blob: 6c089d02346aa390120d76b9afc115d7afecd6f0 [file] [log] [blame]
/*
* Copyright (C) 2012 Google Inc. All rights reserved.
* Copyright (C) 2013-2017 Apple Inc. All rights reserved.
* Copyright (C) 2013 Nokia Corporation and/or its subsidiary(-ies).
* Copyright (C) 2015 Ericsson AB. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of Google Inc. nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(MEDIA_STREAM)
#include "RealtimeMediaSource.h"
#include "MediaConstraints.h"
#include "NotImplemented.h"
#include "RealtimeMediaSourceCapabilities.h"
#include "RealtimeMediaSourceCenter.h"
#include <wtf/MainThread.h>
#include <wtf/UUID.h>
#include <wtf/text/StringHash.h>
namespace WebCore {
RealtimeMediaSource::RealtimeMediaSource(const String& id, Type type, const String& name)
: m_id(id)
, m_type(type)
, m_name(name)
{
// FIXME(147205): Need to implement fitness score for constraints
if (m_id.isEmpty())
m_id = createCanonicalUUIDString();
m_persistentID = m_id;
}
void RealtimeMediaSource::addObserver(RealtimeMediaSource::Observer& observer)
{
m_observers.append(observer);
}
void RealtimeMediaSource::removeObserver(RealtimeMediaSource::Observer& observer)
{
m_observers.removeFirstMatching([&observer](auto anObserver) {
return &anObserver.get() == &observer;
});
if (!m_observers.size())
stop();
}
void RealtimeMediaSource::setInterrupted(bool interrupted, bool pageMuted)
{
if (interrupted == m_interrupted)
return;
m_interrupted = interrupted;
if (!interrupted && pageMuted)
return;
setMuted(interrupted);
}
void RealtimeMediaSource::setMuted(bool muted)
{
if (muted)
stop();
else {
if (interrupted())
return;
start();
}
notifyMutedChange(muted);
}
void RealtimeMediaSource::notifyMutedChange(bool muted)
{
if (m_muted == muted)
return;
m_muted = muted;
notifyMutedObservers();
}
void RealtimeMediaSource::notifyMutedObservers() const
{
for (Observer& observer : m_observers)
observer.sourceMutedChanged();
}
void RealtimeMediaSource::settingsDidChange()
{
ASSERT(isMainThread());
if (m_pendingSettingsDidChangeNotification)
return;
m_pendingSettingsDidChangeNotification = true;
scheduleDeferredTask([this] {
m_pendingSettingsDidChangeNotification = false;
for (Observer& observer : m_observers)
observer.sourceSettingsChanged();
});
}
void RealtimeMediaSource::videoSampleAvailable(MediaSample& mediaSample)
{
for (Observer& observer : m_observers)
observer.videoSampleAvailable(mediaSample);
}
void RealtimeMediaSource::audioSamplesAvailable(const MediaTime& time, const PlatformAudioData& audioData, const AudioStreamDescription& description, size_t numberOfFrames)
{
for (Observer& observer : m_observers)
observer.audioSamplesAvailable(time, audioData, description, numberOfFrames);
}
void RealtimeMediaSource::start()
{
if (m_isProducingData)
return;
m_isProducingData = true;
startProducingData();
if (!m_isProducingData)
return;
for (Observer& observer : m_observers)
observer.sourceStarted();
}
void RealtimeMediaSource::stop()
{
if (!m_isProducingData)
return;
m_isProducingData = false;
stopProducingData();
}
void RealtimeMediaSource::requestStop(Observer* callingObserver)
{
if (!m_isProducingData)
return;
for (Observer& observer : m_observers) {
if (observer.preventSourceFromStopping())
return;
}
stop();
for (Observer& observer : m_observers) {
if (&observer != callingObserver)
observer.sourceStopped();
}
}
void RealtimeMediaSource::captureFailed()
{
m_isProducingData = false;
m_captureDidFailed = true;
for (Observer& observer : m_observers)
observer.sourceStopped();
}
bool RealtimeMediaSource::supportsSizeAndFrameRate(std::optional<int>, std::optional<int>, std::optional<double>)
{
// The size and frame rate are within the capability limits, so they are supported.
return true;
}
bool RealtimeMediaSource::supportsSizeAndFrameRate(std::optional<IntConstraint> widthConstraint, std::optional<IntConstraint> heightConstraint, std::optional<DoubleConstraint> frameRateConstraint, String& badConstraint, double& distance)
{
if (!widthConstraint && !heightConstraint && !frameRateConstraint)
return true;
auto& capabilities = this->capabilities();
distance = std::numeric_limits<double>::infinity();
std::optional<int> width;
if (widthConstraint && capabilities.supportsWidth()) {
double constraintDistance = fitnessDistance(*widthConstraint);
if (std::isinf(constraintDistance)) {
badConstraint = widthConstraint->name();
return false;
}
distance = std::min(distance, constraintDistance);
auto range = capabilities.width();
width = widthConstraint->valueForCapabilityRange(size().width(), range.rangeMin().asInt, range.rangeMax().asInt);
}
std::optional<int> height;
if (heightConstraint && capabilities.supportsHeight()) {
double constraintDistance = fitnessDistance(*heightConstraint);
if (std::isinf(constraintDistance)) {
badConstraint = heightConstraint->name();
return false;
}
distance = std::min(distance, constraintDistance);
auto range = capabilities.height();
height = heightConstraint->valueForCapabilityRange(size().height(), range.rangeMin().asInt, range.rangeMax().asInt);
}
std::optional<double> frameRate;
if (frameRateConstraint && capabilities.supportsFrameRate()) {
double constraintDistance = fitnessDistance(*frameRateConstraint);
if (std::isinf(constraintDistance)) {
badConstraint = frameRateConstraint->name();
return false;
}
distance = std::min(distance, constraintDistance);
auto range = capabilities.frameRate();
frameRate = frameRateConstraint->valueForCapabilityRange(this->frameRate(), range.rangeMin().asDouble, range.rangeMax().asDouble);
}
// Each of the non-null values is supported individually, see if they all can be applied at the same time.
if (!supportsSizeAndFrameRate(WTFMove(width), WTFMove(height), WTFMove(frameRate))) {
if (widthConstraint)
badConstraint = widthConstraint->name();
else if (heightConstraint)
badConstraint = heightConstraint->name();
else
badConstraint = frameRateConstraint->name();
return false;
}
return true;
}
double RealtimeMediaSource::fitnessDistance(const MediaConstraint& constraint)
{
auto& capabilities = this->capabilities();
switch (constraint.constraintType()) {
case MediaConstraintType::Width: {
ASSERT(constraint.isInt());
if (!capabilities.supportsWidth())
return 0;
auto range = capabilities.width();
return downcast<IntConstraint>(constraint).fitnessDistance(range.rangeMin().asInt, range.rangeMax().asInt);
break;
}
case MediaConstraintType::Height: {
ASSERT(constraint.isInt());
if (!capabilities.supportsHeight())
return 0;
auto range = capabilities.height();
return downcast<IntConstraint>(constraint).fitnessDistance(range.rangeMin().asInt, range.rangeMax().asInt);
break;
}
case MediaConstraintType::FrameRate: {
ASSERT(constraint.isDouble());
if (!capabilities.supportsFrameRate())
return 0;
auto range = capabilities.frameRate();
return downcast<DoubleConstraint>(constraint).fitnessDistance(range.rangeMin().asDouble, range.rangeMax().asDouble);
break;
}
case MediaConstraintType::AspectRatio: {
ASSERT(constraint.isDouble());
if (!capabilities.supportsAspectRatio())
return 0;
auto range = capabilities.aspectRatio();
return downcast<DoubleConstraint>(constraint).fitnessDistance(range.rangeMin().asDouble, range.rangeMax().asDouble);
break;
}
case MediaConstraintType::Volume: {
ASSERT(constraint.isDouble());
if (!capabilities.supportsVolume())
return 0;
auto range = capabilities.volume();
return downcast<DoubleConstraint>(constraint).fitnessDistance(range.rangeMin().asDouble, range.rangeMax().asDouble);
break;
}
case MediaConstraintType::SampleRate: {
ASSERT(constraint.isInt());
if (!capabilities.supportsSampleRate())
return 0;
auto range = capabilities.sampleRate();
return downcast<IntConstraint>(constraint).fitnessDistance(range.rangeMin().asInt, range.rangeMax().asInt);
break;
}
case MediaConstraintType::SampleSize: {
ASSERT(constraint.isInt());
if (!capabilities.supportsSampleSize())
return 0;
auto range = capabilities.sampleSize();
return downcast<IntConstraint>(constraint).fitnessDistance(range.rangeMin().asInt, range.rangeMax().asInt);
break;
}
case MediaConstraintType::FacingMode: {
ASSERT(constraint.isString());
if (!capabilities.supportsFacingMode())
return 0;
auto& modes = capabilities.facingMode();
Vector<String> supportedModes;
supportedModes.reserveInitialCapacity(modes.size());
for (auto& mode : modes)
supportedModes.uncheckedAppend(RealtimeMediaSourceSettings::facingMode(mode));
return downcast<StringConstraint>(constraint).fitnessDistance(supportedModes);
break;
}
case MediaConstraintType::EchoCancellation: {
ASSERT(constraint.isBoolean());
if (!capabilities.supportsEchoCancellation())
return 0;
bool echoCancellationReadWrite = capabilities.echoCancellation() == RealtimeMediaSourceCapabilities::EchoCancellation::ReadWrite;
return downcast<BooleanConstraint>(constraint).fitnessDistance(echoCancellationReadWrite);
break;
}
case MediaConstraintType::DeviceId:
ASSERT_NOT_REACHED();
break;
case MediaConstraintType::GroupId: {
ASSERT(constraint.isString());
if (!capabilities.supportsDeviceId())
return 0;
return downcast<StringConstraint>(constraint).fitnessDistance(settings().groupId());
break;
}
case MediaConstraintType::DisplaySurface:
case MediaConstraintType::LogicalSurface:
break;
case MediaConstraintType::Unknown:
// Unknown (or unsupported) constraints should be ignored.
break;
}
return 0;
}
template <typename ValueType>
static void applyNumericConstraint(const NumericConstraint<ValueType>& constraint, ValueType current, ValueType capabilityMin, ValueType capabilityMax, RealtimeMediaSource* source, void (RealtimeMediaSource::*applier)(ValueType))
{
ValueType value = constraint.valueForCapabilityRange(current, capabilityMin, capabilityMax);
if (value != current)
(source->*applier)(value);
}
void RealtimeMediaSource::applySizeAndFrameRate(std::optional<int> width, std::optional<int> height, std::optional<double> frameRate)
{
if (width)
setWidth(width.value());
if (height)
setHeight(height.value());
if (frameRate)
setFrameRate(frameRate.value());
}
void RealtimeMediaSource::applyConstraint(const MediaConstraint& constraint)
{
auto& capabilities = this->capabilities();
switch (constraint.constraintType()) {
case MediaConstraintType::Width: {
ASSERT(constraint.isInt());
if (!capabilities.supportsWidth())
return;
auto range = capabilities.width();
applyNumericConstraint(downcast<IntConstraint>(constraint), size().width(), range.rangeMin().asInt, range.rangeMax().asInt, this, &RealtimeMediaSource::setWidth);
break;
}
case MediaConstraintType::Height: {
ASSERT(constraint.isInt());
if (!capabilities.supportsHeight())
return;
auto range = capabilities.height();
applyNumericConstraint(downcast<IntConstraint>(constraint), size().height(), range.rangeMin().asInt, range.rangeMax().asInt, this, &RealtimeMediaSource::setHeight);
break;
}
case MediaConstraintType::FrameRate: {
ASSERT(constraint.isDouble());
if (!capabilities.supportsFrameRate())
return;
auto range = capabilities.frameRate();
applyNumericConstraint(downcast<DoubleConstraint>(constraint), frameRate(), range.rangeMin().asDouble, range.rangeMax().asDouble, this, &RealtimeMediaSource::setFrameRate);
break;
}
case MediaConstraintType::AspectRatio: {
ASSERT(constraint.isDouble());
if (!capabilities.supportsAspectRatio())
return;
auto range = capabilities.aspectRatio();
applyNumericConstraint(downcast<DoubleConstraint>(constraint), aspectRatio(), range.rangeMin().asDouble, range.rangeMax().asDouble, this, &RealtimeMediaSource::setAspectRatio);
break;
}
case MediaConstraintType::Volume: {
ASSERT(constraint.isDouble());
if (!capabilities.supportsVolume())
return;
auto range = capabilities.volume();
applyNumericConstraint(downcast<DoubleConstraint>(constraint), volume(), range.rangeMin().asDouble, range.rangeMax().asDouble, this, &RealtimeMediaSource::setVolume);
break;
}
case MediaConstraintType::SampleRate: {
ASSERT(constraint.isInt());
if (!capabilities.supportsSampleRate())
return;
auto range = capabilities.sampleRate();
applyNumericConstraint(downcast<IntConstraint>(constraint), sampleRate(), range.rangeMin().asInt, range.rangeMax().asInt, this, &RealtimeMediaSource::setSampleRate);
break;
}
case MediaConstraintType::SampleSize: {
ASSERT(constraint.isInt());
if (!capabilities.supportsSampleSize())
return;
auto range = capabilities.sampleSize();
applyNumericConstraint(downcast<IntConstraint>(constraint), sampleSize(), range.rangeMin().asInt, range.rangeMax().asInt, this, &RealtimeMediaSource::setSampleSize);
break;
}
case MediaConstraintType::EchoCancellation: {
ASSERT(constraint.isBoolean());
if (!capabilities.supportsEchoCancellation())
return;
bool setting;
const BooleanConstraint& boolConstraint = downcast<BooleanConstraint>(constraint);
if (boolConstraint.getExact(setting) || boolConstraint.getIdeal(setting))
setEchoCancellation(setting);
break;
}
case MediaConstraintType::FacingMode: {
ASSERT(constraint.isString());
if (!capabilities.supportsFacingMode())
return;
auto& supportedModes = capabilities.facingMode();
auto filter = [supportedModes](const String& modeString) {
auto mode = RealtimeMediaSourceSettings::videoFacingModeEnum(modeString);
for (auto& supportedMode : supportedModes) {
if (mode == supportedMode)
return true;
}
return false;
};
auto modeString = downcast<StringConstraint>(constraint).find(WTFMove(filter));
if (!modeString.isEmpty())
setFacingMode(RealtimeMediaSourceSettings::videoFacingModeEnum(modeString));
break;
}
case MediaConstraintType::DeviceId:
case MediaConstraintType::GroupId:
ASSERT(constraint.isString());
// There is nothing to do here, neither can be changed.
break;
case MediaConstraintType::DisplaySurface:
case MediaConstraintType::LogicalSurface:
ASSERT(constraint.isBoolean());
break;
case MediaConstraintType::Unknown:
break;
}
}
bool RealtimeMediaSource::selectSettings(const MediaConstraints& constraints, FlattenedConstraint& candidates, String& failedConstraint, SelectType type)
{
m_fitnessScore = std::numeric_limits<double>::infinity();
// https://w3c.github.io/mediacapture-main/#dfn-selectsettings
//
// 1. Each constraint specifies one or more values (or a range of values) for its property.
// A property may appear more than once in the list of 'advanced' ConstraintSets. If an
// empty object or list has been given as the value for a constraint, it must be interpreted
// as if the constraint were not specified (in other words, an empty constraint == no constraint).
//
// Note that unknown properties are discarded by WebIDL, which means that unknown/unsupported required
// constraints will silently disappear. To avoid this being a surprise, application authors are
// expected to first use the getSupportedConstraints() method as shown in the Examples below.
// 2. Let object be the ConstrainablePattern object on which this algorithm is applied. Let copy be an
// unconstrained copy of object (i.e., copy should behave as if it were object with all ConstraintSets
// removed.)
// 3. For every possible settings dictionary of copy compute its fitness distance, treating bare values of
// properties as ideal values. Let candidates be the set of settings dictionaries for which the fitness
// distance is finite.
failedConstraint = emptyString();
// Check width, height and frame rate jointly, because while they may be supported individually the combination may not be supported.
double distance = std::numeric_limits<double>::infinity();
if (!supportsSizeAndFrameRate(constraints.mandatoryConstraints.width(), constraints.mandatoryConstraints.height(), constraints.mandatoryConstraints.frameRate(), failedConstraint, m_fitnessScore))
return false;
constraints.mandatoryConstraints.filter([&](const MediaConstraint& constraint) {
if (!supportsConstraint(constraint))
return false;
if (constraint.constraintType() == MediaConstraintType::Width || constraint.constraintType() == MediaConstraintType::Height || constraint.constraintType() == MediaConstraintType::FrameRate) {
candidates.set(constraint);
return false;
}
// The deviceId can't be changed, and the constraint value is the hashed device ID, so verify that the
// device's unique ID hashes to the constraint value but don't include the constraint in the flattened
// constraint set.
if (constraint.constraintType() == MediaConstraintType::DeviceId) {
if (type == SelectType::ForApplyConstraints)
return false;
ASSERT(constraint.isString());
ASSERT(!constraints.deviceIDHashSalt.isEmpty());
auto hashedID = RealtimeMediaSourceCenter::singleton().hashStringWithSalt(m_persistentID, constraints.deviceIDHashSalt);
double constraintDistance = downcast<StringConstraint>(constraint).fitnessDistance(hashedID);
if (std::isinf(constraintDistance)) {
failedConstraint = constraint.name();
return true;
}
return false;
}
double constraintDistance = fitnessDistance(constraint);
if (std::isinf(constraintDistance)) {
failedConstraint = constraint.name();
return true;
}
distance = std::min(distance, constraintDistance);
candidates.set(constraint);
return false;
});
if (!failedConstraint.isEmpty())
return false;
m_fitnessScore = distance;
// 4. If candidates is empty, return undefined as the result of the SelectSettings() algorithm.
if (candidates.isEmpty())
return true;
// 5. Iterate over the 'advanced' ConstraintSets in newConstraints in the order in which they were specified.
// For each ConstraintSet:
// 5.1 compute the fitness distance between it and each settings dictionary in candidates, treating bare
// values of properties as exact.
Vector<std::pair<double, MediaTrackConstraintSetMap>> supportedConstraints;
for (const auto& advancedConstraint : constraints.advancedConstraints) {
double constraintDistance = 0;
bool supported = false;
advancedConstraint.forEach([&](const MediaConstraint& constraint) {
distance = fitnessDistance(constraint);
constraintDistance += distance;
if (!std::isinf(distance))
supported = true;
});
m_fitnessScore = std::min(m_fitnessScore, constraintDistance);
// 5.2 If the fitness distance is finite for one or more settings dictionaries in candidates, keep those
// settings dictionaries in candidates, discarding others.
// If the fitness distance is infinite for all settings dictionaries in candidates, ignore this ConstraintSet.
if (supported)
supportedConstraints.append({constraintDistance, advancedConstraint});
}
// 6. Select one settings dictionary from candidates, and return it as the result of the SelectSettings() algorithm.
// The UA should use the one with the smallest fitness distance, as calculated in step 3.
if (!supportedConstraints.isEmpty()) {
supportedConstraints.removeAllMatching([&](const std::pair<double, MediaTrackConstraintSetMap>& pair) -> bool {
return std::isinf(pair.first) || pair.first > m_fitnessScore;
});
if (!supportedConstraints.isEmpty()) {
auto& advancedConstraint = supportedConstraints[0].second;
advancedConstraint.forEach([&](const MediaConstraint& constraint) {
candidates.merge(constraint);
});
m_fitnessScore = std::min(m_fitnessScore, supportedConstraints[0].first);
}
}
return true;
}
bool RealtimeMediaSource::supportsConstraint(const MediaConstraint& constraint) const
{
auto& capabilities = this->capabilities();
switch (constraint.constraintType()) {
case MediaConstraintType::Width:
ASSERT(constraint.isInt());
return capabilities.supportsWidth();
break;
case MediaConstraintType::Height:
ASSERT(constraint.isInt());
return capabilities.supportsHeight();
break;
case MediaConstraintType::FrameRate:
ASSERT(constraint.isDouble());
return capabilities.supportsFrameRate();
break;
case MediaConstraintType::AspectRatio:
ASSERT(constraint.isDouble());
return capabilities.supportsAspectRatio();
break;
case MediaConstraintType::Volume:
ASSERT(constraint.isDouble());
return capabilities.supportsVolume();
break;
case MediaConstraintType::SampleRate:
ASSERT(constraint.isInt());
return capabilities.supportsSampleRate();
break;
case MediaConstraintType::SampleSize:
ASSERT(constraint.isInt());
return capabilities.supportsSampleSize();
break;
case MediaConstraintType::FacingMode:
ASSERT(constraint.isString());
return capabilities.supportsFacingMode();
break;
case MediaConstraintType::EchoCancellation:
ASSERT(constraint.isBoolean());
return capabilities.supportsEchoCancellation();
break;
case MediaConstraintType::DeviceId:
ASSERT(constraint.isString());
return capabilities.supportsDeviceId();
break;
case MediaConstraintType::GroupId:
ASSERT(constraint.isString());
return capabilities.supportsDeviceId();
break;
case MediaConstraintType::DisplaySurface:
case MediaConstraintType::LogicalSurface:
// https://www.w3.org/TR/screen-capture/#new-constraints-for-captured-display-surfaces
// 5.2.1 New Constraints for Captured Display Surfaces
// Since the source of media cannot be changed after a MediaStreamTrack has been returned,
// these constraints cannot be changed by an application.
return false;
break;
case MediaConstraintType::Unknown:
// Unknown (or unsupported) constraints should be ignored.
break;
}
return false;
}
bool RealtimeMediaSource::supportsConstraints(const MediaConstraints& constraints, String& invalidConstraint)
{
ASSERT(constraints.isValid);
FlattenedConstraint candidates;
if (!selectSettings(constraints, candidates, invalidConstraint, SelectType::ForSupportsConstraints))
return false;
return true;
}
void RealtimeMediaSource::applyConstraints(const FlattenedConstraint& constraints)
{
if (constraints.isEmpty())
return;
beginConfiguration();
auto& capabilities = this->capabilities();
std::optional<int> width;
if (const MediaConstraint* constraint = constraints.find(MediaConstraintType::Width)) {
ASSERT(constraint->isInt());
if (capabilities.supportsWidth()) {
auto range = capabilities.width();
width = downcast<IntConstraint>(*constraint).valueForCapabilityRange(size().width(), range.rangeMin().asInt, range.rangeMax().asInt);
}
}
std::optional<int> height;
if (const MediaConstraint* constraint = constraints.find(MediaConstraintType::Height)) {
ASSERT(constraint->isInt());
if (capabilities.supportsHeight()) {
auto range = capabilities.height();
height = downcast<IntConstraint>(*constraint).valueForCapabilityRange(size().height(), range.rangeMin().asInt, range.rangeMax().asInt);
}
}
std::optional<double> frameRate;
if (const MediaConstraint* constraint = constraints.find(MediaConstraintType::FrameRate)) {
ASSERT(constraint->isDouble());
if (capabilities.supportsFrameRate()) {
auto range = capabilities.frameRate();
frameRate = downcast<DoubleConstraint>(*constraint).valueForCapabilityRange(this->frameRate(), range.rangeMin().asDouble, range.rangeMax().asDouble);
}
}
// FIXME: applySizeAndFrameRate should take MediaConstraint* instead of std::optional<> so it can see if a constraint is an exact, min, max,
// or ideal, and choose the correct value for properties with non-discreet capabilities when necessary.
if (width || height || frameRate)
applySizeAndFrameRate(WTFMove(width), WTFMove(height), WTFMove(frameRate));
for (auto& variant : constraints) {
if (variant.constraintType() == MediaConstraintType::Width || variant.constraintType() == MediaConstraintType::Height || variant.constraintType() == MediaConstraintType::FrameRate)
continue;
applyConstraint(variant);
}
commitConfiguration();
}
std::optional<std::pair<String, String>> RealtimeMediaSource::applyConstraints(const MediaConstraints& constraints)
{
ASSERT(constraints.isValid);
FlattenedConstraint candidates;
String failedConstraint;
if (!selectSettings(constraints, candidates, failedConstraint, SelectType::ForApplyConstraints))
return { { failedConstraint, ASCIILiteral("Constraint not supported") } };
applyConstraints(candidates);
return std::nullopt;
}
void RealtimeMediaSource::applyConstraints(const MediaConstraints& constraints, SuccessHandler&& successHandler, FailureHandler&& failureHandler)
{
auto result = applyConstraints(constraints);
if (!result && successHandler)
successHandler();
else if (result && failureHandler)
failureHandler(result.value().first, result.value().second);
}
void RealtimeMediaSource::setWidth(int width)
{
if (width == m_size.width())
return;
int height = m_aspectRatio ? width / m_aspectRatio : m_size.height();
if (!applySize(IntSize(width, height)))
return;
m_size.setWidth(width);
if (m_aspectRatio)
m_size.setHeight(width / m_aspectRatio);
settingsDidChange();
}
void RealtimeMediaSource::setHeight(int height)
{
if (height == m_size.height())
return;
int width = m_aspectRatio ? height * m_aspectRatio : m_size.width();
if (!applySize(IntSize(width, height)))
return;
if (m_aspectRatio)
m_size.setWidth(width);
m_size.setHeight(height);
settingsDidChange();
}
void RealtimeMediaSource::setFrameRate(double rate)
{
if (m_frameRate == rate || !applyFrameRate(rate))
return;
m_frameRate = rate;
settingsDidChange();
}
void RealtimeMediaSource::setAspectRatio(double ratio)
{
if (m_aspectRatio == ratio || !applyAspectRatio(ratio))
return;
m_aspectRatio = ratio;
m_size.setHeight(m_size.width() / ratio);
settingsDidChange();
}
void RealtimeMediaSource::setFacingMode(RealtimeMediaSourceSettings::VideoFacingMode mode)
{
if (m_facingMode == mode || !applyFacingMode(mode))
return;
m_facingMode = mode;
settingsDidChange();
}
void RealtimeMediaSource::setVolume(double volume)
{
if (m_volume == volume || !applyVolume(volume))
return;
m_volume = volume;
settingsDidChange();
}
void RealtimeMediaSource::setSampleRate(int rate)
{
if (m_sampleRate == rate || !applySampleRate(rate))
return;
m_sampleRate = rate;
settingsDidChange();
}
void RealtimeMediaSource::setSampleSize(int size)
{
if (m_sampleSize == size || !applySampleSize(size))
return;
m_sampleSize = size;
settingsDidChange();
}
void RealtimeMediaSource::setEchoCancellation(bool echoCancellation)
{
if (m_echoCancellation == echoCancellation || !applyEchoCancellation(echoCancellation))
return;
m_echoCancellation = echoCancellation;
settingsDidChange();
}
void RealtimeMediaSource::scheduleDeferredTask(WTF::Function<void()>&& function)
{
ASSERT(function);
callOnMainThread([weakThis = createWeakPtr(), function = WTFMove(function)] {
if (!weakThis)
return;
function();
});
}
} // namespace WebCore
#endif // ENABLE(MEDIA_STREAM)