition, Type signature, ControlData& result);
PartialResult WARN_UNUSED_RETURN addElse(ControlData&, const ExpressionList&);
PartialResult WARN_UNUSED_RETURN addElseToUnreachable(ControlData&);
PartialResult WARN_UNUSED_RETURN addReturn(const ControlData&, const ExpressionList& returnValues);
PartialResult WARN_UNUSED_RETURN addBranch(ControlData&, ExpressionType condition, const ExpressionList& returnValues);
PartialResult WARN_UNUSED_RETURN addSwitch(ExpressionType condition, const Vector<ControlData*>& targets, ControlData& defaultTargets, const ExpressionList& expressionStack);
PartialResult WARN_UNUSED_RETURN endBlock(ControlEntry&, ExpressionList& expressionStack);
PartialResult WARN_UNUSED_RETURN addEndToUnreachable(ControlEntry&);
// Calls
PartialResult WARN_UNUSED_RETURN addCall(uint32_t calleeIndex, const Signature*, Vector<ExpressionType>& args, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addCallIndirect(const Signature*, SignatureIndex, Vector<ExpressionType>& args, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addUnreachable();
void dump(const Vector<ControlEntry>& controlStack, const ExpressionList* expressionStack);
void emitExceptionCheck(CCallHelpers&, ExceptionType);
private:
ExpressionType emitCheckAndPreparePointer(ExpressionType pointer, uint32_t offset, uint32_t sizeOfOp);
ExpressionType emitLoadOp(LoadOpType, Origin, ExpressionType pointer, uint32_t offset);
void emitStoreOp(StoreOpType, Origin, ExpressionType pointer, ExpressionType value, uint32_t offset);
void unify(Variable* target, const ExpressionType source);
void unifyValuesWithBlock(const ExpressionList& resultStack, ResultList& stack);
Value* zeroForType(Type);
void emitChecksForModOrDiv(B3::Opcode, ExpressionType left, ExpressionType right);
VM& m_vm;
const ModuleInformation& m_info;
Procedure& m_proc;
BasicBlock* m_currentBlock;
Vector<Variable*> m_locals;
Vector<UnlinkedWasmToWasmCall>& m_unlinkedWasmToWasmCalls; // List each call site and the function index whose address it should be patched with.
GPRReg m_memoryBaseGPR;
GPRReg m_memorySizeGPR;
Value* m_zeroValues[numTypes];
Value* m_instanceValue;
};
B3IRGenerator::B3IRGenerator(VM& vm, const ModuleInformation& info, Procedure& procedure, WasmInternalFunction* compilation, Vector<UnlinkedWasmToWasmCall>& unlinkedWasmToWasmCalls)
: m_vm(vm)
, m_info(info)
, m_proc(procedure)
, m_unlinkedWasmToWasmCalls(unlinkedWasmToWasmCalls)
{
m_currentBlock = m_proc.addBlock();
for (unsigned i = 0; i < numTypes; ++i) {
switch (B3::Type b3Type = toB3Type(linearizedToType(i))) {
case B3::Int32:
case B3::Int64:
case B3::Float:
case B3::Double:
m_zeroValues[i] = m_currentBlock->appendIntConstant(m_proc, Origin(), b3Type, 0);
break;
case B3::Void:
m_zeroValues[i] = nullptr;
break;
}
}
// FIXME we don't really need to pin registers here if there's no memory. It makes wasm -> wasm thunks simpler for now. https://bugs.webkit.org/show_bug.cgi?id=166623
const PinnedRegisterInfo& pinnedRegs = PinnedRegisterInfo::get();
m_memoryBaseGPR = pinnedRegs.baseMemoryPointer;
m_proc.pinRegister(m_memoryBaseGPR);
ASSERT(!pinnedRegs.sizeRegisters[0].sizeOffset);
m_memorySizeGPR = pinnedRegs.sizeRegisters[0].sizeRegister;
for (const PinnedSizeRegisterInfo& regInfo : pinnedRegs.sizeRegisters)
m_proc.pinRegister(regInfo.sizeRegister);
if (info.hasMemory()) {
m_proc.setWasmBoundsCheckGenerator([=] (CCallHelpers& jit, GPRReg pinnedGPR, unsigned) {
AllowMacroScratchRegisterUsage allowScratch(jit);
ASSERT_UNUSED(pinnedGPR, m_memorySizeGPR == pinnedGPR);
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsMemoryAccess);
});
}
wasmCallingConvention().setupFrameInPrologue(&compilation->wasmCalleeMoveLocation, m_proc, Origin(), m_currentBlock);
m_instanceValue = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, pointerType(), Origin(),
m_currentBlock->appendNew<ConstPtrValue>(m_proc, Origin(), &m_vm.topJSWebAssemblyInstance));
}
struct MemoryBaseAndSize {
Value* base;
Value* size;
};
static MemoryBaseAndSize getMemoryBaseAndSize(VM& vm, Value* instance, Procedure& proc, BasicBlock* block)
{
Value* memoryObject = block->appendNew<MemoryValue>(proc, Load, pointerType(), Origin(), instance, JSWebAssemblyInstance::offsetOfMemory());
static_assert(sizeof(decltype(vm.topJSWebAssemblyInstance->memory()->memory()->memory())) == sizeof(void*), "codegen relies on this size");
static_assert(sizeof(decltype(vm.topJSWebAssemblyInstance->memory()->memory()->size())) == sizeof(uint64_t), "codegen relies on this size");
MemoryBaseAndSize result;
result.base = block->appendNew<MemoryValue>(proc, Load, pointerType(), Origin(), memoryObject, JSWebAssemblyMemory::offsetOfMemory());
result.size = block->appendNew<MemoryValue>(proc, Load, Int64, Origin(), memoryObject, JSWebAssemblyMemory::offsetOfSize());
return result;
}
static void restoreWebAssemblyGlobalState(VM& vm, const MemoryInformation& memory, Value* instance, Procedure& proc, BasicBlock* block)
{
block->appendNew<MemoryValue>(proc, Store, Origin(), instance, block->appendNew<ConstPtrValue>(proc, Origin(), &vm.topJSWebAssemblyInstance));
if (!!memory) {
const PinnedRegisterInfo* pinnedRegs = &PinnedRegisterInfo::get();
RegisterSet clobbers;
clobbers.set(pinnedRegs->baseMemoryPointer);
for (auto info : pinnedRegs->sizeRegisters)
clobbers.set(info.sizeRegister);
B3::PatchpointValue* patchpoint = block->appendNew<B3::PatchpointValue>(proc, B3::Void, Origin());
patchpoint->effects = Effects::none();
patchpoint->effects.writesPinned = true;
patchpoint->clobber(clobbers);
patchpoint->append(instance, ValueRep::SomeRegister);
patchpoint->setGenerator([pinnedRegs] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
GPRReg baseMemory = pinnedRegs->baseMemoryPointer;
jit.loadPtr(CCallHelpers::Address(params[0].gpr(), JSWebAssemblyInstance::offsetOfMemory()), baseMemory);
const auto& sizeRegs = pinnedRegs->sizeRegisters;
ASSERT(sizeRegs.size() >= 1);
ASSERT(!sizeRegs[0].sizeOffset); // The following code assumes we start at 0, and calculates subsequent size registers relative to 0.
jit.loadPtr(CCallHelpers::Address(baseMemory, JSWebAssemblyMemory::offsetOfSize()), sizeRegs[0].sizeRegister);
jit.loadPtr(CCallHelpers::Address(baseMemory, JSWebAssemblyMemory::offsetOfMemory()), baseMemory);
for (unsigned i = 1; i < sizeRegs.size(); ++i)
jit.add64(CCallHelpers::TrustedImm32(-sizeRegs[i].sizeOffset), sizeRegs[0].sizeRegister, sizeRegs[i].sizeRegister);
});
}
}
void B3IRGenerator::emitExceptionCheck(CCallHelpers& jit, ExceptionType type)
{
jit.move(CCallHelpers::TrustedImm32(static_cast<uint32_t>(type)), GPRInfo::argumentGPR1);
auto jumpToExceptionStub = jit.jump();
VM* vm = &m_vm;
jit.addLinkTask([vm, jumpToExceptionStub] (LinkBuffer& linkBuffer) {
linkBuffer.link(jumpToExceptionStub, CodeLocationLabel(vm->getCTIStub(throwExceptionFromWasmThunkGenerator).code()));
});
}
Value* B3IRGenerator::zeroForType(Type type)
{
ASSERT(type != Void);
Value* zeroValue = m_zeroValues[linearizeType(type)];
ASSERT(zeroValue);
return zeroValue;
}
auto B3IRGenerator::addLocal(Type type, uint32_t count) -> PartialResult
{
WASM_COMPILE_FAIL_IF(!m_locals.tryReserveCapacity(m_locals.size() + count), "can't allocate memory for ", m_locals.size() + count, " locals");
for (uint32_t i = 0; i < count; ++i) {
Variable* local = m_proc.addVariable(toB3Type(type));
m_locals.uncheckedAppend(local);
m_currentBlock->appendNew<VariableValue>(m_proc, Set, Origin(), local, zeroForType(type));
}
return { };
}
auto B3IRGenerator::addArguments(const Signature* signature) -> PartialResult
{
ASSERT(!m_locals.size());
WASM_COMPILE_FAIL_IF(!m_locals.tryReserveCapacity(signature->argumentCount()), "can't allocate memory for ", signature->argumentCount(), " arguments");
m_locals.grow(signature->argumentCount());
wasmCallingConvention().loadArguments(signature, m_proc, m_currentBlock, Origin(),
[&] (ExpressionType argument, unsigned i) {
Variable* argumentVariable = m_proc.addVariable(argument->type());
m_locals[i] = argumentVariable;
m_currentBlock->appendNew<VariableValue>(m_proc, Set, Origin(), argumentVariable, argument);
});
return { };
}
auto B3IRGenerator::getLocal(uint32_t index, ExpressionType& result) -> PartialResult
{
ASSERT(m_locals[index]);
result = m_currentBlock->appendNew<VariableValue>(m_proc, B3::Get, Origin(), m_locals[index]);
return { };
}
auto B3IRGenerator::addUnreachable() -> PartialResult
{
B3::PatchpointValue* unreachable = m_currentBlock->appendNew<B3::PatchpointValue>(m_proc, B3::Void, Origin());
unreachable->setGenerator([this] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::Unreachable);
});
unreachable->effects.terminal = true;
return { };
}
auto B3IRGenerator::addGrowMemory(ExpressionType delta, ExpressionType& result) -> PartialResult
{
int32_t (*growMemory) (ExecState*, int32_t) = [] (ExecState* exec, int32_t delta) -> int32_t {
VM& vm = exec->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
JSWebAssemblyInstance* instance = vm.topJSWebAssemblyInstance;
JSWebAssemblyMemory* wasmMemory = instance->memory();
if (delta < 0)
return -1;
bool shouldThrowExceptionsOnFailure = false;
PageCount result = wasmMemory->grow(exec, static_cast<uint32_t>(delta), shouldThrowExceptionsOnFailure);
RELEASE_ASSERT(!scope.exception());
if (!result)
return -1;
return result.pageCount();
};
result = m_currentBlock->appendNew<CCallValue>(m_proc, Int32, Origin(),
m_currentBlock->appendNew<ConstPtrValue>(m_proc, Origin(), bitwise_cast<void*>(growMemory)),
m_currentBlock->appendNew<B3::Value>(m_proc, B3::FramePointer, Origin()), delta);
restoreWebAssemblyGlobalState(m_vm, m_info.memory, m_instanceValue, m_proc, m_currentBlock);
return { };
}
auto B3IRGenerator::addCurrentMemory(ExpressionType& result) -> PartialResult
{
auto memoryValue = getMemoryBaseAndSize(m_vm, m_instanceValue, m_proc, m_currentBlock);
constexpr uint32_t shiftValue = 16;
static_assert(PageCount::pageSize == 1 << shiftValue, "This must hold for the code below to be correct.");
Value* numPages = m_currentBlock->appendNew<Value>(m_proc, ZShr, Origin(),
memoryValue.size, m_currentBlock->appendNew<Const32Value>(m_proc, Origin(), shiftValue));
result = m_currentBlock->appendNew<Value>(m_proc, Trunc, Origin(), numPages);
return { };
}
auto B3IRGenerator::setLocal(uint32_t index, ExpressionType value) -> PartialResult
{
ASSERT(m_locals[index]);
m_currentBlock->appendNew<VariableValue>(m_proc, B3::Set, Origin(), m_locals[index], value);
return { };
}
auto B3IRGenerator::getGlobal(uint32_t index, ExpressionType& result) -> PartialResult
{
Value* globalsArray = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, pointerType(), Origin(), m_instanceValue, JSWebAssemblyInstance::offsetOfGlobals());
result = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, toB3Type(m_info.globals[index].type), Origin(), globalsArray, index * sizeof(Register));
return { };
}
auto B3IRGenerator::setGlobal(uint32_t index, ExpressionType value) -> PartialResult
{
ASSERT(toB3Type(m_info.globals[index].type) == value->type());
Value* globalsArray = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, pointerType(), Origin(), m_instanceValue, JSWebAssemblyInstance::offsetOfGlobals());
m_currentBlock->appendNew<MemoryValue>(m_proc, Store, Origin(), value, globalsArray, index * sizeof(Register));
return { };
}
inline Value* B3IRGenerator::emitCheckAndPreparePointer(ExpressionType pointer, uint32_t offset, uint32_t sizeOfOperation)
{
ASSERT(m_memoryBaseGPR && m_memorySizeGPR);
ASSERT(sizeOfOperation + offset > offset);
m_currentBlock->appendNew<WasmBoundsCheckValue>(m_proc, Origin(), pointer, m_memorySizeGPR, sizeOfOperation + offset - 1);
pointer = m_currentBlock->appendNew<Value>(m_proc, ZExt32, Origin(), pointer);
return m_currentBlock->appendNew<WasmAddressValue>(m_proc, Origin(), pointer, m_memoryBaseGPR);
}
inline uint32_t sizeOfLoadOp(LoadOpType op)
{
switch (op) {
case LoadOpType::I32Load8S:
case LoadOpType::I32Load8U:
case LoadOpType::I64Load8S:
case LoadOpType::I64Load8U:
return 1;
case LoadOpType::I32Load16S:
case LoadOpType::I64Load16S:
case LoadOpType::I32Load16U:
case LoadOpType::I64Load16U:
return 2;
case LoadOpType::I32Load:
case LoadOpType::I64Load32S:
case LoadOpType::I64Load32U:
case LoadOpType::F32Load:
return 4;
case LoadOpType::I64Load:
case LoadOpType::F64Load:
return 8;
}
RELEASE_ASSERT_NOT_REACHED();
}
inline Value* B3IRGenerator::emitLoadOp(LoadOpType op, Origin origin, ExpressionType pointer, uint32_t offset)
{
switch (op) {
case LoadOpType::I32Load8S: {
return m_currentBlock->appendNew<MemoryValue>(m_proc, Load8S, origin, pointer, offset);
}
case LoadOpType::I64Load8S: {
Value* value = m_currentBlock->appendNew<MemoryValue>(m_proc, Load8S, origin, pointer, offset);
return m_currentBlock->appendNew<Value>(m_proc, SExt32, origin, value);
}
case LoadOpType::I32Load8U: {
return m_currentBlock->appendNew<MemoryValue>(m_proc, Load8Z, origin, pointer, offset);
}
case LoadOpType::I64Load8U: {
Value* value = m_currentBlock->appendNew<MemoryValue>(m_proc, Load8Z, origin, pointer, offset);
return m_currentBlock->appendNew<Value>(m_proc, ZExt32, origin, value);
}
case LoadOpType::I32Load16S: {
return m_currentBlock->appendNew<MemoryValue>(m_proc, Load16S, origin, pointer, offset);
}
case LoadOpType::I64Load16S: {
Value* value = m_currentBlock->appendNew<MemoryValue>(m_proc, Load16S, origin, pointer, offset);
return m_currentBlock->appendNew<Value>(m_proc, SExt32, origin, value);
}
case LoadOpType::I32Load: {
return m_currentBlock->appendNew<MemoryValue>(m_proc, Load, Int32, origin, pointer, offset);
}
case LoadOpType::I64Load32U: {
Value* value = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, Int32, origin, pointer, offset);
return m_currentBlock->appendNew<Value>(m_proc, ZExt32, origin, value);
}
case LoadOpType::I64Load32S: {
Value* value = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, Int32, origin, pointer, offset);
return m_currentBlock->appendNew<Value>(m_proc, SExt32, origin, value);
}
case LoadOpType::I64Load: {
return m_currentBlock->appendNew<MemoryValue>(m_proc, Load, Int64, origin, pointer, offset);
}
case LoadOpType::F32Load: {
return m_currentBlock->appendNew<MemoryValue>(m_proc, Load, Float, origin, pointer, offset);
}
case LoadOpType::F64Load: {
return m_currentBlock->appendNew<MemoryValue>(m_proc, Load, Double, origin, pointer, offset);
}
// FIXME: B3 doesn't support Load16Z yet. We should lower to that value when
// it's added. https://bugs.webkit.org/show_bug.cgi?id=165884
case LoadOpType::I32Load16U: {
Value* value = m_currentBlock->appendNew<MemoryValue>(m_proc, Load16S, origin, pointer, offset);
return m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(), value,
m_currentBlock->appendNew<Const32Value>(m_proc, Origin(), 0x0000ffff));
}
case LoadOpType::I64Load16U: {
Value* value = m_currentBlock->appendNew<MemoryValue>(m_proc, Load16S, origin, pointer, offset);
Value* partialResult = m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(), value,
m_currentBlock->appendNew<Const32Value>(m_proc, Origin(), 0x0000ffff));
return m_currentBlock->appendNew<Value>(m_proc, ZExt32, Origin(), partialResult);
}
}
RELEASE_ASSERT_NOT_REACHED();
}
auto B3IRGenerator::load(LoadOpType op, ExpressionType pointer, ExpressionType& result, uint32_t offset) -> PartialResult
{
ASSERT(pointer->type() == Int32);
if (UNLIKELY(sumOverflows<uint32_t>(offset, sizeOfLoadOp(op)))) {
// FIXME: Even though this is provably out of bounds, it's not a validation error, so we have to handle it
// as a runtime exception. However, this may change: https://bugs.webkit.org/show_bug.cgi?id=166435
B3::PatchpointValue* throwException = m_currentBlock->appendNew<B3::PatchpointValue>(m_proc, B3::Void, Origin());
throwException->setGenerator([this] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsMemoryAccess);
});
switch (op) {
case LoadOpType::I32Load8S:
case LoadOpType::I32Load16S:
case LoadOpType::I32Load:
case LoadOpType::I32Load16U:
case LoadOpType::I32Load8U:
result = zeroForType(I32);
break;
case LoadOpType::I64Load8S:
case LoadOpType::I64Load8U:
case LoadOpType::I64Load16S:
case LoadOpType::I64Load32U:
case LoadOpType::I64Load32S:
case LoadOpType::I64Load:
case LoadOpType::I64Load16U:
result = zeroForType(I64);
break;
case LoadOpType::F32Load:
result = zeroForType(F32);
break;
case LoadOpType::F64Load:
result = zeroForType(F64);
break;
}
} else
result = emitLoadOp(op, Origin(), emitCheckAndPreparePointer(pointer, offset, sizeOfLoadOp(op)), offset);
return { };
}
inline uint32_t sizeOfStoreOp(StoreOpType op)
{
switch (op) {
case StoreOpType::I32Store8:
case StoreOpType::I64Store8:
return 1;
case StoreOpType::I32Store16:
case StoreOpType::I64Store16:
return 2;
case StoreOpType::I32Store:
case StoreOpType::I64Store32:
case StoreOpType::F32Store:
return 4;
case StoreOpType::I64Store:
case StoreOpType::F64Store:
return 8;
}
RELEASE_ASSERT_NOT_REACHED();
}
inline void B3IRGenerator::emitStoreOp(StoreOpType op, Origin origin, ExpressionType pointer, ExpressionType value, uint32_t offset)
{
switch (op) {
case StoreOpType::I64Store8:
value = m_currentBlock->appendNew<Value>(m_proc, Trunc, origin, value);
FALLTHROUGH;
case StoreOpType::I32Store8:
m_currentBlock->appendNew<MemoryValue>(m_proc, Store8, origin, value, pointer, offset);
return;
case StoreOpType::I64Store16:
value = m_currentBlock->appendNew<Value>(m_proc, Trunc, origin, value);
FALLTHROUGH;
case StoreOpType::I32Store16:
m_currentBlock->appendNew<MemoryValue>(m_proc, Store16, origin, value, pointer, offset);
return;
case StoreOpType::I64Store32:
value = m_currentBlock->appendNew<Value>(m_proc, Trunc, origin, value);
FALLTHROUGH;
case StoreOpType::I64Store:
case StoreOpType::I32Store:
case StoreOpType::F32Store:
case StoreOpType::F64Store:
m_currentBlock->appendNew<MemoryValue>(m_proc, Store, origin, value, pointer, offset);
return;
}
RELEASE_ASSERT_NOT_REACHED();
}
auto B3IRGenerator::store(StoreOpType op, ExpressionType pointer, ExpressionType value, uint32_t offset) -> PartialResult
{
ASSERT(pointer->type() == Int32);
if (UNLIKELY(sumOverflows<uint32_t>(offset, sizeOfStoreOp(op)))) {
// FIXME: Even though this is provably out of bounds, it's not a validation error, so we have to handle it
// as a runtime exception. However, this may change: https://bugs.webkit.org/show_bug.cgi?id=166435
B3::PatchpointValue* throwException = m_currentBlock->appendNew<B3::PatchpointValue>(m_proc, B3::Void, Origin());
throwException->setGenerator([this] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsMemoryAccess);
});
} else
emitStoreOp(op, Origin(), emitCheckAndPreparePointer(pointer, offset, sizeOfStoreOp(op)), value, offset);
return { };
}
auto B3IRGenerator::addSelect(ExpressionType condition, ExpressionType nonZero, ExpressionType zero, ExpressionType& result) -> PartialResult
{
result = m_currentBlock->appendNew<Value>(m_proc, B3::Select, Origin(), condition, nonZero, zero);
return { };
}
B3IRGenerator::ExpressionType B3IRGenerator::addConstant(Type type, uint64_t value)
{
switch (type) {
case Wasm::I32:
return m_currentBlock->appendNew<Const32Value>(m_proc, Origin(), static_cast<int32_t>(value));
case Wasm::I64:
return m_currentBlock->appendNew<Const64Value>(m_proc, Origin(), value);
case Wasm::F32:
return m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), bitwise_cast<float>(static_cast<int32_t>(value)));
case Wasm::F64:
return m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), bitwise_cast<double>(value));
case Wasm::Void:
case Wasm::Func:
case Wasm::Anyfunc:
break;
}
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
B3IRGenerator::ControlData B3IRGenerator::addTopLevel(Type signature)
{
return ControlData(m_proc, signature, BlockType::TopLevel, m_proc.addBlock());
}
B3IRGenerator::ControlData B3IRGenerator::addBlock(Type signature)
{
return ControlData(m_proc, signature, BlockType::Block, m_proc.addBlock());
}
B3IRGenerator::ControlData B3IRGenerator::addLoop(Type signature)
{
BasicBlock* body = m_proc.addBlock();
BasicBlock* continuation = m_proc.addBlock();
m_currentBlock->appendNewControlValue(m_proc, Jump, Origin(), body);
body->addPredecessor(m_currentBlock);
m_currentBlock = body;
return ControlData(m_proc, signature, BlockType::Loop, continuation, body);
}
auto B3IRGenerator::addIf(ExpressionType condition, Type signature, ControlType& result) -> PartialResult
{
// FIXME: This needs to do some kind of stack passing.
BasicBlock* taken = m_proc.addBlock();
BasicBlock* notTaken = m_proc.addBlock();
BasicBlock* continuation = m_proc.addBlock();
m_currentBlock->appendNew<Value>(m_proc, B3::Branch, Origin(), condition);
m_currentBlock->setSuccessors(FrequentedBlock(taken), FrequentedBlock(notTaken));
taken->addPredecessor(m_currentBlock);
notTaken->addPredecessor(m_currentBlock);
m_currentBlock = taken;
result = ControlData(m_proc, signature, BlockType::If, continuation, notTaken);
return { };
}
auto B3IRGenerator::addElse(ControlData& data, const ExpressionList& currentStack) -> PartialResult
{
unifyValuesWithBlock(currentStack, data.result);
m_currentBlock->appendNewControlValue(m_proc, Jump, Origin(), data.continuation);
return addElseToUnreachable(data);
}
auto B3IRGenerator::addElseToUnreachable(ControlData& data) -> PartialResult
{
ASSERT(data.type() == BlockType::If);
m_currentBlock = data.special;
data.convertIfToBlock();
return { };
}
auto B3IRGenerator::addReturn(const ControlData&, const ExpressionList& returnValues) -> PartialResult
{
ASSERT(returnValues.size() <= 1);
if (returnValues.size())
m_currentBlock->appendNewControlValue(m_proc, B3::Return, Origin(), returnValues[0]);
else
m_currentBlock->appendNewControlValue(m_proc, B3::Return, Origin());
return { };
}
auto B3IRGenerator::addBranch(ControlData& data, ExpressionType condition, const ExpressionList& returnValues) -> PartialResult
{
if (data.type() != BlockType::Loop)
unifyValuesWithBlock(returnValues, data.result);
BasicBlock* target = data.targetBlockForBranch();
if (condition) {
BasicBlock* continuation = m_proc.addBlock();
m_currentBlock->appendNew<Value>(m_proc, B3::Branch, Origin(), condition);
m_currentBlock->setSuccessors(FrequentedBlock(target), FrequentedBlock(continuation));
target->addPredecessor(m_currentBlock);
continuation->addPredecessor(m_currentBlock);
m_currentBlock = continuation;
} else {
m_currentBlock->appendNewControlValue(m_proc, Jump, Origin(), FrequentedBlock(target));
target->addPredecessor(m_currentBlock);
}
return { };
}
auto B3IRGenerator::addSwitch(ExpressionType condition, const Vector<ControlData*>& targets, ControlData& defaultTarget, const ExpressionList& expressionStack) -> PartialResult
{
for (size_t i = 0; i < targets.size(); ++i)
unifyValuesWithBlock(expressionStack, targets[i]->result);
unifyValuesWithBlock(expressionStack, defaultTarget.result);
SwitchValue* switchValue = m_currentBlock->appendNew<SwitchValue>(m_proc, Origin(), condition);
switchValue->setFallThrough(FrequentedBlock(defaultTarget.targetBlockForBranch()));
for (size_t i = 0; i < targets.size(); ++i)
switchValue->appendCase(SwitchCase(i, FrequentedBlock(targets[i]->targetBlockForBranch())));
return { };
}
auto B3IRGenerator::endBlock(ControlEntry& entry, ExpressionList& expressionStack) -> PartialResult
{
ControlData& data = entry.controlData;
unifyValuesWithBlock(expressionStack, data.result);
m_currentBlock->appendNewControlValue(m_proc, Jump, Origin(), data.continuation);
data.continuation->addPredecessor(m_currentBlock);
return addEndToUnreachable(entry);
}
auto B3IRGenerator::addEndToUnreachable(ControlEntry& entry) -> PartialResult
{
ControlData& data = entry.controlData;
m_currentBlock = data.continuation;
if (data.type() == BlockType::If) {
data.special->appendNewControlValue(m_proc, Jump, Origin(), m_currentBlock);
m_currentBlock->addPredecessor(data.special);
}
for (Variable* result : data.result)
entry.enclosedExpressionStack.append(m_currentBlock->appendNew<VariableValue>(m_proc, B3::Get, Origin(), result));
// TopLevel does not have any code after this so we need to make sure we emit a return here.
if (data.type() == BlockType::TopLevel)
return addReturn(entry.controlData, entry.enclosedExpressionStack);
return { };
}
auto B3IRGenerator::addCall(uint32_t functionIndex, const Signature* signature, Vector<ExpressionType>& args, ExpressionType& result) -> PartialResult
{
ASSERT(signature->argumentCount() == args.size());
Type returnType = signature->returnType();
Vector<UnlinkedWasmToWasmCall>* unlinkedWasmToWasmCalls = &m_unlinkedWasmToWasmCalls;
if (m_info.isImportedFunctionFromFunctionIndexSpace(functionIndex)) {
// FIXME imports can be linked here, instead of generating a patchpoint, because all import stubs are generated before B3 compilation starts. https://bugs.webkit.org/show_bug.cgi?id=166462
Value* functionImport = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, pointerType(), Origin(), m_instanceValue, JSWebAssemblyInstance::offsetOfImportFunction(functionIndex));
Value* jsTypeOfImport = m_currentBlock->appendNew<MemoryValue>(m_proc, Load8Z, Origin(), functionImport, JSCell::typeInfoTypeOffset());
Value* isWasmCall = m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), jsTypeOfImport, m_currentBlock->appendNew<Const32Value>(m_proc, Origin(), WebAssemblyFunctionType));
BasicBlock* isWasmBlock = m_proc.addBlock();
BasicBlock* isJSBlock = m_proc.addBlock();
BasicBlock* continuation = m_proc.addBlock();
m_currentBlock->appendNewControlValue(m_proc, B3::Branch, Origin(), isWasmCall, FrequentedBlock(isWasmBlock), FrequentedBlock(isJSBlock));
Value* wasmCallResult = wasmCallingConvention().setupCall(m_proc, isWasmBlock, Origin(), args, toB3Type(returnType),
[&] (PatchpointValue* patchpoint) {
patchpoint->effects.writesPinned = true;
patchpoint->effects.readsPinned = true;
patchpoint->setGenerator([unlinkedWasmToWasmCalls, functionIndex] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
AllowMacroScratchRegisterUsage allowScratch(jit);
CCallHelpers::Call call = jit.call();
jit.addLinkTask([unlinkedWasmToWasmCalls, call, functionIndex] (LinkBuffer& linkBuffer) {
unlinkedWasmToWasmCalls->append({ linkBuffer.locationOf(call), functionIndex, UnlinkedWasmToWasmCall::Target::ToWasm });
});
});
});
UpsilonValue* wasmCallResultUpsilon = returnType == Void ? nullptr : isWasmBlock->appendNew<UpsilonValue>(m_proc, Origin(), wasmCallResult);
isWasmBlock->appendNewControlValue(m_proc, Jump, Origin(), continuation);
Value* jsCallResult = wasmCallingConvention().setupCall(m_proc, isJSBlock, Origin(), args, toB3Type(returnType),
[&] (PatchpointValue* patchpoint) {
patchpoint->effects.writesPinned = true;
patchpoint->effects.readsPinned = true;
patchpoint->setGenerator([unlinkedWasmToWasmCalls, functionIndex] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
AllowMacroScratchRegisterUsage allowScratch(jit);
CCallHelpers::Call call = jit.call();
jit.addLinkTask([unlinkedWasmToWasmCalls, call, functionIndex] (LinkBuffer& linkBuffer) {
unlinkedWasmToWasmCalls->append({ linkBuffer.locationOf(call), functionIndex, UnlinkedWasmToWasmCall::Target::ToJs });
});
});
});
UpsilonValue* jsCallResultUpsilon = returnType == Void ? nullptr : isJSBlock->appendNew<UpsilonValue>(m_proc, Origin(), jsCallResult);
isJSBlock->appendNewControlValue(m_proc, Jump, Origin(), continuation);
m_currentBlock = continuation;
if (returnType == Void)
result = nullptr;
else {
result = continuation->appendNew<Value>(m_proc, Phi, toB3Type(returnType), Origin());
wasmCallResultUpsilon->setPhi(result);
jsCallResultUpsilon->setPhi(result);
}
// The call could have been to another WebAssembly instance, and / or could have modified our Memory.
restoreWebAssemblyGlobalState(m_vm, m_info.memory, m_instanceValue, m_proc, continuation);
} else {
result = wasmCallingConvention().setupCall(m_proc, m_currentBlock, Origin(), args, toB3Type(returnType),
[&] (PatchpointValue* patchpoint) {
patchpoint->effects.writesPinned = true;
patchpoint->effects.readsPinned = true;
patchpoint->setGenerator([unlinkedWasmToWasmCalls, functionIndex] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
AllowMacroScratchRegisterUsage allowScratch(jit);
CCallHelpers::Call call = jit.call();
jit.addLinkTask([unlinkedWasmToWasmCalls, call, functionIndex] (LinkBuffer& linkBuffer) {
unlinkedWasmToWasmCalls->append({ linkBuffer.locationOf(call), functionIndex, UnlinkedWasmToWasmCall::Target::ToWasm });
});
});
});
}
return { };
}
auto B3IRGenerator::addCallIndirect(const Signature* signature, SignatureIndex signatureIndex, Vector<ExpressionType>& args, ExpressionType& result) -> PartialResult
{
ASSERT(signatureIndex != Signature::invalidIndex);
ExpressionType calleeIndex = args.takeLast();
ASSERT(signature->argumentCount() == args.size());
ExpressionType callableFunctionBuffer;
ExpressionType callableFunctionBufferSize;
{
ExpressionType table = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, pointerType(), Origin(),
m_instanceValue, JSWebAssemblyInstance::offsetOfTable());
callableFunctionBuffer = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, pointerType(), Origin(),
table, JSWebAssemblyTable::offsetOfFunctions());
callableFunctionBufferSize = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, Int32, Origin(),
table, JSWebAssemblyTable::offsetOfSize());
}
// Check the index we are looking for is valid.
{
CheckValue* check = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(),
m_currentBlock->appendNew<Value>(m_proc, AboveEqual, Origin(), calleeIndex, callableFunctionBufferSize));
check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsCallIndirect);
});
}
// Compute the offset in the table index space we are looking for.
ExpressionType offset = m_currentBlock->appendNew<Value>(m_proc, Mul, Origin(),
m_currentBlock->appendNew<Value>(m_proc, ZExt32, Origin(), calleeIndex),
m_currentBlock->appendIntConstant(m_proc, Origin(), pointerType(), sizeof(CallableFunction)));
ExpressionType callableFunction = m_currentBlock->appendNew<Value>(m_proc, Add, Origin(), callableFunctionBuffer, offset);
// Check that the CallableFunction is initialized. We trap if it isn't. An "invalid" SignatureIndex indicates it's not initialized.
static_assert(sizeof(CallableFunction::signatureIndex) == sizeof(uint32_t), "Load codegen assumes i32");
ExpressionType calleeSignatureIndex = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, Int32, Origin(), callableFunction, OBJECT_OFFSETOF(CallableFunction, signatureIndex));
{
CheckValue* check = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(),
m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(),
calleeSignatureIndex,
m_currentBlock->appendNew<Const32Value>(m_proc, Origin(), Signature::invalidIndex)));
check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::NullTableEntry);
});
}
// Check the signature matches the value we expect.
{
ExpressionType expectedSignatureIndex = m_currentBlock->appendNew<Const32Value>(m_proc, Origin(), signatureIndex);
CheckValue* check = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(),
m_currentBlock->appendNew<Value>(m_proc, NotEqual, Origin(), calleeSignatureIndex, expectedSignatureIndex));
check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::BadSignature);
});
}
ExpressionType calleeCode = m_currentBlock->appendNew<MemoryValue>(m_proc, Load, pointerType(), Origin(), callableFunction, OBJECT_OFFSETOF(CallableFunction, code));
Type returnType = signature->returnType();
result = wasmCallingConvention().setupCall(m_proc, m_currentBlock, Origin(), args, toB3Type(returnType),
[&] (PatchpointValue* patchpoint) {
patchpoint->effects.writesPinned = true;
patchpoint->effects.readsPinned = true;
patchpoint->append(calleeCode, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
jit.call(params[returnType == Void ? 0 : 1].gpr());
});
});
// The call could have been to another WebAssembly instance, and / or could have modified our Memory.
restoreWebAssemblyGlobalState(m_vm, m_info.memory, m_instanceValue, m_proc, m_currentBlock);
return { };
}
void B3IRGenerator::unify(Variable* variable, ExpressionType source)
{
m_currentBlock->appendNew<VariableValue>(m_proc, Set, Origin(), variable, source);
}
void B3IRGenerator::unifyValuesWithBlock(const ExpressionList& resultStack, ResultList& result)
{
ASSERT(result.size() <= resultStack.size());
for (size_t i = 0; i < result.size(); ++i)
unify(result[result.size() - 1 - i], resultStack[resultStack.size() - 1 - i]);
}
static void dumpExpressionStack(const CommaPrinter& comma, const B3IRGenerator::ExpressionList& expressionStack)
{
dataLog(comma, "ExpressionStack:");
for (const auto& expression : expressionStack)
dataLog(comma, *expression);
}
void B3IRGenerator::dump(const Vector<ControlEntry>& controlStack, const ExpressionList* expressionStack)
{
dataLogLn("Processing Graph:");
dataLog(m_proc);
dataLogLn("With current block:", *m_currentBlock);
dataLogLn("Control stack:");
ASSERT(controlStack.size());
for (size_t i = controlStack.size(); i--;) {
dataLog(" ", controlStack[i].controlData, ": ");
CommaPrinter comma(", ", "");
dumpExpressionStack(comma, *expressionStack);
expressionStack = &controlStack[i].enclosedExpressionStack;
dataLogLn();
}
dataLogLn();
}
static void createJSToWasmWrapper(VM& vm, CompilationContext& compilationContext, WasmInternalFunction& function, const Signature* signature, const ModuleInformation& info)
{
Procedure proc;
BasicBlock* block = proc.addBlock();
Origin origin;
jscCallingConvention().setupFrameInPrologue(&function.jsToWasmCalleeMoveLocation, proc, origin, block);
if (!ASSERT_DISABLED) {
// This should be guaranteed by our JS wrapper that handles calls to us.
// Just prevent against crazy when ASSERT is enabled.
Value* framePointer = block->appendNew<B3::Value>(proc, B3::FramePointer, origin);
Value* offSetOfArgumentCount = block->appendNew<Const64Value>(proc, origin, CallFrameSlot::argumentCount * sizeof(Register));
Value* argumentCount = block->appendNew<MemoryValue>(proc, Load, Int32, origin,
block->appendNew<Value>(proc, Add, origin, framePointer, offSetOfArgumentCount));
Value* expectedArgumentCount = block->appendNew<Const32Value>(proc, origin, signature->argumentCount());
CheckValue* argumentCountCheck = block->appendNew<CheckValue>(proc, Check, origin,
block->appendNew<Value>(proc, Above, origin, expectedArgumentCount, argumentCount));
argumentCountCheck->setGenerator([] (CCallHelpers& jit, const StackmapGenerationParams&) {
jit.breakpoint();
});
}
// FIXME The instance is currently set by the C++ code in WebAssemblyFunction::call. We shouldn't go through the extra C++ hoop. https://bugs.webkit.org/show_bug.cgi?id=166486
Value* instance = block->appendNew<MemoryValue>(proc, Load, pointerType(), Origin(),
block->appendNew<ConstPtrValue>(proc, Origin(), &vm.topJSWebAssemblyInstance));
restoreWebAssemblyGlobalState(vm, info.memory, instance, proc, block);
// Get our arguments.
Vector<Value*> arguments;
jscCallingConvention().loadArguments(signature, proc, block, origin, [&] (Value* argument, unsigned) {
arguments.append(argument);
});
// Move the arguments into place.
Value* result = wasmCallingConvention().setupCall(proc, block, origin, arguments, toB3Type(signature->returnType()), [&] (PatchpointValue* patchpoint) {
CompilationContext* context = &compilationContext;
// wasm -> wasm calls clobber pinned registers unconditionally. This JS -> wasm transition must therefore restore these pinned registers (which are usually callee-saved) to account for this.
const PinnedRegisterInfo* pinnedRegs = &PinnedRegisterInfo::get();
RegisterSet clobbers;
clobbers.set(pinnedRegs->baseMemoryPointer);
for (auto info : pinnedRegs->sizeRegisters)
clobbers.set(info.sizeRegister);
patchpoint->effects.writesPinned = true;
patchpoint->clobber(clobbers);
patchpoint->setGenerator([context] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
AllowMacroScratchRegisterUsage allowScratch(jit);
CCallHelpers::Call call = jit.call();
context->jsEntrypointToWasmEntrypointCall = call;
});
});
// Return the result, if needed.
switch (signature->returnType()) {
case Wasm::Void:
block->appendNewControlValue(proc, B3::Return, origin);
break;
case Wasm::F32:
case Wasm::F64:
result = block->appendNew<Value>(proc, BitwiseCast, origin, result);
FALLTHROUGH;
case Wasm::I32:
case Wasm::I64:
block->appendNewControlValue(proc, B3::Return, origin, result);
break;
case Wasm::Func:
case Wasm::Anyfunc:
RELEASE_ASSERT_NOT_REACHED();
}
B3::prepareForGeneration(proc);
B3::generate(proc, *compilationContext.jsEntrypointJIT);
compilationContext.jsEntrypointByproducts = proc.releaseByproducts();
function.jsToWasmEntrypoint.calleeSaveRegisters = proc.calleeSaveRegisters();
}
Expected<std::unique_ptr<WasmInternalFunction>, String> parseAndCompile(VM& vm, CompilationContext& compilationContext, const uint8_t* functionStart, size_t functionLength, const Signature* signature, Vector<UnlinkedWasmToWasmCall>& unlinkedWasmToWasmCalls, const ModuleInformation& info, const Vector<SignatureIndex>& moduleSignatureIndicesToUniquedSignatureIndices, unsigned optLevel)
{
auto result = std::make_unique<WasmInternalFunction>();
compilationContext.jsEntrypointJIT = std::make_unique<CCallHelpers>(&vm);
compilationContext.wasmEntrypointJIT = std::make_unique<CCallHelpers>(&vm);
Procedure procedure;
B3IRGenerator context(vm, info, procedure, result.get(), unlinkedWasmToWasmCalls);
FunctionParser<B3IRGenerator> parser(&vm, context, functionStart, functionLength, signature, info, moduleSignatureIndicesToUniquedSignatureIndices);
WASM_FAIL_IF_HELPER_FAILS(parser.parse());
procedure.resetReachability();
validate(procedure, "After parsing:\n");
if (verbose)
dataLog("Pre SSA: ", procedure);
fixSSA(procedure);
if (verbose)
dataLog("Post SSA: ", procedure);
{
B3::prepareForGeneration(procedure, optLevel);
B3::generate(procedure, *compilationContext.wasmEntrypointJIT);
compilationContext.wasmEntrypointByproducts = procedure.releaseByproducts();
result->wasmEntrypoint.calleeSaveRegisters = procedure.calleeSaveRegisters();
}
createJSToWasmWrapper(vm, compilationContext, *result, signature, info);
return WTFMove(result);
}
// Custom wasm ops. These are the ones too messy to do in wasm.json.
void B3IRGenerator::emitChecksForModOrDiv(B3::Opcode operation, ExpressionType left, ExpressionType right)
{
ASSERT(operation == Div || operation == Mod || operation == UDiv || operation == UMod);
const B3::Type type = left->type();
{
CheckValue* check = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(),
m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), right,
m_currentBlock->appendIntConstant(m_proc, Origin(), type, 0)));
check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::DivisionByZero);
});
}
if (operation == Div) {
int64_t min = type == Int32 ? std::numeric_limits<int32_t>::min() : std::numeric_limits<int64_t>::min();
CheckValue* check = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(),
m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(),
m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), left,
m_currentBlock->appendIntConstant(m_proc, Origin(), type, min)),
m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), right,
m_currentBlock->appendIntConstant(m_proc, Origin(), type, -1))));
check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::IntegerOverflow);
});
}
}
template<>
auto B3IRGenerator::addOp<OpType::I32DivS>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
const B3::Opcode op = Div;
emitChecksForModOrDiv(op, left, right);
result = m_currentBlock->appendNew<Value>(m_proc, op, Origin(), left, right);
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I32RemS>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
const B3::Opcode op = Mod;
emitChecksForModOrDiv(op, left, right);
result = m_currentBlock->appendNew<Value>(m_proc, chill(op), Origin(), left, right);
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I32DivU>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
const B3::Opcode op = UDiv;
emitChecksForModOrDiv(op, left, right);
result = m_currentBlock->appendNew<Value>(m_proc, op, Origin(), left, right);
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I32RemU>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
const B3::Opcode op = UMod;
emitChecksForModOrDiv(op, left, right);
result = m_currentBlock->appendNew<Value>(m_proc, op, Origin(), left, right);
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64DivS>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
const B3::Opcode op = Div;
emitChecksForModOrDiv(op, left, right);
result = m_currentBlock->appendNew<Value>(m_proc, op, Origin(), left, right);
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64RemS>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
const B3::Opcode op = Mod;
emitChecksForModOrDiv(op, left, right);
result = m_currentBlock->appendNew<Value>(m_proc, chill(op), Origin(), left, right);
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64DivU>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
const B3::Opcode op = UDiv;
emitChecksForModOrDiv(op, left, right);
result = m_currentBlock->appendNew<Value>(m_proc, op, Origin(), left, right);
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64RemU>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
const B3::Opcode op = UMod;
emitChecksForModOrDiv(op, left, right);
result = m_currentBlock->appendNew<Value>(m_proc, op, Origin(), left, right);
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I32Ctz>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int32, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.countTrailingZeros32(params[1].gpr(), params[0].gpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64Ctz>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int64, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.countTrailingZeros64(params[1].gpr(), params[0].gpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I32Popcnt>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
// FIXME: This should use the popcnt instruction if SSE4 is available but we don't have code to detect SSE4 yet.
// see: https://bugs.webkit.org/show_bug.cgi?id=165363
uint32_t (*popcount)(int32_t) = [] (int32_t value) -> uint32_t { return __builtin_popcount(value); };
Value* funcAddress = m_currentBlock->appendNew<ConstPtrValue>(m_proc, Origin(), bitwise_cast<void*>(popcount));
result = m_currentBlock->appendNew<CCallValue>(m_proc, Int32, Origin(), Effects::none(), funcAddress, arg);
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64Popcnt>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
// FIXME: This should use the popcnt instruction if SSE4 is available but we don't have code to detect SSE4 yet.
// see: https://bugs.webkit.org/show_bug.cgi?id=165363
uint64_t (*popcount)(int64_t) = [] (int64_t value) -> uint64_t { return __builtin_popcountll(value); };
Value* funcAddress = m_currentBlock->appendNew<ConstPtrValue>(m_proc, Origin(), bitwise_cast<void*>(popcount));
result = m_currentBlock->appendNew<CCallValue>(m_proc, Int64, Origin(), Effects::none(), funcAddress, arg);
return { };
}
template<>
auto B3IRGenerator::addOp<F64ConvertUI64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Double, Origin());
if (isX86())
patchpoint->numGPScratchRegisters = 1;
patchpoint->append(ConstrainedValue(arg, ValueRep::SomeRegister));
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
#if CPU(X86_64)
jit.convertUInt64ToDouble(params[1].gpr(), params[0].fpr(), params.gpScratch(0));
#else
jit.convertUInt64ToDouble(params[1].gpr(), params[0].fpr());
#endif
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::F32ConvertUI64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Float, Origin());
if (isX86())
patchpoint->numGPScratchRegisters = 1;
patchpoint->append(ConstrainedValue(arg, ValueRep::SomeRegister));
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
#if CPU(X86_64)
jit.convertUInt64ToFloat(params[1].gpr(), params[0].fpr(), params.gpScratch(0));
#else
jit.convertUInt64ToFloat(params[1].gpr(), params[0].fpr());
#endif
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::F64Nearest>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Double, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.roundTowardNearestIntDouble(params[1].fpr(), params[0].fpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::F32Nearest>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Float, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.roundTowardNearestIntFloat(params[1].fpr(), params[0].fpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::F64Trunc>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Double, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.roundTowardZeroDouble(params[1].fpr(), params[0].fpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::F32Trunc>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Float, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.roundTowardZeroFloat(params[1].fpr(), params[0].fpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I32TruncSF64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
Value* max = m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), -static_cast<double>(std::numeric_limits<int32_t>::min()));
Value* min = m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), static_cast<double>(std::numeric_limits<int32_t>::min()));
Value* outOfBounds = m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(),
m_currentBlock->appendNew<Value>(m_proc, LessThan, Origin(), arg, max),
m_currentBlock->appendNew<Value>(m_proc, GreaterEqual, Origin(), arg, min));
outOfBounds = m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32));
CheckValue* trap = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(), outOfBounds);
trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc);
});
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int32, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.truncateDoubleToInt32(params[1].fpr(), params[0].gpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I32TruncSF32>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
Value* max = m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), -static_cast<float>(std::numeric_limits<int32_t>::min()));
Value* min = m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), static_cast<float>(std::numeric_limits<int32_t>::min()));
Value* outOfBounds = m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(),
m_currentBlock->appendNew<Value>(m_proc, LessThan, Origin(), arg, max),
m_currentBlock->appendNew<Value>(m_proc, GreaterEqual, Origin(), arg, min));
outOfBounds = m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32));
CheckValue* trap = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(), outOfBounds);
trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc);
});
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int32, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.truncateFloatToInt32(params[1].fpr(), params[0].gpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I32TruncUF64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
Value* max = m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), static_cast<double>(std::numeric_limits<int32_t>::min()) * -2.0);
Value* min = m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), -1.0);
Value* outOfBounds = m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(),
m_currentBlock->appendNew<Value>(m_proc, LessThan, Origin(), arg, max),
m_currentBlock->appendNew<Value>(m_proc, GreaterThan, Origin(), arg, min));
outOfBounds = m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32));
CheckValue* trap = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(), outOfBounds);
trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc);
});
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int32, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.truncateDoubleToUint32(params[1].fpr(), params[0].gpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I32TruncUF32>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
Value* max = m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), static_cast<float>(std::numeric_limits<int32_t>::min()) * -2.0);
Value* min = m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), -1.0);
Value* outOfBounds = m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(),
m_currentBlock->appendNew<Value>(m_proc, LessThan, Origin(), arg, max),
m_currentBlock->appendNew<Value>(m_proc, GreaterThan, Origin(), arg, min));
outOfBounds = m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32));
CheckValue* trap = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(), outOfBounds);
trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc);
});
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int32, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.truncateFloatToUint32(params[1].fpr(), params[0].gpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64TruncSF64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
Value* max = m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), -static_cast<double>(std::numeric_limits<int64_t>::min()));
Value* min = m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), static_cast<double>(std::numeric_limits<int64_t>::min()));
Value* outOfBounds = m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(),
m_currentBlock->appendNew<Value>(m_proc, LessThan, Origin(), arg, max),
m_currentBlock->appendNew<Value>(m_proc, GreaterEqual, Origin(), arg, min));
outOfBounds = m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32));
CheckValue* trap = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(), outOfBounds);
trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc);
});
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int64, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.truncateDoubleToInt64(params[1].fpr(), params[0].gpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64TruncUF64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
Value* max = m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), static_cast<double>(std::numeric_limits<int64_t>::min()) * -2.0);
Value* min = m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), -1.0);
Value* outOfBounds = m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(),
m_currentBlock->appendNew<Value>(m_proc, LessThan, Origin(), arg, max),
m_currentBlock->appendNew<Value>(m_proc, GreaterThan, Origin(), arg, min));
outOfBounds = m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32));
CheckValue* trap = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(), outOfBounds);
trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc);
});
Value* constant;
if (isX86()) {
// Since x86 doesn't have an instruction to convert floating points to unsigned integers, we at least try to do the smart thing if
// the numbers are would be positive anyway as a signed integer. Since we cannot materialize constants into fprs we have b3 do it
// so we can pool them if needed.
constant = m_currentBlock->appendNew<ConstDoubleValue>(m_proc, Origin(), static_cast<double>(std::numeric_limits<uint64_t>::max() - std::numeric_limits<int64_t>::max()));
}
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int64, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
if (isX86()) {
patchpoint->append(constant, ValueRep::SomeRegister);
patchpoint->numFPScratchRegisters = 1;
}
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
FPRReg scratch = InvalidFPRReg;
FPRReg constant = InvalidFPRReg;
if (isX86()) {
scratch = params.fpScratch(0);
constant = params[2].fpr();
}
jit.truncateDoubleToUint64(params[1].fpr(), params[0].gpr(), scratch, constant);
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64TruncSF32>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
Value* max = m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), -static_cast<float>(std::numeric_limits<int64_t>::min()));
Value* min = m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), static_cast<float>(std::numeric_limits<int64_t>::min()));
Value* outOfBounds = m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(),
m_currentBlock->appendNew<Value>(m_proc, LessThan, Origin(), arg, max),
m_currentBlock->appendNew<Value>(m_proc, GreaterEqual, Origin(), arg, min));
outOfBounds = m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32));
CheckValue* trap = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(), outOfBounds);
trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc);
});
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int64, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
jit.truncateFloatToInt64(params[1].fpr(), params[0].gpr());
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
template<>
auto B3IRGenerator::addOp<OpType::I64TruncUF32>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
Value* max = m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), static_cast<float>(std::numeric_limits<int64_t>::min()) * -2.0);
Value* min = m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), -1.0);
Value* outOfBounds = m_currentBlock->appendNew<Value>(m_proc, BitAnd, Origin(),
m_currentBlock->appendNew<Value>(m_proc, LessThan, Origin(), arg, max),
m_currentBlock->appendNew<Value>(m_proc, GreaterThan, Origin(), arg, min));
outOfBounds = m_currentBlock->appendNew<Value>(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32));
CheckValue* trap = m_currentBlock->appendNew<CheckValue>(m_proc, Check, Origin(), outOfBounds);
trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) {
this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc);
});
Value* constant;
if (isX86()) {
// Since x86 doesn't have an instruction to convert floating points to unsigned integers, we at least try to do the smart thing if
// the numbers are would be positive anyway as a signed integer. Since we cannot materialize constants into fprs we have b3 do it
// so we can pool them if needed.
constant = m_currentBlock->appendNew<ConstFloatValue>(m_proc, Origin(), static_cast<float>(std::numeric_limits<uint64_t>::max() - std::numeric_limits<int64_t>::max()));
}
PatchpointValue* patchpoint = m_currentBlock->appendNew<PatchpointValue>(m_proc, Int64, Origin());
patchpoint->append(arg, ValueRep::SomeRegister);
if (isX86()) {
patchpoint->append(constant, ValueRep::SomeRegister);
patchpoint->numFPScratchRegisters = 1;
}
patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
FPRReg scratch = InvalidFPRReg;
FPRReg constant = InvalidFPRReg;
if (isX86()) {
scratch = params.fpScratch(0);
constant = params[2].fpr();
}
jit.truncateFloatToUint64(params[1].fpr(), params[0].gpr(), scratch, constant);
});
patchpoint->effects = Effects::none();
result = patchpoint;
return { };
}
} } // namespace JSC::Wasm
#include "WasmB3IRGeneratorInlines.h"
#endif // ENABLE(WEBASSEMBLY)