blob: db881a90a0b93335bf9cf82676331aace5389627 [file] [log] [blame]
/*
* Copyright 2017 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// @author Andrei Alexandrescu (andrei.alexandrescu@fb.com)
#include <folly/Benchmark.h>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iostream>
#include <limits>
#include <utility>
#include <vector>
#include <folly/Foreach.h>
#include <folly/String.h>
using namespace std;
static constexpr int64_t FLAGS_bm_min_usec = 100;
static constexpr int32_t FLAGS_bm_min_iters = 1;
static constexpr int64_t FLAGS_bm_max_iters = 1 << 30;
static constexpr int32_t FLAGS_bm_max_secs = 1;
namespace folly {
std::chrono::high_resolution_clock::duration BenchmarkSuspender::timeSpent;
typedef function<detail::TimeIterPair(unsigned int)> BenchmarkFun;
vector<tuple<string, string, BenchmarkFun>>& benchmarks() {
static vector<tuple<string, string, BenchmarkFun>> _benchmarks;
return _benchmarks;
}
#define FB_FOLLY_GLOBAL_BENCHMARK_BASELINE fbFollyGlobalBenchmarkBaseline
#define FB_STRINGIZE_X2(x) FB_STRINGIZE(x)
// Add the global baseline
BENCHMARK(FB_FOLLY_GLOBAL_BENCHMARK_BASELINE) {
#ifdef _MSC_VER
_ReadWriteBarrier();
#else
asm volatile("");
#endif
}
size_t getGlobalBenchmarkBaselineIndex() {
const char *global = FB_STRINGIZE_X2(FB_FOLLY_GLOBAL_BENCHMARK_BASELINE);
auto it = std::find_if(
benchmarks().begin(),
benchmarks().end(),
[global](const tuple<string, string, BenchmarkFun> &v) {
return get<1>(v) == global;
}
);
CHECK(it != benchmarks().end());
return size_t(std::distance(benchmarks().begin(), it));
}
#undef FB_STRINGIZE_X2
#undef FB_FOLLY_GLOBAL_BENCHMARK_BASELINE
void detail::addBenchmarkImpl(const char* file, const char* name,
BenchmarkFun fun) {
benchmarks().emplace_back(file, name, std::move(fun));
}
/**
* Given a bunch of benchmark samples, estimate the actual run time.
*/
static double estimateTime(double * begin, double * end) {
assert(begin < end);
// Current state of the art: get the minimum. After some
// experimentation, it seems taking the minimum is the best.
return *min_element(begin, end);
}
static double runBenchmarkGetNSPerIteration(const BenchmarkFun& fun,
const double globalBaseline) {
using std::chrono::duration_cast;
using std::chrono::high_resolution_clock;
using std::chrono::microseconds;
using std::chrono::nanoseconds;
using std::chrono::seconds;
// They key here is accuracy; too low numbers means the accuracy was
// coarse. We up the ante until we get to at least minNanoseconds
// timings.
static_assert(
std::is_same<high_resolution_clock::duration, nanoseconds>::value,
"High resolution clock must be nanosecond resolution.");
// We choose a minimum minimum (sic) of 100,000 nanoseconds, but if
// the clock resolution is worse than that, it will be larger. In
// essence we're aiming at making the quantization noise 0.01%.
static const auto minNanoseconds = std::max<nanoseconds>(
nanoseconds(100000), microseconds(FLAGS_bm_min_usec));
// We do measurements in several epochs and take the minimum, to
// account for jitter.
static const unsigned int epochs = 1000;
// We establish a total time budget as we don't want a measurement
// to take too long. This will curtail the number of actual epochs.
const auto timeBudget = seconds(FLAGS_bm_max_secs);
auto global = high_resolution_clock::now();
double epochResults[epochs] = { 0 };
size_t actualEpochs = 0;
for (; actualEpochs < epochs; ++actualEpochs) {
const auto maxIters = uint32_t(FLAGS_bm_max_iters);
for (auto n = uint32_t(FLAGS_bm_min_iters); n < maxIters; n *= 2) {
auto const nsecsAndIter = fun(static_cast<unsigned int>(n));
if (nsecsAndIter.first < minNanoseconds) {
continue;
}
// We got an accurate enough timing, done. But only save if
// smaller than the current result.
auto nsecs = duration_cast<nanoseconds>(nsecsAndIter.first).count();
epochResults[actualEpochs] =
max(0.0, double(nsecs) / nsecsAndIter.second - globalBaseline);
// Done with the current epoch, we got a meaningful timing.
break;
}
auto now = high_resolution_clock::now();
if (now - global >= timeBudget) {
// No more time budget available.
++actualEpochs;
break;
}
}
// If the benchmark was basically drowned in baseline noise, it's
// possible it became negative.
return max(0.0, estimateTime(epochResults, epochResults + actualEpochs));
}
struct ScaleInfo {
double boundary;
const char* suffix;
};
static const ScaleInfo kTimeSuffixes[] {
{ 365.25 * 24 * 3600, "years" },
{ 24 * 3600, "days" },
{ 3600, "hr" },
{ 60, "min" },
{ 1, "s" },
{ 1E-3, "ms" },
{ 1E-6, "us" },
{ 1E-9, "ns" },
{ 1E-12, "ps" },
{ 1E-15, "fs" },
{ 0, nullptr },
};
static const ScaleInfo kMetricSuffixes[] {
{ 1E24, "Y" }, // yotta
{ 1E21, "Z" }, // zetta
{ 1E18, "X" }, // "exa" written with suffix 'X' so as to not create
// confusion with scientific notation
{ 1E15, "P" }, // peta
{ 1E12, "T" }, // terra
{ 1E9, "G" }, // giga
{ 1E6, "M" }, // mega
{ 1E3, "K" }, // kilo
{ 1, "" },
{ 1E-3, "m" }, // milli
{ 1E-6, "u" }, // micro
{ 1E-9, "n" }, // nano
{ 1E-12, "p" }, // pico
{ 1E-15, "f" }, // femto
{ 1E-18, "a" }, // atto
{ 1E-21, "z" }, // zepto
{ 1E-24, "y" }, // yocto
{ 0, nullptr },
};
static string humanReadable(double n, unsigned int decimals,
const ScaleInfo* scales) {
if (std::isinf(n) || std::isnan(n)) {
return folly::to<string>(n);
}
const double absValue = fabs(n);
const ScaleInfo* scale = scales;
while (absValue < scale[0].boundary && scale[1].suffix != nullptr) {
++scale;
}
const double scaledValue = n / scale->boundary;
return stringPrintf("%.*f%s", decimals, scaledValue, scale->suffix);
}
static string readableTime(double n, unsigned int decimals) {
return humanReadable(n, decimals, kTimeSuffixes);
}
static string metricReadable(double n, unsigned int decimals) {
return humanReadable(n, decimals, kMetricSuffixes);
}
static void printBenchmarkResultsAsTable(
const vector<tuple<string, string, double> >& data) {
// Width available
static const unsigned int columns = 76;
// Compute the longest benchmark name
size_t longestName = 0;
FOR_EACH_RANGE (i, 1, benchmarks().size()) {
longestName = max(longestName, get<1>(benchmarks()[i]).size());
}
// Print a horizontal rule
auto separator = [&](char pad) {
puts(string(columns, pad).c_str());
};
// Print header for a file
auto header = [&](const string& file) {
separator('=');
printf("%-*srelative time/iter iters/s\n",
columns - 28, file.c_str());
separator('=');
};
double baselineNsPerIter = numeric_limits<double>::max();
string lastFile;
for (auto& datum : data) {
auto file = get<0>(datum);
if (file != lastFile) {
// New file starting
header(file);
lastFile = file;
}
string s = get<1>(datum);
if (s == "-") {
separator('-');
continue;
}
bool useBaseline /* = void */;
if (s[0] == '%') {
s.erase(0, 1);
useBaseline = true;
} else {
baselineNsPerIter = get<2>(datum);
useBaseline = false;
}
s.resize(columns - 29, ' ');
auto nsPerIter = get<2>(datum);
auto secPerIter = nsPerIter / 1E9;
auto itersPerSec = (secPerIter == 0)
? std::numeric_limits<double>::infinity()
: (1 / secPerIter);
if (!useBaseline) {
// Print without baseline
printf("%*s %9s %7s\n",
static_cast<int>(s.size()), s.c_str(),
readableTime(secPerIter, 2).c_str(),
metricReadable(itersPerSec, 2).c_str());
} else {
// Print with baseline
auto rel = baselineNsPerIter / nsPerIter * 100.0;
printf("%*s %7.2f%% %9s %7s\n",
static_cast<int>(s.size()), s.c_str(),
rel,
readableTime(secPerIter, 2).c_str(),
metricReadable(itersPerSec, 2).c_str());
}
}
separator('=');
}
static void printBenchmarkResults(
const vector<tuple<string, string, double> >& data) {
printBenchmarkResultsAsTable(data);
}
void runBenchmarks() {
CHECK(!benchmarks().empty());
vector<tuple<string, string, double>> results;
results.reserve(benchmarks().size() - 1);
// PLEASE KEEP QUIET. MEASUREMENTS IN PROGRESS.
size_t baselineIndex = getGlobalBenchmarkBaselineIndex();
auto const globalBaseline =
runBenchmarkGetNSPerIteration(get<2>(benchmarks()[baselineIndex]), 0);
FOR_EACH_RANGE (i, 0, benchmarks().size()) {
if (i == baselineIndex) {
continue;
}
double elapsed = 0.0;
if (get<1>(benchmarks()[i]) != "-") { // skip separators
elapsed = runBenchmarkGetNSPerIteration(get<2>(benchmarks()[i]),
globalBaseline);
}
results.emplace_back(get<0>(benchmarks()[i]),
get<1>(benchmarks()[i]), elapsed);
}
// PLEASE MAKE NOISE. MEASUREMENTS DONE.
printBenchmarkResults(results);
}
} // namespace folly