| /* |
| * Copyright (C) 2015 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "DFAMinimizer.h" |
| |
| #if ENABLE(CONTENT_EXTENSIONS) |
| |
| #include "DFA.h" |
| #include "DFANode.h" |
| #include "MutableRangeList.h" |
| #include <wtf/HashMap.h> |
| #include <wtf/Hasher.h> |
| #include <wtf/Vector.h> |
| |
| namespace WebCore { |
| namespace ContentExtensions { |
| |
| namespace { |
| |
| template<typename VectorType, typename Iterable, typename Function> |
| static inline void iterateIntersections(const VectorType& singularTransitionsFirsts, const Iterable& iterableTransitionList, const Function& intersectionHandler) |
| { |
| ASSERT(!singularTransitionsFirsts.isEmpty()); |
| auto otherIterator = iterableTransitionList.begin(); |
| auto otherEnd = iterableTransitionList.end(); |
| |
| if (otherIterator == otherEnd) |
| return; |
| |
| unsigned singularTransitionsLength = singularTransitionsFirsts.size(); |
| unsigned singularTransitionsFirstsIndex = 0; |
| for (; otherIterator != otherEnd; ++otherIterator) { |
| auto firstCharacter = otherIterator.first(); |
| while (singularTransitionsFirstsIndex < singularTransitionsLength |
| && singularTransitionsFirsts[singularTransitionsFirstsIndex] != firstCharacter) |
| ++singularTransitionsFirstsIndex; |
| |
| intersectionHandler(singularTransitionsFirstsIndex, otherIterator); |
| ++singularTransitionsFirstsIndex; |
| |
| auto lastCharacter = otherIterator.last(); |
| while (singularTransitionsFirstsIndex < singularTransitionsLength |
| && singularTransitionsFirsts[singularTransitionsFirstsIndex] <= lastCharacter) { |
| intersectionHandler(singularTransitionsFirstsIndex, otherIterator); |
| ++singularTransitionsFirstsIndex; |
| } |
| } |
| } |
| |
| class Partition { |
| public: |
| void initialize(unsigned size) |
| { |
| if (!size) |
| return; |
| |
| m_sets.reserveInitialCapacity(size); |
| m_partitionedElements.resize(size); |
| m_elementPositionInPartitionedNodes.resize(size); |
| m_elementToSetMap.resize(size); |
| |
| for (unsigned i = 0; i < size; ++i) { |
| m_partitionedElements[i] = i; |
| m_elementPositionInPartitionedNodes[i] = i; |
| m_elementToSetMap[i] = 0; |
| } |
| m_sets.uncheckedAppend(SetDescriptor { 0, size, 0 }); |
| } |
| |
| void reserveUninitializedCapacity(unsigned elementCount) |
| { |
| m_partitionedElements.resize(elementCount); |
| m_elementPositionInPartitionedNodes.resize(elementCount); |
| m_elementToSetMap.resize(elementCount); |
| } |
| |
| void addSetUnchecked(unsigned start, unsigned size) |
| { |
| m_sets.append(SetDescriptor { start, size, 0 }); |
| } |
| |
| void setElementUnchecked(unsigned elementIndex, unsigned positionInPartition, unsigned setIndex) |
| { |
| ASSERT(setIndex < m_sets.size()); |
| m_partitionedElements[positionInPartition] = elementIndex; |
| m_elementPositionInPartitionedNodes[elementIndex] = positionInPartition; |
| m_elementToSetMap[elementIndex] = setIndex; |
| } |
| |
| unsigned startOffsetOfSet(unsigned setIndex) const |
| { |
| return m_sets[setIndex].start; |
| } |
| |
| ALWAYS_INLINE void markElementInCurrentGeneration(unsigned elementIndex) |
| { |
| // Swap the node with the first unmarked node. |
| unsigned setIndex = m_elementToSetMap[elementIndex]; |
| SetDescriptor& setDescriptor = m_sets[setIndex]; |
| |
| unsigned elementPositionInPartition = m_elementPositionInPartitionedNodes[elementIndex]; |
| ASSERT(elementPositionInPartition >= setDescriptor.start); |
| ASSERT(elementPositionInPartition < setDescriptor.end()); |
| |
| unsigned firstUnmarkedElementPositionInPartition = setDescriptor.indexAfterMarkedElements(); |
| ASSERT(firstUnmarkedElementPositionInPartition >= setDescriptor.start && firstUnmarkedElementPositionInPartition < setDescriptor.end()); |
| ASSERT(firstUnmarkedElementPositionInPartition >= firstUnmarkedElementPositionInPartition); |
| |
| // Swap the nodes in the set. |
| unsigned firstUnmarkedElement = m_partitionedElements[firstUnmarkedElementPositionInPartition]; |
| m_partitionedElements[firstUnmarkedElementPositionInPartition] = elementIndex; |
| m_partitionedElements[elementPositionInPartition] = firstUnmarkedElement; |
| |
| // Update their index. |
| m_elementPositionInPartitionedNodes[elementIndex] = firstUnmarkedElementPositionInPartition; |
| m_elementPositionInPartitionedNodes[firstUnmarkedElement] = elementPositionInPartition; |
| |
| if (!setDescriptor.markedCount) { |
| ASSERT(!m_setsMarkedInCurrentGeneration.contains(setIndex)); |
| m_setsMarkedInCurrentGeneration.append(setIndex); |
| } |
| ++setDescriptor.markedCount; |
| } |
| |
| // The function passed as argument MUST not modify the partition. |
| template<typename Function> |
| void refineGeneration(const Function& function) |
| { |
| for (unsigned setIndex : m_setsMarkedInCurrentGeneration) { |
| SetDescriptor& setDescriptor = m_sets[setIndex]; |
| if (setDescriptor.markedCount == setDescriptor.size) { |
| // Everything is marked, there is nothing to refine. |
| setDescriptor.markedCount = 0; |
| continue; |
| } |
| |
| SetDescriptor newSet; |
| bool newSetIsMarkedSet = setDescriptor.markedCount * 2 <= setDescriptor.size; |
| if (newSetIsMarkedSet) { |
| // Less than half of the nodes have been marked. |
| newSet = { setDescriptor.start, setDescriptor.markedCount, 0 }; |
| setDescriptor.start = setDescriptor.start + setDescriptor.markedCount; |
| } else |
| newSet = { setDescriptor.start + setDescriptor.markedCount, setDescriptor.size - setDescriptor.markedCount, 0 }; |
| setDescriptor.size -= newSet.size; |
| setDescriptor.markedCount = 0; |
| |
| unsigned newSetIndex = m_sets.size(); |
| m_sets.append(newSet); |
| |
| for (unsigned i = newSet.start; i < newSet.end(); ++i) |
| m_elementToSetMap[m_partitionedElements[i]] = newSetIndex; |
| |
| function(newSetIndex); |
| } |
| m_setsMarkedInCurrentGeneration.clear(); |
| } |
| |
| // Call Function() on every node of a given subset. |
| template<typename Function> |
| void iterateSet(unsigned setIndex, const Function& function) |
| { |
| SetDescriptor& setDescriptor = m_sets[setIndex]; |
| for (unsigned i = setDescriptor.start; i < setDescriptor.end(); ++i) |
| function(m_partitionedElements[i]); |
| } |
| |
| // Index of the set containing the Node. |
| unsigned setIndex(unsigned elementIndex) const |
| { |
| return m_elementToSetMap[elementIndex]; |
| } |
| |
| // NodeIndex of the first element in the set. |
| unsigned firstElementInSet(unsigned setIndex) const |
| { |
| return m_partitionedElements[m_sets[setIndex].start]; |
| } |
| |
| unsigned size() const |
| { |
| return m_sets.size(); |
| } |
| |
| private: |
| struct SetDescriptor { |
| unsigned start; |
| unsigned size; |
| unsigned markedCount; |
| |
| unsigned indexAfterMarkedElements() const { return start + markedCount; } |
| unsigned end() const { return start + size; } |
| }; |
| |
| // List of sets. |
| Vector<SetDescriptor, 0, ContentExtensionsOverflowHandler> m_sets; |
| |
| // All the element indices such that two elements of the same set never have a element of a different set between them. |
| Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_partitionedElements; |
| |
| // Map elementIndex->position in the partitionedElements. |
| Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_elementPositionInPartitionedNodes; |
| |
| // Map elementIndex->SetIndex. |
| Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_elementToSetMap; |
| |
| // List of sets with any marked node. Each set can appear at most once. |
| // FIXME: find a good inline size for this. |
| Vector<unsigned, 128, ContentExtensionsOverflowHandler> m_setsMarkedInCurrentGeneration; |
| }; |
| |
| class FullGraphPartition { |
| typedef MutableRangeList<char, uint32_t, 128> SingularTransitionsMutableRangeList; |
| public: |
| FullGraphPartition(const DFA& dfa) |
| { |
| m_nodePartition.initialize(dfa.nodes.size()); |
| |
| SingularTransitionsMutableRangeList singularTransitions; |
| CounterConverter counterConverter; |
| for (const DFANode& node : dfa.nodes) { |
| if (node.isKilled()) |
| continue; |
| auto transitions = node.transitions(dfa); |
| singularTransitions.extend(transitions.begin(), transitions.end(), counterConverter); |
| } |
| |
| // Count the number of transition for each singular range. This will give us the bucket size |
| // for the transition partition, where transitions are partitioned by "symbol". |
| unsigned rangeIndexAccumulator = 0; |
| for (const auto& transition : singularTransitions) { |
| m_transitionPartition.addSetUnchecked(rangeIndexAccumulator, transition.data); |
| rangeIndexAccumulator += transition.data; |
| } |
| |
| // Count the number of incoming transitions per node. |
| m_flattenedTransitionsStartOffsetPerNode.resize(dfa.nodes.size()); |
| memset(m_flattenedTransitionsStartOffsetPerNode.data(), 0, m_flattenedTransitionsStartOffsetPerNode.size() * sizeof(unsigned)); |
| |
| Vector<char, 0, ContentExtensionsOverflowHandler> singularTransitionsFirsts; |
| singularTransitionsFirsts.reserveInitialCapacity(singularTransitions.m_ranges.size()); |
| for (const auto& transition : singularTransitions) |
| singularTransitionsFirsts.uncheckedAppend(transition.first); |
| |
| for (const DFANode& node : dfa.nodes) { |
| if (node.isKilled()) |
| continue; |
| auto transitions = node.transitions(dfa); |
| iterateIntersections(singularTransitionsFirsts, transitions, [&](unsigned, const DFANode::ConstRangeIterator& origin) { |
| uint32_t targetNodeIndex = origin.target(); |
| ++m_flattenedTransitionsStartOffsetPerNode[targetNodeIndex]; |
| }); |
| } |
| |
| // Accumulate the offsets. This gives us the start position of each bucket. |
| unsigned transitionAccumulator = 0; |
| for (unsigned i = 0; i < m_flattenedTransitionsStartOffsetPerNode.size(); ++i) { |
| unsigned transitionsCountForNode = m_flattenedTransitionsStartOffsetPerNode[i]; |
| m_flattenedTransitionsStartOffsetPerNode[i] = transitionAccumulator; |
| transitionAccumulator += transitionsCountForNode; |
| } |
| unsigned flattenedTransitionsSize = transitionAccumulator; |
| ASSERT_WITH_MESSAGE(flattenedTransitionsSize == rangeIndexAccumulator, "The number of transitions should be the same, regardless of how they are arranged in buckets."); |
| |
| m_transitionPartition.reserveUninitializedCapacity(flattenedTransitionsSize); |
| |
| // Next, let's fill the transition table and set up the size of each group at the same time. |
| m_flattenedTransitionsSizePerNode.resize(dfa.nodes.size()); |
| for (unsigned& counter : m_flattenedTransitionsSizePerNode) |
| counter = 0; |
| m_flattenedTransitions.resize(flattenedTransitionsSize); |
| |
| Vector<uint32_t> transitionPerRangeOffset(m_transitionPartition.size()); |
| memset(transitionPerRangeOffset.data(), 0, transitionPerRangeOffset.size() * sizeof(uint32_t)); |
| |
| for (unsigned i = 0; i < dfa.nodes.size(); ++i) { |
| const DFANode& node = dfa.nodes[i]; |
| if (node.isKilled()) |
| continue; |
| |
| auto transitions = node.transitions(dfa); |
| iterateIntersections(singularTransitionsFirsts, transitions, [&](unsigned singularTransitonIndex, const DFANode::ConstRangeIterator& origin) { |
| uint32_t targetNodeIndex = origin.target(); |
| |
| unsigned start = m_flattenedTransitionsStartOffsetPerNode[targetNodeIndex]; |
| unsigned offset = m_flattenedTransitionsSizePerNode[targetNodeIndex]; |
| unsigned positionInFlattenedTransitions = start + offset; |
| m_flattenedTransitions[positionInFlattenedTransitions] = Transition({ i }); |
| |
| uint32_t& inRangeOffset = transitionPerRangeOffset[singularTransitonIndex]; |
| unsigned positionInTransitionPartition = m_transitionPartition.startOffsetOfSet(singularTransitonIndex) + inRangeOffset; |
| ++inRangeOffset; |
| |
| m_transitionPartition.setElementUnchecked(positionInFlattenedTransitions, positionInTransitionPartition, singularTransitonIndex); |
| |
| ++m_flattenedTransitionsSizePerNode[targetNodeIndex]; |
| }); |
| } |
| } |
| |
| void markNode(unsigned nodeIndex) |
| { |
| m_nodePartition.markElementInCurrentGeneration(nodeIndex); |
| } |
| |
| void refinePartitions() |
| { |
| m_nodePartition.refineGeneration([&](unsigned smallestSetIndex) { |
| m_nodePartition.iterateSet(smallestSetIndex, [&](unsigned nodeIndex) { |
| unsigned incomingTransitionsStartForNode = m_flattenedTransitionsStartOffsetPerNode[nodeIndex]; |
| unsigned incomingTransitionsSizeForNode = m_flattenedTransitionsSizePerNode[nodeIndex]; |
| |
| for (unsigned i = 0; i < incomingTransitionsSizeForNode; ++i) |
| m_transitionPartition.markElementInCurrentGeneration(incomingTransitionsStartForNode + i); |
| }); |
| |
| // We only need to split the transitions, we handle the new sets through the main loop. |
| m_transitionPartition.refineGeneration([](unsigned) { }); |
| }); |
| } |
| |
| void splitByUniqueTransitions() |
| { |
| for (; m_nextTransitionSetToProcess < m_transitionPartition.size(); ++m_nextTransitionSetToProcess) { |
| // We use the known splitters to refine the set. |
| m_transitionPartition.iterateSet(m_nextTransitionSetToProcess, [&](unsigned transitionIndex) { |
| unsigned sourceNodeIndex = m_flattenedTransitions[transitionIndex].source; |
| m_nodePartition.markElementInCurrentGeneration(sourceNodeIndex); |
| }); |
| |
| refinePartitions(); |
| } |
| } |
| |
| unsigned nodeReplacement(unsigned nodeIndex) |
| { |
| unsigned setIndex = m_nodePartition.setIndex(nodeIndex); |
| return m_nodePartition.firstElementInSet(setIndex); |
| } |
| |
| private: |
| struct Transition { |
| unsigned source; |
| }; |
| |
| struct CounterConverter { |
| uint32_t convert(uint32_t) |
| { |
| return 1; |
| } |
| |
| void extend(uint32_t& destination, uint32_t) |
| { |
| ++destination; |
| } |
| }; |
| |
| Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_flattenedTransitionsStartOffsetPerNode; |
| Vector<unsigned, 0, ContentExtensionsOverflowHandler> m_flattenedTransitionsSizePerNode; |
| Vector<Transition, 0, ContentExtensionsOverflowHandler> m_flattenedTransitions; |
| |
| Partition m_nodePartition; |
| Partition m_transitionPartition; |
| |
| unsigned m_nextTransitionSetToProcess { 0 }; |
| }; |
| |
| struct ActionKey { |
| enum DeletedValueTag { DeletedValue }; |
| explicit ActionKey(DeletedValueTag) { state = Deleted; } |
| |
| enum EmptyValueTag { EmptyValue }; |
| explicit ActionKey(EmptyValueTag) { state = Empty; } |
| |
| explicit ActionKey(const DFA* dfa, uint32_t actionsStart, uint16_t actionsLength) |
| : dfa(dfa) |
| , actionsStart(actionsStart) |
| , actionsLength(actionsLength) |
| , state(Valid) |
| { |
| StringHasher hasher; |
| hasher.addCharactersAssumingAligned(reinterpret_cast<const UChar*>(&dfa->actions[actionsStart]), actionsLength * sizeof(uint64_t) / sizeof(UChar)); |
| hash = hasher.hash(); |
| } |
| |
| bool isEmptyValue() const { return state == Empty; } |
| bool isDeletedValue() const { return state == Deleted; } |
| |
| unsigned hash; |
| |
| const DFA* dfa; |
| uint32_t actionsStart; |
| uint16_t actionsLength; |
| |
| enum { |
| Valid, |
| Empty, |
| Deleted |
| } state; |
| }; |
| |
| struct ActionKeyHash { |
| static unsigned hash(const ActionKey& actionKey) |
| { |
| return actionKey.hash; |
| } |
| |
| static bool equal(const ActionKey& a, const ActionKey& b) |
| { |
| if (a.state != b.state |
| || a.dfa != b.dfa |
| || a.actionsLength != b.actionsLength) |
| return false; |
| for (uint16_t i = 0; i < a.actionsLength; ++i) { |
| if (a.dfa->actions[a.actionsStart + i] != a.dfa->actions[b.actionsStart + i]) |
| return false; |
| } |
| return true; |
| } |
| static const bool safeToCompareToEmptyOrDeleted = false; |
| }; |
| |
| struct ActionKeyHashTraits : public WTF::CustomHashTraits<ActionKey> { |
| static const bool emptyValueIsZero = true; |
| }; |
| |
| } // anonymous namespace. |
| |
| void DFAMinimizer::minimize(DFA& dfa) |
| { |
| FullGraphPartition fullGraphPartition(dfa); |
| |
| // Unlike traditional minimization final states can be differentiated by their action. |
| // Instead of creating a single set for the final state, we partition by actions from |
| // the start. |
| HashMap<ActionKey, Vector<unsigned>, ActionKeyHash, ActionKeyHashTraits> finalStates; |
| for (unsigned i = 0; i < dfa.nodes.size(); ++i) { |
| const DFANode& node = dfa.nodes[i]; |
| if (node.hasActions()) { |
| // FIXME: Sort the actions in the dfa to make nodes that have the same actions in different order equal. |
| auto addResult = finalStates.add(ActionKey(&dfa, node.actionsStart(), node.actionsLength()), Vector<unsigned>()); |
| addResult.iterator->value.append(i); |
| } |
| } |
| |
| for (const auto& slot : finalStates) { |
| for (unsigned finalStateIndex : slot.value) |
| fullGraphPartition.markNode(finalStateIndex); |
| fullGraphPartition.refinePartitions(); |
| } |
| |
| // Use every splitter to refine the node partitions. |
| fullGraphPartition.splitByUniqueTransitions(); |
| |
| Vector<unsigned> relocationVector; |
| relocationVector.reserveInitialCapacity(dfa.nodes.size()); |
| for (unsigned i = 0; i < dfa.nodes.size(); ++i) |
| relocationVector.uncheckedAppend(i); |
| |
| // Update all the transitions. |
| for (unsigned i = 0; i < dfa.nodes.size(); ++i) { |
| unsigned replacement = fullGraphPartition.nodeReplacement(i); |
| if (i != replacement) { |
| relocationVector[i] = replacement; |
| dfa.nodes[i].kill(dfa); |
| } |
| } |
| |
| dfa.root = relocationVector[dfa.root]; |
| for (DFANode& node : dfa.nodes) { |
| if (node.isKilled()) |
| continue; |
| |
| for (auto& transition : node.transitions(dfa)) { |
| uint32_t target = transition.target(); |
| uint32_t relocatedTarget = relocationVector[target]; |
| if (target != relocatedTarget) |
| transition.resetTarget(relocatedTarget); |
| } |
| } |
| } |
| |
| } // namespace ContentExtensions |
| } // namespace WebCore |
| |
| #endif // ENABLE(CONTENT_EXTENSIONS) |