| /* The contents of this file are subject to the Netscape Public |
| * License Version 1.1 (the "License"); you may not use this file |
| * except in compliance with the License. You may obtain a copy of |
| * the License at http://www.mozilla.org/NPL/ |
| * |
| * Software distributed under the License is distributed on an "AS |
| * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or |
| * implied. See the License for the specific language governing |
| * rights and limitations under the License. |
| * |
| * The Original Code is Mozilla Communicator client code, released March |
| * 31, 1998. |
| * |
| * The Initial Developer of the Original Code is Netscape Communications |
| * Corporation. Portions created by Netscape are |
| * Copyright (C) 1998 Netscape Communications Corporation. All |
| * Rights Reserved. |
| * |
| * Contributor(s): |
| * |
| */ |
| /** |
| File Name: 11.5.3.js |
| ECMA Section: 11.5.3 Applying the % operator |
| Description: |
| |
| The binary % operator is said to yield the remainder of its operands from |
| an implied division; the left operand is the dividend and the right operand |
| is the divisor. In C and C++, the remainder operator accepts only integral |
| operands, but in ECMAScript, it also accepts floating-point operands. |
| |
| The result of a floating-point remainder operation as computed by the % |
| operator is not the same as the "remainder" operation defined by IEEE 754. |
| The IEEE 754 "remainder" operation computes the remainder from a rounding |
| division, not a truncating division, and so its behavior is not analogous |
| to that of the usual integer remainder operator. Instead the ECMAScript |
| language defines % on floating-point operations to behave in a manner |
| analogous to that of the Java integer remainder operator; this may be |
| compared with the C library function fmod. |
| |
| The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic: |
| |
| If either operand is NaN, the result is NaN. |
| The sign of the result equals the sign of the dividend. |
| If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. |
| If the dividend is finite and the divisor is an infinity, the result equals the dividend. |
| If the dividend is a zero and the divisor is finite, the result is the same as the dividend. |
| In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r |
| from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that |
| is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as |
| possible without exceeding the magnitude of the true mathematical quotient of n and d. |
| |
| Author: christine@netscape.com |
| Date: 12 november 1997 |
| */ |
| var SECTION = "11.5.3"; |
| var VERSION = "ECMA_1"; |
| startTest(); |
| var testcases = getTestCases(); |
| var BUGNUMBER="111202"; |
| |
| writeHeaderToLog( SECTION + " Applying the % operator"); |
| test(); |
| |
| function test() { |
| for ( tc=0; tc < testcases.length; tc++ ) { |
| testcases[tc].passed = writeTestCaseResult( |
| testcases[tc].expect, |
| testcases[tc].actual, |
| testcases[tc].description +" = "+ |
| testcases[tc].actual ); |
| |
| testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value "; |
| } |
| stopTest(); |
| return ( testcases ); |
| } |
| function getTestCases() { |
| var array = new Array(); |
| var item = 0; |
| |
| // if either operand is NaN, the result is NaN. |
| |
| array[item++] = new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN ); |
| array[item++] = new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 ); |
| array[item++] = new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN ); |
| |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN ); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN ); |
| |
| // If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. |
| // dividend is an infinity |
| |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY ); |
| |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 ); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 ); |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 ); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 ); |
| |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 ); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 ); |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 ); |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 ); |
| |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE ); |
| array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ); |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE ); |
| array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE ); |
| |
| // divisor is 0 |
| array[item++] = new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 ); |
| array[item++] = new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 ); |
| array[item++] = new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 ); |
| array[item++] = new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 ); |
| |
| array[item++] = new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 ); |
| array[item++] = new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 ); |
| array[item++] = new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 ); |
| array[item++] = new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 ); |
| |
| array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 ); |
| array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 ); |
| array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 ); |
| array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 ); |
| |
| // If the dividend is finite and the divisor is an infinity, the result equals the dividend. |
| |
| array[item++] = new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY ); |
| |
| array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); |
| |
| array[item++] = new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY ); |
| array[item++] = new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY ); |
| |
| // If the dividend is a zero and the divisor is finite, the result is the same as the dividend. |
| |
| array[item++] = new TestCase( SECTION, "0 % 1", 0, 0 % 1 ); |
| array[item++] = new TestCase( SECTION, "0 % -1", -0, 0 % -1 ); |
| array[item++] = new TestCase( SECTION, "-0 % 1", -0, -0 % 1 ); |
| array[item++] = new TestCase( SECTION, "-0 % -1", 0, -0 % -1 ); |
| |
| // In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r |
| // from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that |
| // is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as |
| // possible without exceeding the magnitude of the true mathematical quotient of n and d. |
| |
| return ( array ); |
| } |