| /* The contents of this file are subject to the Netscape Public |
| * License Version 1.1 (the "License"); you may not use this file |
| * except in compliance with the License. You may obtain a copy of |
| * the License at http://www.mozilla.org/NPL/ |
| * |
| * Software distributed under the License is distributed on an "AS |
| * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or |
| * implied. See the License for the specific language governing |
| * rights and limitations under the License. |
| * |
| * The Original Code is Mozilla Communicator client code, released March |
| * 31, 1998. |
| * |
| * The Initial Developer of the Original Code is Netscape Communications |
| * Corporation. Portions created by Netscape are |
| * Copyright (C) 1998 Netscape Communications Corporation. All |
| * Rights Reserved. |
| * |
| * Contributor(s): |
| * |
| */ |
| /** |
| File Name: 11.6.3.js |
| ECMA Section: 11.6.3 Applying the additive operators |
| (+, -) to numbers |
| Description: |
| The + operator performs addition when applied to two operands of numeric |
| type, producing the sum of the operands. The - operator performs |
| subtraction, producing the difference of two numeric operands. |
| |
| Addition is a commutative operation, but not always associative. |
| |
| The result of an addition is determined using the rules of IEEE 754 |
| double-precision arithmetic: |
| |
| If either operand is NaN, the result is NaN. |
| The sum of two infinities of opposite sign is NaN. |
| The sum of two infinities of the same sign is the infinity of that sign. |
| The sum of an infinity and a finite value is equal to the infinite operand. |
| The sum of two negative zeros is 0. The sum of two positive zeros, or of |
| two zeros of opposite sign, is +0. |
| The sum of a zero and a nonzero finite value is equal to the nonzero |
| operand. |
| The sum of two nonzero finite values of the same magnitude and opposite |
| sign is +0. |
| In the remaining cases, where neither an infinity, nor a zero, nor NaN is |
| involved, and the operands have the same sign or have different |
| magnitudes, the sum is computed and rounded to the nearest |
| representable value using IEEE 754 round-to-nearest mode. If the |
| magnitude is too large to represent, the operation overflows and |
| the result is then an infinity of appropriate sign. The ECMAScript |
| language requires support of gradual underflow as defined by IEEE 754. |
| |
| Author: christine@netscape.com |
| Date: 12 november 1997 |
| */ |
| var SECTION = "11.6.3"; |
| var VERSION = "ECMA_1"; |
| startTest(); |
| var testcases = getTestCases(); |
| |
| writeHeaderToLog( SECTION + " Applying the additive operators (+,-) to numbers"); |
| test(); |
| |
| function test() { |
| for ( tc=0; tc < testcases.length; tc++ ) { |
| testcases[tc].passed = writeTestCaseResult( |
| testcases[tc].expect, |
| testcases[tc].actual, |
| testcases[tc].description +" = "+ |
| testcases[tc].actual ); |
| |
| testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value "; |
| } |
| stopTest(); |
| return ( testcases ); |
| } |
| function getTestCases() { |
| var array = new Array(); |
| var item = 0; |
| |
| array[item++] = new TestCase( SECTION, "Number.NaN + 1", Number.NaN, Number.NaN + 1 ); |
| array[item++] = new TestCase( SECTION, "1 + Number.NaN", Number.NaN, 1 + Number.NaN ); |
| |
| array[item++] = new TestCase( SECTION, "Number.NaN - 1", Number.NaN, Number.NaN - 1 ); |
| array[item++] = new TestCase( SECTION, "1 - Number.NaN", Number.NaN, 1 - Number.NaN ); |
| |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY); |
| |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY); |
| |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY); |
| |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY); |
| |
| array[item++] = new TestCase( SECTION, "-0 + -0", -0, -0 + -0 ); |
| array[item++] = new TestCase( SECTION, "-0 - 0", -0, -0 - 0 ); |
| |
| array[item++] = new TestCase( SECTION, "0 + 0", 0, 0 + 0 ); |
| array[item++] = new TestCase( SECTION, "0 + -0", 0, 0 + -0 ); |
| array[item++] = new TestCase( SECTION, "0 - -0", 0, 0 - -0 ); |
| array[item++] = new TestCase( SECTION, "0 - 0", 0, 0 - 0 ); |
| array[item++] = new TestCase( SECTION, "-0 - -0", 0, -0 - -0 ); |
| array[item++] = new TestCase( SECTION, "-0 + 0", 0, -0 + 0 ); |
| |
| array[item++] = new TestCase( SECTION, "Number.MAX_VALUE - Number.MAX_VALUE", 0, Number.MAX_VALUE - Number.MAX_VALUE ); |
| array[item++] = new TestCase( SECTION, "1/Number.MAX_VALUE - 1/Number.MAX_VALUE", 0, 1/Number.MAX_VALUE - 1/Number.MAX_VALUE ); |
| |
| array[item++] = new TestCase( SECTION, "Number.MIN_VALUE - Number.MIN_VALUE", 0, Number.MIN_VALUE - Number.MIN_VALUE ); |
| |
| return ( array ); |
| } |