blob: 43571aee4acd8244c85e0da9b0f5c93e281dcee1 [file] [log] [blame]
/*
* Copyright (C) 2017-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "KeyframeEffect.h"
#include "Animation.h"
#include "CSSAnimation.h"
#include "CSSComputedStyleDeclaration.h"
#include "CSSKeyframeRule.h"
#include "CSSPropertyAnimation.h"
#include "CSSPropertyNames.h"
#include "CSSStyleDeclaration.h"
#include "CSSTimingFunctionValue.h"
#include "CSSTransition.h"
#include "Element.h"
#include "FontCascade.h"
#include "FrameView.h"
#include "GeometryUtilities.h"
#include "JSCompositeOperation.h"
#include "JSCompositeOperationOrAuto.h"
#include "JSKeyframeEffect.h"
#include "RenderBox.h"
#include "RenderBoxModelObject.h"
#include "RenderElement.h"
#include "RenderStyle.h"
#include "StylePendingResources.h"
#include "StyleResolver.h"
#include "TimingFunction.h"
#include "TranslateTransformOperation.h"
#include "WillChangeData.h"
#include <JavaScriptCore/Exception.h>
#include <wtf/UUID.h>
namespace WebCore {
using namespace JSC;
static inline void invalidateElement(Element* element)
{
if (element)
element->invalidateStyle();
}
static inline String CSSPropertyIDToIDLAttributeName(CSSPropertyID cssPropertyId)
{
// https://drafts.csswg.org/web-animations-1/#animation-property-name-to-idl-attribute-name
// 1. If property follows the <custom-property-name> production, return property.
// FIXME: We don't handle custom properties yet.
// 2. If property refers to the CSS float property, return the string "cssFloat".
if (cssPropertyId == CSSPropertyFloat)
return "cssFloat";
// 3. If property refers to the CSS offset property, return the string "cssOffset".
// FIXME: we don't support the CSS "offset" property
// 4. Otherwise, return the result of applying the CSS property to IDL attribute algorithm [CSSOM] to property.
return getJSPropertyName(cssPropertyId);
}
static inline CSSPropertyID IDLAttributeNameToAnimationPropertyName(const String& idlAttributeName)
{
// https://drafts.csswg.org/web-animations-1/#idl-attribute-name-to-animation-property-name
// 1. If attribute conforms to the <custom-property-name> production, return attribute.
// FIXME: We don't handle custom properties yet.
// 2. If attribute is the string "cssFloat", then return an animation property representing the CSS float property.
if (idlAttributeName == "cssFloat")
return CSSPropertyFloat;
// 3. If attribute is the string "cssOffset", then return an animation property representing the CSS offset property.
// FIXME: We don't support the CSS "offset" property.
// 4. Otherwise, return the result of applying the IDL attribute to CSS property algorithm [CSSOM] to attribute.
auto cssPropertyId = CSSStyleDeclaration::getCSSPropertyIDFromJavaScriptPropertyName(idlAttributeName);
// We need to check that converting the property back to IDL form yields the same result such that a property passed
// in non-IDL form is rejected, for instance "font-size".
if (idlAttributeName != CSSPropertyIDToIDLAttributeName(cssPropertyId))
return CSSPropertyInvalid;
return cssPropertyId;
}
static inline void computeMissingKeyframeOffsets(Vector<KeyframeEffect::ParsedKeyframe>& keyframes)
{
// https://drafts.csswg.org/web-animations-1/#compute-missing-keyframe-offsets
if (keyframes.isEmpty())
return;
// 1. For each keyframe, in keyframes, let the computed keyframe offset of the keyframe be equal to its keyframe offset value.
// In our implementation, we only set non-null values to avoid making computedOffset Optional<double>. Instead, we'll know
// that a keyframe hasn't had a computed offset by checking if it has a null offset and a 0 computedOffset, since the first
// keyframe will already have a 0 computedOffset.
for (auto& keyframe : keyframes) {
auto computedOffset = keyframe.offset;
keyframe.computedOffset = computedOffset ? *computedOffset : 0;
}
// 2. If keyframes contains more than one keyframe and the computed keyframe offset of the first keyframe in keyframes is null,
// set the computed keyframe offset of the first keyframe to 0.
if (keyframes.size() > 1 && !keyframes[0].offset)
keyframes[0].computedOffset = 0;
// 3. If the computed keyframe offset of the last keyframe in keyframes is null, set its computed keyframe offset to 1.
if (!keyframes.last().offset)
keyframes.last().computedOffset = 1;
// 4. For each pair of keyframes A and B where:
// - A appears before B in keyframes, and
// - A and B have a computed keyframe offset that is not null, and
// - all keyframes between A and B have a null computed keyframe offset,
// calculate the computed keyframe offset of each keyframe between A and B as follows:
// 1. Let offsetk be the computed keyframe offset of a keyframe k.
// 2. Let n be the number of keyframes between and including A and B minus 1.
// 3. Let index refer to the position of keyframe in the sequence of keyframes between A and B such that the first keyframe after A has an index of 1.
// 4. Set the computed keyframe offset of keyframe to offsetA + (offsetB − offsetA) × index / n.
size_t indexOfLastKeyframeWithNonNullOffset = 0;
for (size_t i = 1; i < keyframes.size(); ++i) {
auto& keyframe = keyframes[i];
// Keyframes with a null offset that don't yet have a non-zero computed offset are keyframes
// with an offset that needs to be computed.
if (!keyframe.offset && !keyframe.computedOffset)
continue;
if (indexOfLastKeyframeWithNonNullOffset != i - 1) {
double lastNonNullOffset = keyframes[indexOfLastKeyframeWithNonNullOffset].computedOffset;
double offsetDelta = keyframe.computedOffset - lastNonNullOffset;
double offsetIncrement = offsetDelta / (i - indexOfLastKeyframeWithNonNullOffset);
size_t indexOfFirstKeyframeWithNullOffset = indexOfLastKeyframeWithNonNullOffset + 1;
for (size_t j = indexOfFirstKeyframeWithNullOffset; j < i; ++j)
keyframes[j].computedOffset = lastNonNullOffset + (j - indexOfLastKeyframeWithNonNullOffset) * offsetIncrement;
}
indexOfLastKeyframeWithNonNullOffset = i;
}
}
static inline ExceptionOr<KeyframeEffect::KeyframeLikeObject> processKeyframeLikeObject(ExecState& state, Strong<JSObject>&& keyframesInput, bool allowLists)
{
// https://drafts.csswg.org/web-animations-1/#process-a-keyframe-like-object
VM& vm = state.vm();
auto scope = DECLARE_THROW_SCOPE(vm);
// 1. Run the procedure to convert an ECMAScript value to a dictionary type [WEBIDL] with keyframe input as the ECMAScript value as follows:
//
// If allow lists is true, use the following dictionary type:
//
// dictionary BasePropertyIndexedKeyframe {
// (double? or sequence<double?>) offset = [];
// (DOMString or sequence<DOMString>) easing = [];
// (CompositeOperationOrAuto or sequence<CompositeOperationOrAuto>) composite = [];
// };
//
// Otherwise, use the following dictionary type:
//
// dictionary BaseKeyframe {
// double? offset = null;
// DOMString easing = "linear";
// CompositeOperationOrAuto composite = "auto";
// };
//
// Store the result of this procedure as keyframe output.
KeyframeEffect::BasePropertyIndexedKeyframe baseProperties;
if (allowLists)
baseProperties = convert<IDLDictionary<KeyframeEffect::BasePropertyIndexedKeyframe>>(state, keyframesInput.get());
else {
auto baseKeyframe = convert<IDLDictionary<KeyframeEffect::BaseKeyframe>>(state, keyframesInput.get());
if (baseKeyframe.offset)
baseProperties.offset = baseKeyframe.offset.value();
else
baseProperties.offset = nullptr;
baseProperties.easing = baseKeyframe.easing;
baseProperties.composite = baseKeyframe.composite;
}
RETURN_IF_EXCEPTION(scope, Exception { TypeError });
KeyframeEffect::KeyframeLikeObject keyframeOuput;
keyframeOuput.baseProperties = baseProperties;
// 2. Build up a list of animatable properties as follows:
//
// 1. Let animatable properties be a list of property names (including shorthand properties that have longhand sub-properties
// that are animatable) that can be animated by the implementation.
// 2. Convert each property name in animatable properties to the equivalent IDL attribute by applying the animation property
// name to IDL attribute name algorithm.
// 3. Let input properties be the result of calling the EnumerableOwnNames operation with keyframe input as the object.
PropertyNameArray inputProperties(&vm, PropertyNameMode::Strings, PrivateSymbolMode::Exclude);
JSObject::getOwnPropertyNames(keyframesInput.get(), &state, inputProperties, EnumerationMode());
// 4. Make up a new list animation properties that consists of all of the properties that are in both input properties and animatable
// properties, or which are in input properties and conform to the <custom-property-name> production.
Vector<JSC::Identifier> animationProperties;
size_t numberOfProperties = inputProperties.size();
for (size_t i = 0; i < numberOfProperties; ++i) {
if (CSSPropertyAnimation::isPropertyAnimatable(IDLAttributeNameToAnimationPropertyName(inputProperties[i].string())))
animationProperties.append(inputProperties[i]);
}
// 5. Sort animation properties in ascending order by the Unicode codepoints that define each property name.
std::sort(animationProperties.begin(), animationProperties.end(), [](auto& lhs, auto& rhs) {
return lhs.string().utf8() < rhs.string().utf8();
});
// 6. For each property name in animation properties,
size_t numberOfAnimationProperties = animationProperties.size();
for (size_t i = 0; i < numberOfAnimationProperties; ++i) {
// 1. Let raw value be the result of calling the [[Get]] internal method on keyframe input, with property name as the property
// key and keyframe input as the receiver.
auto rawValue = keyframesInput->get(&state, animationProperties[i]);
// 2. Check the completion record of raw value.
RETURN_IF_EXCEPTION(scope, Exception { TypeError });
// 3. Convert raw value to a DOMString or sequence of DOMStrings property values as follows:
Vector<String> propertyValues;
if (allowLists) {
// If allow lists is true,
// Let property values be the result of converting raw value to IDL type (DOMString or sequence<DOMString>)
// using the procedures defined for converting an ECMAScript value to an IDL value [WEBIDL].
// If property values is a single DOMString, replace property values with a sequence of DOMStrings with the original value of property
// Values as the only element.
if (rawValue.isString())
propertyValues = { rawValue.toWTFString(&state) };
else if (rawValue.isObject())
propertyValues = convert<IDLSequence<IDLDOMString>>(state, rawValue);
} else {
// Otherwise,
// Let property values be the result of converting raw value to a DOMString using the procedure for converting an ECMAScript value to a DOMString.
propertyValues = { convert<IDLDOMString>(state, rawValue) };
}
RETURN_IF_EXCEPTION(scope, Exception { TypeError });
// 4. Calculate the normalized property name as the result of applying the IDL attribute name to animation property name algorithm to property name.
auto cssPropertyID = IDLAttributeNameToAnimationPropertyName(animationProperties[i].string());
// 5. Add a property to to keyframe output with normalized property name as the property name, and property values as the property value.
keyframeOuput.propertiesAndValues.append({ cssPropertyID, propertyValues });
}
// 7. Return keyframe output.
return { WTFMove(keyframeOuput) };
}
static inline ExceptionOr<void> processIterableKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput, JSValue method, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes)
{
// 1. Let iter be GetIterator(object, method).
forEachInIterable(state, keyframesInput.get(), method, [&parsedKeyframes](VM& vm, ExecState& state, JSValue nextValue) -> ExceptionOr<void> {
// Steps 2 through 6 are already implemented by forEachInIterable().
auto scope = DECLARE_THROW_SCOPE(vm);
if (!nextValue || !nextValue.isObject()) {
throwException(&state, scope, JSC::Exception::create(vm, createTypeError(&state)));
return { };
}
// 7. Append to processed keyframes the result of running the procedure to process a keyframe-like object passing nextItem
// as the keyframe input and with the allow lists flag set to false.
auto processKeyframeLikeObjectResult = processKeyframeLikeObject(state, Strong<JSObject>(vm, nextValue.toObject(&state)), false);
if (processKeyframeLikeObjectResult.hasException())
return processKeyframeLikeObjectResult.releaseException();
auto keyframeLikeObject = processKeyframeLikeObjectResult.returnValue();
KeyframeEffect::ParsedKeyframe keyframeOutput;
// When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only offset
// alternatives we should expect are double and nullptr.
if (WTF::holds_alternative<double>(keyframeLikeObject.baseProperties.offset))
keyframeOutput.offset = WTF::get<double>(keyframeLikeObject.baseProperties.offset);
else
ASSERT(WTF::holds_alternative<std::nullptr_t>(keyframeLikeObject.baseProperties.offset));
// When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only easing
// alternative we should expect is String.
ASSERT(WTF::holds_alternative<String>(keyframeLikeObject.baseProperties.easing));
keyframeOutput.easing = WTF::get<String>(keyframeLikeObject.baseProperties.easing);
// When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only composite
// alternatives we should expect is CompositeOperationAuto.
ASSERT(WTF::holds_alternative<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite));
keyframeOutput.composite = WTF::get<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite);
for (auto& propertyAndValue : keyframeLikeObject.propertiesAndValues) {
auto cssPropertyId = propertyAndValue.property;
// When calling processKeyframeLikeObject() with the "allow lists" flag set to false,
// there should only ever be a single value for a given property.
ASSERT(propertyAndValue.values.size() == 1);
auto stringValue = propertyAndValue.values[0];
if (keyframeOutput.style->setProperty(cssPropertyId, stringValue))
keyframeOutput.unparsedStyle.set(cssPropertyId, stringValue);
}
parsedKeyframes.append(WTFMove(keyframeOutput));
return { };
});
return { };
}
static inline ExceptionOr<void> processPropertyIndexedKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes, Vector<String>& unusedEasings)
{
// 1. Let property-indexed keyframe be the result of running the procedure to process a keyframe-like object passing object as the keyframe input.
auto processKeyframeLikeObjectResult = processKeyframeLikeObject(state, WTFMove(keyframesInput), true);
if (processKeyframeLikeObjectResult.hasException())
return processKeyframeLikeObjectResult.releaseException();
auto propertyIndexedKeyframe = processKeyframeLikeObjectResult.returnValue();
// 2. For each member, m, in property-indexed keyframe, perform the following steps:
for (auto& m : propertyIndexedKeyframe.propertiesAndValues) {
// 1. Let property name be the key for m.
auto propertyName = m.property;
// 2. If property name is “composite”, or “easing”, or “offset”, skip the remaining steps in this loop and continue from the next member in property-indexed
// keyframe after m.
// We skip this test since we split those properties and the actual CSS properties that we're currently iterating over.
// 3. Let property values be the value for m.
auto propertyValues = m.values;
// 4. Let property keyframes be an empty sequence of keyframes.
Vector<KeyframeEffect::ParsedKeyframe> propertyKeyframes;
// 5. For each value, v, in property values perform the following steps:
for (auto& v : propertyValues) {
// 1. Let k be a new keyframe with a null keyframe offset.
KeyframeEffect::ParsedKeyframe k;
// 2. Add the property-value pair, property name → v, to k.
if (k.style->setProperty(propertyName, v))
k.unparsedStyle.set(propertyName, v);
// 3. Append k to property keyframes.
propertyKeyframes.append(WTFMove(k));
}
// 6. Apply the procedure to compute missing keyframe offsets to property keyframes.
computeMissingKeyframeOffsets(propertyKeyframes);
// 7. Add keyframes in property keyframes to processed keyframes.
for (auto& keyframe : propertyKeyframes)
parsedKeyframes.append(WTFMove(keyframe));
}
// 3. Sort processed keyframes by the computed keyframe offset of each keyframe in increasing order.
std::sort(parsedKeyframes.begin(), parsedKeyframes.end(), [](auto& lhs, auto& rhs) {
return lhs.computedOffset < rhs.computedOffset;
});
// 4. Merge adjacent keyframes in processed keyframes when they have equal computed keyframe offsets.
size_t i = 1;
while (i < parsedKeyframes.size()) {
auto& keyframe = parsedKeyframes[i];
auto& previousKeyframe = parsedKeyframes[i - 1];
// If the offsets of this keyframe and the previous keyframe are different,
// this means that the two keyframes should not be merged and we can move
// on to the next keyframe.
if (keyframe.computedOffset != previousKeyframe.computedOffset) {
i++;
continue;
}
// Otherwise, both this keyframe and the previous keyframe should be merged.
// Unprocessed keyframes in parsedKeyframes at this stage have at most a single
// property in cssPropertiesAndValues, so just set this on the previous keyframe.
// In case an invalid or null value was originally provided, then the property
// was not set and the property count is 0, in which case there is nothing to merge.
if (keyframe.style->propertyCount()) {
auto property = keyframe.style->propertyAt(0);
previousKeyframe.style->setProperty(property.id(), property.value());
previousKeyframe.unparsedStyle.set(property.id(), keyframe.unparsedStyle.get(property.id()));
}
// Since we've processed this keyframe, we can remove it and keep i the same
// so that we process the next keyframe in the next loop iteration.
parsedKeyframes.remove(i);
}
// 5. Let offsets be a sequence of nullable double values assigned based on the type of the “offset” member of the property-indexed keyframe as follows:
// - sequence<double?>, the value of “offset” as-is.
// - double?, a sequence of length one with the value of “offset” as its single item, i.e. « offset »,
Vector<Optional<double>> offsets;
if (WTF::holds_alternative<Vector<Optional<double>>>(propertyIndexedKeyframe.baseProperties.offset))
offsets = WTF::get<Vector<Optional<double>>>(propertyIndexedKeyframe.baseProperties.offset);
else if (WTF::holds_alternative<double>(propertyIndexedKeyframe.baseProperties.offset))
offsets.append(WTF::get<double>(propertyIndexedKeyframe.baseProperties.offset));
else if (WTF::holds_alternative<std::nullptr_t>(propertyIndexedKeyframe.baseProperties.offset))
offsets.append(WTF::nullopt);
// 6. Assign each value in offsets to the keyframe offset of the keyframe with corresponding position in property keyframes until the end of either sequence is reached.
for (size_t i = 0; i < offsets.size() && i < parsedKeyframes.size(); ++i)
parsedKeyframes[i].offset = offsets[i];
// 7. Let easings be a sequence of DOMString values assigned based on the type of the “easing” member of the property-indexed keyframe as follows:
// - sequence<DOMString>, the value of “easing” as-is.
// - DOMString, a sequence of length one with the value of “easing” as its single item, i.e. « easing »,
Vector<String> easings;
if (WTF::holds_alternative<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing))
easings = WTF::get<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing);
else if (WTF::holds_alternative<String>(propertyIndexedKeyframe.baseProperties.easing))
easings.append(WTF::get<String>(propertyIndexedKeyframe.baseProperties.easing));
// 8. If easings is an empty sequence, let it be a sequence of length one containing the single value “linear”, i.e. « "linear" ».
if (easings.isEmpty())
easings.append("linear");
// 9. If easings has fewer items than property keyframes, repeat the elements in easings successively starting from the beginning of the list until easings has as many
// items as property keyframes.
if (easings.size() < parsedKeyframes.size()) {
size_t initialNumberOfEasings = easings.size();
for (i = initialNumberOfEasings; i < parsedKeyframes.size(); ++i)
easings.append(easings[i % initialNumberOfEasings]);
}
// 10. If easings has more items than property keyframes, store the excess items as unused easings.
while (easings.size() > parsedKeyframes.size())
unusedEasings.append(easings.takeLast());
// 11. Assign each value in easings to a property named “easing” on the keyframe with the corresponding position in property keyframes until the end of property keyframes
// is reached.
for (size_t i = 0; i < parsedKeyframes.size(); ++i)
parsedKeyframes[i].easing = easings[i];
// 12. If the “composite” member of the property-indexed keyframe is not an empty sequence:
Vector<CompositeOperationOrAuto> compositeModes;
if (WTF::holds_alternative<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite))
compositeModes = WTF::get<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite);
else if (WTF::holds_alternative<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite))
compositeModes.append(WTF::get<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite));
if (!compositeModes.isEmpty()) {
// 1. Let composite modes be a sequence of CompositeOperationOrAuto values assigned from the “composite” member of property-indexed keyframe. If that member is a single
// CompositeOperationOrAuto value operation, let composite modes be a sequence of length one, with the value of the “composite” as its single item.
// 2. As with easings, if composite modes has fewer items than processed keyframes, repeat the elements in composite modes successively starting from the beginning of
// the list until composite modes has as many items as processed keyframes.
if (compositeModes.size() < parsedKeyframes.size()) {
size_t initialNumberOfCompositeModes = compositeModes.size();
for (i = initialNumberOfCompositeModes; i < parsedKeyframes.size(); ++i)
compositeModes.append(compositeModes[i % initialNumberOfCompositeModes]);
}
// 3. Assign each value in composite modes that is not auto to the keyframe-specific composite operation on the keyframe with the corresponding position in processed
// keyframes until the end of processed keyframes is reached.
for (size_t i = 0; i < compositeModes.size() && i < parsedKeyframes.size(); ++i) {
if (compositeModes[i] != CompositeOperationOrAuto::Auto)
parsedKeyframes[i].composite = compositeModes[i];
}
}
return { };
}
ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(ExecState& state, Element* target, Strong<JSObject>&& keyframes, Optional<Variant<double, KeyframeEffectOptions>>&& options)
{
auto keyframeEffect = adoptRef(*new KeyframeEffect(target));
if (options) {
OptionalEffectTiming timing;
auto optionsValue = options.value();
if (WTF::holds_alternative<double>(optionsValue)) {
Variant<double, String> duration = WTF::get<double>(optionsValue);
timing.duration = duration;
} else {
auto keyframeEffectOptions = WTF::get<KeyframeEffectOptions>(optionsValue);
timing = {
keyframeEffectOptions.duration,
keyframeEffectOptions.iterations,
keyframeEffectOptions.delay,
keyframeEffectOptions.endDelay,
keyframeEffectOptions.iterationStart,
keyframeEffectOptions.easing,
keyframeEffectOptions.fill,
keyframeEffectOptions.direction
};
}
auto updateTimingResult = keyframeEffect->updateTiming(timing);
if (updateTimingResult.hasException())
return updateTimingResult.releaseException();
}
auto processKeyframesResult = keyframeEffect->processKeyframes(state, WTFMove(keyframes));
if (processKeyframesResult.hasException())
return processKeyframesResult.releaseException();
return keyframeEffect;
}
ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(JSC::ExecState&, Ref<KeyframeEffect>&& source)
{
auto keyframeEffect = adoptRef(*new KeyframeEffect(nullptr));
keyframeEffect->copyPropertiesFromSource(WTFMove(source));
return keyframeEffect;
}
Ref<KeyframeEffect> KeyframeEffect::create(const Element& target)
{
return adoptRef(*new KeyframeEffect(const_cast<Element*>(&target)));
}
KeyframeEffect::KeyframeEffect(Element* target)
: m_target(target)
{
}
void KeyframeEffect::copyPropertiesFromSource(Ref<KeyframeEffect>&& source)
{
m_target = source->m_target;
m_compositeOperation = source->m_compositeOperation;
m_iterationCompositeOperation = source->m_iterationCompositeOperation;
Vector<ParsedKeyframe> parsedKeyframes;
for (auto& sourceParsedKeyframe : source->m_parsedKeyframes) {
ParsedKeyframe parsedKeyframe;
parsedKeyframe.easing = sourceParsedKeyframe.easing;
parsedKeyframe.offset = sourceParsedKeyframe.offset;
parsedKeyframe.composite = sourceParsedKeyframe.composite;
parsedKeyframe.unparsedStyle = sourceParsedKeyframe.unparsedStyle;
parsedKeyframe.computedOffset = sourceParsedKeyframe.computedOffset;
parsedKeyframe.timingFunction = sourceParsedKeyframe.timingFunction;
parsedKeyframe.style = sourceParsedKeyframe.style->mutableCopy();
parsedKeyframes.append(WTFMove(parsedKeyframe));
}
m_parsedKeyframes = WTFMove(parsedKeyframes);
setFill(source->fill());
setDelay(source->delay());
setEndDelay(source->endDelay());
setDirection(source->direction());
setIterations(source->iterations());
setTimingFunction(source->timingFunction());
setIterationStart(source->iterationStart());
setIterationDuration(source->iterationDuration());
KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString());
for (auto& keyframe : source->m_blendingKeyframes.keyframes()) {
KeyframeValue keyframeValue(keyframe.key(), RenderStyle::clonePtr(*keyframe.style()));
for (auto propertyId : keyframe.properties())
keyframeValue.addProperty(propertyId);
keyframeList.insert(WTFMove(keyframeValue));
}
setBlendingKeyframes(keyframeList);
}
Vector<Strong<JSObject>> KeyframeEffect::getKeyframes(ExecState& state)
{
// https://drafts.csswg.org/web-animations-1/#dom-keyframeeffectreadonly-getkeyframes
auto lock = JSLockHolder { &state };
// Since keyframes are represented by a partially open-ended dictionary type that is not currently able to be expressed with WebIDL,
// the procedure used to prepare the result of this method is defined in prose below:
//
// 1. Let result be an empty sequence of objects.
Vector<Strong<JSObject>> result;
// 2. Let keyframes be the result of applying the procedure to compute missing keyframe offsets to the keyframes for this keyframe effect.
// 3. For each keyframe in keyframes perform the following steps:
if (is<DeclarativeAnimation>(animation())) {
auto computedStyleExtractor = ComputedStyleExtractor(m_target.get());
for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) {
// 1. Initialize a dictionary object, output keyframe, using the following definition:
//
// dictionary BaseComputedKeyframe {
// double? offset = null;
// double computedOffset;
// DOMString easing = "linear";
// CompositeOperationOrAuto composite = "auto";
// };
auto& keyframe = m_blendingKeyframes[i];
// 2. Set offset, computedOffset, easing members of output keyframe to the respective values keyframe offset, computed keyframe offset,
// and keyframe-specific timing function of keyframe.
BaseComputedKeyframe computedKeyframe;
computedKeyframe.offset = keyframe.key();
computedKeyframe.computedOffset = keyframe.key();
// For CSS transitions, there are only two keyframes and the second keyframe should always report "linear". In practice, this value
// has no bearing since, as the last keyframe, its value will never be used.
computedKeyframe.easing = is<CSSTransition>(animation()) && i == 1 ? "linear" : timingFunctionForKeyframeAtIndex(0)->cssText();
auto outputKeyframe = convertDictionaryToJS(state, *jsCast<JSDOMGlobalObject*>(state.lexicalGlobalObject()), computedKeyframe);
// 3. For each animation property-value pair specified on keyframe, declaration, perform the following steps:
auto& style = *keyframe.style();
for (auto cssPropertyId : keyframe.properties()) {
if (cssPropertyId == CSSPropertyCustom)
continue;
// 1. Let property name be the result of applying the animation property name to IDL attribute name algorithm to the property name of declaration.
auto propertyName = CSSPropertyIDToIDLAttributeName(cssPropertyId);
// 2. Let IDL value be the result of serializing the property value of declaration by passing declaration to the algorithm to serialize a CSS value.
String idlValue = "";
if (auto cssValue = computedStyleExtractor.valueForPropertyinStyle(style, cssPropertyId))
idlValue = cssValue->cssText();
// 3. Let value be the result of converting IDL value to an ECMAScript String value.
auto value = toJS<IDLDOMString>(state, idlValue);
// 4. Call the [[DefineOwnProperty]] internal method on output keyframe with property name property name,
// Property Descriptor { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, [[Value]]: value } and Boolean flag false.
JSObject::defineOwnProperty(outputKeyframe, &state, AtomicString(propertyName).impl(), PropertyDescriptor(value, 0), false);
}
// 5. Append output keyframe to result.
result.append(JSC::Strong<JSC::JSObject> { state.vm(), outputKeyframe });
}
} else {
for (size_t i = 0; i < m_parsedKeyframes.size(); ++i) {
// 1. Initialize a dictionary object, output keyframe, using the following definition:
//
// dictionary BaseComputedKeyframe {
// double? offset = null;
// double computedOffset;
// DOMString easing = "linear";
// CompositeOperationOrAuto composite = "auto";
// };
auto& parsedKeyframe = m_parsedKeyframes[i];
// 2. Set offset, computedOffset, easing, composite members of output keyframe to the respective values keyframe offset, computed keyframe
// offset, keyframe-specific timing function and keyframe-specific composite operation of keyframe.
BaseComputedKeyframe computedKeyframe;
computedKeyframe.offset = parsedKeyframe.offset;
computedKeyframe.computedOffset = parsedKeyframe.computedOffset;
computedKeyframe.easing = timingFunctionForKeyframeAtIndex(i)->cssText();
computedKeyframe.composite = parsedKeyframe.composite;
auto outputKeyframe = convertDictionaryToJS(state, *jsCast<JSDOMGlobalObject*>(state.lexicalGlobalObject()), computedKeyframe);
// 3. For each animation property-value pair specified on keyframe, declaration, perform the following steps:
for (auto it = parsedKeyframe.unparsedStyle.begin(), end = parsedKeyframe.unparsedStyle.end(); it != end; ++it) {
// 1. Let property name be the result of applying the animation property name to IDL attribute name algorithm to the property name of declaration.
auto propertyName = CSSPropertyIDToIDLAttributeName(it->key);
// 2. Let IDL value be the result of serializing the property value of declaration by passing declaration to the algorithm to serialize a CSS value.
// 3. Let value be the result of converting IDL value to an ECMAScript String value.
auto value = toJS<IDLDOMString>(state, it->value);
// 4. Call the [[DefineOwnProperty]] internal method on output keyframe with property name property name,
// Property Descriptor { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, [[Value]]: value } and Boolean flag false.
JSObject::defineOwnProperty(outputKeyframe, &state, AtomicString(propertyName).impl(), PropertyDescriptor(value, 0), false);
}
// 4. Append output keyframe to result.
result.append(JSC::Strong<JSC::JSObject> { state.vm(), outputKeyframe });
}
}
// 4. Return result.
return result;
}
ExceptionOr<void> KeyframeEffect::setKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput)
{
return processKeyframes(state, WTFMove(keyframesInput));
}
ExceptionOr<void> KeyframeEffect::processKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput)
{
// 1. If object is null, return an empty sequence of keyframes.
if (!keyframesInput.get())
return { };
VM& vm = state.vm();
auto scope = DECLARE_THROW_SCOPE(vm);
// 2. Let processed keyframes be an empty sequence of keyframes.
Vector<ParsedKeyframe> parsedKeyframes;
// 3. Let method be the result of GetMethod(object, @@iterator).
auto method = keyframesInput.get()->get(&state, vm.propertyNames->iteratorSymbol);
// 4. Check the completion record of method.
RETURN_IF_EXCEPTION(scope, Exception { TypeError });
// 5. Perform the steps corresponding to the first matching condition from below,
Vector<String> unusedEasings;
if (!method.isUndefined())
processIterableKeyframes(state, WTFMove(keyframesInput), WTFMove(method), parsedKeyframes);
else
processPropertyIndexedKeyframes(state, WTFMove(keyframesInput), parsedKeyframes, unusedEasings);
// 6. If processed keyframes is not loosely sorted by offset, throw a TypeError and abort these steps.
// 7. If there exist any keyframe in processed keyframes whose keyframe offset is non-null and less than
// zero or greater than one, throw a TypeError and abort these steps.
double lastNonNullOffset = -1;
for (auto& keyframe : parsedKeyframes) {
if (!keyframe.offset)
continue;
auto offset = keyframe.offset.value();
if (offset < lastNonNullOffset || offset < 0 || offset > 1)
return Exception { TypeError };
lastNonNullOffset = offset;
}
// We take a slight detour from the spec text and compute the missing keyframe offsets right away
// since they can be computed up-front.
computeMissingKeyframeOffsets(parsedKeyframes);
// 8. For each frame in processed keyframes, perform the following steps:
for (auto& keyframe : parsedKeyframes) {
// Let the timing function of frame be the result of parsing the “easing” property on frame using the CSS syntax
// defined for the easing property of the AnimationEffectTiming interface.
// If parsing the “easing” property fails, throw a TypeError and abort this procedure.
auto timingFunctionResult = TimingFunction::createFromCSSText(keyframe.easing);
if (timingFunctionResult.hasException())
return timingFunctionResult.releaseException();
keyframe.timingFunction = timingFunctionResult.returnValue();
}
// 9. Parse each of the values in unused easings using the CSS syntax defined for easing property of the
// AnimationEffectTiming interface, and if any of the values fail to parse, throw a TypeError
// and abort this procedure.
for (auto& easing : unusedEasings) {
auto timingFunctionResult = TimingFunction::createFromCSSText(easing);
if (timingFunctionResult.hasException())
return timingFunctionResult.releaseException();
}
m_parsedKeyframes = WTFMove(parsedKeyframes);
m_blendingKeyframes.clear();
return { };
}
void KeyframeEffect::updateBlendingKeyframes(RenderStyle& elementStyle)
{
if (!m_blendingKeyframes.isEmpty() || !m_target)
return;
KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString());
StyleResolver& styleResolver = m_target->styleResolver();
for (auto& keyframe : m_parsedKeyframes) {
styleResolver.setNewStateWithElement(*m_target);
KeyframeValue keyframeValue(keyframe.computedOffset, nullptr);
auto styleProperties = keyframe.style->immutableCopyIfNeeded();
for (unsigned i = 0; i < styleProperties->propertyCount(); ++i)
keyframeList.addProperty(styleProperties->propertyAt(i).id());
auto keyframeRule = StyleRuleKeyframe::create(WTFMove(styleProperties));
keyframeValue.setStyle(styleResolver.styleForKeyframe(&elementStyle, keyframeRule.ptr(), keyframeValue));
keyframeList.insert(WTFMove(keyframeValue));
}
setBlendingKeyframes(keyframeList);
}
bool KeyframeEffect::forceLayoutIfNeeded()
{
if (!m_needsForcedLayout || !m_target)
return false;
auto* renderer = m_target->renderer();
if (!renderer || !renderer->parent())
return false;
auto* frameView = m_target->document().view();
if (!frameView)
return false;
frameView->forceLayout();
return true;
}
void KeyframeEffect::setBlendingKeyframes(KeyframeList& blendingKeyframes)
{
m_blendingKeyframes = WTFMove(blendingKeyframes);
computedNeedsForcedLayout();
computeStackingContextImpact();
computeShouldRunAccelerated();
checkForMatchingTransformFunctionLists();
checkForMatchingFilterFunctionLists();
#if ENABLE(FILTERS_LEVEL_2)
checkForMatchingBackdropFilterFunctionLists();
#endif
checkForMatchingColorFilterFunctionLists();
}
void KeyframeEffect::checkForMatchingTransformFunctionLists()
{
m_transformFunctionListsMatch = false;
if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(CSSPropertyTransform))
return;
// Empty transforms match anything, so find the first non-empty entry as the reference.
size_t numKeyframes = m_blendingKeyframes.size();
size_t firstNonEmptyTransformKeyframeIndex = numKeyframes;
for (size_t i = 0; i < numKeyframes; ++i) {
const KeyframeValue& currentKeyframe = m_blendingKeyframes[i];
if (currentKeyframe.style()->transform().operations().size()) {
firstNonEmptyTransformKeyframeIndex = i;
break;
}
}
if (firstNonEmptyTransformKeyframeIndex == numKeyframes)
return;
const TransformOperations* firstVal = &m_blendingKeyframes[firstNonEmptyTransformKeyframeIndex].style()->transform();
for (size_t i = firstNonEmptyTransformKeyframeIndex + 1; i < numKeyframes; ++i) {
const KeyframeValue& currentKeyframe = m_blendingKeyframes[i];
const TransformOperations* val = &currentKeyframe.style()->transform();
// An empty transform list matches anything.
if (val->operations().isEmpty())
continue;
if (!firstVal->operationsMatch(*val))
return;
}
m_transformFunctionListsMatch = true;
}
bool KeyframeEffect::checkForMatchingFilterFunctionLists(CSSPropertyID propertyID, const std::function<const FilterOperations& (const RenderStyle&)>& filtersGetter) const
{
if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(propertyID))
return false;
// Empty filters match anything, so find the first non-empty entry as the reference.
size_t numKeyframes = m_blendingKeyframes.size();
size_t firstNonEmptyKeyframeIndex = numKeyframes;
for (size_t i = 0; i < numKeyframes; ++i) {
if (filtersGetter(*m_blendingKeyframes[i].style()).operations().size()) {
firstNonEmptyKeyframeIndex = i;
break;
}
}
if (firstNonEmptyKeyframeIndex == numKeyframes)
return false;
auto& firstVal = filtersGetter(*m_blendingKeyframes[firstNonEmptyKeyframeIndex].style());
for (size_t i = firstNonEmptyKeyframeIndex + 1; i < numKeyframes; ++i) {
auto& value = filtersGetter(*m_blendingKeyframes[i].style());
// An empty filter list matches anything.
if (value.operations().isEmpty())
continue;
if (!firstVal.operationsMatch(value))
return false;
}
return true;
}
void KeyframeEffect::checkForMatchingFilterFunctionLists()
{
m_filterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyFilter, [] (const RenderStyle& style) -> const FilterOperations& {
return style.filter();
});
}
#if ENABLE(FILTERS_LEVEL_2)
void KeyframeEffect::checkForMatchingBackdropFilterFunctionLists()
{
m_backdropFilterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyWebkitBackdropFilter, [] (const RenderStyle& style) -> const FilterOperations& {
return style.backdropFilter();
});
}
#endif
void KeyframeEffect::checkForMatchingColorFilterFunctionLists()
{
m_colorFilterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyAppleColorFilter, [] (const RenderStyle& style) -> const FilterOperations& {
return style.appleColorFilter();
});
}
void KeyframeEffect::computeDeclarativeAnimationBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle)
{
ASSERT(is<DeclarativeAnimation>(animation()));
if (is<CSSAnimation>(animation()))
computeCSSAnimationBlendingKeyframes();
else if (is<CSSTransition>(animation()))
computeCSSTransitionBlendingKeyframes(oldStyle, newStyle);
}
void KeyframeEffect::computeCSSAnimationBlendingKeyframes()
{
ASSERT(is<CSSAnimation>(animation()));
auto cssAnimation = downcast<CSSAnimation>(animation());
auto& backingAnimation = cssAnimation->backingAnimation();
KeyframeList keyframeList(backingAnimation.name());
if (auto* styleScope = Style::Scope::forOrdinal(*m_target, backingAnimation.nameStyleScopeOrdinal()))
styleScope->resolver().keyframeStylesForAnimation(*m_target, &cssAnimation->unanimatedStyle(), keyframeList);
// Ensure resource loads for all the frames.
for (auto& keyframe : keyframeList.keyframes()) {
if (auto* style = const_cast<RenderStyle*>(keyframe.style()))
Style::loadPendingResources(*style, m_target->document(), m_target.get());
}
setBlendingKeyframes(keyframeList);
}
void KeyframeEffect::computeCSSTransitionBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle)
{
ASSERT(is<CSSTransition>(animation()));
if (!oldStyle || m_blendingKeyframes.size())
return;
auto property = downcast<CSSTransition>(animation())->property();
auto toStyle = RenderStyle::clonePtr(newStyle);
if (m_target)
Style::loadPendingResources(*toStyle, m_target->document(), m_target.get());
KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString());
keyframeList.addProperty(property);
KeyframeValue fromKeyframeValue(0, RenderStyle::clonePtr(*oldStyle));
fromKeyframeValue.addProperty(property);
keyframeList.insert(WTFMove(fromKeyframeValue));
KeyframeValue toKeyframeValue(1, WTFMove(toStyle));
toKeyframeValue.addProperty(property);
keyframeList.insert(WTFMove(toKeyframeValue));
setBlendingKeyframes(keyframeList);
}
void KeyframeEffect::computedNeedsForcedLayout()
{
m_needsForcedLayout = false;
if (is<CSSTransition>(animation()) || !m_blendingKeyframes.containsProperty(CSSPropertyTransform))
return;
size_t numberOfKeyframes = m_blendingKeyframes.size();
for (size_t i = 0; i < numberOfKeyframes; i++) {
auto* keyframeStyle = m_blendingKeyframes[i].style();
if (!keyframeStyle) {
ASSERT_NOT_REACHED();
continue;
}
if (keyframeStyle->hasTransform()) {
auto& transformOperations = keyframeStyle->transform();
for (const auto& operation : transformOperations.operations()) {
if (operation->isTranslateTransformOperationType()) {
auto translation = downcast<TranslateTransformOperation>(operation.get());
if (translation->x().isPercent() || translation->y().isPercent()) {
m_needsForcedLayout = true;
return;
}
}
}
}
}
}
void KeyframeEffect::computeStackingContextImpact()
{
m_triggersStackingContext = false;
for (auto cssPropertyId : m_blendingKeyframes.properties()) {
if (WillChangeData::propertyCreatesStackingContext(cssPropertyId)) {
m_triggersStackingContext = true;
break;
}
}
}
void KeyframeEffect::setTarget(RefPtr<Element>&& newTarget)
{
if (m_target == newTarget)
return;
auto previousTarget = std::exchange(m_target, WTFMove(newTarget));
if (auto* effectAnimation = animation())
effectAnimation->effectTargetDidChange(previousTarget.get(), m_target.get());
m_blendingKeyframes.clear();
// We need to invalidate the effect now that the target has changed
// to ensure the effect's styles are applied to the new target right away.
invalidate();
// Likewise, we need to invalidate styles on the previous target so that
// any animated styles are removed immediately.
invalidateElement(previousTarget.get());
}
void KeyframeEffect::apply(RenderStyle& targetStyle)
{
if (!m_target)
return;
updateBlendingKeyframes(targetStyle);
updateAcceleratedAnimationState();
auto progress = getComputedTiming().progress;
if (!progress)
return;
setAnimatedPropertiesInStyle(targetStyle, progress.value());
// https://w3c.github.io/web-animations/#side-effects-section
// For every property targeted by at least one animation effect that is current or in effect, the user agent
// must act as if the will-change property ([css-will-change-1]) on the target element includes the property.
if (m_triggersStackingContext && targetStyle.hasAutoZIndex())
targetStyle.setZIndex(0);
}
void KeyframeEffect::invalidate()
{
invalidateElement(m_target.get());
}
void KeyframeEffect::computeShouldRunAccelerated()
{
m_shouldRunAccelerated = hasBlendingKeyframes();
for (auto cssPropertyId : m_blendingKeyframes.properties()) {
if (!CSSPropertyAnimation::animationOfPropertyIsAccelerated(cssPropertyId)) {
m_shouldRunAccelerated = false;
return;
}
}
}
void KeyframeEffect::getAnimatedStyle(std::unique_ptr<RenderStyle>& animatedStyle)
{
if (!m_target || !animation())
return;
auto progress = getComputedTiming().progress;
if (!progress)
return;
if (!animatedStyle)
animatedStyle = RenderStyle::clonePtr(renderer()->style());
setAnimatedPropertiesInStyle(*animatedStyle.get(), progress.value());
}
void KeyframeEffect::setAnimatedPropertiesInStyle(RenderStyle& targetStyle, double iterationProgress)
{
// 4.4.3. The effect value of a keyframe effect
// https://drafts.csswg.org/web-animations-1/#the-effect-value-of-a-keyframe-animation-effect
//
// The effect value of a single property referenced by a keyframe effect as one of its target properties,
// for a given iteration progress, current iteration and underlying value is calculated as follows.
updateBlendingKeyframes(targetStyle);
if (m_blendingKeyframes.isEmpty())
return;
bool isCSSAnimation = is<CSSAnimation>(animation());
for (auto cssPropertyId : m_blendingKeyframes.properties()) {
// 1. If iteration progress is unresolved abort this procedure.
// 2. Let target property be the longhand property for which the effect value is to be calculated.
// 3. If animation type of the target property is not animatable abort this procedure since the effect cannot be applied.
// 4. Define the neutral value for composition as a value which, when combined with an underlying value using the add composite operation,
// produces the underlying value.
// 5. Let property-specific keyframes be the result of getting the set of computed keyframes for this keyframe effect.
// 6. Remove any keyframes from property-specific keyframes that do not have a property value for target property.
unsigned numberOfKeyframesWithZeroOffset = 0;
unsigned numberOfKeyframesWithOneOffset = 0;
Vector<Optional<size_t>> propertySpecificKeyframes;
for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) {
auto& keyframe = m_blendingKeyframes[i];
auto offset = keyframe.key();
if (!keyframe.containsProperty(cssPropertyId)) {
// If we're dealing with a CSS animation, we consider the first and last keyframes to always have the property listed
// since the underlying style was provided and should be captured.
if (!isCSSAnimation || (offset && offset < 1))
continue;
}
if (!offset)
numberOfKeyframesWithZeroOffset++;
if (offset == 1)
numberOfKeyframesWithOneOffset++;
propertySpecificKeyframes.append(i);
}
// 7. If property-specific keyframes is empty, return underlying value.
if (propertySpecificKeyframes.isEmpty())
continue;
// 8. If there is no keyframe in property-specific keyframes with a computed keyframe offset of 0, create a new keyframe with a computed keyframe
// offset of 0, a property value set to the neutral value for composition, and a composite operation of add, and prepend it to the beginning of
// property-specific keyframes.
if (!numberOfKeyframesWithZeroOffset) {
propertySpecificKeyframes.insert(0, WTF::nullopt);
numberOfKeyframesWithZeroOffset = 1;
}
// 9. Similarly, if there is no keyframe in property-specific keyframes with a computed keyframe offset of 1, create a new keyframe with a computed
// keyframe offset of 1, a property value set to the neutral value for composition, and a composite operation of add, and append it to the end of
// property-specific keyframes.
if (!numberOfKeyframesWithOneOffset) {
propertySpecificKeyframes.append(WTF::nullopt);
numberOfKeyframesWithOneOffset = 1;
}
// 10. Let interval endpoints be an empty sequence of keyframes.
Vector<Optional<size_t>> intervalEndpoints;
// 11. Populate interval endpoints by following the steps from the first matching condition from below:
if (iterationProgress < 0 && numberOfKeyframesWithZeroOffset > 1) {
// If iteration progress < 0 and there is more than one keyframe in property-specific keyframes with a computed keyframe offset of 0,
// Add the first keyframe in property-specific keyframes to interval endpoints.
intervalEndpoints.append(propertySpecificKeyframes.first());
} else if (iterationProgress >= 1 && numberOfKeyframesWithOneOffset > 1) {
// If iteration progress ≥ 1 and there is more than one keyframe in property-specific keyframes with a computed keyframe offset of 1,
// Add the last keyframe in property-specific keyframes to interval endpoints.
intervalEndpoints.append(propertySpecificKeyframes.last());
} else {
// Otherwise,
// 1. Append to interval endpoints the last keyframe in property-specific keyframes whose computed keyframe offset is less than or equal
// to iteration progress and less than 1. If there is no such keyframe (because, for example, the iteration progress is negative),
// add the last keyframe whose computed keyframe offset is 0.
// 2. Append to interval endpoints the next keyframe in property-specific keyframes after the one added in the previous step.
size_t indexOfLastKeyframeWithZeroOffset = 0;
int indexOfFirstKeyframeToAddToIntervalEndpoints = -1;
for (size_t i = 0; i < propertySpecificKeyframes.size(); ++i) {
auto keyframeIndex = propertySpecificKeyframes[i];
auto offset = [&] () -> double {
if (!keyframeIndex)
return i ? 1 : 0;
return m_blendingKeyframes[keyframeIndex.value()].key();
}();
if (!offset)
indexOfLastKeyframeWithZeroOffset = i;
if (offset <= iterationProgress && offset < 1)
indexOfFirstKeyframeToAddToIntervalEndpoints = i;
else
break;
}
if (indexOfFirstKeyframeToAddToIntervalEndpoints >= 0) {
intervalEndpoints.append(propertySpecificKeyframes[indexOfFirstKeyframeToAddToIntervalEndpoints]);
intervalEndpoints.append(propertySpecificKeyframes[indexOfFirstKeyframeToAddToIntervalEndpoints + 1]);
} else {
ASSERT(indexOfLastKeyframeWithZeroOffset < propertySpecificKeyframes.size() - 1);
intervalEndpoints.append(propertySpecificKeyframes[indexOfLastKeyframeWithZeroOffset]);
intervalEndpoints.append(propertySpecificKeyframes[indexOfLastKeyframeWithZeroOffset + 1]);
}
}
// 12. For each keyframe in interval endpoints…
// FIXME: we don't support this step yet since we don't deal with any composite operation other than "replace".
// 13. If there is only one keyframe in interval endpoints return the property value of target property on that keyframe.
if (intervalEndpoints.size() == 1) {
auto keyframeIndex = intervalEndpoints[0];
auto keyframeStyle = !keyframeIndex ? &targetStyle : m_blendingKeyframes[keyframeIndex.value()].style();
CSSPropertyAnimation::blendProperties(this, cssPropertyId, &targetStyle, keyframeStyle, keyframeStyle, 0);
continue;
}
// 14. Let start offset be the computed keyframe offset of the first keyframe in interval endpoints.
auto startKeyframeIndex = intervalEndpoints.first();
auto startOffset = !startKeyframeIndex ? 0 : m_blendingKeyframes[startKeyframeIndex.value()].key();
// 15. Let end offset be the computed keyframe offset of last keyframe in interval endpoints.
auto endKeyframeIndex = intervalEndpoints.last();
auto endOffset = !endKeyframeIndex ? 1 : m_blendingKeyframes[endKeyframeIndex.value()].key();
// 16. Let interval distance be the result of evaluating (iteration progress - start offset) / (end offset - start offset).
auto intervalDistance = (iterationProgress - startOffset) / (endOffset - startOffset);
// 17. Let transformed distance be the result of evaluating the timing function associated with the first keyframe in interval endpoints
// passing interval distance as the input progress.
auto transformedDistance = intervalDistance;
if (startKeyframeIndex) {
if (auto duration = iterationDuration()) {
auto rangeDuration = (endOffset - startOffset) * duration.seconds();
if (auto* timingFunction = timingFunctionForKeyframeAtIndex(startKeyframeIndex.value()))
transformedDistance = timingFunction->transformTime(intervalDistance, rangeDuration);
}
}
// 18. Return the result of applying the interpolation procedure defined by the animation type of the target property, to the values of the target
// property specified on the two keyframes in interval endpoints taking the first such value as Vstart and the second as Vend and using transformed
// distance as the interpolation parameter p.
auto startStyle = !startKeyframeIndex ? &targetStyle : m_blendingKeyframes[startKeyframeIndex.value()].style();
auto endStyle = !endKeyframeIndex ? &targetStyle : m_blendingKeyframes[endKeyframeIndex.value()].style();
CSSPropertyAnimation::blendProperties(this, cssPropertyId, &targetStyle, startStyle, endStyle, transformedDistance);
}
}
TimingFunction* KeyframeEffect::timingFunctionForKeyframeAtIndex(size_t index)
{
if (!m_parsedKeyframes.isEmpty())
return m_parsedKeyframes[index].timingFunction.get();
auto effectAnimation = animation();
if (is<DeclarativeAnimation>(effectAnimation)) {
// If we're dealing with a CSS Animation, the timing function is specified either on the keyframe itself.
if (is<CSSAnimation>(effectAnimation)) {
if (auto* timingFunction = m_blendingKeyframes[index].timingFunction())
return timingFunction;
}
// Failing that, or for a CSS Transition, the timing function is inherited from the backing Animation object.
return downcast<DeclarativeAnimation>(effectAnimation)->backingAnimation().timingFunction();
}
return nullptr;
}
void KeyframeEffect::updateAcceleratedAnimationState()
{
if (!m_shouldRunAccelerated)
return;
if (!renderer()) {
if (isRunningAccelerated())
addPendingAcceleratedAction(AcceleratedAction::Stop);
return;
}
auto localTime = animation()->currentTime();
// If we don't have a localTime or localTime < 0, we either don't have a start time or we're before the startTime
// so we shouldn't be running.
if (!localTime || localTime.value() < 0_s) {
if (isRunningAccelerated())
addPendingAcceleratedAction(AcceleratedAction::Stop);
return;
}
auto playState = animation()->playState();
if (playState == WebAnimation::PlayState::Paused) {
if (m_lastRecordedAcceleratedAction != AcceleratedAction::Pause) {
if (m_lastRecordedAcceleratedAction == AcceleratedAction::Stop)
addPendingAcceleratedAction(AcceleratedAction::Play);
addPendingAcceleratedAction(AcceleratedAction::Pause);
}
return;
}
if (playState == WebAnimation::PlayState::Finished) {
if (isRunningAccelerated())
addPendingAcceleratedAction(AcceleratedAction::Stop);
else {
m_lastRecordedAcceleratedAction = AcceleratedAction::Stop;
m_pendingAcceleratedActions.clear();
animation()->acceleratedStateDidChange();
}
return;
}
if (playState == WebAnimation::PlayState::Running && localTime >= 0_s) {
if (m_lastRecordedAcceleratedAction != AcceleratedAction::Play)
addPendingAcceleratedAction(AcceleratedAction::Play);
return;
}
}
void KeyframeEffect::addPendingAcceleratedAction(AcceleratedAction action)
{
if (action == AcceleratedAction::Stop)
m_pendingAcceleratedActions.clear();
m_pendingAcceleratedActions.append(action);
if (action != AcceleratedAction::Seek)
m_lastRecordedAcceleratedAction = action;
animation()->acceleratedStateDidChange();
}
void KeyframeEffect::animationDidSeek()
{
// There is no need to seek if we're not playing an animation already. If seeking
// means we're moving into an active state, we'll pick this up in apply().
if (m_shouldRunAccelerated && isRunningAccelerated())
addPendingAcceleratedAction(AcceleratedAction::Seek);
}
void KeyframeEffect::animationSuspensionStateDidChange(bool animationIsSuspended)
{
if (m_shouldRunAccelerated)
addPendingAcceleratedAction(animationIsSuspended ? AcceleratedAction::Pause : AcceleratedAction::Play);
}
void KeyframeEffect::applyPendingAcceleratedActions()
{
// Once an accelerated animation has been committed, we no longer want to force a layout.
// This should have been performed by a call to forceLayoutIfNeeded() prior to applying
// pending accelerated actions.
m_needsForcedLayout = false;
if (m_pendingAcceleratedActions.isEmpty())
return;
auto* renderer = this->renderer();
if (!renderer || !renderer->isComposited())
return;
auto pendingAcceleratedActions = m_pendingAcceleratedActions;
m_pendingAcceleratedActions.clear();
auto* compositedRenderer = downcast<RenderBoxModelObject>(renderer);
// To simplify the code we use a default of 0s for an unresolved current time since for a Stop action that is acceptable.
auto timeOffset = animation()->currentTime().valueOr(0_s).seconds() - delay().seconds();
for (const auto& action : pendingAcceleratedActions) {
switch (action) {
case AcceleratedAction::Play:
if (!compositedRenderer->startAnimation(timeOffset, backingAnimationForCompositedRenderer(), m_blendingKeyframes)) {
m_shouldRunAccelerated = false;
m_lastRecordedAcceleratedAction = AcceleratedAction::Stop;
animation()->acceleratedStateDidChange();
return;
}
break;
case AcceleratedAction::Pause:
compositedRenderer->animationPaused(timeOffset, m_blendingKeyframes.animationName());
break;
case AcceleratedAction::Seek:
compositedRenderer->animationSeeked(timeOffset, m_blendingKeyframes.animationName());
break;
case AcceleratedAction::Stop:
compositedRenderer->animationFinished(m_blendingKeyframes.animationName());
if (!m_target->document().renderTreeBeingDestroyed())
m_target->invalidateStyleAndLayerComposition();
break;
}
}
}
Ref<const Animation> KeyframeEffect::backingAnimationForCompositedRenderer() const
{
auto effectAnimation = animation();
if (is<DeclarativeAnimation>(effectAnimation))
return downcast<DeclarativeAnimation>(effectAnimation)->backingAnimation();
// FIXME: The iterationStart and endDelay AnimationEffectTiming properties do not have
// corresponding Animation properties.
auto animation = Animation::create();
animation->setDuration(iterationDuration().seconds());
animation->setDelay(delay().seconds());
animation->setIterationCount(iterations());
animation->setTimingFunction(timingFunction()->clone());
switch (fill()) {
case FillMode::None:
case FillMode::Auto:
animation->setFillMode(AnimationFillMode::None);
break;
case FillMode::Backwards:
animation->setFillMode(AnimationFillMode::Backwards);
break;
case FillMode::Forwards:
animation->setFillMode(AnimationFillMode::Forwards);
break;
case FillMode::Both:
animation->setFillMode(AnimationFillMode::Both);
break;
}
switch (direction()) {
case PlaybackDirection::Normal:
animation->setDirection(Animation::AnimationDirectionNormal);
break;
case PlaybackDirection::Alternate:
animation->setDirection(Animation::AnimationDirectionAlternate);
break;
case PlaybackDirection::Reverse:
animation->setDirection(Animation::AnimationDirectionReverse);
break;
case PlaybackDirection::AlternateReverse:
animation->setDirection(Animation::AnimationDirectionAlternateReverse);
break;
}
return animation;
}
RenderElement* KeyframeEffect::renderer() const
{
return m_target ? m_target->renderer() : nullptr;
}
const RenderStyle& KeyframeEffect::currentStyle() const
{
if (auto* renderer = this->renderer())
return renderer->style();
return RenderStyle::defaultStyle();
}
bool KeyframeEffect::computeExtentOfTransformAnimation(LayoutRect& bounds) const
{
ASSERT(m_blendingKeyframes.containsProperty(CSSPropertyTransform));
if (!is<RenderBox>(renderer()))
return true; // Non-boxes don't get transformed;
auto& box = downcast<RenderBox>(*renderer());
auto rendererBox = snapRectToDevicePixels(box.borderBoxRect(), box.document().deviceScaleFactor());
auto cumulativeBounds = bounds;
for (const auto& keyframe : m_blendingKeyframes.keyframes()) {
const auto* keyframeStyle = keyframe.style();
// FIXME: maybe for declarative animations we always say it's true for the first and last keyframe.
if (!keyframe.containsProperty(CSSPropertyTransform)) {
// If the first keyframe is missing transform style, use the current style.
if (!keyframe.key())
keyframeStyle = &box.style();
else
continue;
}
auto keyframeBounds = bounds;
bool canCompute;
if (transformFunctionListsMatch())
canCompute = computeTransformedExtentViaTransformList(rendererBox, *keyframeStyle, keyframeBounds);
else
canCompute = computeTransformedExtentViaMatrix(rendererBox, *keyframeStyle, keyframeBounds);
if (!canCompute)
return false;
cumulativeBounds.unite(keyframeBounds);
}
bounds = cumulativeBounds;
return true;
}
static bool containsRotation(const Vector<RefPtr<TransformOperation>>& operations)
{
for (const auto& operation : operations) {
if (operation->type() == TransformOperation::ROTATE)
return true;
}
return false;
}
bool KeyframeEffect::computeTransformedExtentViaTransformList(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const
{
FloatRect floatBounds = bounds;
FloatPoint transformOrigin;
bool applyTransformOrigin = containsRotation(style.transform().operations()) || style.transform().affectedByTransformOrigin();
if (applyTransformOrigin) {
transformOrigin.setX(rendererBox.x() + floatValueForLength(style.transformOriginX(), rendererBox.width()));
transformOrigin.setY(rendererBox.y() + floatValueForLength(style.transformOriginY(), rendererBox.height()));
// Ignore transformOriginZ because we'll bail if we encounter any 3D transforms.
floatBounds.moveBy(-transformOrigin);
}
for (const auto& operation : style.transform().operations()) {
if (operation->type() == TransformOperation::ROTATE) {
// For now, just treat this as a full rotation. This could take angle into account to reduce inflation.
floatBounds = boundsOfRotatingRect(floatBounds);
} else {
TransformationMatrix transform;
operation->apply(transform, rendererBox.size());
if (!transform.isAffine())
return false;
if (operation->type() == TransformOperation::MATRIX || operation->type() == TransformOperation::MATRIX_3D) {
TransformationMatrix::Decomposed2Type toDecomp;
transform.decompose2(toDecomp);
// Any rotation prevents us from using a simple start/end rect union.
if (toDecomp.angle)
return false;
}
floatBounds = transform.mapRect(floatBounds);
}
}
if (applyTransformOrigin)
floatBounds.moveBy(transformOrigin);
bounds = LayoutRect(floatBounds);
return true;
}
bool KeyframeEffect::computeTransformedExtentViaMatrix(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const
{
TransformationMatrix transform;
style.applyTransform(transform, rendererBox, RenderStyle::IncludeTransformOrigin);
if (!transform.isAffine())
return false;
TransformationMatrix::Decomposed2Type fromDecomp;
transform.decompose2(fromDecomp);
// Any rotation prevents us from using a simple start/end rect union.
if (fromDecomp.angle)
return false;
bounds = LayoutRect(transform.mapRect(bounds));
return true;
}
} // namespace WebCore