| /* |
| * Copyright (C) 2012 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RenderMultiColumnSet.h" |
| |
| #include "PaintInfo.h" |
| #include "RenderLayer.h" |
| #include "RenderMultiColumnBlock.h" |
| #include "RenderMultiColumnFlowThread.h" |
| |
| namespace WebCore { |
| |
| RenderMultiColumnSet::RenderMultiColumnSet(RenderFlowThread& flowThread, PassRef<RenderStyle> style) |
| : RenderRegionSet(flowThread.document(), std::move(style), flowThread) |
| , m_computedColumnCount(1) |
| , m_computedColumnWidth(0) |
| , m_computedColumnHeight(0) |
| , m_maxColumnHeight(LayoutUnit::max()) |
| , m_minSpaceShortage(LayoutUnit::max()) |
| , m_minimumColumnHeight(0) |
| { |
| } |
| |
| LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const |
| { |
| RenderMultiColumnBlock* multicolBlock = toRenderMultiColumnBlock(parent()); |
| LayoutUnit contentLogicalTop = logicalTop() - multicolBlock->borderAndPaddingBefore(); |
| |
| height -= contentLogicalTop; |
| return std::max(height, LayoutUnit(1)); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created. |
| } |
| |
| LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const |
| { |
| LayoutUnit portionLogicalTop = (isHorizontalWritingMode() ? flowThreadPortionRect().y() : flowThreadPortionRect().x()); |
| unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns); |
| return portionLogicalTop + columnIndex * computedColumnHeight(); |
| } |
| |
| void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight) |
| { |
| m_computedColumnHeight = newHeight; |
| if (m_computedColumnHeight > m_maxColumnHeight) |
| m_computedColumnHeight = m_maxColumnHeight; |
| // FIXME: the height may also be affected by the enclosing pagination context, if any. |
| } |
| |
| unsigned RenderMultiColumnSet::findRunWithTallestColumns() const |
| { |
| unsigned indexWithLargestHeight = 0; |
| LayoutUnit largestHeight; |
| LayoutUnit previousOffset; |
| size_t runCount = m_contentRuns.size(); |
| ASSERT(runCount); |
| for (size_t i = 0; i < runCount; i++) { |
| const ContentRun& run = m_contentRuns[i]; |
| LayoutUnit height = run.columnLogicalHeight(previousOffset); |
| if (largestHeight < height) { |
| largestHeight = height; |
| indexWithLargestHeight = i; |
| } |
| previousOffset = run.breakOffset(); |
| } |
| return indexWithLargestHeight; |
| } |
| |
| void RenderMultiColumnSet::distributeImplicitBreaks() |
| { |
| unsigned breakCount = forcedBreaksCount(); |
| |
| #ifndef NDEBUG |
| // There should be no implicit breaks assumed at this point. |
| for (unsigned i = 0; i < breakCount; i++) |
| ASSERT(!m_contentRuns[i].assumedImplicitBreaks()); |
| #endif // NDEBUG |
| |
| // There will always be at least one break, since the flow thread reports a "forced break" at |
| // end of content. |
| ASSERT(breakCount >= 1); |
| |
| // If there is room for more breaks (to reach the used value of column-count), imagine that we |
| // insert implicit breaks at suitable locations. At any given time, the content run with the |
| // currently tallest columns will get another implicit break "inserted", which will increase its |
| // column count by one and shrink its columns' height. Repeat until we have the desired total |
| // number of breaks. The largest column height among the runs will then be the initial column |
| // height for the balancer to use. |
| while (breakCount < m_computedColumnCount) { |
| unsigned index = findRunWithTallestColumns(); |
| m_contentRuns[index].assumeAnotherImplicitBreak(); |
| breakCount++; |
| } |
| } |
| |
| LayoutUnit RenderMultiColumnSet::calculateBalancedHeight(bool initial) const |
| { |
| if (initial) { |
| // Start with the lowest imaginable column height. |
| unsigned index = findRunWithTallestColumns(); |
| LayoutUnit startOffset = index > 0 ? m_contentRuns[index - 1].breakOffset() : LayoutUnit(0); |
| return std::max<LayoutUnit>(m_contentRuns[index].columnLogicalHeight(startOffset), m_minimumColumnHeight); |
| } |
| |
| if (columnCount() <= computedColumnCount()) { |
| // With the current column height, the content fits without creating overflowing columns. We're done. |
| return m_computedColumnHeight; |
| } |
| |
| if (forcedBreaksCount() > 1 && forcedBreaksCount() >= computedColumnCount()) { |
| // Too many forced breaks to allow any implicit breaks. Initial balancing should already |
| // have set a good height. There's nothing more we should do. |
| return m_computedColumnHeight; |
| } |
| |
| // If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest |
| // amount of space shortage found during layout. |
| |
| ASSERT(m_minSpaceShortage > 0); // We should never _shrink_ the height! |
| ASSERT(m_minSpaceShortage != LayoutUnit::max()); // If this happens, we probably have a bug. |
| if (m_minSpaceShortage == LayoutUnit::max()) |
| return m_computedColumnHeight; // So bail out rather than looping infinitely. |
| |
| return m_computedColumnHeight + m_minSpaceShortage; |
| } |
| |
| void RenderMultiColumnSet::clearForcedBreaks() |
| { |
| m_contentRuns.clear(); |
| } |
| |
| void RenderMultiColumnSet::addForcedBreak(LayoutUnit offsetFromFirstPage) |
| { |
| if (!toRenderMultiColumnBlock(parent())->requiresBalancing()) |
| return; |
| if (!m_contentRuns.isEmpty() && offsetFromFirstPage <= m_contentRuns.last().breakOffset()) |
| return; |
| // Append another item as long as we haven't exceeded used column count. What ends up in the |
| // overflow area shouldn't affect column balancing. |
| if (m_contentRuns.size() < m_computedColumnCount) |
| m_contentRuns.append(ContentRun(offsetFromFirstPage)); |
| } |
| |
| bool RenderMultiColumnSet::recalculateBalancedHeight(bool initial) |
| { |
| ASSERT(toRenderMultiColumnBlock(parent())->requiresBalancing()); |
| |
| LayoutUnit oldColumnHeight = m_computedColumnHeight; |
| if (initial) |
| distributeImplicitBreaks(); |
| LayoutUnit newColumnHeight = calculateBalancedHeight(initial); |
| setAndConstrainColumnHeight(newColumnHeight); |
| |
| // After having calculated an initial column height, the multicol container typically needs at |
| // least one more layout pass with a new column height, but if a height was specified, we only |
| // need to do this if we think that we need less space than specified. Conversely, if we |
| // determined that the columns need to be as tall as the specified height of the container, we |
| // have already laid it out correctly, and there's no need for another pass. |
| |
| if (m_computedColumnHeight == oldColumnHeight) |
| return false; // No change. We're done. |
| |
| m_minSpaceShortage = LayoutUnit::max(); |
| clearForcedBreaks(); |
| return true; // Need another pass. |
| } |
| |
| void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage) |
| { |
| if (spaceShortage >= m_minSpaceShortage) |
| return; |
| |
| // The space shortage is what we use as our stretch amount. We need a positive number here in |
| // order to get anywhere. |
| ASSERT(spaceShortage > 0); |
| |
| m_minSpaceShortage = spaceShortage; |
| } |
| |
| void RenderMultiColumnSet::updateLogicalWidth() |
| { |
| RenderMultiColumnBlock* parentBlock = toRenderMultiColumnBlock(parent()); |
| setComputedColumnWidthAndCount(parentBlock->columnWidth(), parentBlock->columnCount()); // FIXME: This will eventually vary if we are contained inside regions. |
| |
| // FIXME: When we add regions support, we'll start it off at the width of the multi-column |
| // block in that particular region. |
| setLogicalWidth(parentBox()->contentLogicalWidth()); |
| |
| // If we overflow, increase our logical width. |
| unsigned colCount = columnCount(); |
| LayoutUnit colGap = columnGap(); |
| LayoutUnit minimumContentLogicalWidth = colCount * computedColumnWidth() + (colCount - 1) * colGap; |
| LayoutUnit currentContentLogicalWidth = contentLogicalWidth(); |
| LayoutUnit delta = std::max(LayoutUnit(), minimumContentLogicalWidth - currentContentLogicalWidth); |
| if (!delta) |
| return; |
| |
| // Increase our logical width by the delta. |
| setLogicalWidth(logicalWidth() + delta); |
| } |
| |
| void RenderMultiColumnSet::prepareForLayout() |
| { |
| RenderMultiColumnBlock* multicolBlock = toRenderMultiColumnBlock(parent()); |
| const RenderStyle& multicolStyle = multicolBlock->style(); |
| |
| // Set box logical top. |
| ASSERT(!previousSiblingBox() || !previousSiblingBox()->isRenderMultiColumnSet()); // FIXME: multiple set not implemented; need to examine previous set to calculate the correct logical top. |
| setLogicalTop(multicolBlock->borderAndPaddingBefore()); |
| |
| // Set box width. |
| updateLogicalWidth(); |
| |
| if (multicolBlock->requiresBalancing()) { |
| // Set maximum column height. We will not stretch beyond this. |
| m_maxColumnHeight = LayoutUnit::max(); |
| if (!multicolStyle.logicalHeight().isAuto()) |
| m_maxColumnHeight = multicolBlock->computeContentLogicalHeight(multicolStyle.logicalHeight()); |
| if (!multicolStyle.logicalMaxHeight().isUndefined()) { |
| LayoutUnit logicalMaxHeight = multicolBlock->computeContentLogicalHeight(multicolStyle.logicalMaxHeight()); |
| if (m_maxColumnHeight > logicalMaxHeight) |
| m_maxColumnHeight = logicalMaxHeight; |
| } |
| m_maxColumnHeight = heightAdjustedForSetOffset(m_maxColumnHeight); |
| m_computedColumnHeight = 0; // Restart balancing. |
| } else |
| setAndConstrainColumnHeight(heightAdjustedForSetOffset(multicolBlock->columnHeightAvailable())); |
| |
| clearForcedBreaks(); |
| |
| // Nuke previously stored minimum column height. Contents may have changed for all we know. |
| m_minimumColumnHeight = 0; |
| } |
| |
| void RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const |
| { |
| computedValues.m_extent = m_computedColumnHeight; |
| computedValues.m_position = logicalTop; |
| } |
| |
| LayoutUnit RenderMultiColumnSet::columnGap() const |
| { |
| // FIXME: Eventually we will cache the column gap when the widths of columns start varying, but for now we just |
| // go to the parent block to get the gap. |
| RenderMultiColumnBlock* parentBlock = toRenderMultiColumnBlock(parent()); |
| if (parentBlock->style().hasNormalColumnGap()) |
| return parentBlock->style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins. |
| return parentBlock->style().columnGap(); |
| } |
| |
| unsigned RenderMultiColumnSet::columnCount() const |
| { |
| // We must always return a value of 1 or greater. Column count = 0 is a meaningless situation, |
| // and will confuse and cause problems in other parts of the code. |
| if (!computedColumnHeight()) |
| return 1; |
| |
| // Our portion rect determines our column count. We have as many columns as needed to fit all the content. |
| LayoutUnit logicalHeightInColumns = flowThread()->isHorizontalWritingMode() ? flowThreadPortionRect().height() : flowThreadPortionRect().width(); |
| unsigned count = ceil(static_cast<float>(logicalHeightInColumns) / computedColumnHeight()); |
| ASSERT(count >= 1); |
| return count; |
| } |
| |
| LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const |
| { |
| LayoutUnit colLogicalWidth = computedColumnWidth(); |
| LayoutUnit colLogicalHeight = computedColumnHeight(); |
| LayoutUnit colLogicalTop = borderAndPaddingBefore(); |
| LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft(); |
| LayoutUnit colGap = columnGap(); |
| if (style().isLeftToRightDirection()) |
| colLogicalLeft += index * (colLogicalWidth + colGap); |
| else |
| colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap); |
| |
| if (isHorizontalWritingMode()) |
| return LayoutRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight); |
| return LayoutRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth); |
| } |
| |
| unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const |
| { |
| LayoutRect portionRect(flowThreadPortionRect()); |
| |
| // Handle the offset being out of range. |
| LayoutUnit flowThreadLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x(); |
| if (offset < flowThreadLogicalTop) |
| return 0; |
| // If we're laying out right now, we cannot constrain against some logical bottom, since it |
| // isn't known yet. Otherwise, just return the last column if we're past the logical bottom. |
| if (mode == ClampToExistingColumns) { |
| LayoutUnit flowThreadLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX(); |
| if (offset >= flowThreadLogicalBottom) |
| return columnCount() - 1; |
| } |
| |
| // Just divide by the column height to determine the correct column. |
| return static_cast<float>(offset - flowThreadLogicalTop) / computedColumnHeight(); |
| } |
| |
| LayoutRect RenderMultiColumnSet::flowThreadPortionRectAt(unsigned index) const |
| { |
| LayoutRect portionRect = flowThreadPortionRect(); |
| if (isHorizontalWritingMode()) |
| portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight()); |
| else |
| portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height()); |
| return portionRect; |
| } |
| |
| LayoutRect RenderMultiColumnSet::flowThreadPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap) |
| { |
| // This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are |
| // unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column |
| // gap along interior edges. |
| // |
| // In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of |
| // the last column. This applies only to the true first column and last column across all column sets. |
| // |
| // FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting |
| // mode that understands not to paint contents from a previous column in the overflow area of a following column. |
| // This problem applies to regions and pages as well and is not unique to columns. |
| bool isFirstColumn = !index; |
| bool isLastColumn = index == colCount - 1; |
| bool isLeftmostColumn = style().isLeftToRightDirection() ? isFirstColumn : isLastColumn; |
| bool isRightmostColumn = style().isLeftToRightDirection() ? isLastColumn : isFirstColumn; |
| |
| // Calculate the overflow rectangle, based on the flow thread's, clipped at column logical |
| // top/bottom unless it's the first/last column. |
| LayoutRect overflowRect = overflowRectForFlowThreadPortion(portionRect, isFirstColumn && isFirstRegion(), isLastColumn && isLastRegion(), VisualOverflow); |
| |
| // Avoid overflowing into neighboring columns, by clipping in the middle of adjacent column |
| // gaps. Also make sure that we avoid rounding errors. |
| if (isHorizontalWritingMode()) { |
| if (!isLeftmostColumn) |
| overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2); |
| if (!isRightmostColumn) |
| overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2); |
| } else { |
| if (!isLeftmostColumn) |
| overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2); |
| if (!isRightmostColumn) |
| overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2); |
| } |
| return overflowRect; |
| } |
| |
| void RenderMultiColumnSet::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset) |
| { |
| if (style().visibility() != VISIBLE) |
| return; |
| |
| RenderBlock::paintObject(paintInfo, paintOffset); |
| |
| // FIXME: Right now we're only painting in the foreground phase. |
| // Columns should technically respect phases and allow for background/float/foreground overlap etc., just like |
| // RenderBlocks do. Note this is a pretty minor issue, since the old column implementation clipped columns |
| // anyway, thus making it impossible for them to overlap one another. It's also really unlikely that the columns |
| // would overlap another block. |
| if (!m_flowThread || !isValid() || (paintInfo.phase != PaintPhaseForeground && paintInfo.phase != PaintPhaseSelection)) |
| return; |
| |
| paintColumnRules(paintInfo, paintOffset); |
| } |
| |
| void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset) |
| { |
| if (paintInfo.context->paintingDisabled()) |
| return; |
| |
| const RenderStyle& blockStyle = toRenderMultiColumnBlock(parent())->style(); |
| const Color& ruleColor = blockStyle.visitedDependentColor(CSSPropertyWebkitColumnRuleColor); |
| bool ruleTransparent = blockStyle.columnRuleIsTransparent(); |
| EBorderStyle ruleStyle = blockStyle.columnRuleStyle(); |
| LayoutUnit ruleThickness = blockStyle.columnRuleWidth(); |
| LayoutUnit colGap = columnGap(); |
| bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent; |
| if (!renderRule) |
| return; |
| |
| unsigned colCount = columnCount(); |
| if (colCount <= 1) |
| return; |
| |
| bool antialias = shouldAntialiasLines(paintInfo.context); |
| |
| bool leftToRight = style().isLeftToRightDirection(); |
| LayoutUnit currLogicalLeftOffset = leftToRight ? LayoutUnit() : contentLogicalWidth(); |
| LayoutUnit ruleAdd = borderAndPaddingLogicalLeft(); |
| LayoutUnit ruleLogicalLeft = leftToRight ? LayoutUnit() : contentLogicalWidth(); |
| LayoutUnit inlineDirectionSize = computedColumnWidth(); |
| BoxSide boxSide = isHorizontalWritingMode() |
| ? leftToRight ? BSLeft : BSRight |
| : leftToRight ? BSTop : BSBottom; |
| |
| for (unsigned i = 0; i < colCount; i++) { |
| // Move to the next position. |
| if (leftToRight) { |
| ruleLogicalLeft += inlineDirectionSize + colGap / 2; |
| currLogicalLeftOffset += inlineDirectionSize + colGap; |
| } else { |
| ruleLogicalLeft -= (inlineDirectionSize + colGap / 2); |
| currLogicalLeftOffset -= (inlineDirectionSize + colGap); |
| } |
| |
| // Now paint the column rule. |
| if (i < colCount - 1) { |
| LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft(); |
| LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth(); |
| LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd; |
| LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness; |
| IntRect pixelSnappedRuleRect = pixelSnappedIntRectFromEdges(ruleLeft, ruleTop, ruleRight, ruleBottom); |
| drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias); |
| } |
| |
| ruleLogicalLeft = currLogicalLeftOffset; |
| } |
| } |
| |
| void RenderMultiColumnSet::repaintFlowThreadContent(const LayoutRect& repaintRect, bool immediate) |
| { |
| // Figure out the start and end columns and only check within that range so that we don't walk the |
| // entire column set. Put the repaint rect into flow thread coordinates by flipping it first. |
| LayoutRect flowThreadRepaintRect(repaintRect); |
| flowThread()->flipForWritingMode(flowThreadRepaintRect); |
| |
| // Now we can compare this rect with the flow thread portions owned by each column. First let's |
| // just see if the repaint rect intersects our flow thread portion at all. |
| LayoutRect clippedRect(flowThreadRepaintRect); |
| clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect()); |
| if (clippedRect.isEmpty()) |
| return; |
| |
| // Now we know we intersect at least one column. Let's figure out the logical top and logical |
| // bottom of the area we're repainting. |
| LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? flowThreadRepaintRect.y() : flowThreadRepaintRect.x(); |
| LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? flowThreadRepaintRect.maxY() : flowThreadRepaintRect.maxX()) - 1; |
| |
| unsigned startColumn = columnIndexAtOffset(repaintLogicalTop); |
| unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom); |
| |
| LayoutUnit colGap = columnGap(); |
| unsigned colCount = columnCount(); |
| for (unsigned i = startColumn; i <= endColumn; i++) { |
| LayoutRect colRect = columnRectAt(i); |
| |
| // Get the portion of the flow thread that corresponds to this column. |
| LayoutRect flowThreadPortion = flowThreadPortionRectAt(i); |
| |
| // Now get the overflow rect that corresponds to the column. |
| LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap); |
| |
| // Do a repaint for this specific column. |
| repaintFlowThreadContentRectangle(repaintRect, immediate, flowThreadPortion, colRect.location(), &flowThreadOverflowPortion); |
| } |
| } |
| |
| void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect) |
| { |
| // Let's start by introducing the different coordinate systems involved here. They are different |
| // in how they deal with writing modes and columns. RenderLayer rectangles tend to be more |
| // physical than the rectangles used in RenderObject & co. |
| // |
| // The two rectangles passed to this method are physical, except that we pretend that there's |
| // only one long column (that's the flow thread). They are relative to the top left corner of |
| // the flow thread. All rectangles being compared to the dirty rect also need to be in this |
| // coordinate system. |
| // |
| // Then there's the output from this method - the stuff we put into the list of fragments. The |
| // translationOffset point is the actual physical translation required to get from a location in |
| // the flow thread to a location in some column. The paginationClip rectangle is in the same |
| // coordinate system as the two rectangles passed to this method (i.e. physical, in flow thread |
| // coordinates, pretending that there's only one long column). |
| // |
| // All other rectangles in this method are slightly less physical, when it comes to how they are |
| // used with different writing modes, but they aren't really logical either. They are just like |
| // RenderBox::frameRect(). More precisely, the sizes are physical, and the inline direction |
| // coordinate is too, but the block direction coordinate is always "logical top". These |
| // rectangles also pretend that there's only one long column, i.e. they are for the flow thread. |
| // |
| // To sum up: input and output from this method are "physical" RenderLayer-style rectangles and |
| // points, while inside this method we mostly use the RenderObject-style rectangles (with the |
| // block direction coordinate always being logical top). |
| |
| // Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in |
| // a renderer, most rectangles are represented this way. |
| LayoutRect layerBoundsInFlowThread(layerBoundingBox); |
| flowThread()->flipForWritingMode(layerBoundsInFlowThread); |
| |
| // Now we can compare with the flow thread portions owned by each column. First let's |
| // see if the rect intersects our flow thread portion at all. |
| LayoutRect clippedRect(layerBoundsInFlowThread); |
| clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect()); |
| if (clippedRect.isEmpty()) |
| return; |
| |
| // Now we know we intersect at least one column. Let's figure out the logical top and logical |
| // bottom of the area we're checking. |
| LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFlowThread.y() : layerBoundsInFlowThread.x(); |
| LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFlowThread.maxY() : layerBoundsInFlowThread.maxX()) - 1; |
| |
| // Figure out the start and end columns and only check within that range so that we don't walk the |
| // entire column set. |
| unsigned startColumn = columnIndexAtOffset(layerLogicalTop); |
| unsigned endColumn = columnIndexAtOffset(layerLogicalBottom); |
| |
| LayoutUnit colLogicalWidth = computedColumnWidth(); |
| LayoutUnit colGap = columnGap(); |
| unsigned colCount = columnCount(); |
| |
| for (unsigned i = startColumn; i <= endColumn; i++) { |
| // Get the portion of the flow thread that corresponds to this column. |
| LayoutRect flowThreadPortion = flowThreadPortionRectAt(i); |
| |
| // Now get the overflow rect that corresponds to the column. |
| LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap); |
| |
| // In order to create a fragment we must intersect the portion painted by this column. |
| LayoutRect clippedRect(layerBoundsInFlowThread); |
| clippedRect.intersect(flowThreadOverflowPortion); |
| if (clippedRect.isEmpty()) |
| continue; |
| |
| // We also need to intersect the dirty rect. We have to apply a translation and shift based off |
| // our column index. |
| LayoutPoint translationOffset; |
| LayoutUnit inlineOffset = i * (colLogicalWidth + colGap); |
| if (!style().isLeftToRightDirection()) |
| inlineOffset = -inlineOffset; |
| translationOffset.setX(inlineOffset); |
| LayoutUnit blockOffset = isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x(); |
| if (isFlippedBlocksWritingMode(style().writingMode())) |
| blockOffset = -blockOffset; |
| translationOffset.setY(blockOffset); |
| if (!isHorizontalWritingMode()) |
| translationOffset = translationOffset.transposedPoint(); |
| // FIXME: The translation needs to include the multicolumn set's content offset within the |
| // multicolumn block as well. This won't be an issue until we start creating multiple multicolumn sets. |
| |
| // Shift the dirty rect to be in flow thread coordinates with this translation applied. |
| LayoutRect translatedDirtyRect(dirtyRect); |
| translatedDirtyRect.moveBy(-translationOffset); |
| |
| // See if we intersect the dirty rect. |
| clippedRect = layerBoundingBox; |
| clippedRect.intersect(translatedDirtyRect); |
| if (clippedRect.isEmpty()) |
| continue; |
| |
| // Something does need to paint in this column. Make a fragment now and supply the physical translation |
| // offset and the clip rect for the column with that offset applied. |
| LayerFragment fragment; |
| fragment.paginationOffset = translationOffset; |
| |
| LayoutRect flippedFlowThreadOverflowPortion(flowThreadOverflowPortion); |
| // Flip it into more a physical (RenderLayer-style) rectangle. |
| flowThread()->flipForWritingMode(flippedFlowThreadOverflowPortion); |
| fragment.paginationClip = flippedFlowThreadOverflowPortion; |
| fragments.append(fragment); |
| } |
| } |
| |
| void RenderMultiColumnSet::adjustRegionBoundsFromFlowThreadPortionRect(const IntPoint& layerOffset, IntRect& regionBounds) |
| { |
| LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerOffset.y() : layerOffset.x(); |
| unsigned startColumn = columnIndexAtOffset(layerLogicalTop); |
| |
| LayoutUnit colGap = columnGap(); |
| LayoutUnit colLogicalWidth = computedColumnWidth(); |
| |
| LayoutRect flowThreadPortion = flowThreadPortionRectAt(startColumn); |
| LayoutPoint translationOffset; |
| |
| LayoutUnit inlineOffset = startColumn * (colLogicalWidth + colGap); |
| if (!style().isLeftToRightDirection()) |
| inlineOffset = -inlineOffset; |
| translationOffset.setX(inlineOffset); |
| |
| LayoutUnit blockOffset = isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x(); |
| if (isFlippedBlocksWritingMode(style().writingMode())) |
| blockOffset = -blockOffset; |
| translationOffset.setY(blockOffset); |
| |
| if (!isHorizontalWritingMode()) |
| translationOffset = translationOffset.transposedPoint(); |
| |
| // FIXME: The translation needs to include the multicolumn set's content offset within the |
| // multicolumn block as well. This won't be an issue until we start creating multiple multicolumn sets. |
| |
| regionBounds.moveBy(roundedIntPoint(-translationOffset)); |
| } |
| |
| const char* RenderMultiColumnSet::renderName() const |
| { |
| return "RenderMultiColumnSet"; |
| } |
| |
| } |