| /* |
| * Copyright (C) 2012 Google Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| |
| #if ENABLE(WEB_AUDIO) |
| |
| #include "PeriodicWave.h" |
| |
| #include "FFTFrame.h" |
| #include "VectorMath.h" |
| #include <algorithm> |
| |
| const unsigned PeriodicWaveSize = 4096; // This must be a power of two. |
| const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges. |
| const float CentsPerRange = 1200 / 3; // 1/3 Octave. |
| |
| namespace WebCore { |
| |
| using namespace VectorMath; |
| |
| Ref<PeriodicWave> PeriodicWave::create(float sampleRate, Float32Array& real, Float32Array& imaginary) |
| { |
| ASSERT(real.length() == imaginary.length()); |
| |
| auto waveTable = adoptRef(*new PeriodicWave(sampleRate)); |
| waveTable->createBandLimitedTables(real.data(), imaginary.data(), real.length()); |
| return waveTable; |
| } |
| |
| Ref<PeriodicWave> PeriodicWave::createSine(float sampleRate) |
| { |
| Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate)); |
| waveTable->generateBasicWaveform(Type::Sine); |
| return waveTable; |
| } |
| |
| Ref<PeriodicWave> PeriodicWave::createSquare(float sampleRate) |
| { |
| Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate)); |
| waveTable->generateBasicWaveform(Type::Square); |
| return waveTable; |
| } |
| |
| Ref<PeriodicWave> PeriodicWave::createSawtooth(float sampleRate) |
| { |
| Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate)); |
| waveTable->generateBasicWaveform(Type::Sawtooth); |
| return waveTable; |
| } |
| |
| Ref<PeriodicWave> PeriodicWave::createTriangle(float sampleRate) |
| { |
| Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate)); |
| waveTable->generateBasicWaveform(Type::Triangle); |
| return waveTable; |
| } |
| |
| PeriodicWave::PeriodicWave(float sampleRate) |
| : m_sampleRate(sampleRate) |
| , m_periodicWaveSize(PeriodicWaveSize) |
| , m_numberOfRanges(NumberOfRanges) |
| , m_centsPerRange(CentsPerRange) |
| { |
| float nyquist = 0.5 * m_sampleRate; |
| m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials(); |
| m_rateScale = m_periodicWaveSize / m_sampleRate; |
| } |
| |
| void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor) |
| { |
| // Negative frequencies are allowed, in which case we alias to the positive frequency. |
| fundamentalFrequency = fabsf(fundamentalFrequency); |
| |
| // Calculate the pitch range. |
| float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5; |
| float centsAboveLowestFrequency = log2f(ratio) * 1200; |
| |
| // Add one to round-up to the next range just in time to truncate partials before aliasing occurs. |
| float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange; |
| |
| pitchRange = std::max(pitchRange, 0.0f); |
| pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1)); |
| |
| // The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials. |
| // It's a little confusing since the range index gets larger the more partials we cull out. |
| // So the lower table data will have a larger range index. |
| unsigned rangeIndex1 = static_cast<unsigned>(pitchRange); |
| unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1; |
| |
| lowerWaveData = m_bandLimitedTables[rangeIndex2]->data(); |
| higherWaveData = m_bandLimitedTables[rangeIndex1]->data(); |
| |
| // Ranges from 0 -> 1 to interpolate between lower -> higher. |
| tableInterpolationFactor = pitchRange - rangeIndex1; |
| } |
| |
| unsigned PeriodicWave::maxNumberOfPartials() const |
| { |
| return m_periodicWaveSize / 2; |
| } |
| |
| unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const |
| { |
| // Number of cents below nyquist where we cull partials. |
| float centsToCull = rangeIndex * m_centsPerRange; |
| |
| // A value from 0 -> 1 representing what fraction of the partials to keep. |
| float cullingScale = pow(2, -centsToCull / 1200); |
| |
| // The very top range will have all the partials culled. |
| unsigned numberOfPartials = cullingScale * maxNumberOfPartials(); |
| |
| return numberOfPartials; |
| } |
| |
| // Convert into time-domain wave tables. |
| // One table is created for each range for non-aliasing playback at different playback rates. |
| // Thus, higher ranges have more high-frequency partials culled out. |
| void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents) |
| { |
| float normalizationScale = 1; |
| |
| unsigned fftSize = m_periodicWaveSize; |
| unsigned halfSize = fftSize / 2; |
| unsigned i; |
| |
| numberOfComponents = std::min(numberOfComponents, halfSize); |
| |
| m_bandLimitedTables.reserveCapacity(m_numberOfRanges); |
| |
| for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) { |
| // This FFTFrame is used to cull partials (represented by frequency bins). |
| FFTFrame frame(fftSize); |
| float* realP = frame.realData(); |
| float* imagP = frame.imagData(); |
| |
| // Copy from loaded frequency data and scale. |
| float scale = fftSize; |
| vsmul(realData, 1, &scale, realP, 1, numberOfComponents); |
| vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents); |
| |
| // If fewer components were provided than 1/2 FFT size, then clear the remaining bins. |
| for (i = numberOfComponents; i < halfSize; ++i) { |
| realP[i] = 0; |
| imagP[i] = 0; |
| } |
| |
| // Generate complex conjugate because of the way the inverse FFT is defined. |
| float minusOne = -1; |
| vsmul(imagP, 1, &minusOne, imagP, 1, halfSize); |
| |
| // Find the starting bin where we should start culling. |
| // We need to clear out the highest frequencies to band-limit the waveform. |
| unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex); |
| |
| // Cull the aliasing partials for this pitch range. |
| for (i = numberOfPartials + 1; i < halfSize; ++i) { |
| realP[i] = 0; |
| imagP[i] = 0; |
| } |
| // Clear packed-nyquist if necessary. |
| if (numberOfPartials < halfSize) |
| imagP[0] = 0; |
| |
| // Clear any DC-offset. |
| realP[0] = 0; |
| |
| // Create the band-limited table. |
| m_bandLimitedTables.append(makeUnique<AudioFloatArray>(m_periodicWaveSize)); |
| |
| // Apply an inverse FFT to generate the time-domain table data. |
| float* data = m_bandLimitedTables[rangeIndex]->data(); |
| frame.doInverseFFT(data); |
| |
| // For the first range (which has the highest power), calculate its peak value then compute normalization scale. |
| if (!rangeIndex) { |
| float maxValue; |
| vmaxmgv(data, 1, &maxValue, m_periodicWaveSize); |
| |
| if (maxValue) |
| normalizationScale = 1.0f / maxValue; |
| } |
| |
| // Apply normalization scale. |
| vsmul(data, 1, &normalizationScale, data, 1, m_periodicWaveSize); |
| } |
| } |
| |
| void PeriodicWave::generateBasicWaveform(Type shape) |
| { |
| unsigned fftSize = periodicWaveSize(); |
| unsigned halfSize = fftSize / 2; |
| |
| AudioFloatArray real(halfSize); |
| AudioFloatArray imag(halfSize); |
| float* realP = real.data(); |
| float* imagP = imag.data(); |
| |
| // Clear DC and Nyquist. |
| realP[0] = 0; |
| imagP[0] = 0; |
| |
| for (unsigned n = 1; n < halfSize; ++n) { |
| float omega = 2 * piFloat * n; |
| float invOmega = 1 / omega; |
| |
| // Fourier coefficients according to standard definition. |
| float a; // Coefficient for cos(). |
| float b; // Coefficient for sin(). |
| |
| // Calculate Fourier coefficients depending on the shape. |
| // Note that the overall scaling (magnitude) of the waveforms is normalized in createBandLimitedTables(). |
| switch (shape) { |
| case Type::Sine: |
| // Standard sine wave function. |
| a = 0; |
| b = (n == 1) ? 1 : 0; |
| break; |
| case Type::Square: |
| // Square-shaped waveform with the first half its maximum value and the second half its minimum value. |
| a = 0; |
| b = invOmega * ((n & 1) ? 2 : 0); |
| break; |
| case Type::Sawtooth: |
| // Sawtooth-shaped waveform with the first half ramping from zero to maximum and the second half from minimum to zero. |
| a = 0; |
| b = -invOmega * cos(0.5 * omega); |
| break; |
| case Type::Triangle: |
| // Triangle-shaped waveform going from its maximum value to its minimum value then back to the maximum value. |
| a = (4 - 4 * cos(0.5 * omega)) / (n * n * piFloat * piFloat); |
| b = 0; |
| break; |
| } |
| |
| realP[n] = a; |
| imagP[n] = b; |
| } |
| |
| createBandLimitedTables(realP, imagP, halfSize); |
| } |
| |
| } // namespace WebCore |
| |
| #endif // ENABLE(WEB_AUDIO) |