blob: 91af1b7402362b8777183714234578c56d6cfbf1 [file] [log] [blame]
/* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is Mozilla Communicator client code, released March
* 31, 1998.
*
* The Initial Developer of the Original Code is Netscape Communications
* Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*
*/
/**
File Name: 11.6.3.js
ECMA Section: 11.6.3 Applying the additive operators
(+, -) to numbers
Description:
The + operator performs addition when applied to two operands of numeric
type, producing the sum of the operands. The - operator performs
subtraction, producing the difference of two numeric operands.
Addition is a commutative operation, but not always associative.
The result of an addition is determined using the rules of IEEE 754
double-precision arithmetic:
If either operand is NaN, the result is NaN.
The sum of two infinities of opposite sign is NaN.
The sum of two infinities of the same sign is the infinity of that sign.
The sum of an infinity and a finite value is equal to the infinite operand.
The sum of two negative zeros is 0. The sum of two positive zeros, or of
two zeros of opposite sign, is +0.
The sum of a zero and a nonzero finite value is equal to the nonzero
operand.
The sum of two nonzero finite values of the same magnitude and opposite
sign is +0.
In the remaining cases, where neither an infinity, nor a zero, nor NaN is
involved, and the operands have the same sign or have different
magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the operation overflows and
the result is then an infinity of appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.
Author: christine@netscape.com
Date: 12 november 1997
*/
var SECTION = "11.6.3";
var VERSION = "ECMA_1";
startTest();
var testcases = getTestCases();
writeHeaderToLog( SECTION + " Applying the additive operators (+,-) to numbers");
test();
function test() {
for ( tc=0; tc < testcases.length; tc++ ) {
testcases[tc].passed = writeTestCaseResult(
testcases[tc].expect,
testcases[tc].actual,
testcases[tc].description +" = "+
testcases[tc].actual );
testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value ";
}
stopTest();
return ( testcases );
}
function getTestCases() {
var array = new Array();
var item = 0;
array[item++] = new TestCase( SECTION, "Number.NaN + 1", Number.NaN, Number.NaN + 1 );
array[item++] = new TestCase( SECTION, "1 + Number.NaN", Number.NaN, 1 + Number.NaN );
array[item++] = new TestCase( SECTION, "Number.NaN - 1", Number.NaN, Number.NaN - 1 );
array[item++] = new TestCase( SECTION, "1 - Number.NaN", Number.NaN, 1 - Number.NaN );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY);
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY);
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY);
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY);
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY);
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY);
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY);
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY);
array[item++] = new TestCase( SECTION, "-0 + -0", -0, -0 + -0 );
array[item++] = new TestCase( SECTION, "-0 - 0", -0, -0 - 0 );
array[item++] = new TestCase( SECTION, "0 + 0", 0, 0 + 0 );
array[item++] = new TestCase( SECTION, "0 + -0", 0, 0 + -0 );
array[item++] = new TestCase( SECTION, "0 - -0", 0, 0 - -0 );
array[item++] = new TestCase( SECTION, "0 - 0", 0, 0 - 0 );
array[item++] = new TestCase( SECTION, "-0 - -0", 0, -0 - -0 );
array[item++] = new TestCase( SECTION, "-0 + 0", 0, -0 + 0 );
array[item++] = new TestCase( SECTION, "Number.MAX_VALUE - Number.MAX_VALUE", 0, Number.MAX_VALUE - Number.MAX_VALUE );
array[item++] = new TestCase( SECTION, "1/Number.MAX_VALUE - 1/Number.MAX_VALUE", 0, 1/Number.MAX_VALUE - 1/Number.MAX_VALUE );
array[item++] = new TestCase( SECTION, "Number.MIN_VALUE - Number.MIN_VALUE", 0, Number.MIN_VALUE - Number.MIN_VALUE );
return ( array );
}