blob: e38deab5b476f35a3566af2816d1554cca7447c8 [file] [log] [blame]
/*
* Copyright (C) 1997 Martin Jones (mjones@kde.org)
* (C) 1997 Torben Weis (weis@kde.org)
* (C) 1998 Waldo Bastian (bastian@kde.org)
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009, 2010 Apple Inc. All rights reserved.
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "RenderTableSection.h"
#include "Document.h"
#include "HitTestResult.h"
#include "HTMLNames.h"
#include "LayoutState.h"
#include "PaintInfo.h"
#include "RenderChildIterator.h"
#include "RenderTableCell.h"
#include "RenderTableCol.h"
#include "RenderTableRow.h"
#include "RenderTextControl.h"
#include "RenderTreeBuilder.h"
#include "RenderView.h"
#include "StyleInheritedData.h"
#include <limits>
#include <wtf/IsoMallocInlines.h>
#include <wtf/HashSet.h>
#include <wtf/StackStats.h>
namespace WebCore {
using namespace HTMLNames;
WTF_MAKE_ISO_ALLOCATED_IMPL(RenderTableSection);
// Those 2 variables are used to balance the memory consumption vs the repaint time on big tables.
static const unsigned gMinTableSizeToUseFastPaintPathWithOverflowingCell = 75 * 75;
static const float gMaxAllowedOverflowingCellRatioForFastPaintPath = 0.1f;
static inline void setRowLogicalHeightToRowStyleLogicalHeightIfNotRelative(RenderTableSection::RowStruct& row)
{
ASSERT(row.rowRenderer);
row.logicalHeight = row.rowRenderer->style().logicalHeight();
if (row.logicalHeight.isRelative())
row.logicalHeight = Length();
}
static inline void updateLogicalHeightForCell(RenderTableSection::RowStruct& row, const RenderTableCell* cell)
{
// We ignore height settings on rowspan cells.
if (cell->rowSpan() != 1)
return;
Length logicalHeight = cell->style().logicalHeight();
if (logicalHeight.isPositive() || (logicalHeight.isRelative() && logicalHeight.value() >= 0)) {
Length cRowLogicalHeight = row.logicalHeight;
switch (logicalHeight.type()) {
case Percent:
if (!cRowLogicalHeight.isPercent() || cRowLogicalHeight.percent() < logicalHeight.percent())
row.logicalHeight = logicalHeight;
break;
case Fixed:
if (cRowLogicalHeight.isAuto() || cRowLogicalHeight.isRelative()
|| (cRowLogicalHeight.isFixed() && cRowLogicalHeight.value() < logicalHeight.value()))
row.logicalHeight = logicalHeight;
break;
case Relative:
default:
break;
}
}
}
RenderTableSection::RenderTableSection(Element& element, RenderStyle&& style)
: RenderBox(element, WTFMove(style), 0)
{
setInline(false);
}
RenderTableSection::RenderTableSection(Document& document, RenderStyle&& style)
: RenderBox(document, WTFMove(style), 0)
{
setInline(false);
}
RenderTableSection::~RenderTableSection() = default;
void RenderTableSection::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBox::styleDidChange(diff, oldStyle);
propagateStyleToAnonymousChildren(PropagateToAllChildren);
// If border was changed, notify table.
RenderTable* table = this->table();
if (table && oldStyle && oldStyle->border() != style().border())
table->invalidateCollapsedBorders();
}
void RenderTableSection::willBeRemovedFromTree()
{
RenderBox::willBeRemovedFromTree();
// Preventively invalidate our cells as we may be re-inserted into
// a new table which would require us to rebuild our structure.
setNeedsCellRecalc();
}
void RenderTableSection::willInsertTableRow(RenderTableRow& child, RenderObject* beforeChild)
{
if (beforeChild)
setNeedsCellRecalc();
unsigned insertionRow = m_cRow;
++m_cRow;
m_cCol = 0;
ensureRows(m_cRow);
m_grid[insertionRow].rowRenderer = &child;
child.setRowIndex(insertionRow);
if (!beforeChild)
setRowLogicalHeightToRowStyleLogicalHeightIfNotRelative(m_grid[insertionRow]);
}
void RenderTableSection::ensureRows(unsigned numRows)
{
if (numRows <= m_grid.size())
return;
unsigned oldSize = m_grid.size();
m_grid.grow(numRows);
unsigned effectiveColumnCount = std::max(1u, table()->numEffCols());
for (unsigned row = oldSize; row < m_grid.size(); ++row)
m_grid[row].row.resizeToFit(effectiveColumnCount);
}
void RenderTableSection::addCell(RenderTableCell* cell, RenderTableRow* row)
{
// We don't insert the cell if we need cell recalc as our internal columns' representation
// will have drifted from the table's representation. Also recalcCells will call addCell
// at a later time after sync'ing our columns' with the table's.
if (needsCellRecalc())
return;
unsigned rSpan = cell->rowSpan();
unsigned cSpan = cell->colSpan();
const Vector<RenderTable::ColumnStruct>& columns = table()->columns();
unsigned nCols = columns.size();
unsigned insertionRow = row->rowIndex();
// ### mozilla still seems to do the old HTML way, even for strict DTD
// (see the annotation on table cell layouting in the CSS specs and the testcase below:
// <TABLE border>
// <TR><TD>1 <TD rowspan="2">2 <TD>3 <TD>4
// <TR><TD colspan="2">5
// </TABLE>
while (m_cCol < nCols && (cellAt(insertionRow, m_cCol).hasCells() || cellAt(insertionRow, m_cCol).inColSpan))
m_cCol++;
updateLogicalHeightForCell(m_grid[insertionRow], cell);
ensureRows(insertionRow + rSpan);
m_grid[insertionRow].rowRenderer = row;
unsigned col = m_cCol;
// tell the cell where it is
bool inColSpan = false;
while (cSpan) {
unsigned currentSpan;
if (m_cCol >= nCols) {
table()->appendColumn(cSpan);
currentSpan = cSpan;
} else {
if (cSpan < columns[m_cCol].span)
table()->splitColumn(m_cCol, cSpan);
currentSpan = columns[m_cCol].span;
}
for (unsigned r = 0; r < rSpan; r++) {
CellStruct& c = cellAt(insertionRow + r, m_cCol);
ASSERT(cell);
c.cells.append(cell);
// If cells overlap then we take the slow path for painting.
if (c.cells.size() > 1)
m_hasMultipleCellLevels = true;
if (inColSpan)
c.inColSpan = true;
}
m_cCol++;
cSpan -= currentSpan;
inColSpan = true;
}
cell->setCol(table()->effColToCol(col));
}
static LayoutUnit resolveLogicalHeightForRow(const Length& rowLogicalHeight)
{
if (rowLogicalHeight.isFixed())
return rowLogicalHeight.value();
if (rowLogicalHeight.isCalculated())
return rowLogicalHeight.nonNanCalculatedValue(0);
return 0;
}
LayoutUnit RenderTableSection::calcRowLogicalHeight()
{
#ifndef NDEBUG
SetLayoutNeededForbiddenScope layoutForbiddenScope(this);
#endif
ASSERT(!needsLayout());
RenderTableCell* cell;
// We ignore the border-spacing on any non-top section as it is already included in the previous section's last row position.
LayoutUnit spacing = 0;
if (this == table()->topSection())
spacing = table()->vBorderSpacing();
LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode());
m_rowPos.resize(m_grid.size() + 1);
m_rowPos[0] = spacing;
unsigned totalRows = m_grid.size();
for (unsigned r = 0; r < totalRows; r++) {
m_grid[r].baseline = 0;
LayoutUnit baselineDescent = 0;
// Our base size is the biggest logical height from our cells' styles (excluding row spanning cells).
m_rowPos[r + 1] = std::max(m_rowPos[r] + resolveLogicalHeightForRow(m_grid[r].logicalHeight), LayoutUnit::fromPixel(0));
Row& row = m_grid[r].row;
unsigned totalCols = row.size();
for (unsigned c = 0; c < totalCols; c++) {
CellStruct& current = cellAt(r, c);
for (unsigned i = 0; i < current.cells.size(); i++) {
cell = current.cells[i];
if (current.inColSpan && cell->rowSpan() == 1)
continue;
// FIXME: We are always adding the height of a rowspan to the last rows which doesn't match
// other browsers. See webkit.org/b/52185 for example.
if ((cell->rowIndex() + cell->rowSpan() - 1) != r) {
// We will apply the height of the rowspan to the current row if next row is not valid.
if ((r + 1) < totalRows) {
unsigned col = 0;
CellStruct nextRowCell = cellAt(r + 1, col);
// We are trying to find that next row is valid or not.
while (nextRowCell.cells.size() && nextRowCell.cells[0]->rowSpan() > 1 && nextRowCell.cells[0]->rowIndex() < (r + 1)) {
col++;
if (col < totalCols)
nextRowCell = cellAt(r + 1, col);
else
break;
}
// We are adding the height of the rowspan to the current row if next row is not valid.
if (col < totalCols && nextRowCell.cells.size())
continue;
}
}
// For row spanning cells, |r| is the last row in the span.
unsigned cellStartRow = cell->rowIndex();
if (cell->hasOverrideLogicalContentHeight()) {
cell->clearIntrinsicPadding();
cell->clearOverrideSize();
cell->setChildNeedsLayout(MarkOnlyThis);
cell->layoutIfNeeded();
}
LayoutUnit cellLogicalHeight = cell->logicalHeightForRowSizing();
m_rowPos[r + 1] = std::max(m_rowPos[r + 1], m_rowPos[cellStartRow] + cellLogicalHeight);
// Find out the baseline. The baseline is set on the first row in a rowspan.
if (cell->isBaselineAligned()) {
LayoutUnit baselinePosition = cell->cellBaselinePosition() - cell->intrinsicPaddingBefore();
LayoutUnit borderAndComputedPaddingBefore = cell->borderAndPaddingBefore() - cell->intrinsicPaddingBefore();
if (baselinePosition > borderAndComputedPaddingBefore) {
m_grid[cellStartRow].baseline = std::max(m_grid[cellStartRow].baseline, baselinePosition);
// The descent of a cell that spans multiple rows does not affect the height of the first row it spans, so don't let it
// become the baseline descent applied to the rest of the row. Also we don't account for the baseline descent of
// non-spanning cells when computing a spanning cell's extent.
LayoutUnit cellStartRowBaselineDescent = 0;
if (cell->rowSpan() == 1) {
baselineDescent = std::max(baselineDescent, cellLogicalHeight - baselinePosition);
cellStartRowBaselineDescent = baselineDescent;
}
m_rowPos[cellStartRow + 1] = std::max(m_rowPos[cellStartRow + 1], m_rowPos[cellStartRow] + m_grid[cellStartRow].baseline + cellStartRowBaselineDescent);
}
}
}
}
// Add the border-spacing to our final position.
// Use table border-spacing even in non-top sections
spacing = table()->vBorderSpacing();
m_rowPos[r + 1] += m_grid[r].rowRenderer ? spacing : LayoutUnit::fromPixel(0);
m_rowPos[r + 1] = std::max(m_rowPos[r + 1], m_rowPos[r]);
}
ASSERT(!needsLayout());
return m_rowPos[m_grid.size()];
}
void RenderTableSection::layout()
{
StackStats::LayoutCheckPoint layoutCheckPoint;
ASSERT(needsLayout());
ASSERT(!needsCellRecalc());
ASSERT(!table()->needsSectionRecalc());
m_forceSlowPaintPathWithOverflowingCell = false;
// addChild may over-grow m_grid but we don't want to throw away the memory too early as addChild
// can be called in a loop (e.g during parsing). Doing it now ensures we have a stable-enough structure.
m_grid.shrinkToFit();
LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode());
bool paginated = view().frameView().layoutContext().layoutState()->isPaginated();
const Vector<LayoutUnit>& columnPos = table()->columnPositions();
for (unsigned r = 0; r < m_grid.size(); ++r) {
Row& row = m_grid[r].row;
unsigned cols = row.size();
// First, propagate our table layout's information to the cells. This will mark the row as needing layout
// if there was a column logical width change.
for (unsigned startColumn = 0; startColumn < cols; ++startColumn) {
CellStruct& current = row[startColumn];
RenderTableCell* cell = current.primaryCell();
if (!cell || current.inColSpan)
continue;
unsigned endCol = startColumn;
unsigned cspan = cell->colSpan();
while (cspan && endCol < cols) {
ASSERT(endCol < table()->columns().size());
cspan -= table()->columns()[endCol].span;
endCol++;
}
LayoutUnit tableLayoutLogicalWidth = columnPos[endCol] - columnPos[startColumn] - table()->hBorderSpacing();
cell->setCellLogicalWidth(tableLayoutLogicalWidth);
}
if (RenderTableRow* rowRenderer = m_grid[r].rowRenderer) {
if (!rowRenderer->needsLayout() && paginated && view().frameView().layoutContext().layoutState()->pageLogicalHeightChanged())
rowRenderer->setChildNeedsLayout(MarkOnlyThis);
rowRenderer->layoutIfNeeded();
}
}
clearNeedsLayout();
}
void RenderTableSection::distributeExtraLogicalHeightToPercentRows(LayoutUnit& extraLogicalHeight, int totalPercent)
{
if (!totalPercent)
return;
unsigned totalRows = m_grid.size();
LayoutUnit totalHeight = m_rowPos[totalRows] + extraLogicalHeight;
LayoutUnit totalLogicalHeightAdded = 0;
totalPercent = std::min(totalPercent, 100);
LayoutUnit rowHeight = m_rowPos[1] - m_rowPos[0];
for (unsigned r = 0; r < totalRows; ++r) {
if (totalPercent > 0 && m_grid[r].logicalHeight.isPercent()) {
LayoutUnit toAdd = std::min<LayoutUnit>(extraLogicalHeight, (totalHeight * m_grid[r].logicalHeight.percent() / 100) - rowHeight);
// If toAdd is negative, then we don't want to shrink the row (this bug
// affected Outlook Web Access).
toAdd = std::max(LayoutUnit::fromPixel(0), toAdd);
totalLogicalHeightAdded += toAdd;
extraLogicalHeight -= toAdd;
totalPercent -= m_grid[r].logicalHeight.percent();
}
ASSERT(totalRows >= 1);
if (r < totalRows - 1)
rowHeight = m_rowPos[r + 2] - m_rowPos[r + 1];
m_rowPos[r + 1] += totalLogicalHeightAdded;
}
}
void RenderTableSection::distributeExtraLogicalHeightToAutoRows(LayoutUnit& extraLogicalHeight, unsigned autoRowsCount)
{
if (!autoRowsCount)
return;
LayoutUnit totalLogicalHeightAdded = 0;
for (unsigned r = 0; r < m_grid.size(); ++r) {
if (autoRowsCount > 0 && m_grid[r].logicalHeight.isAuto()) {
// Recomputing |extraLogicalHeightForRow| guarantees that we properly ditribute round |extraLogicalHeight|.
LayoutUnit extraLogicalHeightForRow = extraLogicalHeight / autoRowsCount;
totalLogicalHeightAdded += extraLogicalHeightForRow;
extraLogicalHeight -= extraLogicalHeightForRow;
--autoRowsCount;
}
m_rowPos[r + 1] += totalLogicalHeightAdded;
}
}
void RenderTableSection::distributeRemainingExtraLogicalHeight(LayoutUnit& extraLogicalHeight)
{
unsigned totalRows = m_grid.size();
if (extraLogicalHeight <= 0 || !m_rowPos[totalRows])
return;
// FIXME: m_rowPos[totalRows] - m_rowPos[0] is the total rows' size.
LayoutUnit totalRowSize = m_rowPos[totalRows];
LayoutUnit totalLogicalHeightAdded = 0;
LayoutUnit previousRowPosition = m_rowPos[0];
for (unsigned r = 0; r < totalRows; r++) {
// weight with the original height
totalLogicalHeightAdded += extraLogicalHeight * (m_rowPos[r + 1] - previousRowPosition) / totalRowSize;
previousRowPosition = m_rowPos[r + 1];
m_rowPos[r + 1] += totalLogicalHeightAdded;
}
extraLogicalHeight -= totalLogicalHeightAdded;
}
LayoutUnit RenderTableSection::distributeExtraLogicalHeightToRows(LayoutUnit extraLogicalHeight)
{
if (!extraLogicalHeight)
return extraLogicalHeight;
unsigned totalRows = m_grid.size();
if (!totalRows)
return extraLogicalHeight;
if (!m_rowPos[totalRows] && nextSibling())
return extraLogicalHeight;
unsigned autoRowsCount = 0;
int totalPercent = 0;
for (unsigned r = 0; r < totalRows; r++) {
if (m_grid[r].logicalHeight.isAuto())
++autoRowsCount;
else if (m_grid[r].logicalHeight.isPercent())
totalPercent += m_grid[r].logicalHeight.percent();
}
LayoutUnit remainingExtraLogicalHeight = extraLogicalHeight;
distributeExtraLogicalHeightToPercentRows(remainingExtraLogicalHeight, totalPercent);
distributeExtraLogicalHeightToAutoRows(remainingExtraLogicalHeight, autoRowsCount);
distributeRemainingExtraLogicalHeight(remainingExtraLogicalHeight);
return extraLogicalHeight - remainingExtraLogicalHeight;
}
static bool shouldFlexCellChild(const RenderTableCell& cell, const RenderBox& cellDescendant)
{
if (!cell.style().logicalHeight().isSpecified())
return false;
if (cellDescendant.scrollsOverflowY())
return true;
return cellDescendant.shouldTreatChildAsReplacedInTableCells();
}
void RenderTableSection::relayoutCellIfFlexed(RenderTableCell& cell, int rowIndex, int rowHeight)
{
// Force percent height children to lay themselves out again.
// This will cause these children to grow to fill the cell.
// FIXME: There is still more work to do here to fully match WinIE (should
// it become necessary to do so). In quirks mode, WinIE behaves like we
// do, but it will clip the cells that spill out of the table section. In
// strict mode, Mozilla and WinIE both regrow the table to accommodate the
// new height of the cell (thus letting the percentages cause growth one
// time only). We may also not be handling row-spanning cells correctly.
//
// Note also the oddity where replaced elements always flex, and yet blocks/tables do
// not necessarily flex. WinIE is crazy and inconsistent, and we can't hope to
// match the behavior perfectly, but we'll continue to refine it as we discover new
// bugs. :)
bool cellChildrenFlex = false;
bool flexAllChildren = cell.style().logicalHeight().isFixed() || (!table()->style().logicalHeight().isAuto() && rowHeight != cell.logicalHeight());
for (auto& renderer : childrenOfType<RenderBox>(cell)) {
if (renderer.style().logicalHeight().isPercentOrCalculated()
&& (flexAllChildren || shouldFlexCellChild(cell, renderer))
&& (!is<RenderTable>(renderer) || downcast<RenderTable>(renderer).hasSections())) {
cellChildrenFlex = true;
break;
}
}
if (!cellChildrenFlex) {
if (TrackedRendererListHashSet* percentHeightDescendants = cell.percentHeightDescendants()) {
for (auto* descendant : *percentHeightDescendants) {
if (flexAllChildren || shouldFlexCellChild(cell, *descendant)) {
cellChildrenFlex = true;
break;
}
}
}
}
if (!cellChildrenFlex)
return;
cell.setChildNeedsLayout(MarkOnlyThis);
// Alignment within a cell is based off the calculated
// height, which becomes irrelevant once the cell has
// been resized based off its percentage.
cell.setOverrideLogicalContentHeightFromRowHeight(rowHeight);
cell.layoutIfNeeded();
if (!cell.isBaselineAligned())
return;
// If the baseline moved, we may have to update the data for our row. Find out the new baseline.
LayoutUnit baseline = cell.cellBaselinePosition();
if (baseline > cell.borderAndPaddingBefore())
m_grid[rowIndex].baseline = std::max(m_grid[rowIndex].baseline, baseline);
}
void RenderTableSection::layoutRows()
{
#ifndef NDEBUG
SetLayoutNeededForbiddenScope layoutForbiddenScope(this);
#endif
ASSERT(!needsLayout());
unsigned totalRows = m_grid.size();
// Set the width of our section now. The rows will also be this width.
setLogicalWidth(table()->contentLogicalWidth());
m_forceSlowPaintPathWithOverflowingCell = false;
LayoutUnit vspacing = table()->vBorderSpacing();
unsigned nEffCols = table()->numEffCols();
LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || style().isFlippedBlocksWritingMode());
for (unsigned r = 0; r < totalRows; r++) {
// Set the row's x/y position and width/height.
if (RenderTableRow* rowRenderer = m_grid[r].rowRenderer) {
// FIXME: the x() position of the row should be table()->hBorderSpacing() so that it can
// report the correct offsetLeft. However, that will require a lot of rebaselining of test results.
rowRenderer->setLocation(LayoutPoint(0, m_rowPos[r]));
rowRenderer->setLogicalWidth(logicalWidth());
rowRenderer->setLogicalHeight(m_rowPos[r + 1] - m_rowPos[r] - vspacing);
rowRenderer->updateLayerTransform();
rowRenderer->clearOverflow();
rowRenderer->addVisualEffectOverflow();
}
LayoutUnit rowHeightIncreaseForPagination = 0;
for (unsigned c = 0; c < nEffCols; c++) {
CellStruct& cs = cellAt(r, c);
RenderTableCell* cell = cs.primaryCell();
if (!cell || cs.inColSpan)
continue;
int rowIndex = cell->rowIndex();
LayoutUnit rHeight = m_rowPos[rowIndex + cell->rowSpan()] - m_rowPos[rowIndex] - vspacing;
relayoutCellIfFlexed(*cell, r, rHeight);
cell->computeIntrinsicPadding(rHeight);
LayoutRect oldCellRect = cell->frameRect();
setLogicalPositionForCell(cell, c);
auto* layoutState = view().frameView().layoutContext().layoutState();
if (!cell->needsLayout() && layoutState->pageLogicalHeight() && layoutState->pageLogicalOffset(cell, cell->logicalTop()) != cell->pageLogicalOffset())
cell->setChildNeedsLayout(MarkOnlyThis);
cell->layoutIfNeeded();
// FIXME: Make pagination work with vertical tables.
if (layoutState->pageLogicalHeight() && cell->logicalHeight() != rHeight) {
// FIXME: Pagination might have made us change size. For now just shrink or grow the cell to fit without doing a relayout.
// We'll also do a basic increase of the row height to accommodate the cell if it's bigger, but this isn't quite right
// either. It's at least stable though and won't result in an infinite # of relayouts that may never stabilize.
if (cell->logicalHeight() > rHeight)
rowHeightIncreaseForPagination = std::max(rowHeightIncreaseForPagination, cell->logicalHeight() - rHeight);
cell->setLogicalHeight(rHeight);
}
LayoutSize childOffset(cell->location() - oldCellRect.location());
if (childOffset.width() || childOffset.height()) {
view().frameView().layoutContext().addLayoutDelta(childOffset);
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!table()->selfNeedsLayout() && cell->checkForRepaintDuringLayout())
cell->repaintDuringLayoutIfMoved(oldCellRect);
}
}
if (rowHeightIncreaseForPagination) {
for (unsigned rowIndex = r + 1; rowIndex <= totalRows; rowIndex++)
m_rowPos[rowIndex] += rowHeightIncreaseForPagination;
for (unsigned c = 0; c < nEffCols; ++c) {
Vector<RenderTableCell*, 1>& cells = cellAt(r, c).cells;
for (size_t i = 0; i < cells.size(); ++i)
cells[i]->setLogicalHeight(cells[i]->logicalHeight() + rowHeightIncreaseForPagination);
}
}
}
ASSERT(!needsLayout());
setLogicalHeight(m_rowPos[totalRows]);
computeOverflowFromCells(totalRows, nEffCols);
}
void RenderTableSection::computeOverflowFromCells()
{
unsigned totalRows = m_grid.size();
unsigned nEffCols = table()->numEffCols();
computeOverflowFromCells(totalRows, nEffCols);
}
void RenderTableSection::computeOverflowFromCells(unsigned totalRows, unsigned nEffCols)
{
clearOverflow();
m_overflowingCells.clear();
unsigned totalCellsCount = nEffCols * totalRows;
unsigned maxAllowedOverflowingCellsCount = totalCellsCount < gMinTableSizeToUseFastPaintPathWithOverflowingCell ? 0 : gMaxAllowedOverflowingCellRatioForFastPaintPath * totalCellsCount;
#ifndef NDEBUG
bool hasOverflowingCell = false;
#endif
// Now that our height has been determined, add in overflow from cells.
for (unsigned r = 0; r < totalRows; r++) {
for (unsigned c = 0; c < nEffCols; c++) {
CellStruct& cs = cellAt(r, c);
RenderTableCell* cell = cs.primaryCell();
if (!cell || cs.inColSpan)
continue;
if (r < totalRows - 1 && cell == primaryCellAt(r + 1, c))
continue;
addOverflowFromChild(cell);
#ifndef NDEBUG
hasOverflowingCell |= cell->hasVisualOverflow();
#endif
if (cell->hasVisualOverflow() && !m_forceSlowPaintPathWithOverflowingCell) {
m_overflowingCells.add(cell);
if (m_overflowingCells.size() > maxAllowedOverflowingCellsCount) {
// We need to set m_forcesSlowPaintPath only if there is a least one overflowing cells as the hit testing code rely on this information.
m_forceSlowPaintPathWithOverflowingCell = true;
// The slow path does not make any use of the overflowing cells info, don't hold on to the memory.
m_overflowingCells.clear();
}
}
}
}
ASSERT(hasOverflowingCell == this->hasOverflowingCell());
}
LayoutUnit RenderTableSection::calcOuterBorderBefore() const
{
unsigned totalCols = table()->numEffCols();
if (!m_grid.size() || !totalCols)
return 0;
LayoutUnit borderWidth = 0;
const BorderValue& sb = style().borderBefore();
if (sb.style() == BHIDDEN)
return -1;
if (sb.style() > BHIDDEN)
borderWidth = sb.width();
const BorderValue& rb = firstRow()->style().borderBefore();
if (rb.style() == BHIDDEN)
return -1;
if (rb.style() > BHIDDEN && rb.width() > borderWidth)
borderWidth = rb.width();
bool allHidden = true;
for (unsigned c = 0; c < totalCols; c++) {
const CellStruct& current = cellAt(0, c);
if (current.inColSpan || !current.hasCells())
continue;
const BorderValue& cb = current.primaryCell()->style().borderBefore(); // FIXME: Make this work with perpendicular and flipped cells.
// FIXME: Don't repeat for the same col group
RenderTableCol* colGroup = table()->colElement(c);
if (colGroup) {
const BorderValue& gb = colGroup->style().borderBefore();
if (gb.style() == BHIDDEN || cb.style() == BHIDDEN)
continue;
allHidden = false;
if (gb.style() > BHIDDEN && gb.width() > borderWidth)
borderWidth = gb.width();
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
} else {
if (cb.style() == BHIDDEN)
continue;
allHidden = false;
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
}
}
if (allHidden)
return -1;
return CollapsedBorderValue::adjustedCollapsedBorderWidth(borderWidth, document().deviceScaleFactor(), false);
}
LayoutUnit RenderTableSection::calcOuterBorderAfter() const
{
unsigned totalCols = table()->numEffCols();
if (!m_grid.size() || !totalCols)
return 0;
LayoutUnit borderWidth = 0;
const BorderValue& sb = style().borderAfter();
if (sb.style() == BHIDDEN)
return -1;
if (sb.style() > BHIDDEN)
borderWidth = sb.width();
const BorderValue& rb = lastRow()->style().borderAfter();
if (rb.style() == BHIDDEN)
return -1;
if (rb.style() > BHIDDEN && rb.width() > borderWidth)
borderWidth = rb.width();
bool allHidden = true;
for (unsigned c = 0; c < totalCols; c++) {
const CellStruct& current = cellAt(m_grid.size() - 1, c);
if (current.inColSpan || !current.hasCells())
continue;
const BorderValue& cb = current.primaryCell()->style().borderAfter(); // FIXME: Make this work with perpendicular and flipped cells.
// FIXME: Don't repeat for the same col group
RenderTableCol* colGroup = table()->colElement(c);
if (colGroup) {
const BorderValue& gb = colGroup->style().borderAfter();
if (gb.style() == BHIDDEN || cb.style() == BHIDDEN)
continue;
allHidden = false;
if (gb.style() > BHIDDEN && gb.width() > borderWidth)
borderWidth = gb.width();
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
} else {
if (cb.style() == BHIDDEN)
continue;
allHidden = false;
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
}
}
if (allHidden)
return -1;
return CollapsedBorderValue::adjustedCollapsedBorderWidth(borderWidth, document().deviceScaleFactor(), true);
}
LayoutUnit RenderTableSection::calcOuterBorderStart() const
{
unsigned totalCols = table()->numEffCols();
if (!m_grid.size() || !totalCols)
return 0;
LayoutUnit borderWidth = 0;
const BorderValue& sb = style().borderStart();
if (sb.style() == BHIDDEN)
return -1;
if (sb.style() > BHIDDEN)
borderWidth = sb.width();
if (RenderTableCol* colGroup = table()->colElement(0)) {
const BorderValue& gb = colGroup->style().borderStart();
if (gb.style() == BHIDDEN)
return -1;
if (gb.style() > BHIDDEN && gb.width() > borderWidth)
borderWidth = gb.width();
}
bool allHidden = true;
for (unsigned r = 0; r < m_grid.size(); r++) {
const CellStruct& current = cellAt(r, 0);
if (!current.hasCells())
continue;
// FIXME: Don't repeat for the same cell
const BorderValue& cb = current.primaryCell()->style().borderStart(); // FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& rb = current.primaryCell()->parent()->style().borderStart();
if (cb.style() == BHIDDEN || rb.style() == BHIDDEN)
continue;
allHidden = false;
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
if (rb.style() > BHIDDEN && rb.width() > borderWidth)
borderWidth = rb.width();
}
if (allHidden)
return -1;
return CollapsedBorderValue::adjustedCollapsedBorderWidth(borderWidth, document().deviceScaleFactor(), !table()->style().isLeftToRightDirection());
}
LayoutUnit RenderTableSection::calcOuterBorderEnd() const
{
unsigned totalCols = table()->numEffCols();
if (!m_grid.size() || !totalCols)
return 0;
LayoutUnit borderWidth = 0;
const BorderValue& sb = style().borderEnd();
if (sb.style() == BHIDDEN)
return -1;
if (sb.style() > BHIDDEN)
borderWidth = sb.width();
if (RenderTableCol* colGroup = table()->colElement(totalCols - 1)) {
const BorderValue& gb = colGroup->style().borderEnd();
if (gb.style() == BHIDDEN)
return -1;
if (gb.style() > BHIDDEN && gb.width() > borderWidth)
borderWidth = gb.width();
}
bool allHidden = true;
for (unsigned r = 0; r < m_grid.size(); r++) {
const CellStruct& current = cellAt(r, totalCols - 1);
if (!current.hasCells())
continue;
// FIXME: Don't repeat for the same cell
const BorderValue& cb = current.primaryCell()->style().borderEnd(); // FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& rb = current.primaryCell()->parent()->style().borderEnd();
if (cb.style() == BHIDDEN || rb.style() == BHIDDEN)
continue;
allHidden = false;
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
if (rb.style() > BHIDDEN && rb.width() > borderWidth)
borderWidth = rb.width();
}
if (allHidden)
return -1;
return CollapsedBorderValue::adjustedCollapsedBorderWidth(borderWidth, document().deviceScaleFactor(), table()->style().isLeftToRightDirection());
}
void RenderTableSection::recalcOuterBorder()
{
m_outerBorderBefore = calcOuterBorderBefore();
m_outerBorderAfter = calcOuterBorderAfter();
m_outerBorderStart = calcOuterBorderStart();
m_outerBorderEnd = calcOuterBorderEnd();
}
std::optional<int> RenderTableSection::firstLineBaseline() const
{
if (!m_grid.size())
return std::optional<int>();
int firstLineBaseline = m_grid[0].baseline;
if (firstLineBaseline)
return firstLineBaseline + roundToInt(m_rowPos[0]);
std::optional<int> result;
const Row& firstRow = m_grid[0].row;
for (size_t i = 0; i < firstRow.size(); ++i) {
const CellStruct& cs = firstRow.at(i);
const RenderTableCell* cell = cs.primaryCell();
// Only cells with content have a baseline
if (cell && cell->contentLogicalHeight()) {
int candidate = roundToInt(cell->logicalTop() + cell->borderAndPaddingBefore() + cell->contentLogicalHeight());
result = std::max(result.value_or(candidate), candidate);
}
}
return result;
}
void RenderTableSection::paint(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
ASSERT(!needsLayout());
// avoid crashing on bugs that cause us to paint with dirty layout
if (needsLayout())
return;
unsigned totalRows = m_grid.size();
unsigned totalCols = table()->columns().size();
if (!totalRows || !totalCols)
return;
LayoutPoint adjustedPaintOffset = paintOffset + location();
PaintPhase phase = paintInfo.phase;
bool pushedClip = pushContentsClip(paintInfo, adjustedPaintOffset);
paintObject(paintInfo, adjustedPaintOffset);
if (pushedClip)
popContentsClip(paintInfo, phase, adjustedPaintOffset);
if ((phase == PaintPhaseOutline || phase == PaintPhaseSelfOutline) && style().visibility() == VISIBLE)
paintOutline(paintInfo, LayoutRect(adjustedPaintOffset, size()));
}
static inline bool compareCellPositions(RenderTableCell* elem1, RenderTableCell* elem2)
{
return elem1->rowIndex() < elem2->rowIndex();
}
// This comparison is used only when we have overflowing cells as we have an unsorted array to sort. We thus need
// to sort both on rows and columns to properly repaint.
static inline bool compareCellPositionsWithOverflowingCells(RenderTableCell* elem1, RenderTableCell* elem2)
{
if (elem1->rowIndex() != elem2->rowIndex())
return elem1->rowIndex() < elem2->rowIndex();
return elem1->col() < elem2->col();
}
void RenderTableSection::paintCell(RenderTableCell* cell, PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
LayoutPoint cellPoint = flipForWritingModeForChild(cell, paintOffset);
PaintPhase paintPhase = paintInfo.phase;
RenderTableRow& row = downcast<RenderTableRow>(*cell->parent());
if (paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) {
// We need to handle painting a stack of backgrounds. This stack (from bottom to top) consists of
// the column group, column, row group, row, and then the cell.
RenderTableCol* column = table()->colElement(cell->col());
RenderTableCol* columnGroup = column ? column->enclosingColumnGroup() : nullptr;
// Column groups and columns first.
// FIXME: Columns and column groups do not currently support opacity, and they are being painted "too late" in
// the stack, since we have already opened a transparency layer (potentially) for the table row group.
// Note that we deliberately ignore whether or not the cell has a layer, since these backgrounds paint "behind" the
// cell.
cell->paintBackgroundsBehindCell(paintInfo, cellPoint, columnGroup);
cell->paintBackgroundsBehindCell(paintInfo, cellPoint, column);
// Paint the row group next.
cell->paintBackgroundsBehindCell(paintInfo, cellPoint, this);
// Paint the row next, but only if it doesn't have a layer. If a row has a layer, it will be responsible for
// painting the row background for the cell.
if (!row.hasSelfPaintingLayer())
cell->paintBackgroundsBehindCell(paintInfo, cellPoint, &row);
}
if ((!cell->hasSelfPaintingLayer() && !row.hasSelfPaintingLayer()))
cell->paint(paintInfo, cellPoint);
}
LayoutRect RenderTableSection::logicalRectForWritingModeAndDirection(const LayoutRect& rect) const
{
LayoutRect tableAlignedRect(rect);
flipForWritingMode(tableAlignedRect);
if (!style().isHorizontalWritingMode())
tableAlignedRect = tableAlignedRect.transposedRect();
const Vector<LayoutUnit>& columnPos = table()->columnPositions();
// FIXME: The table's direction should determine our row's direction, not the section's (see bug 96691).
if (!style().isLeftToRightDirection())
tableAlignedRect.setX(columnPos[columnPos.size() - 1] - tableAlignedRect.maxX());
return tableAlignedRect;
}
CellSpan RenderTableSection::dirtiedRows(const LayoutRect& damageRect) const
{
if (m_forceSlowPaintPathWithOverflowingCell)
return fullTableRowSpan();
CellSpan coveredRows = spannedRows(damageRect, IncludeAllIntersectingCells);
// To repaint the border we might need to repaint first or last row even if they are not spanned themselves.
if (coveredRows.start >= m_rowPos.size() - 1 && m_rowPos[m_rowPos.size() - 1] + table()->outerBorderAfter() >= damageRect.y())
--coveredRows.start;
if (!coveredRows.end && m_rowPos[0] - table()->outerBorderBefore() <= damageRect.maxY())
++coveredRows.end;
return coveredRows;
}
CellSpan RenderTableSection::dirtiedColumns(const LayoutRect& damageRect) const
{
if (m_forceSlowPaintPathWithOverflowingCell)
return fullTableColumnSpan();
CellSpan coveredColumns = spannedColumns(damageRect, IncludeAllIntersectingCells);
const Vector<LayoutUnit>& columnPos = table()->columnPositions();
// To repaint the border we might need to repaint first or last column even if they are not spanned themselves.
if (coveredColumns.start >= columnPos.size() - 1 && columnPos[columnPos.size() - 1] + table()->outerBorderEnd() >= damageRect.x())
--coveredColumns.start;
if (!coveredColumns.end && columnPos[0] - table()->outerBorderStart() <= damageRect.maxX())
++coveredColumns.end;
return coveredColumns;
}
CellSpan RenderTableSection::spannedRows(const LayoutRect& flippedRect, ShouldIncludeAllIntersectingCells shouldIncludeAllIntersectionCells) const
{
// Find the first row that starts after rect top.
unsigned nextRow = std::upper_bound(m_rowPos.begin(), m_rowPos.end(), flippedRect.y()) - m_rowPos.begin();
if (shouldIncludeAllIntersectionCells == IncludeAllIntersectingCells && nextRow && m_rowPos[nextRow - 1] == flippedRect.y())
--nextRow;
if (nextRow == m_rowPos.size())
return CellSpan(m_rowPos.size() - 1, m_rowPos.size() - 1); // After all rows.
unsigned startRow = nextRow > 0 ? nextRow - 1 : 0;
// Find the first row that starts after rect bottom.
unsigned endRow;
if (m_rowPos[nextRow] >= flippedRect.maxY())
endRow = nextRow;
else {
endRow = std::upper_bound(m_rowPos.begin() + static_cast<int32_t>(nextRow), m_rowPos.end(), flippedRect.maxY()) - m_rowPos.begin();
if (endRow == m_rowPos.size())
endRow = m_rowPos.size() - 1;
}
return CellSpan(startRow, endRow);
}
CellSpan RenderTableSection::spannedColumns(const LayoutRect& flippedRect, ShouldIncludeAllIntersectingCells shouldIncludeAllIntersectionCells) const
{
const Vector<LayoutUnit>& columnPos = table()->columnPositions();
// Find the first column that starts after rect left.
// lower_bound doesn't handle the edge between two cells properly as it would wrongly return the
// cell on the logical top/left.
// upper_bound on the other hand properly returns the cell on the logical bottom/right, which also
// matches the behavior of other browsers.
unsigned nextColumn = std::upper_bound(columnPos.begin(), columnPos.end(), flippedRect.x()) - columnPos.begin();
if (shouldIncludeAllIntersectionCells == IncludeAllIntersectingCells && nextColumn && columnPos[nextColumn - 1] == flippedRect.x())
--nextColumn;
if (nextColumn == columnPos.size())
return CellSpan(columnPos.size() - 1, columnPos.size() - 1); // After all columns.
unsigned startColumn = nextColumn > 0 ? nextColumn - 1 : 0;
// Find the first column that starts after rect right.
unsigned endColumn;
if (columnPos[nextColumn] >= flippedRect.maxX())
endColumn = nextColumn;
else {
endColumn = std::upper_bound(columnPos.begin() + static_cast<int32_t>(nextColumn), columnPos.end(), flippedRect.maxX()) - columnPos.begin();
if (endColumn == columnPos.size())
endColumn = columnPos.size() - 1;
}
return CellSpan(startColumn, endColumn);
}
void RenderTableSection::paintRowGroupBorder(const PaintInfo& paintInfo, bool antialias, LayoutRect rect, BoxSide side, CSSPropertyID borderColor, EBorderStyle borderStyle, EBorderStyle tableBorderStyle)
{
if (tableBorderStyle == BHIDDEN)
return;
rect.intersect(paintInfo.rect);
if (rect.isEmpty())
return;
drawLineForBoxSide(paintInfo.context(), rect, side, style().visitedDependentColor(borderColor), borderStyle, 0, 0, antialias);
}
LayoutUnit RenderTableSection::offsetLeftForRowGroupBorder(RenderTableCell* cell, const LayoutRect& rowGroupRect, unsigned row)
{
if (style().isHorizontalWritingMode()) {
if (style().isLeftToRightDirection())
return cell ? cell->x() + cell->width() : LayoutUnit::fromPixel(0);
return -outerBorderLeft(&style());
}
bool isLastRow = row + 1 == m_grid.size();
return rowGroupRect.width() - m_rowPos[row + 1] + (isLastRow ? -outerBorderLeft(&style()) : LayoutUnit::fromPixel(0));
}
LayoutUnit RenderTableSection::offsetTopForRowGroupBorder(RenderTableCell* cell, BoxSide borderSide, unsigned row)
{
bool isLastRow = row + 1 == m_grid.size();
if (style().isHorizontalWritingMode())
return m_rowPos[row] + (!row && borderSide == BSRight ? -outerBorderTop(&style()) : isLastRow && borderSide == BSLeft ? outerBorderTop(&style()) : LayoutUnit::fromPixel(0));
if (style().isLeftToRightDirection())
return (cell ? cell->y() + cell->height() : LayoutUnit::fromPixel(0)) + (borderSide == BSLeft ? outerBorderTop(&style()) : LayoutUnit::fromPixel(0));
return borderSide == BSRight ? -outerBorderTop(&style()) : LayoutUnit::fromPixel(0);
}
LayoutUnit RenderTableSection::verticalRowGroupBorderHeight(RenderTableCell* cell, const LayoutRect& rowGroupRect, unsigned row)
{
bool isLastRow = row + 1 == m_grid.size();
if (style().isHorizontalWritingMode())
return m_rowPos[row + 1] - m_rowPos[row] + (!row ? outerBorderTop(&style()) : isLastRow ? outerBorderBottom(&style()) : LayoutUnit::fromPixel(0));
if (style().isLeftToRightDirection())
return rowGroupRect.height() - (cell ? cell->y() + cell->height() : LayoutUnit::fromPixel(0)) + outerBorderBottom(&style());
return cell ? rowGroupRect.height() - (cell->y() - cell->height()) : LayoutUnit::fromPixel(0);
}
LayoutUnit RenderTableSection::horizontalRowGroupBorderWidth(RenderTableCell* cell, const LayoutRect& rowGroupRect, unsigned row, unsigned column)
{
if (style().isHorizontalWritingMode()) {
if (style().isLeftToRightDirection())
return rowGroupRect.width() - (cell ? cell->x() + cell->width() : LayoutUnit::fromPixel(0)) + (!column ? outerBorderLeft(&style()) : column == table()->numEffCols() ? outerBorderRight(&style()) : LayoutUnit::fromPixel(0));
return cell ? rowGroupRect.width() - (cell->x() - cell->width()) : LayoutUnit::fromPixel(0);
}
bool isLastRow = row + 1 == m_grid.size();
return m_rowPos[row + 1] - m_rowPos[row] + (isLastRow ? outerBorderLeft(&style()) : !row ? outerBorderRight(&style()) : LayoutUnit::fromPixel(0));
}
void RenderTableSection::paintRowGroupBorderIfRequired(const PaintInfo& paintInfo, const LayoutPoint& paintOffset, unsigned row, unsigned column, BoxSide borderSide, RenderTableCell* cell)
{
if (table()->currentBorderValue()->precedence() > BROWGROUP)
return;
if (paintInfo.context().paintingDisabled())
return;
const RenderStyle& style = this->style();
bool antialias = shouldAntialiasLines(paintInfo.context());
LayoutRect rowGroupRect = LayoutRect(paintOffset, size());
rowGroupRect.moveBy(-LayoutPoint(outerBorderLeft(&style), (borderSide == BSRight) ? LayoutUnit::fromPixel(0) : outerBorderTop(&style)));
switch (borderSide) {
case BSTop:
paintRowGroupBorder(paintInfo, antialias, LayoutRect(paintOffset.x() + offsetLeftForRowGroupBorder(cell, rowGroupRect, row), rowGroupRect.y(),
horizontalRowGroupBorderWidth(cell, rowGroupRect, row, column), style.borderTop().width()), BSTop, CSSPropertyBorderTopColor, style.borderTopStyle(), table()->style().borderTopStyle());
break;
case BSBottom:
paintRowGroupBorder(paintInfo, antialias, LayoutRect(paintOffset.x() + offsetLeftForRowGroupBorder(cell, rowGroupRect, row), rowGroupRect.y() + rowGroupRect.height(),
horizontalRowGroupBorderWidth(cell, rowGroupRect, row, column), style.borderBottom().width()), BSBottom, CSSPropertyBorderBottomColor, style.borderBottomStyle(), table()->style().borderBottomStyle());
break;
case BSLeft:
paintRowGroupBorder(paintInfo, antialias, LayoutRect(rowGroupRect.x(), rowGroupRect.y() + offsetTopForRowGroupBorder(cell, borderSide, row), style.borderLeft().width(),
verticalRowGroupBorderHeight(cell, rowGroupRect, row)), BSLeft, CSSPropertyBorderLeftColor, style.borderLeftStyle(), table()->style().borderLeftStyle());
break;
case BSRight:
paintRowGroupBorder(paintInfo, antialias, LayoutRect(rowGroupRect.x() + rowGroupRect.width(), rowGroupRect.y() + offsetTopForRowGroupBorder(cell, borderSide, row), style.borderRight().width(),
verticalRowGroupBorderHeight(cell, rowGroupRect, row)), BSRight, CSSPropertyBorderRightColor, style.borderRightStyle(), table()->style().borderRightStyle());
break;
default:
break;
}
}
static BoxSide physicalBorderForDirection(const RenderStyle* styleForCellFlow, CollapsedBorderSide side)
{
switch (side) {
case CBSStart:
if (styleForCellFlow->isHorizontalWritingMode())
return styleForCellFlow->isLeftToRightDirection() ? BSLeft : BSRight;
return styleForCellFlow->isLeftToRightDirection() ? BSTop : BSBottom;
case CBSEnd:
if (styleForCellFlow->isHorizontalWritingMode())
return styleForCellFlow->isLeftToRightDirection() ? BSRight : BSLeft;
return styleForCellFlow->isLeftToRightDirection() ? BSBottom : BSTop;
case CBSBefore:
if (styleForCellFlow->isHorizontalWritingMode())
return BSTop;
return styleForCellFlow->isLeftToRightDirection() ? BSRight : BSLeft;
case CBSAfter:
if (styleForCellFlow->isHorizontalWritingMode())
return BSBottom;
return styleForCellFlow->isLeftToRightDirection() ? BSLeft : BSRight;
default:
ASSERT_NOT_REACHED();
return BSLeft;
}
}
void RenderTableSection::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
LayoutRect localRepaintRect = paintInfo.rect;
localRepaintRect.moveBy(-paintOffset);
LayoutRect tableAlignedRect = logicalRectForWritingModeAndDirection(localRepaintRect);
CellSpan dirtiedRows = this->dirtiedRows(tableAlignedRect);
CellSpan dirtiedColumns = this->dirtiedColumns(tableAlignedRect);
if (dirtiedColumns.start < dirtiedColumns.end) {
if (!m_hasMultipleCellLevels && !m_overflowingCells.size()) {
if (paintInfo.phase == PaintPhaseCollapsedTableBorders) {
// Collapsed borders are painted from the bottom right to the top left so that precedence
// due to cell position is respected. We need to paint one row beyond the topmost dirtied
// row to calculate its collapsed border value.
unsigned startRow = dirtiedRows.start ? dirtiedRows.start - 1 : 0;
for (unsigned r = dirtiedRows.end; r > startRow; r--) {
unsigned row = r - 1;
bool shouldPaintRowGroupBorder = false;
for (unsigned c = dirtiedColumns.end; c > dirtiedColumns.start; c--) {
unsigned col = c - 1;
CellStruct& current = cellAt(row, col);
RenderTableCell* cell = current.primaryCell();
if (!cell) {
if (!c)
paintRowGroupBorderIfRequired(paintInfo, paintOffset, row, col, physicalBorderForDirection(&style(), CBSStart));
else if (c == table()->numEffCols())
paintRowGroupBorderIfRequired(paintInfo, paintOffset, row, col, physicalBorderForDirection(&style(), CBSEnd));
shouldPaintRowGroupBorder = true;
continue;
}
if ((row > dirtiedRows.start && primaryCellAt(row - 1, col) == cell) || (col > dirtiedColumns.start && primaryCellAt(row, col - 1) == cell))
continue;
// If we had a run of null cells paint their corresponding section of the row group's border if necessary. Note that
// this will only happen once within a row as the null cells will always be clustered together on one end of the row.
if (shouldPaintRowGroupBorder) {
if (r == m_grid.size())
paintRowGroupBorderIfRequired(paintInfo, paintOffset, row, col, physicalBorderForDirection(&style(), CBSAfter), cell);
else if (!row && !table()->sectionAbove(this))
paintRowGroupBorderIfRequired(paintInfo, paintOffset, row, col, physicalBorderForDirection(&style(), CBSBefore), cell);
shouldPaintRowGroupBorder = false;
}
LayoutPoint cellPoint = flipForWritingModeForChild(cell, paintOffset);
cell->paintCollapsedBorders(paintInfo, cellPoint);
}
}
} else {
// Draw the dirty cells in the order that they appear.
for (unsigned r = dirtiedRows.start; r < dirtiedRows.end; r++) {
RenderTableRow* row = m_grid[r].rowRenderer;
if (row && !row->hasSelfPaintingLayer())
row->paintOutlineForRowIfNeeded(paintInfo, paintOffset);
for (unsigned c = dirtiedColumns.start; c < dirtiedColumns.end; c++) {
CellStruct& current = cellAt(r, c);
RenderTableCell* cell = current.primaryCell();
if (!cell || (r > dirtiedRows.start && primaryCellAt(r - 1, c) == cell) || (c > dirtiedColumns.start && primaryCellAt(r, c - 1) == cell))
continue;
paintCell(cell, paintInfo, paintOffset);
}
}
}
} else {
// The overflowing cells should be scarce to avoid adding a lot of cells to the HashSet.
#ifndef NDEBUG
unsigned totalRows = m_grid.size();
unsigned totalCols = table()->columns().size();
ASSERT(m_overflowingCells.size() < totalRows * totalCols * gMaxAllowedOverflowingCellRatioForFastPaintPath);
#endif
// To make sure we properly repaint the section, we repaint all the overflowing cells that we collected.
auto cells = copyToVector(m_overflowingCells);
HashSet<RenderTableCell*> spanningCells;
for (unsigned r = dirtiedRows.start; r < dirtiedRows.end; r++) {
RenderTableRow* row = m_grid[r].rowRenderer;
if (row && !row->hasSelfPaintingLayer())
row->paintOutlineForRowIfNeeded(paintInfo, paintOffset);
for (unsigned c = dirtiedColumns.start; c < dirtiedColumns.end; c++) {
CellStruct& current = cellAt(r, c);
if (!current.hasCells())
continue;
for (unsigned i = 0; i < current.cells.size(); ++i) {
if (m_overflowingCells.contains(current.cells[i]))
continue;
if (current.cells[i]->rowSpan() > 1 || current.cells[i]->colSpan() > 1) {
if (!spanningCells.add(current.cells[i]).isNewEntry)
continue;
}
cells.append(current.cells[i]);
}
}
}
// Sort the dirty cells by paint order.
if (!m_overflowingCells.size())
std::stable_sort(cells.begin(), cells.end(), compareCellPositions);
else
std::sort(cells.begin(), cells.end(), compareCellPositionsWithOverflowingCells);
if (paintInfo.phase == PaintPhaseCollapsedTableBorders) {
for (unsigned i = cells.size(); i > 0; --i) {
LayoutPoint cellPoint = flipForWritingModeForChild(cells[i - 1], paintOffset);
cells[i - 1]->paintCollapsedBorders(paintInfo, cellPoint);
}
} else {
for (unsigned i = 0; i < cells.size(); ++i)
paintCell(cells[i], paintInfo, paintOffset);
}
}
}
}
void RenderTableSection::imageChanged(WrappedImagePtr, const IntRect*)
{
// FIXME: Examine cells and repaint only the rect the image paints in.
repaint();
}
void RenderTableSection::recalcCells()
{
ASSERT(m_needsCellRecalc);
// We reset the flag here to ensure that addCell() works. This is safe to do because we clear the grid
// and update its dimensions to be consistent with the table's column representation before we rebuild
// the grid using addCell().
m_needsCellRecalc = false;
m_cCol = 0;
m_cRow = 0;
m_grid.clear();
for (RenderTableRow* row = firstRow(); row; row = row->nextRow()) {
unsigned insertionRow = m_cRow;
m_cRow++;
m_cCol = 0;
ensureRows(m_cRow);
m_grid[insertionRow].rowRenderer = row;
row->setRowIndex(insertionRow);
setRowLogicalHeightToRowStyleLogicalHeightIfNotRelative(m_grid[insertionRow]);
for (RenderTableCell* cell = row->firstCell(); cell; cell = cell->nextCell())
addCell(cell, row);
}
m_grid.shrinkToFit();
setNeedsLayout();
}
void RenderTableSection::removeRedundantColumns()
{
auto maximumNumberOfColumns = table()->numEffCols();
for (auto& rowItem : m_grid) {
if (rowItem.row.size() <= maximumNumberOfColumns)
continue;
rowItem.row.resize(maximumNumberOfColumns);
}
}
// FIXME: This function could be made O(1) in certain cases (like for the non-most-constrainive cells' case).
void RenderTableSection::rowLogicalHeightChanged(unsigned rowIndex)
{
if (needsCellRecalc())
return;
setRowLogicalHeightToRowStyleLogicalHeightIfNotRelative(m_grid[rowIndex]);
for (RenderTableCell* cell = m_grid[rowIndex].rowRenderer->firstCell(); cell; cell = cell->nextCell())
updateLogicalHeightForCell(m_grid[rowIndex], cell);
}
void RenderTableSection::setNeedsCellRecalc()
{
m_needsCellRecalc = true;
// Clear the grid now to ensure that we don't hold onto any stale pointers (e.g. a cell renderer that is being removed).
m_grid.clear();
if (RenderTable* t = table())
t->setNeedsSectionRecalc();
}
unsigned RenderTableSection::numColumns() const
{
ASSERT(!m_needsCellRecalc);
unsigned result = 0;
for (unsigned r = 0; r < m_grid.size(); ++r) {
for (unsigned c = result; c < table()->numEffCols(); ++c) {
const CellStruct& cell = cellAt(r, c);
if (cell.hasCells() || cell.inColSpan)
result = c;
}
}
return result + 1;
}
const BorderValue& RenderTableSection::borderAdjoiningStartCell(const RenderTableCell& cell) const
{
ASSERT(cell.isFirstOrLastCellInRow());
return isDirectionSame(this, &cell) ? style().borderStart() : style().borderEnd();
}
const BorderValue& RenderTableSection::borderAdjoiningEndCell(const RenderTableCell& cell) const
{
ASSERT(cell.isFirstOrLastCellInRow());
return isDirectionSame(this, &cell) ? style().borderEnd() : style().borderStart();
}
const RenderTableCell* RenderTableSection::firstRowCellAdjoiningTableStart() const
{
unsigned adjoiningStartCellColumnIndex = isDirectionSame(this, table()) ? 0 : table()->lastColumnIndex();
return cellAt(0, adjoiningStartCellColumnIndex).primaryCell();
}
const RenderTableCell* RenderTableSection::firstRowCellAdjoiningTableEnd() const
{
unsigned adjoiningEndCellColumnIndex = isDirectionSame(this, table()) ? table()->lastColumnIndex() : 0;
return cellAt(0, adjoiningEndCellColumnIndex).primaryCell();
}
void RenderTableSection::appendColumn(unsigned pos)
{
ASSERT(!m_needsCellRecalc);
for (unsigned row = 0; row < m_grid.size(); ++row)
m_grid[row].row.resize(pos + 1);
}
void RenderTableSection::splitColumn(unsigned pos, unsigned first)
{
ASSERT(!m_needsCellRecalc);
if (m_cCol > pos)
m_cCol++;
for (unsigned row = 0; row < m_grid.size(); ++row) {
Row& r = m_grid[row].row;
r.insert(pos + 1, CellStruct());
if (r[pos].hasCells()) {
r[pos + 1].cells.appendVector(r[pos].cells);
RenderTableCell* cell = r[pos].primaryCell();
ASSERT(cell);
ASSERT(cell->colSpan() >= (r[pos].inColSpan ? 1u : 0));
unsigned colleft = cell->colSpan() - r[pos].inColSpan;
if (first > colleft)
r[pos + 1].inColSpan = 0;
else
r[pos + 1].inColSpan = first + r[pos].inColSpan;
} else {
r[pos + 1].inColSpan = 0;
}
}
}
// Hit Testing
bool RenderTableSection::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction action)
{
// If we have no children then we have nothing to do.
if (!firstRow())
return false;
// Table sections cannot ever be hit tested. Effectively they do not exist.
// Just forward to our children always.
LayoutPoint adjustedLocation = accumulatedOffset + location();
if (hasOverflowClip() && !locationInContainer.intersects(overflowClipRect(adjustedLocation, nullptr)))
return false;
if (hasOverflowingCell()) {
for (RenderTableRow* row = lastRow(); row; row = row->previousRow()) {
// FIXME: We have to skip over inline flows, since they can show up inside table rows
// at the moment (a demoted inline <form> for example). If we ever implement a
// table-specific hit-test method (which we should do for performance reasons anyway),
// then we can remove this check.
if (!row->hasSelfPaintingLayer()) {
LayoutPoint childPoint = flipForWritingModeForChild(row, adjustedLocation);
if (row->nodeAtPoint(request, result, locationInContainer, childPoint, action)) {
updateHitTestResult(result, toLayoutPoint(locationInContainer.point() - childPoint));
return true;
}
}
}
return false;
}
recalcCellsIfNeeded();
LayoutRect hitTestRect = locationInContainer.boundingBox();
hitTestRect.moveBy(-adjustedLocation);
LayoutRect tableAlignedRect = logicalRectForWritingModeAndDirection(hitTestRect);
CellSpan rowSpan = spannedRows(tableAlignedRect, DoNotIncludeAllIntersectingCells);
CellSpan columnSpan = spannedColumns(tableAlignedRect, DoNotIncludeAllIntersectingCells);
// Now iterate over the spanned rows and columns.
for (unsigned hitRow = rowSpan.start; hitRow < rowSpan.end; ++hitRow) {
for (unsigned hitColumn = columnSpan.start; hitColumn < columnSpan.end; ++hitColumn) {
CellStruct& current = cellAt(hitRow, hitColumn);
// If the cell is empty, there's nothing to do
if (!current.hasCells())
continue;
for (unsigned i = current.cells.size() ; i; ) {
--i;
RenderTableCell* cell = current.cells[i];
LayoutPoint cellPoint = flipForWritingModeForChild(cell, adjustedLocation);
if (static_cast<RenderObject*>(cell)->nodeAtPoint(request, result, locationInContainer, cellPoint, action)) {
updateHitTestResult(result, locationInContainer.point() - toLayoutSize(cellPoint));
return true;
}
}
if (!request.resultIsElementList())
break;
}
if (!request.resultIsElementList())
break;
}
return false;
}
void RenderTableSection::clearCachedCollapsedBorders()
{
if (!table()->collapseBorders())
return;
m_cellsCollapsedBorders.clear();
}
void RenderTableSection::removeCachedCollapsedBorders(const RenderTableCell& cell)
{
if (!table()->collapseBorders())
return;
for (int side = CBSBefore; side <= CBSEnd; ++side)
m_cellsCollapsedBorders.remove(std::make_pair(&cell, side));
}
void RenderTableSection::setCachedCollapsedBorder(const RenderTableCell& cell, CollapsedBorderSide side, CollapsedBorderValue border)
{
ASSERT(table()->collapseBorders());
ASSERT(border.width());
m_cellsCollapsedBorders.set(std::make_pair(&cell, side), border);
}
CollapsedBorderValue RenderTableSection::cachedCollapsedBorder(const RenderTableCell& cell, CollapsedBorderSide side)
{
ASSERT(table()->collapseBorders() && table()->collapsedBordersAreValid());
auto it = m_cellsCollapsedBorders.find(std::make_pair(&cell, side));
// Only non-empty collapsed borders are in the hashmap.
if (it == m_cellsCollapsedBorders.end())
return CollapsedBorderValue(BorderValue(), Color(), BCELL);
return it->value;
}
RenderPtr<RenderTableSection> RenderTableSection::createTableSectionWithStyle(Document& document, const RenderStyle& style)
{
auto section = createRenderer<RenderTableSection>(document, RenderStyle::createAnonymousStyleWithDisplay(style, TABLE_ROW_GROUP));
section->initializeStyle();
return section;
}
RenderPtr<RenderTableSection> RenderTableSection::createAnonymousWithParentRenderer(const RenderTable& parent)
{
return RenderTableSection::createTableSectionWithStyle(parent.document(), parent.style());
}
void RenderTableSection::setLogicalPositionForCell(RenderTableCell* cell, unsigned effectiveColumn) const
{
LayoutPoint oldCellLocation = cell->location();
LayoutPoint cellLocation(0, m_rowPos[cell->rowIndex()]);
LayoutUnit horizontalBorderSpacing = table()->hBorderSpacing();
// FIXME: The table's direction should determine our row's direction, not the section's (see bug 96691).
if (!style().isLeftToRightDirection())
cellLocation.setX(table()->columnPositions()[table()->numEffCols()] - table()->columnPositions()[table()->colToEffCol(cell->col() + cell->colSpan())] + horizontalBorderSpacing);
else
cellLocation.setX(table()->columnPositions()[effectiveColumn] + horizontalBorderSpacing);
cell->setLogicalLocation(cellLocation);
view().frameView().layoutContext().addLayoutDelta(oldCellLocation - cell->location());
}
} // namespace WebCore