blob: f1dc72c38aab14885ffc1e8b4863ab4902614b42 [file] [log] [blame]
/*
* Copyright (C) 2008, 2009, 2010 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CodeBlock_h
#define CodeBlock_h
#include "CodeOrigin.h"
#include "CompactJITCodeMap.h"
#include "DFGOSREntry.h"
#include "DFGOSRExit.h"
#include "EvalCodeCache.h"
#include "Heuristics.h"
#include "Instruction.h"
#include "JITCode.h"
#include "JITWriteBarrier.h"
#include "JSGlobalObject.h"
#include "JumpTable.h"
#include "Nodes.h"
#include "PredictionTracker.h"
#include "RegExpObject.h"
#include "UString.h"
#include "UnconditionalFinalizer.h"
#include "ValueProfile.h"
#include <wtf/FastAllocBase.h>
#include <wtf/PassOwnPtr.h>
#include <wtf/RefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/SentinelLinkedList.h>
#include <wtf/Vector.h>
#if ENABLE(JIT)
#include "StructureStubInfo.h"
#endif
// Register numbers used in bytecode operations have different meaning according to their ranges:
// 0x80000000-0xFFFFFFFF Negative indices from the CallFrame pointer are entries in the call frame, see RegisterFile.h.
// 0x00000000-0x3FFFFFFF Forwards indices from the CallFrame pointer are local vars and temporaries with the function's callframe.
// 0x40000000-0x7FFFFFFF Positive indices from 0x40000000 specify entries in the constant pool on the CodeBlock.
static const int FirstConstantRegisterIndex = 0x40000000;
namespace JSC {
enum HasSeenShouldRepatch {
hasSeenShouldRepatch
};
class ExecState;
enum CodeType { GlobalCode, EvalCode, FunctionCode };
inline int unmodifiedArgumentsRegister(int argumentsRegister) { return argumentsRegister - 1; }
static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits<int>::max(); }
struct HandlerInfo {
uint32_t start;
uint32_t end;
uint32_t target;
uint32_t scopeDepth;
#if ENABLE(JIT)
CodeLocationLabel nativeCode;
#endif
};
struct ExpressionRangeInfo {
enum {
MaxOffset = (1 << 7) - 1,
MaxDivot = (1 << 25) - 1
};
uint32_t instructionOffset : 25;
uint32_t divotPoint : 25;
uint32_t startOffset : 7;
uint32_t endOffset : 7;
};
struct LineInfo {
uint32_t instructionOffset;
int32_t lineNumber;
};
#if ENABLE(JIT)
struct CallLinkInfo : public BasicRawSentinelNode<CallLinkInfo> {
enum CallType { None, Call, CallVarargs, Construct };
static CallType callTypeFor(OpcodeID opcodeID)
{
if (opcodeID == op_call || opcodeID == op_call_eval)
return Call;
if (opcodeID == op_construct)
return Construct;
ASSERT(opcodeID == op_call_varargs);
return CallVarargs;
}
CallLinkInfo()
: hasSeenShouldRepatch(false)
, isDFG(false)
, callType(None)
{
}
~CallLinkInfo()
{
if (isOnList())
remove();
}
CodeLocationLabel callReturnLocation; // it's a near call in the old JIT, or a normal call in DFG
CodeLocationDataLabelPtr hotPathBegin;
CodeLocationNearCall hotPathOther;
JITWriteBarrier<JSFunction> callee;
WriteBarrier<JSFunction> lastSeenCallee;
bool hasSeenShouldRepatch : 1;
bool isDFG : 1;
CallType callType : 2;
unsigned bytecodeIndex;
bool isLinked() { return callee; }
void unlink(JSGlobalData&, RepatchBuffer&);
bool seenOnce()
{
return hasSeenShouldRepatch;
}
void setSeen()
{
hasSeenShouldRepatch = true;
}
};
struct MethodCallLinkInfo {
MethodCallLinkInfo()
: seen(false)
{
}
bool seenOnce()
{
return seen;
}
void setSeen()
{
seen = true;
}
unsigned bytecodeIndex;
CodeLocationCall callReturnLocation;
JITWriteBarrier<Structure> cachedStructure;
JITWriteBarrier<Structure> cachedPrototypeStructure;
// We'd like this to actually be JSFunction, but InternalFunction and JSFunction
// don't have a common parent class and we allow specialisation on both
JITWriteBarrier<JSObject> cachedFunction;
JITWriteBarrier<JSObject> cachedPrototype;
bool seen;
};
struct GlobalResolveInfo {
GlobalResolveInfo(unsigned bytecodeOffset)
: offset(0)
, bytecodeOffset(bytecodeOffset)
{
}
WriteBarrier<Structure> structure;
unsigned offset;
unsigned bytecodeOffset;
};
// This structure is used to map from a call return location
// (given as an offset in bytes into the JIT code) back to
// the bytecode index of the corresponding bytecode operation.
// This is then used to look up the corresponding handler.
// FIXME: This should be made inlining aware! Currently it isn't
// because we never inline code that has exception handlers.
struct CallReturnOffsetToBytecodeOffset {
CallReturnOffsetToBytecodeOffset(unsigned callReturnOffset, unsigned bytecodeOffset)
: callReturnOffset(callReturnOffset)
, bytecodeOffset(bytecodeOffset)
{
}
unsigned callReturnOffset;
unsigned bytecodeOffset;
};
// valueAtPosition helpers for the binarySearch algorithm.
inline void* getStructureStubInfoReturnLocation(StructureStubInfo* structureStubInfo)
{
return structureStubInfo->callReturnLocation.executableAddress();
}
inline unsigned getStructureStubInfoBytecodeIndex(StructureStubInfo* structureStubInfo)
{
return structureStubInfo->bytecodeIndex;
}
inline void* getCallLinkInfoReturnLocation(CallLinkInfo* callLinkInfo)
{
return callLinkInfo->callReturnLocation.executableAddress();
}
inline unsigned getCallLinkInfoBytecodeIndex(CallLinkInfo* callLinkInfo)
{
return callLinkInfo->bytecodeIndex;
}
inline void* getMethodCallLinkInfoReturnLocation(MethodCallLinkInfo* methodCallLinkInfo)
{
return methodCallLinkInfo->callReturnLocation.executableAddress();
}
inline unsigned getMethodCallLinkInfoBytecodeIndex(MethodCallLinkInfo* methodCallLinkInfo)
{
return methodCallLinkInfo->bytecodeIndex;
}
inline unsigned getCallReturnOffset(CallReturnOffsetToBytecodeOffset* pc)
{
return pc->callReturnOffset;
}
#endif
class CodeBlock : public UnconditionalFinalizer {
WTF_MAKE_FAST_ALLOCATED;
friend class JIT;
public:
enum CopyParsedBlockTag { CopyParsedBlock };
protected:
CodeBlock(CopyParsedBlockTag, CodeBlock& other, SymbolTable*);
CodeBlock(ScriptExecutable* ownerExecutable, CodeType, JSGlobalObject*, PassRefPtr<SourceProvider>, unsigned sourceOffset, SymbolTable*, bool isConstructor, PassOwnPtr<CodeBlock> alternative);
WriteBarrier<JSGlobalObject> m_globalObject;
Heap* m_heap;
public:
virtual ~CodeBlock();
CodeBlock* alternative() { return m_alternative.get(); }
PassOwnPtr<CodeBlock> releaseAlternative() { return m_alternative.release(); }
void setAlternative(PassOwnPtr<CodeBlock> alternative) { m_alternative = alternative; }
#if ENABLE(JIT)
CodeBlock* baselineVersion()
{
CodeBlock* result = replacement();
if (!result)
return 0; // This can happen if we're in the process of creating the baseline version.
while (result->alternative())
result = result->alternative();
ASSERT(result);
ASSERT(result->getJITType() == JITCode::BaselineJIT);
return result;
}
#endif
bool canProduceCopyWithBytecode() { return hasInstructions(); }
void visitAggregate(SlotVisitor&);
static void dumpStatistics();
#if !defined(NDEBUG) || ENABLE_OPCODE_SAMPLING
void dump(ExecState*) const;
void printStructures(const Instruction*) const;
void printStructure(const char* name, const Instruction*, int operand) const;
#endif
bool isStrictMode() const { return m_isStrictMode; }
inline bool isKnownNotImmediate(int index)
{
if (index == m_thisRegister && !m_isStrictMode)
return true;
if (isConstantRegisterIndex(index))
return getConstant(index).isCell();
return false;
}
ALWAYS_INLINE bool isTemporaryRegisterIndex(int index)
{
return index >= m_numVars;
}
HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset);
int lineNumberForBytecodeOffset(unsigned bytecodeOffset);
void expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset);
#if ENABLE(JIT)
StructureStubInfo& getStubInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<StructureStubInfo, void*, getStructureStubInfoReturnLocation>(m_structureStubInfos.begin(), m_structureStubInfos.size(), returnAddress.value()));
}
StructureStubInfo& getStubInfo(unsigned bytecodeIndex)
{
return *(binarySearch<StructureStubInfo, unsigned, getStructureStubInfoBytecodeIndex>(m_structureStubInfos.begin(), m_structureStubInfos.size(), bytecodeIndex));
}
CallLinkInfo& getCallLinkInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<CallLinkInfo, void*, getCallLinkInfoReturnLocation>(m_callLinkInfos.begin(), m_callLinkInfos.size(), returnAddress.value()));
}
CallLinkInfo& getCallLinkInfo(unsigned bytecodeIndex)
{
return *(binarySearch<CallLinkInfo, unsigned, getCallLinkInfoBytecodeIndex>(m_callLinkInfos.begin(), m_callLinkInfos.size(), bytecodeIndex));
}
MethodCallLinkInfo& getMethodCallLinkInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<MethodCallLinkInfo, void*, getMethodCallLinkInfoReturnLocation>(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), returnAddress.value()));
}
MethodCallLinkInfo& getMethodCallLinkInfo(unsigned bytecodeIndex)
{
return *(binarySearch<MethodCallLinkInfo, unsigned, getMethodCallLinkInfoBytecodeIndex>(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), bytecodeIndex));
}
unsigned bytecodeOffset(ReturnAddressPtr returnAddress)
{
if (!m_rareData)
return 1;
Vector<CallReturnOffsetToBytecodeOffset>& callIndices = m_rareData->m_callReturnIndexVector;
if (!callIndices.size())
return 1;
return binarySearch<CallReturnOffsetToBytecodeOffset, unsigned, getCallReturnOffset>(callIndices.begin(), callIndices.size(), getJITCode().offsetOf(returnAddress.value()))->bytecodeOffset;
}
void unlinkCalls();
bool hasIncomingCalls() { return m_incomingCalls.begin() != m_incomingCalls.end(); }
void linkIncomingCall(CallLinkInfo* incoming)
{
m_incomingCalls.push(incoming);
}
void unlinkIncomingCalls();
#endif
#if ENABLE(DFG_JIT)
void setJITCodeMap(PassOwnPtr<CompactJITCodeMap> jitCodeMap)
{
m_jitCodeMap = jitCodeMap;
}
CompactJITCodeMap* jitCodeMap()
{
return m_jitCodeMap.get();
}
void createDFGDataIfNecessary()
{
if (!!m_dfgData)
return;
m_dfgData = adoptPtr(new DFGData);
}
DFG::OSREntryData* appendDFGOSREntryData(unsigned bytecodeIndex, unsigned machineCodeOffset)
{
createDFGDataIfNecessary();
DFG::OSREntryData entry;
entry.m_bytecodeIndex = bytecodeIndex;
entry.m_machineCodeOffset = machineCodeOffset;
m_dfgData->osrEntry.append(entry);
return &m_dfgData->osrEntry.last();
}
unsigned numberOfDFGOSREntries() const
{
if (!m_dfgData)
return 0;
return m_dfgData->osrEntry.size();
}
DFG::OSREntryData* dfgOSREntryData(unsigned i) { return &m_dfgData->osrEntry[i]; }
DFG::OSREntryData* dfgOSREntryDataForBytecodeIndex(unsigned bytecodeIndex)
{
return binarySearch<DFG::OSREntryData, unsigned, DFG::getOSREntryDataBytecodeIndex>(m_dfgData->osrEntry.begin(), m_dfgData->osrEntry.size(), bytecodeIndex);
}
void appendOSRExit(const DFG::OSRExit& osrExit)
{
createDFGDataIfNecessary();
m_dfgData->osrExit.append(osrExit);
}
void appendSpeculationRecovery(const DFG::SpeculationRecovery& recovery)
{
createDFGDataIfNecessary();
m_dfgData->speculationRecovery.append(recovery);
}
unsigned numberOfOSRExits()
{
if (!m_dfgData)
return 0;
return m_dfgData->osrExit.size();
}
unsigned numberOfSpeculationRecoveries()
{
if (!m_dfgData)
return 0;
return m_dfgData->speculationRecovery.size();
}
DFG::OSRExit& osrExit(unsigned index)
{
return m_dfgData->osrExit[index];
}
DFG::SpeculationRecovery& speculationRecovery(unsigned index)
{
return m_dfgData->speculationRecovery[index];
}
#endif
#if ENABLE(INTERPRETER)
unsigned bytecodeOffset(Instruction* returnAddress)
{
return static_cast<Instruction*>(returnAddress) - instructions().begin();
}
#endif
void setIsNumericCompareFunction(bool isNumericCompareFunction) { m_isNumericCompareFunction = isNumericCompareFunction; }
bool isNumericCompareFunction() { return m_isNumericCompareFunction; }
bool hasInstructions() const { return !!m_instructions; }
unsigned numberOfInstructions() const { return !m_instructions ? 0 : m_instructions->m_instructions.size(); }
Vector<Instruction>& instructions() { return m_instructions->m_instructions; }
const Vector<Instruction>& instructions() const { return m_instructions->m_instructions; }
void discardBytecode() { m_instructions.clear(); }
void discardBytecodeLater()
{
m_shouldDiscardBytecode = true;
}
void handleBytecodeDiscardingOpportunity()
{
if (!!alternative())
discardBytecode();
else
discardBytecodeLater();
}
#ifndef NDEBUG
bool usesOpcode(OpcodeID);
#endif
unsigned instructionCount() { return m_instructionCount; }
void setInstructionCount(unsigned instructionCount) { m_instructionCount = instructionCount; }
#if ENABLE(JIT)
void setJITCode(const JITCode& code, MacroAssemblerCodePtr codeWithArityCheck)
{
m_jitCode = code;
m_jitCodeWithArityCheck = codeWithArityCheck;
}
JITCode& getJITCode() { return m_jitCode; }
MacroAssemblerCodePtr getJITCodeWithArityCheck() { return m_jitCodeWithArityCheck; }
JITCode::JITType getJITType() { return m_jitCode.jitType(); }
ExecutableMemoryHandle* executableMemory() { return getJITCode().getExecutableMemory(); }
virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*) = 0;
virtual void jettison(JSGlobalData&) = 0;
virtual CodeBlock* replacement() = 0;
virtual bool canCompileWithDFG() = 0;
bool hasOptimizedReplacement()
{
ASSERT(getJITType() == JITCode::BaselineJIT);
bool result = replacement()->getJITType() > getJITType();
#if !ASSERT_DISABLED
if (result)
ASSERT(replacement()->getJITType() == JITCode::DFGJIT);
else {
ASSERT(replacement()->getJITType() == JITCode::BaselineJIT);
ASSERT(replacement() == this);
}
#endif
return result;
}
#else
JITCode::JITType getJITType() { return JITCode::BaselineJIT; }
#endif
ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); }
void setGlobalData(JSGlobalData* globalData) { m_globalData = globalData; }
JSGlobalData* globalData() { return m_globalData; }
void setThisRegister(int thisRegister) { m_thisRegister = thisRegister; }
int thisRegister() const { return m_thisRegister; }
void setNeedsFullScopeChain(bool needsFullScopeChain) { m_needsFullScopeChain = needsFullScopeChain; }
bool needsFullScopeChain() const { return m_needsFullScopeChain; }
void setUsesEval(bool usesEval) { m_usesEval = usesEval; }
bool usesEval() const { return m_usesEval; }
void setArgumentsRegister(int argumentsRegister)
{
ASSERT(argumentsRegister != -1);
m_argumentsRegister = argumentsRegister;
ASSERT(usesArguments());
}
int argumentsRegister()
{
ASSERT(usesArguments());
return m_argumentsRegister;
}
void setActivationRegister(int activationRegister)
{
m_activationRegister = activationRegister;
}
int activationRegister()
{
ASSERT(needsFullScopeChain());
return m_activationRegister;
}
bool usesArguments() const { return m_argumentsRegister != -1; }
CodeType codeType() const { return m_codeType; }
SourceProvider* source() const { return m_source.get(); }
unsigned sourceOffset() const { return m_sourceOffset; }
size_t numberOfJumpTargets() const { return m_jumpTargets.size(); }
void addJumpTarget(unsigned jumpTarget) { m_jumpTargets.append(jumpTarget); }
unsigned jumpTarget(int index) const { return m_jumpTargets[index]; }
unsigned lastJumpTarget() const { return m_jumpTargets.last(); }
void createActivation(CallFrame*);
void clearEvalCache();
#if ENABLE(INTERPRETER)
void addPropertyAccessInstruction(unsigned propertyAccessInstruction)
{
if (!m_globalData->canUseJIT())
m_propertyAccessInstructions.append(propertyAccessInstruction);
}
void addGlobalResolveInstruction(unsigned globalResolveInstruction)
{
if (!m_globalData->canUseJIT())
m_globalResolveInstructions.append(globalResolveInstruction);
}
bool hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset);
#endif
#if ENABLE(JIT)
void setNumberOfStructureStubInfos(size_t size) { m_structureStubInfos.grow(size); }
size_t numberOfStructureStubInfos() const { return m_structureStubInfos.size(); }
StructureStubInfo& structureStubInfo(int index) { return m_structureStubInfos[index]; }
void addGlobalResolveInfo(unsigned globalResolveInstruction)
{
if (m_globalData->canUseJIT())
m_globalResolveInfos.append(GlobalResolveInfo(globalResolveInstruction));
}
GlobalResolveInfo& globalResolveInfo(int index) { return m_globalResolveInfos[index]; }
bool hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset);
void setNumberOfCallLinkInfos(size_t size) { m_callLinkInfos.grow(size); }
size_t numberOfCallLinkInfos() const { return m_callLinkInfos.size(); }
CallLinkInfo& callLinkInfo(int index) { return m_callLinkInfos[index]; }
void addMethodCallLinkInfos(unsigned n) { ASSERT(m_globalData->canUseJIT()); m_methodCallLinkInfos.grow(n); }
MethodCallLinkInfo& methodCallLinkInfo(int index) { return m_methodCallLinkInfos[index]; }
#endif
#if ENABLE(VALUE_PROFILER)
ValueProfile* addValueProfile(int bytecodeOffset)
{
m_valueProfiles.append(ValueProfile(bytecodeOffset));
return &m_valueProfiles.last();
}
unsigned numberOfValueProfiles() { return m_valueProfiles.size(); }
ValueProfile* valueProfile(int index) { return &m_valueProfiles[index]; }
ValueProfile* valueProfileForBytecodeOffset(int bytecodeOffset)
{
return WTF::genericBinarySearch<ValueProfile, int, getValueProfileBytecodeOffset>(m_valueProfiles, m_valueProfiles.size(), bytecodeOffset);
}
ValueProfile* valueProfileForArgument(int argumentIndex)
{
int index = argumentIndex;
if (static_cast<unsigned>(index) >= m_valueProfiles.size())
return 0;
ValueProfile* result = valueProfile(argumentIndex);
if (result->m_bytecodeOffset != -1)
return 0;
return result;
}
RareCaseProfile* addRareCaseProfile(int bytecodeOffset)
{
m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset));
return &m_rareCaseProfiles.last();
}
unsigned numberOfRareCaseProfiles() { return m_rareCaseProfiles.size(); }
RareCaseProfile* rareCaseProfile(int index) { return &m_rareCaseProfiles[index]; }
RareCaseProfile* rareCaseProfileForBytecodeOffset(int bytecodeOffset)
{
return WTF::genericBinarySearch<RareCaseProfile, int, getRareCaseProfileBytecodeOffset>(m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset);
}
bool likelyToTakeSlowCase(int bytecodeOffset)
{
return rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter >= Heuristics::likelyToTakeSlowCaseThreshold;
}
bool couldTakeSlowCase(int bytecodeOffset)
{
return rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter >= Heuristics::couldTakeSlowCaseThreshold;
}
RareCaseProfile* addSpecialFastCaseProfile(int bytecodeOffset)
{
m_specialFastCaseProfiles.append(RareCaseProfile(bytecodeOffset));
return &m_specialFastCaseProfiles.last();
}
unsigned numberOfSpecialFastCaseProfiles() { return m_specialFastCaseProfiles.size(); }
RareCaseProfile* specialFastCaseProfile(int index) { return &m_specialFastCaseProfiles[index]; }
RareCaseProfile* specialFastCaseProfileForBytecodeOffset(int bytecodeOffset)
{
return WTF::genericBinarySearch<RareCaseProfile, int, getRareCaseProfileBytecodeOffset>(m_specialFastCaseProfiles, m_specialFastCaseProfiles.size(), bytecodeOffset);
}
bool likelyToTakeSpecialFastCase(int bytecodeOffset)
{
unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
return specialFastCaseCount >= Heuristics::likelyToTakeSlowCaseThreshold;
}
bool likelyToTakeDeepestSlowCase(int bytecodeOffset)
{
unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
return (slowCaseCount - specialFastCaseCount) >= Heuristics::likelyToTakeSlowCaseThreshold;
}
bool likelyToTakeAnySlowCase(int bytecodeOffset)
{
unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
return (slowCaseCount + specialFastCaseCount) >= Heuristics::likelyToTakeSlowCaseThreshold;
}
void resetRareCaseProfiles();
#endif
unsigned globalResolveInfoCount() const
{
#if ENABLE(JIT)
if (m_globalData->canUseJIT())
return m_globalResolveInfos.size();
#endif
return 0;
}
// Exception handling support
size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; }
void addExceptionHandler(const HandlerInfo& hanler) { createRareDataIfNecessary(); return m_rareData->m_exceptionHandlers.append(hanler); }
HandlerInfo& exceptionHandler(int index) { ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; }
void addExpressionInfo(const ExpressionRangeInfo& expressionInfo)
{
createRareDataIfNecessary();
m_rareData->m_expressionInfo.append(expressionInfo);
}
void addLineInfo(unsigned bytecodeOffset, int lineNo)
{
createRareDataIfNecessary();
Vector<LineInfo>& lineInfo = m_rareData->m_lineInfo;
if (!lineInfo.size() || lineInfo.last().lineNumber != lineNo) {
LineInfo info = { bytecodeOffset, lineNo };
lineInfo.append(info);
}
}
bool hasExpressionInfo() { return m_rareData && m_rareData->m_expressionInfo.size(); }
bool hasLineInfo() { return m_rareData && m_rareData->m_lineInfo.size(); }
// We only generate exception handling info if the user is debugging
// (and may want line number info), or if the function contains exception handler.
bool needsCallReturnIndices()
{
return m_rareData &&
(m_rareData->m_expressionInfo.size() || m_rareData->m_lineInfo.size() || m_rareData->m_exceptionHandlers.size());
}
#if ENABLE(JIT)
Vector<CallReturnOffsetToBytecodeOffset>& callReturnIndexVector()
{
createRareDataIfNecessary();
return m_rareData->m_callReturnIndexVector;
}
#endif
#if ENABLE(DFG_JIT)
SegmentedVector<InlineCallFrame, 4>& inlineCallFrames()
{
createRareDataIfNecessary();
return m_rareData->m_inlineCallFrames;
}
Vector<CodeOriginAtCallReturnOffset>& codeOrigins()
{
createRareDataIfNecessary();
return m_rareData->m_codeOrigins;
}
// Having code origins implies that there has been some inlining.
bool hasCodeOrigins()
{
return m_rareData && !!m_rareData->m_codeOrigins.size();
}
CodeOrigin codeOriginForReturn(ReturnAddressPtr returnAddress)
{
ASSERT(hasCodeOrigins());
return binarySearch<CodeOriginAtCallReturnOffset, unsigned, getCallReturnOffsetForCodeOrigin>(codeOrigins().begin(), codeOrigins().size(), getJITCode().offsetOf(returnAddress.value()))->codeOrigin;
}
#endif
// Constant Pool
size_t numberOfIdentifiers() const { return m_identifiers.size(); }
void addIdentifier(const Identifier& i) { return m_identifiers.append(i); }
Identifier& identifier(int index) { return m_identifiers[index]; }
size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); }
void addConstant(JSValue v)
{
m_constantRegisters.append(WriteBarrier<Unknown>());
m_constantRegisters.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), v);
}
WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; }
ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); }
unsigned addFunctionDecl(FunctionExecutable* n)
{
unsigned size = m_functionDecls.size();
m_functionDecls.append(WriteBarrier<FunctionExecutable>());
m_functionDecls.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), n);
return size;
}
FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); }
int numberOfFunctionDecls() { return m_functionDecls.size(); }
unsigned addFunctionExpr(FunctionExecutable* n)
{
unsigned size = m_functionExprs.size();
m_functionExprs.append(WriteBarrier<FunctionExecutable>());
m_functionExprs.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), n);
return size;
}
FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); }
unsigned addRegExp(RegExp* r)
{
createRareDataIfNecessary();
unsigned size = m_rareData->m_regexps.size();
m_rareData->m_regexps.append(WriteBarrier<RegExp>(*m_globalData, ownerExecutable(), r));
return size;
}
unsigned numberOfRegExps() const
{
if (!m_rareData)
return 0;
return m_rareData->m_regexps.size();
}
RegExp* regexp(int index) const { ASSERT(m_rareData); return m_rareData->m_regexps[index].get(); }
unsigned addConstantBuffer(unsigned length)
{
createRareDataIfNecessary();
unsigned size = m_rareData->m_constantBuffers.size();
m_rareData->m_constantBuffers.append(Vector<JSValue>(length));
return size;
}
JSValue* constantBuffer(unsigned index)
{
ASSERT(m_rareData);
return m_rareData->m_constantBuffers[index].data();
}
JSGlobalObject* globalObject() { return m_globalObject.get(); }
// Jump Tables
size_t numberOfImmediateSwitchJumpTables() const { return m_rareData ? m_rareData->m_immediateSwitchJumpTables.size() : 0; }
SimpleJumpTable& addImmediateSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_immediateSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_immediateSwitchJumpTables.last(); }
SimpleJumpTable& immediateSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_immediateSwitchJumpTables[tableIndex]; }
size_t numberOfCharacterSwitchJumpTables() const { return m_rareData ? m_rareData->m_characterSwitchJumpTables.size() : 0; }
SimpleJumpTable& addCharacterSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_characterSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_characterSwitchJumpTables.last(); }
SimpleJumpTable& characterSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_characterSwitchJumpTables[tableIndex]; }
size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; }
StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); }
StringJumpTable& stringSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; }
SymbolTable* symbolTable() { return m_symbolTable; }
SharedSymbolTable* sharedSymbolTable() { ASSERT(m_codeType == FunctionCode); return static_cast<SharedSymbolTable*>(m_symbolTable); }
EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; }
void shrinkToFit();
void copyPostParseDataFrom(CodeBlock* alternative);
void copyPostParseDataFromAlternative();
// Functions for controlling when tiered compilation kicks in. This
// controls both when the optimizing compiler is invoked and when OSR
// entry happens. Two triggers exist: the loop trigger and the return
// trigger. In either case, when an addition to m_executeCounter
// causes it to become non-negative, the optimizing compiler is
// invoked. This includes a fast check to see if this CodeBlock has
// already been optimized (i.e. replacement() returns a CodeBlock
// that was optimized with a higher tier JIT than this one). In the
// case of the loop trigger, if the optimized compilation succeeds
// (or has already succeeded in the past) then OSR is attempted to
// redirect program flow into the optimized code.
// These functions are called from within the optimization triggers,
// and are used as a single point at which we define the heuristics
// for how much warm-up is mandated before the next optimization
// trigger files. All CodeBlocks start out with optimizeAfterWarmUp(),
// as this is called from the CodeBlock constructor.
// When we observe a lot of speculation failures, we trigger a
// reoptimization. But each time, we increase the optimization trigger
// to avoid thrashing.
unsigned reoptimizationRetryCounter() const
{
ASSERT(m_reoptimizationRetryCounter <= Heuristics::reoptimizationRetryCounterMax);
return m_reoptimizationRetryCounter;
}
void countReoptimization()
{
m_reoptimizationRetryCounter++;
if (m_reoptimizationRetryCounter > Heuristics::reoptimizationRetryCounterMax)
m_reoptimizationRetryCounter = Heuristics::reoptimizationRetryCounterMax;
}
int32_t counterValueForOptimizeAfterWarmUp()
{
return Heuristics::executionCounterValueForOptimizeAfterWarmUp << reoptimizationRetryCounter();
}
int32_t counterValueForOptimizeAfterLongWarmUp()
{
return Heuristics::executionCounterValueForOptimizeAfterLongWarmUp << reoptimizationRetryCounter();
}
int32_t* addressOfExecuteCounter()
{
return &m_executeCounter;
}
static ptrdiff_t offsetOfExecuteCounter() { return OBJECT_OFFSETOF(CodeBlock, m_executeCounter); }
int32_t executeCounter() const { return m_executeCounter; }
unsigned optimizationDelayCounter() const { return m_optimizationDelayCounter; }
// Call this to force the next optimization trigger to fire. This is
// rarely wise, since optimization triggers are typically more
// expensive than executing baseline code.
void optimizeNextInvocation()
{
m_executeCounter = Heuristics::executionCounterValueForOptimizeNextInvocation;
}
// Call this to prevent optimization from happening again. Note that
// optimization will still happen after roughly 2^29 invocations,
// so this is really meant to delay that as much as possible. This
// is called if optimization failed, and we expect it to fail in
// the future as well.
void dontOptimizeAnytimeSoon()
{
m_executeCounter = Heuristics::executionCounterValueForDontOptimizeAnytimeSoon;
}
// Call this to reinitialize the counter to its starting state,
// forcing a warm-up to happen before the next optimization trigger
// fires. This is called in the CodeBlock constructor. It also
// makes sense to call this if an OSR exit occurred. Note that
// OSR exit code is code generated, so the value of the execute
// counter that this corresponds to is also available directly.
void optimizeAfterWarmUp()
{
m_executeCounter = counterValueForOptimizeAfterWarmUp();
}
// Call this to force an optimization trigger to fire only after
// a lot of warm-up.
void optimizeAfterLongWarmUp()
{
m_executeCounter = counterValueForOptimizeAfterLongWarmUp();
}
// Call this to cause an optimization trigger to fire soon, but
// not necessarily the next one. This makes sense if optimization
// succeeds. Successfuly optimization means that all calls are
// relinked to the optimized code, so this only affects call
// frames that are still executing this CodeBlock. The value here
// is tuned to strike a balance between the cost of OSR entry
// (which is too high to warrant making every loop back edge to
// trigger OSR immediately) and the cost of executing baseline
// code (which is high enough that we don't necessarily want to
// have a full warm-up). The intuition for calling this instead of
// optimizeNextInvocation() is for the case of recursive functions
// with loops. Consider that there may be N call frames of some
// recursive function, for a reasonably large value of N. The top
// one triggers optimization, and then returns, and then all of
// the others return. We don't want optimization to be triggered on
// each return, as that would be superfluous. It only makes sense
// to trigger optimization if one of those functions becomes hot
// in the baseline code.
void optimizeSoon()
{
m_executeCounter = Heuristics::executionCounterValueForOptimizeSoon << reoptimizationRetryCounter();
}
// The speculative JIT tracks its success rate, so that we can
// decide when to reoptimize. It's interesting to note that these
// counters may overflow without any protection. The success
// counter will overflow before the fail one does, becuase the
// fail one is used as a trigger to reoptimize. So the worst case
// is that the success counter overflows and we reoptimize without
// needing to. But this is harmless. If a method really did
// execute 2^32 times then compiling it again probably won't hurt
// anyone.
void countSpeculationSuccess()
{
m_speculativeSuccessCounter++;
}
void countSpeculationFailure()
{
m_speculativeFailCounter++;
}
uint32_t speculativeSuccessCounter() const { return m_speculativeSuccessCounter; }
uint32_t speculativeFailCounter() const { return m_speculativeFailCounter; }
uint32_t* addressOfSpeculativeSuccessCounter() { return &m_speculativeSuccessCounter; }
uint32_t* addressOfSpeculativeFailCounter() { return &m_speculativeFailCounter; }
static ptrdiff_t offsetOfSpeculativeSuccessCounter() { return OBJECT_OFFSETOF(CodeBlock, m_speculativeSuccessCounter); }
static ptrdiff_t offsetOfSpeculativeFailCounter() { return OBJECT_OFFSETOF(CodeBlock, m_speculativeFailCounter); }
// The number of failures that triggers the use of the ratio.
unsigned largeFailCountThreshold() { return Heuristics::largeFailCountThresholdBase << alternative()->reoptimizationRetryCounter(); }
unsigned largeFailCountThresholdForLoop() { return Heuristics::largeFailCountThresholdBaseForLoop << alternative()->reoptimizationRetryCounter(); }
bool shouldReoptimizeNow()
{
return Heuristics::desiredSpeculativeSuccessFailRatio * speculativeFailCounter() >= speculativeSuccessCounter() && speculativeFailCounter() >= largeFailCountThreshold();
}
bool shouldReoptimizeFromLoopNow()
{
return Heuristics::desiredSpeculativeSuccessFailRatio * speculativeFailCounter() >= speculativeSuccessCounter() && speculativeFailCounter() >= largeFailCountThresholdForLoop();
}
#if ENABLE(VALUE_PROFILER)
bool shouldOptimizeNow();
#else
bool shouldOptimizeNow() { return false; }
#endif
#if ENABLE(JIT)
void reoptimize(JSGlobalData& globalData)
{
ASSERT(replacement() != this);
replacement()->jettison(globalData);
countReoptimization();
optimizeAfterWarmUp();
}
#endif
#if ENABLE(VERBOSE_VALUE_PROFILE)
void dumpValueProfiles();
#endif
// FIXME: Make these remaining members private.
int m_numCalleeRegisters;
int m_numVars;
int m_numCapturedVars;
int m_numParameters;
bool m_isConstructor;
// This is public because otherwise we would have many friends.
bool m_shouldDiscardBytecode;
protected:
virtual void finalizeUnconditionally();
private:
#if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING)
void dump(ExecState*, const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator&) const;
CString registerName(ExecState*, int r) const;
void printUnaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printBinaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printConditionalJump(ExecState*, const Vector<Instruction>::const_iterator&, Vector<Instruction>::const_iterator&, int location, const char* op) const;
void printGetByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printPutByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
#endif
void visitStructures(SlotVisitor&, Instruction* vPC) const;
void createRareDataIfNecessary()
{
if (!m_rareData)
m_rareData = adoptPtr(new RareData);
}
WriteBarrier<ScriptExecutable> m_ownerExecutable;
JSGlobalData* m_globalData;
struct Instructions : public RefCounted<Instructions> {
Vector<Instruction> m_instructions;
};
RefPtr<Instructions> m_instructions;
unsigned m_instructionCount;
int m_thisRegister;
int m_argumentsRegister;
int m_activationRegister;
bool m_needsFullScopeChain;
bool m_usesEval;
bool m_isNumericCompareFunction;
bool m_isStrictMode;
CodeType m_codeType;
RefPtr<SourceProvider> m_source;
unsigned m_sourceOffset;
#if ENABLE(INTERPRETER)
Vector<unsigned> m_propertyAccessInstructions;
Vector<unsigned> m_globalResolveInstructions;
#endif
#if ENABLE(JIT)
Vector<StructureStubInfo> m_structureStubInfos;
Vector<GlobalResolveInfo> m_globalResolveInfos;
Vector<CallLinkInfo> m_callLinkInfos;
Vector<MethodCallLinkInfo> m_methodCallLinkInfos;
JITCode m_jitCode;
MacroAssemblerCodePtr m_jitCodeWithArityCheck;
SentinelLinkedList<CallLinkInfo, BasicRawSentinelNode<CallLinkInfo> > m_incomingCalls;
#endif
#if ENABLE(DFG_JIT)
OwnPtr<CompactJITCodeMap> m_jitCodeMap;
struct DFGData {
Vector<DFG::OSREntryData, 4> osrEntry;
SegmentedVector<DFG::OSRExit, 16> osrExit;
Vector<DFG::SpeculationRecovery, 4> speculationRecovery;
};
OwnPtr<DFGData> m_dfgData;
#endif
#if ENABLE(VALUE_PROFILER)
SegmentedVector<ValueProfile, 8> m_valueProfiles;
SegmentedVector<RareCaseProfile, 8> m_rareCaseProfiles;
SegmentedVector<RareCaseProfile, 8> m_specialFastCaseProfiles;
#endif
Vector<unsigned> m_jumpTargets;
Vector<unsigned> m_loopTargets;
// Constant Pool
Vector<Identifier> m_identifiers;
COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown);
Vector<WriteBarrier<Unknown> > m_constantRegisters;
Vector<WriteBarrier<FunctionExecutable> > m_functionDecls;
Vector<WriteBarrier<FunctionExecutable> > m_functionExprs;
SymbolTable* m_symbolTable;
OwnPtr<CodeBlock> m_alternative;
int32_t m_executeCounter;
uint32_t m_speculativeSuccessCounter;
uint32_t m_speculativeFailCounter;
uint8_t m_optimizationDelayCounter;
uint8_t m_reoptimizationRetryCounter;
struct RareData {
WTF_MAKE_FAST_ALLOCATED;
public:
Vector<HandlerInfo> m_exceptionHandlers;
// Rare Constants
Vector<WriteBarrier<RegExp> > m_regexps;
// Buffers used for large array literals
Vector<Vector<JSValue> > m_constantBuffers;
// Jump Tables
Vector<SimpleJumpTable> m_immediateSwitchJumpTables;
Vector<SimpleJumpTable> m_characterSwitchJumpTables;
Vector<StringJumpTable> m_stringSwitchJumpTables;
EvalCodeCache m_evalCodeCache;
// Expression info - present if debugging.
Vector<ExpressionRangeInfo> m_expressionInfo;
// Line info - present if profiling or debugging.
Vector<LineInfo> m_lineInfo;
#if ENABLE(JIT)
Vector<CallReturnOffsetToBytecodeOffset> m_callReturnIndexVector;
#endif
#if ENABLE(DFG_JIT)
SegmentedVector<InlineCallFrame, 4> m_inlineCallFrames;
Vector<CodeOriginAtCallReturnOffset> m_codeOrigins;
#endif
};
#if COMPILER(MSVC)
friend void WTF::deleteOwnedPtr<RareData>(RareData*);
#endif
OwnPtr<RareData> m_rareData;
};
// Program code is not marked by any function, so we make the global object
// responsible for marking it.
class GlobalCodeBlock : public CodeBlock {
protected:
GlobalCodeBlock(CopyParsedBlockTag, GlobalCodeBlock& other)
: CodeBlock(CopyParsedBlock, other, &m_unsharedSymbolTable)
, m_unsharedSymbolTable(other.m_unsharedSymbolTable)
{
}
GlobalCodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, PassOwnPtr<CodeBlock> alternative)
: CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, &m_unsharedSymbolTable, false, alternative)
{
}
private:
SymbolTable m_unsharedSymbolTable;
};
class ProgramCodeBlock : public GlobalCodeBlock {
public:
ProgramCodeBlock(CopyParsedBlockTag, ProgramCodeBlock& other)
: GlobalCodeBlock(CopyParsedBlock, other)
{
}
ProgramCodeBlock(ProgramExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, PassOwnPtr<CodeBlock> alternative)
: GlobalCodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, 0, alternative)
{
}
#if ENABLE(JIT)
protected:
virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*);
virtual void jettison(JSGlobalData&);
virtual CodeBlock* replacement();
virtual bool canCompileWithDFG();
#endif
};
class EvalCodeBlock : public GlobalCodeBlock {
public:
EvalCodeBlock(CopyParsedBlockTag, EvalCodeBlock& other)
: GlobalCodeBlock(CopyParsedBlock, other)
, m_baseScopeDepth(other.m_baseScopeDepth)
, m_variables(other.m_variables)
{
}
EvalCodeBlock(EvalExecutable* ownerExecutable, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, int baseScopeDepth, PassOwnPtr<CodeBlock> alternative)
: GlobalCodeBlock(ownerExecutable, EvalCode, globalObject, sourceProvider, 0, alternative)
, m_baseScopeDepth(baseScopeDepth)
{
}
int baseScopeDepth() const { return m_baseScopeDepth; }
const Identifier& variable(unsigned index) { return m_variables[index]; }
unsigned numVariables() { return m_variables.size(); }
void adoptVariables(Vector<Identifier>& variables)
{
ASSERT(m_variables.isEmpty());
m_variables.swap(variables);
}
#if ENABLE(JIT)
protected:
virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*);
virtual void jettison(JSGlobalData&);
virtual CodeBlock* replacement();
virtual bool canCompileWithDFG();
#endif
private:
int m_baseScopeDepth;
Vector<Identifier> m_variables;
};
class FunctionCodeBlock : public CodeBlock {
public:
FunctionCodeBlock(CopyParsedBlockTag, FunctionCodeBlock& other)
: CodeBlock(CopyParsedBlock, other, other.sharedSymbolTable())
{
// The fact that we have to do this is yucky, but is necessary because of the
// class hierarchy issues described in the comment block for the main
// constructor, below.
sharedSymbolTable()->ref();
}
// Rather than using the usual RefCounted::create idiom for SharedSymbolTable we just use new
// as we need to initialise the CodeBlock before we could initialise any RefPtr to hold the shared
// symbol table, so we just pass as a raw pointer with a ref count of 1. We then manually deref
// in the destructor.
FunctionCodeBlock(FunctionExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, bool isConstructor, PassOwnPtr<CodeBlock> alternative = nullptr)
: CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, SharedSymbolTable::create().leakRef(), isConstructor, alternative)
{
}
~FunctionCodeBlock()
{
sharedSymbolTable()->deref();
}
#if ENABLE(JIT)
protected:
virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*);
virtual void jettison(JSGlobalData&);
virtual CodeBlock* replacement();
virtual bool canCompileWithDFG();
#endif
};
// Use this if you want to copy a code block and you're paranoid about a GC
// happening.
class BytecodeDestructionBlocker {
public:
BytecodeDestructionBlocker(CodeBlock* codeBlock)
: m_codeBlock(codeBlock)
, m_oldValueOfShouldDiscardBytecode(codeBlock->m_shouldDiscardBytecode)
{
codeBlock->m_shouldDiscardBytecode = false;
}
~BytecodeDestructionBlocker()
{
m_codeBlock->m_shouldDiscardBytecode = m_oldValueOfShouldDiscardBytecode;
}
private:
CodeBlock* m_codeBlock;
bool m_oldValueOfShouldDiscardBytecode;
};
inline Register& ExecState::r(int index)
{
CodeBlock* codeBlock = this->codeBlock();
if (codeBlock->isConstantRegisterIndex(index))
return *reinterpret_cast<Register*>(&codeBlock->constantRegister(index));
return this[index];
}
inline Register& ExecState::uncheckedR(int index)
{
ASSERT(index < FirstConstantRegisterIndex);
return this[index];
}
#if ENABLE(DFG_JIT)
inline bool ExecState::isInlineCallFrame()
{
if (LIKELY(!codeBlock() || codeBlock()->getJITType() != JITCode::DFGJIT))
return false;
return isInlineCallFrameSlow();
}
#endif
} // namespace JSC
#endif // CodeBlock_h