| /* |
| * Copyright (C) 2015-2017 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #if ENABLE(B3_JIT) |
| |
| #include "B3Bank.h" |
| #include "B3Effects.h" |
| #include "B3FrequentedBlock.h" |
| #include "B3Kind.h" |
| #include "B3Origin.h" |
| #include "B3SparseCollection.h" |
| #include "B3Type.h" |
| #include "B3ValueKey.h" |
| #include "B3Width.h" |
| #include <wtf/CommaPrinter.h> |
| #include <wtf/FastMalloc.h> |
| #include <wtf/IteratorRange.h> |
| #include <wtf/StdLibExtras.h> |
| #include <wtf/TriState.h> |
| |
| namespace JSC { namespace B3 { |
| |
| class BasicBlock; |
| class CheckValue; |
| class InsertionSet; |
| class PhiChildren; |
| class Procedure; |
| |
| class JS_EXPORT_PRIVATE Value { |
| WTF_MAKE_FAST_ALLOCATED; |
| public: |
| static const char* const dumpPrefix; |
| |
| static bool accepts(Kind) { return true; } |
| |
| virtual ~Value(); |
| |
| unsigned index() const { return m_index; } |
| |
| // Note that the kind is immutable, except for replacing values with: |
| // Identity, Nop, Oops, Jump, and Phi. See below for replaceWithXXX() methods. |
| Kind kind() const { return m_kind; } |
| |
| Opcode opcode() const { return kind().opcode(); } |
| |
| // Note that the kind is meant to be immutable. Do this when you know that this is safe. It's not |
| // usually safe. |
| void setKindUnsafely(Kind kind) { m_kind = kind; } |
| void setOpcodeUnsafely(Opcode opcode) { m_kind.setOpcode(opcode); } |
| |
| // It's good practice to mirror Kind methods here, so you can say value->isBlah() |
| // instead of value->kind().isBlah(). |
| bool isChill() const { return kind().isChill(); } |
| bool traps() const { return kind().traps(); } |
| |
| Origin origin() const { return m_origin; } |
| void setOrigin(Origin origin) { m_origin = origin; } |
| |
| Type type() const { return m_type; } |
| void setType(Type type) { m_type = type; } |
| |
| // This is useful when lowering. Note that this is only valid for non-void values. |
| Bank resultBank() const { return bankForType(type()); } |
| Width resultWidth() const { return widthForType(type()); } |
| |
| unsigned numChildren() const |
| { |
| if (m_numChildren == VarArgs) |
| return childrenVector().size(); |
| return m_numChildren; |
| } |
| |
| Value*& child(unsigned index) |
| { |
| ASSERT(index < numChildren()); |
| return m_numChildren == VarArgs ? childrenVector()[index] : childrenArray()[index]; |
| } |
| Value* child(unsigned index) const |
| { |
| ASSERT(index < numChildren()); |
| return m_numChildren == VarArgs ? childrenVector()[index] : childrenArray()[index]; |
| } |
| |
| Value*& lastChild() |
| { |
| if (m_numChildren == VarArgs) |
| return childrenVector().last(); |
| ASSERT(m_numChildren >= 1); |
| return childrenArray()[m_numChildren - 1]; |
| } |
| Value* lastChild() const |
| { |
| if (m_numChildren == VarArgs) |
| return childrenVector().last(); |
| ASSERT(m_numChildren >= 1); |
| return childrenArray()[m_numChildren - 1]; |
| } |
| |
| WTF::IteratorRange<Value**> children() |
| { |
| if (m_numChildren == VarArgs) { |
| Vector<Value*, 3>& vec = childrenVector(); |
| return WTF::makeIteratorRange(&*vec.begin(), &*vec.end()); |
| } |
| Value** buffer = childrenArray(); |
| return {buffer, buffer + m_numChildren }; |
| } |
| WTF::IteratorRange<Value* const*> children() const |
| { |
| if (m_numChildren == VarArgs) { |
| const Vector<Value*, 3>& vec = childrenVector(); |
| return WTF::makeIteratorRange(&*vec.begin(), &*vec.end()); |
| } |
| Value* const* buffer = childrenArray(); |
| return {buffer, buffer + m_numChildren }; |
| } |
| |
| // If you want to replace all uses of this value with a different value, then replace this |
| // value with Identity. Then do a pass of performSubstitution() on all of the values that use |
| // this one. Usually we do all of this in one pass in pre-order, which ensures that the |
| // X->replaceWithIdentity() calls happen before the performSubstitution() calls on X's users. |
| void replaceWithIdentity(Value*); |
| |
| // It's often necessary to kill a value. It's tempting to replace the value with Nop or to |
| // just remove it. But unless you are sure that the value is Void, you will probably still |
| // have other values that use this one. Sure, you may kill those later, or you might not. This |
| // method lets you kill a value safely. It will replace Void values with Nop and non-Void |
| // values with Identities on bottom constants. For this reason, this takes a callback that is |
| // responsible for creating bottoms. There's a utility for this, see B3BottomProvider.h. You |
| // can also access that utility using replaceWithBottom(InsertionSet&, size_t). |
| // |
| // You're guaranteed that bottom is zero. |
| template<typename BottomProvider> |
| void replaceWithBottom(const BottomProvider&); |
| |
| void replaceWithBottom(InsertionSet&, size_t index); |
| |
| // Use this if you want to kill a value and you are sure that the value is Void. |
| void replaceWithNop(); |
| |
| // Use this if you want to kill a value and you are sure that nobody is using it anymore. |
| void replaceWithNopIgnoringType(); |
| |
| void replaceWithPhi(); |
| |
| // These transformations are only valid for terminals. |
| void replaceWithJump(BasicBlock* owner, FrequentedBlock); |
| void replaceWithOops(BasicBlock* owner); |
| |
| // You can use this form if owners are valid. They're usually not valid. |
| void replaceWithJump(FrequentedBlock); |
| void replaceWithOops(); |
| |
| void dump(PrintStream&) const; |
| void deepDump(const Procedure*, PrintStream&) const; |
| |
| virtual void dumpSuccessors(const BasicBlock*, PrintStream&) const; |
| |
| // This is how you cast Values. For example, if you want to do something provided that we have a |
| // ArgumentRegValue, you can do: |
| // |
| // if (ArgumentRegValue* argumentReg = value->as<ArgumentRegValue>()) { |
| // things |
| // } |
| // |
| // This will return null if this kind() != ArgumentReg. This works because this returns nullptr |
| // if T::accepts(kind()) returns false. |
| template<typename T> |
| T* as(); |
| template<typename T> |
| const T* as() const; |
| |
| // What follows are a bunch of helpers for inspecting and modifying values. Note that we have a |
| // bunch of different idioms for implementing such helpers. You can use virtual methods, and |
| // override from the various Value subclasses. You can put the method inside Value and make it |
| // non-virtual, and the implementation can switch on kind. The method could be inline or not. |
| // If a method is specific to some Value subclass, you could put it in the subclass, or you could |
| // put it on Value anyway. It's fine to pick whatever feels right, and we shouldn't restrict |
| // ourselves to any particular idiom. |
| |
| bool isConstant() const; |
| bool isInteger() const; |
| |
| virtual Value* negConstant(Procedure&) const; |
| virtual Value* addConstant(Procedure&, int32_t other) const; |
| virtual Value* addConstant(Procedure&, const Value* other) const; |
| virtual Value* subConstant(Procedure&, const Value* other) const; |
| virtual Value* mulConstant(Procedure&, const Value* other) const; |
| virtual Value* checkAddConstant(Procedure&, const Value* other) const; |
| virtual Value* checkSubConstant(Procedure&, const Value* other) const; |
| virtual Value* checkMulConstant(Procedure&, const Value* other) const; |
| virtual Value* checkNegConstant(Procedure&) const; |
| virtual Value* divConstant(Procedure&, const Value* other) const; // This chooses Div<Chill> semantics for integers. |
| virtual Value* uDivConstant(Procedure&, const Value* other) const; |
| virtual Value* modConstant(Procedure&, const Value* other) const; // This chooses Mod<Chill> semantics. |
| virtual Value* uModConstant(Procedure&, const Value* other) const; |
| virtual Value* bitAndConstant(Procedure&, const Value* other) const; |
| virtual Value* bitOrConstant(Procedure&, const Value* other) const; |
| virtual Value* bitXorConstant(Procedure&, const Value* other) const; |
| virtual Value* shlConstant(Procedure&, const Value* other) const; |
| virtual Value* sShrConstant(Procedure&, const Value* other) const; |
| virtual Value* zShrConstant(Procedure&, const Value* other) const; |
| virtual Value* rotRConstant(Procedure&, const Value* other) const; |
| virtual Value* rotLConstant(Procedure&, const Value* other) const; |
| virtual Value* bitwiseCastConstant(Procedure&) const; |
| virtual Value* iToDConstant(Procedure&) const; |
| virtual Value* iToFConstant(Procedure&) const; |
| virtual Value* doubleToFloatConstant(Procedure&) const; |
| virtual Value* floatToDoubleConstant(Procedure&) const; |
| virtual Value* absConstant(Procedure&) const; |
| virtual Value* ceilConstant(Procedure&) const; |
| virtual Value* floorConstant(Procedure&) const; |
| virtual Value* sqrtConstant(Procedure&) const; |
| |
| virtual TriState equalConstant(const Value* other) const; |
| virtual TriState notEqualConstant(const Value* other) const; |
| virtual TriState lessThanConstant(const Value* other) const; |
| virtual TriState greaterThanConstant(const Value* other) const; |
| virtual TriState lessEqualConstant(const Value* other) const; |
| virtual TriState greaterEqualConstant(const Value* other) const; |
| virtual TriState aboveConstant(const Value* other) const; |
| virtual TriState belowConstant(const Value* other) const; |
| virtual TriState aboveEqualConstant(const Value* other) const; |
| virtual TriState belowEqualConstant(const Value* other) const; |
| virtual TriState equalOrUnorderedConstant(const Value* other) const; |
| |
| // If the value is a comparison then this returns the inverted form of that comparison, if |
| // possible. It can be impossible for double comparisons, where for example LessThan and |
| // GreaterEqual behave differently. If this returns a value, it is a new value, which must be |
| // either inserted into some block or deleted. |
| Value* invertedCompare(Procedure&) const; |
| |
| bool hasInt32() const; |
| int32_t asInt32() const; |
| bool isInt32(int32_t) const; |
| |
| bool hasInt64() const; |
| int64_t asInt64() const; |
| bool isInt64(int64_t) const; |
| |
| bool hasInt() const; |
| int64_t asInt() const; |
| bool isInt(int64_t value) const; |
| |
| bool hasIntPtr() const; |
| intptr_t asIntPtr() const; |
| bool isIntPtr(intptr_t) const; |
| |
| bool hasDouble() const; |
| double asDouble() const; |
| bool isEqualToDouble(double) const; // We say "isEqualToDouble" because "isDouble" would be a bit equality. |
| |
| bool hasFloat() const; |
| float asFloat() const; |
| |
| bool hasNumber() const; |
| template<typename T> bool isRepresentableAs() const; |
| template<typename T> T asNumber() const; |
| |
| // Booleans in B3 are Const32(0) or Const32(1). So this is true if the type is Int32 and the only |
| // possible return values are 0 or 1. It's OK for this method to conservatively return false. |
| bool returnsBool() const; |
| |
| bool isNegativeZero() const; |
| |
| bool isRounded() const; |
| |
| TriState asTriState() const; |
| bool isLikeZero() const { return asTriState() == TriState::False; } |
| bool isLikeNonZero() const { return asTriState() == TriState::True; } |
| |
| Effects effects() const; |
| |
| // This returns a ValueKey that describes that this Value returns when it executes. Returns an |
| // empty ValueKey if this Value is impure. Note that an operation that returns Void could still |
| // have a non-empty ValueKey. This happens for example with Check operations. |
| ValueKey key() const; |
| |
| Value* foldIdentity() const; |
| |
| // Makes sure that none of the children are Identity's. If a child points to Identity, this will |
| // repoint it at the Identity's child. For simplicity, this will follow arbitrarily long chains |
| // of Identity's. |
| bool performSubstitution(); |
| |
| // Free values are those whose presence is guaranteed not to hurt code. We consider constants, |
| // Identities, and Nops to be free. Constants are free because we hoist them to an optimal place. |
| // Identities and Nops are free because we remove them. |
| bool isFree() const; |
| |
| // Walk the ancestors of this value (i.e. the graph of things it transitively uses). This |
| // either walks phis or not, depending on whether PhiChildren is null. Your callback gets |
| // called with the signature: |
| // |
| // (Value*) -> WalkStatus |
| enum WalkStatus { |
| Continue, |
| IgnoreChildren, |
| Stop |
| }; |
| template<typename Functor> |
| void walk(const Functor& functor, PhiChildren* = nullptr); |
| |
| // B3 purposefully only represents signed 32-bit offsets because that's what x86 can encode, and |
| // ARM64 cannot encode anything bigger. The IsLegalOffset type trait is then used on B3 Value |
| // methods to prevent implicit conversions by C++ from invalid offset types: these cause compilation |
| // to fail, instead of causing implementation-defined behavior (which often turns to exploit). |
| // OffsetType isn't sufficient to determine offset validity! Each Value opcode further has an |
| // isLegalOffset runtime method used to determine value legality at runtime. This is exposed to users |
| // of B3 to force them to reason about the target's offset. |
| typedef int32_t OffsetType; |
| template<typename Int> |
| struct IsLegalOffset { |
| static constexpr bool value = std::is_integral<Int>::value |
| && std::is_signed<Int>::value |
| && sizeof(Int) <= sizeof(OffsetType); |
| }; |
| |
| protected: |
| Value* cloneImpl() const; |
| |
| void replaceWith(Kind, Type, BasicBlock*); |
| void replaceWith(Kind, Type, BasicBlock*, Value*); |
| |
| virtual void dumpChildren(CommaPrinter&, PrintStream&) const; |
| virtual void dumpMeta(CommaPrinter&, PrintStream&) const; |
| |
| // The specific value of VarArgs does not matter, but the value of the others is assumed to match their meaning. |
| enum NumChildren : uint8_t { Zero = 0, One = 1, Two = 2, Three = 3, VarArgs = 4}; |
| |
| char* childrenAlloc() { return bitwise_cast<char*>(this) + adjacencyListOffset(); } |
| const char* childrenAlloc() const { return bitwise_cast<const char*>(this) + adjacencyListOffset(); } |
| Vector<Value*, 3>& childrenVector() |
| { |
| ASSERT(m_numChildren == VarArgs); |
| return *bitwise_cast<Vector<Value*, 3>*>(childrenAlloc()); |
| } |
| const Vector<Value*, 3>& childrenVector() const |
| { |
| ASSERT(m_numChildren == VarArgs); |
| return *bitwise_cast<Vector<Value*, 3> const*>(childrenAlloc()); |
| } |
| Value** childrenArray() |
| { |
| ASSERT(m_numChildren != VarArgs); |
| return bitwise_cast<Value**>(childrenAlloc()); |
| } |
| Value* const* childrenArray() const |
| { |
| ASSERT(m_numChildren != VarArgs); |
| return bitwise_cast<Value* const*>(childrenAlloc()); |
| } |
| |
| template<typename... Arguments> |
| static Opcode opcodeFromConstructor(Kind kind, Arguments...) { return kind.opcode(); } |
| ALWAYS_INLINE static size_t adjacencyListSpace(Kind kind) |
| { |
| switch (kind.opcode()) { |
| case FramePointer: |
| case Nop: |
| case Phi: |
| case Jump: |
| case Oops: |
| case EntrySwitch: |
| case ArgumentReg: |
| case Const32: |
| case Const64: |
| case ConstFloat: |
| case ConstDouble: |
| case Fence: |
| case SlotBase: |
| case Get: |
| return 0; |
| case Return: |
| case Identity: |
| case Opaque: |
| case Neg: |
| case Clz: |
| case Abs: |
| case Ceil: |
| case Floor: |
| case Sqrt: |
| case SExt8: |
| case SExt16: |
| case Trunc: |
| case SExt32: |
| case ZExt32: |
| case FloatToDouble: |
| case IToD: |
| case DoubleToFloat: |
| case IToF: |
| case BitwiseCast: |
| case Branch: |
| case Depend: |
| case Load8Z: |
| case Load8S: |
| case Load16Z: |
| case Load16S: |
| case Load: |
| case Switch: |
| case Upsilon: |
| case Extract: |
| case Set: |
| case WasmAddress: |
| case WasmBoundsCheck: |
| return sizeof(Value*); |
| case Add: |
| case Sub: |
| case Mul: |
| case Div: |
| case UDiv: |
| case Mod: |
| case UMod: |
| case BitAnd: |
| case BitOr: |
| case BitXor: |
| case Shl: |
| case SShr: |
| case ZShr: |
| case RotR: |
| case RotL: |
| case Equal: |
| case NotEqual: |
| case LessThan: |
| case GreaterThan: |
| case LessEqual: |
| case GreaterEqual: |
| case Above: |
| case Below: |
| case AboveEqual: |
| case BelowEqual: |
| case EqualOrUnordered: |
| case AtomicXchgAdd: |
| case AtomicXchgAnd: |
| case AtomicXchgOr: |
| case AtomicXchgSub: |
| case AtomicXchgXor: |
| case AtomicXchg: |
| case Store8: |
| case Store16: |
| case Store: |
| return 2 * sizeof(Value*); |
| case Select: |
| case AtomicWeakCAS: |
| case AtomicStrongCAS: |
| return 3 * sizeof(Value*); |
| case CCall: |
| case Check: |
| case CheckAdd: |
| case CheckSub: |
| case CheckMul: |
| case Patchpoint: |
| return sizeof(Vector<Value*, 3>); |
| #ifdef NDEBUG |
| default: |
| break; |
| #endif |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| private: |
| static char* allocateSpace(Opcode opcode, size_t size) |
| { |
| size_t adjacencyListSpace = Value::adjacencyListSpace(opcode); |
| // We must allocate enough space that replaceWithIdentity can work without buffer overflow. |
| size_t allocIdentitySize = sizeof(Value) + sizeof(Value*); |
| size_t allocSize = std::max(size + adjacencyListSpace, allocIdentitySize); |
| return static_cast<char*>(WTF::fastMalloc(allocSize)); |
| } |
| |
| protected: |
| template<typename ValueType, typename... Arguments> |
| static ValueType* allocate(Arguments... arguments) |
| { |
| char* alloc = allocateSpace(ValueType::opcodeFromConstructor(arguments...), sizeof(ValueType)); |
| return new (alloc) ValueType(arguments...); |
| } |
| template<typename ValueType> |
| static ValueType* allocate(const ValueType& valueToClone) |
| { |
| char* alloc = allocateSpace(valueToClone.opcode(), sizeof(ValueType)); |
| ValueType* result = new (alloc) ValueType(valueToClone); |
| result->buildAdjacencyList(sizeof(ValueType), valueToClone); |
| return result; |
| } |
| |
| // Protected so it will only be called from allocate above, possibly through the subclasses'copy constructors |
| Value(const Value&) = default; |
| |
| Value(Value&&) = delete; |
| Value& operator=(const Value&) = delete; |
| Value& operator=(Value&&) = delete; |
| |
| size_t adjacencyListOffset() const; |
| |
| friend class Procedure; |
| friend class SparseCollection<Value>; |
| |
| private: |
| template<typename... Arguments> |
| void buildAdjacencyList(NumChildren numChildren, Arguments... arguments) |
| { |
| if (numChildren == VarArgs) { |
| new (childrenAlloc()) Vector<Value*, 3> { arguments... }; |
| return; |
| } |
| ASSERT(numChildren == sizeof...(arguments)); |
| new (childrenAlloc()) Value*[sizeof...(arguments)] { arguments... }; |
| } |
| void buildAdjacencyList(size_t offset, const Value& valueToClone) |
| { |
| switch (valueToClone.m_numChildren) { |
| case VarArgs: |
| new (bitwise_cast<char*>(this) + offset) Vector<Value*, 3> (valueToClone.childrenVector()); |
| break; |
| case Three: |
| bitwise_cast<Value**>(bitwise_cast<char*>(this) + offset)[2] = valueToClone.childrenArray()[2]; |
| FALLTHROUGH; |
| case Two: |
| bitwise_cast<Value**>(bitwise_cast<char*>(this) + offset)[1] = valueToClone.childrenArray()[1]; |
| FALLTHROUGH; |
| case One: |
| bitwise_cast<Value**>(bitwise_cast<char*>(this) + offset)[0] = valueToClone.childrenArray()[0]; |
| break; |
| case Zero: |
| break; |
| } |
| } |
| |
| // Checks that this kind is valid for use with B3::Value. |
| ALWAYS_INLINE static NumChildren numChildrenForKind(Kind kind, unsigned numArgs) |
| { |
| switch (kind.opcode()) { |
| case FramePointer: |
| case Nop: |
| case Phi: |
| case Jump: |
| case Oops: |
| case EntrySwitch: |
| if (UNLIKELY(numArgs)) |
| badKind(kind, numArgs); |
| return Zero; |
| case Return: |
| if (UNLIKELY(numArgs > 1)) |
| badKind(kind, numArgs); |
| return numArgs ? One : Zero; |
| case Identity: |
| case Opaque: |
| case Neg: |
| case Clz: |
| case Abs: |
| case Ceil: |
| case Floor: |
| case Sqrt: |
| case SExt8: |
| case SExt16: |
| case Trunc: |
| case SExt32: |
| case ZExt32: |
| case FloatToDouble: |
| case IToD: |
| case DoubleToFloat: |
| case IToF: |
| case BitwiseCast: |
| case Branch: |
| case Depend: |
| if (UNLIKELY(numArgs != 1)) |
| badKind(kind, numArgs); |
| return One; |
| case Add: |
| case Sub: |
| case Mul: |
| case Div: |
| case UDiv: |
| case Mod: |
| case UMod: |
| case BitAnd: |
| case BitOr: |
| case BitXor: |
| case Shl: |
| case SShr: |
| case ZShr: |
| case RotR: |
| case RotL: |
| case Equal: |
| case NotEqual: |
| case LessThan: |
| case GreaterThan: |
| case LessEqual: |
| case GreaterEqual: |
| case Above: |
| case Below: |
| case AboveEqual: |
| case BelowEqual: |
| case EqualOrUnordered: |
| if (UNLIKELY(numArgs != 2)) |
| badKind(kind, numArgs); |
| return Two; |
| case Select: |
| if (UNLIKELY(numArgs != 3)) |
| badKind(kind, numArgs); |
| return Three; |
| default: |
| badKind(kind, numArgs); |
| break; |
| } |
| return VarArgs; |
| } |
| |
| protected: |
| enum CheckedOpcodeTag { CheckedOpcode }; |
| |
| // Instantiate values via Procedure. |
| // This form requires specifying the type explicitly: |
| template<typename... Arguments> |
| explicit Value(CheckedOpcodeTag, Kind kind, Type type, NumChildren numChildren, Origin origin, Value* firstChild, Arguments... arguments) |
| : m_kind(kind) |
| , m_type(type) |
| , m_numChildren(numChildren) |
| , m_origin(origin) |
| { |
| buildAdjacencyList(numChildren, firstChild, arguments...); |
| } |
| // This form is for specifying the type explicitly when the opcode has no children: |
| explicit Value(CheckedOpcodeTag, Kind kind, Type type, NumChildren numChildren, Origin origin) |
| : m_kind(kind) |
| , m_type(type) |
| , m_numChildren(numChildren) |
| , m_origin(origin) |
| { |
| buildAdjacencyList(numChildren); |
| } |
| // This form is for those opcodes that can infer their type from the opcode alone, and that don't |
| // take any arguments: |
| explicit Value(CheckedOpcodeTag, Kind kind, NumChildren numChildren, Origin origin) |
| : m_kind(kind) |
| , m_type(typeFor(kind, nullptr)) |
| , m_numChildren(numChildren) |
| , m_origin(origin) |
| { |
| buildAdjacencyList(numChildren); |
| } |
| // This form is for those opcodes that can infer their type from the opcode and first child: |
| explicit Value(CheckedOpcodeTag, Kind kind, NumChildren numChildren, Origin origin, Value* firstChild) |
| : m_kind(kind) |
| , m_type(typeFor(kind, firstChild)) |
| , m_numChildren(numChildren) |
| , m_origin(origin) |
| { |
| buildAdjacencyList(numChildren, firstChild); |
| } |
| // This form is for those opcodes that can infer their type from the opcode and first and second child: |
| template<typename... Arguments> |
| explicit Value(CheckedOpcodeTag, Kind kind, NumChildren numChildren, Origin origin, Value* firstChild, Value* secondChild, Arguments... arguments) |
| : m_kind(kind) |
| , m_type(typeFor(kind, firstChild, secondChild)) |
| , m_numChildren(numChildren) |
| , m_origin(origin) |
| { |
| buildAdjacencyList(numChildren, firstChild, secondChild, arguments...); |
| } |
| |
| // This is the constructor you end up actually calling, if you're instantiating Value |
| // directly. |
| explicit Value(Kind kind, Type type, Origin origin) |
| : Value(CheckedOpcode, kind, type, Zero, origin) |
| { |
| RELEASE_ASSERT(numChildrenForKind(kind, 0) == Zero); |
| } |
| // We explicitly convert the extra arguments to Value* (they may be pointers to some subclasses of Value) to limit template explosion |
| template<typename... Arguments> |
| explicit Value(Kind kind, Origin origin, Arguments... arguments) |
| : Value(CheckedOpcode, kind, numChildrenForKind(kind, sizeof...(arguments)), origin, static_cast<Value*>(arguments)...) |
| { |
| } |
| template<typename... Arguments> |
| explicit Value(Kind kind, Type type, Origin origin, Value* firstChild, Arguments... arguments) |
| : Value(CheckedOpcode, kind, type, numChildrenForKind(kind, 1 + sizeof...(arguments)), origin, firstChild, static_cast<Value*>(arguments)...) |
| { |
| } |
| |
| private: |
| friend class CheckValue; // CheckValue::convertToAdd() modifies m_kind. |
| |
| static Type typeFor(Kind, Value* firstChild, Value* secondChild = nullptr); |
| |
| // m_index to m_numChildren are arranged to fit in 64 bits. |
| protected: |
| unsigned m_index { UINT_MAX }; |
| private: |
| Kind m_kind; |
| Type m_type; |
| protected: |
| NumChildren m_numChildren; |
| private: |
| Origin m_origin; |
| |
| NO_RETURN_DUE_TO_CRASH static void badKind(Kind, unsigned); |
| |
| public: |
| BasicBlock* owner { nullptr }; // computed by Procedure::resetValueOwners(). |
| }; |
| |
| class DeepValueDump { |
| public: |
| DeepValueDump(const Procedure* proc, const Value* value) |
| : m_proc(proc) |
| , m_value(value) |
| { |
| } |
| |
| void dump(PrintStream& out) const; |
| |
| private: |
| const Procedure* m_proc; |
| const Value* m_value; |
| }; |
| |
| inline DeepValueDump deepDump(const Procedure& proc, const Value* value) |
| { |
| return DeepValueDump(&proc, value); |
| } |
| inline DeepValueDump deepDump(const Value* value) |
| { |
| return DeepValueDump(nullptr, value); |
| } |
| |
| // The following macros are designed for subclasses of B3::Value to use. |
| // They are never required for correctness, but can improve the performance of child/lastChild/numChildren/children methods, |
| // for users that already know the specific subclass of Value they are manipulating. |
| // The first set is to be used when you know something about the number of children of all values of a class, including its subclasses: |
| // - B3_SPECIALIZE_VALUE_FOR_NO_CHILDREN: always 0 children (e.g. Const32Value) |
| // - B3_SPECIALIZE_VALUE_FOR_FIXED_CHILDREN(n): always n children, with n in {1, 2, 3} (e.g. UpsilonValue, with n = 1) |
| // - B3_SPECIALIZE_VALUE_FOR_NON_VARARGS_CHILDREN: different numbers of children, but never a variable number at runtime (e.g. MemoryValue, that can have between 1 and 3 children) |
| // - B3_SPECIALIZE_VALUE_FOR_VARARGS_CHILDREN: always a varargs (e.g. CCallValue) |
| // The second set is only to be used by classes that we know are not further subclassed by anyone adding fields, |
| // as they hardcode the offset of the children array/vector (which is equal to the size of the object). |
| // - B3_SPECIALIZE_VALUE_FOR_FINAL_SIZE_FIXED_CHILDREN |
| // - B3_SPECIALIZE_VALUE_FOR_FINAL_SIZE_VARARGS_CHILDREN |
| #define B3_SPECIALIZE_VALUE_FOR_NO_CHILDREN \ |
| unsigned numChildren() const { return 0; } \ |
| WTF::IteratorRange<Value**> children() { return {nullptr, nullptr}; } \ |
| WTF::IteratorRange<Value* const*> children() const { return { nullptr, nullptr}; } |
| |
| #define B3_SPECIALIZE_VALUE_FOR_FIXED_CHILDREN(n) \ |
| public: \ |
| unsigned numChildren() const { return n; } \ |
| Value*& child(unsigned index) \ |
| { \ |
| ASSERT(index <= n); \ |
| return childrenArray()[index]; \ |
| } \ |
| Value* child(unsigned index) const \ |
| { \ |
| ASSERT(index <= n); \ |
| return childrenArray()[index]; \ |
| } \ |
| Value*& lastChild() \ |
| { \ |
| return childrenArray()[n - 1]; \ |
| } \ |
| Value* lastChild() const \ |
| { \ |
| return childrenArray()[n - 1]; \ |
| } \ |
| WTF::IteratorRange<Value**> children() \ |
| { \ |
| Value** buffer = childrenArray(); \ |
| return {buffer, buffer + n }; \ |
| } \ |
| WTF::IteratorRange<Value* const*> children() const \ |
| { \ |
| Value* const* buffer = childrenArray(); \ |
| return {buffer, buffer + n }; \ |
| } \ |
| |
| #define B3_SPECIALIZE_VALUE_FOR_NON_VARARGS_CHILDREN \ |
| public: \ |
| unsigned numChildren() const { return m_numChildren; } \ |
| Value*& child(unsigned index) { return childrenArray()[index]; } \ |
| Value* child(unsigned index) const { return childrenArray()[index]; } \ |
| Value*& lastChild() { return childrenArray()[numChildren() - 1]; } \ |
| Value* lastChild() const { return childrenArray()[numChildren() - 1]; } \ |
| WTF::IteratorRange<Value**> children() \ |
| { \ |
| Value** buffer = childrenArray(); \ |
| return {buffer, buffer + numChildren() }; \ |
| } \ |
| WTF::IteratorRange<Value* const*> children() const \ |
| { \ |
| Value* const* buffer = childrenArray(); \ |
| return {buffer, buffer + numChildren() }; \ |
| } \ |
| |
| #define B3_SPECIALIZE_VALUE_FOR_VARARGS_CHILDREN \ |
| public: \ |
| unsigned numChildren() const { return childrenVector().size(); } \ |
| Value*& child(unsigned index) { return childrenVector()[index]; } \ |
| Value* child(unsigned index) const { return childrenVector()[index]; } \ |
| Value*& lastChild() { return childrenVector().last(); } \ |
| Value* lastChild() const { return childrenVector().last(); } \ |
| WTF::IteratorRange<Value**> children() \ |
| { \ |
| Vector<Value*, 3>& vec = childrenVector(); \ |
| return WTF::makeIteratorRange(&*vec.begin(), &*vec.end()); \ |
| } \ |
| WTF::IteratorRange<Value* const*> children() const \ |
| { \ |
| const Vector<Value*, 3>& vec = childrenVector(); \ |
| return WTF::makeIteratorRange(&*vec.begin(), &*vec.end()); \ |
| } \ |
| |
| // Only use this for classes with no subclass that add new fields (as it uses sizeof(*this)) |
| // Also there is no point in applying this to classes with no children, as they don't have a children array to access. |
| #define B3_SPECIALIZE_VALUE_FOR_FINAL_SIZE_FIXED_CHILDREN \ |
| private: \ |
| Value** childrenArray() \ |
| { \ |
| return bitwise_cast<Value**>(bitwise_cast<char*>(this) + sizeof(*this)); \ |
| } \ |
| Value* const* childrenArray() const \ |
| { \ |
| return bitwise_cast<Value* const*>(bitwise_cast<char const*>(this) + sizeof(*this)); \ |
| } |
| |
| // Only use this for classes with no subclass that add new fields (as it uses sizeof(*this)) |
| #define B3_SPECIALIZE_VALUE_FOR_FINAL_SIZE_VARARGS_CHILDREN \ |
| private: \ |
| Vector<Value*, 3>& childrenVector() \ |
| { \ |
| return *bitwise_cast<Vector<Value*, 3>*>(bitwise_cast<char*>(this) + sizeof(*this)); \ |
| } \ |
| const Vector<Value*, 3>& childrenVector() const \ |
| { \ |
| return *bitwise_cast<Vector<Value*, 3> const*>(bitwise_cast<char const*>(this) + sizeof(*this)); \ |
| } \ |
| |
| } } // namespace JSC::B3 |
| |
| #endif // ENABLE(B3_JIT) |