blob: a3273b474b638ddd4bdbf7417acab0c2793ec2f7 [file] [log] [blame]
/*
* Copyright 2011-2015 Samy Al Bahra.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The implementation here is inspired from the work described in:
* Fraser, K. 2004. Practical Lock-Freedom. PhD Thesis, University
* of Cambridge Computing Laboratory.
*/
#include <ck_backoff.h>
#include <ck_cc.h>
#include <ck_epoch.h>
#include <ck_pr.h>
#include <ck_stack.h>
#include <ck_stdbool.h>
#include <ck_string.h>
/*
* Only three distinct values are used for reclamation, but reclamation occurs
* at e+2 rather than e+1. Any thread in a "critical section" would have
* acquired some snapshot (e) of the global epoch value (e_g) and set an active
* flag. Any hazardous references will only occur after a full memory barrier.
* For example, assume an initial e_g value of 1, e value of 0 and active value
* of 0.
*
* ck_epoch_begin(...)
* e = e_g
* active = 1
* memory_barrier();
*
* Any serialized reads may observe e = 0 or e = 1 with active = 0, or e = 0 or
* e = 1 with active = 1. The e_g value can only go from 1 to 2 if every thread
* has already observed the value of "1" (or the value we are incrementing
* from). This guarantees us that for any given value e_g, any threads with-in
* critical sections (referred to as "active" threads from here on) would have
* an e value of e_g-1 or e_g. This also means that hazardous references may be
* shared in both e_g-1 and e_g even if they are logically deleted in e_g.
*
* For example, assume all threads have an e value of e_g. Another thread may
* increment to e_g to e_g+1. Older threads may have a reference to an object
* which is only deleted in e_g+1. It could be that reader threads are
* executing some hash table look-ups, while some other writer thread (which
* causes epoch counter tick) actually deletes the same items that reader
* threads are looking up (this writer thread having an e value of e_g+1).
* This is possible if the writer thread re-observes the epoch after the
* counter tick.
*
* Psuedo-code for writer:
* ck_epoch_begin()
* ht_delete(x)
* ck_epoch_end()
* ck_epoch_begin()
* ht_delete(x)
* ck_epoch_end()
*
* Psuedo-code for reader:
* for (;;) {
* x = ht_lookup(x)
* ck_pr_inc(&x->value);
* }
*
* Of course, it is also possible for references logically deleted at e_g-1 to
* still be accessed at e_g as threads are "active" at the same time
* (real-world time) mutating shared objects.
*
* Now, if the epoch counter is ticked to e_g+1, then no new hazardous
* references could exist to objects logically deleted at e_g-1. The reason for
* this is that at e_g+1, all epoch read-side critical sections started at
* e_g-1 must have been completed. If any epoch read-side critical sections at
* e_g-1 were still active, then we would never increment to e_g+1 (active != 0
* ^ e != e_g). Additionally, e_g may still have hazardous references to
* objects logically deleted at e_g-1 which means objects logically deleted at
* e_g-1 cannot be deleted at e_g+1 unless all threads have observed e_g+1
* (since it is valid for active threads to be at e_g and threads at e_g still
* require safe memory accesses).
*
* However, at e_g+2, all active threads must be either at e_g+1 or e_g+2.
* Though e_g+2 may share hazardous references with e_g+1, and e_g+1 shares
* hazardous references to e_g, no active threads are at e_g or e_g-1. This
* means no hazardous references could exist to objects deleted at e_g-1 (at
* e_g+2).
*
* To summarize these important points,
* 1) Active threads will always have a value of e_g or e_g-1.
* 2) Items that are logically deleted e_g or e_g-1 cannot be physically
* deleted.
* 3) Objects logically deleted at e_g-1 can be physically destroyed at e_g+2
* or at e_g+1 if no threads are at e_g.
*
* Last but not least, if we are at e_g+2, then no active thread is at e_g
* which means it is safe to apply modulo-3 arithmetic to e_g value in order to
* re-use e_g to represent the e_g+3 state. This means it is sufficient to
* represent e_g using only the values 0, 1 or 2. Every time a thread re-visits
* a e_g (which can be determined with a non-empty deferral list) it can assume
* objects in the e_g deferral list involved at least three e_g transitions and
* are thus, safe, for physical deletion.
*
* Blocking semantics for epoch reclamation have additional restrictions.
* Though we only require three deferral lists, reasonable blocking semantics
* must be able to more gracefully handle bursty write work-loads which could
* easily cause e_g wrap-around if modulo-3 arithmetic is used. This allows for
* easy-to-trigger live-lock situations. The work-around to this is to not
* apply modulo arithmetic to e_g but only to deferral list indexing.
*/
#define CK_EPOCH_GRACE 3U
enum {
CK_EPOCH_STATE_USED = 0,
CK_EPOCH_STATE_FREE = 1
};
CK_STACK_CONTAINER(struct ck_epoch_record, record_next,
ck_epoch_record_container)
CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
ck_epoch_entry_container)
#define CK_EPOCH_SENSE_MASK (CK_EPOCH_SENSE - 1)
bool
_ck_epoch_delref(struct ck_epoch_record *record,
struct ck_epoch_section *section)
{
struct ck_epoch_ref *current, *other;
unsigned int i = section->bucket;
current = &record->local.bucket[i];
current->count--;
if (current->count > 0)
return false;
/*
* If the current bucket no longer has any references, then
* determine whether we have already transitioned into a newer
* epoch. If so, then make sure to update our shared snapshot
* to allow for forward progress.
*
* If no other active bucket exists, then the record will go
* inactive in order to allow for forward progress.
*/
other = &record->local.bucket[(i + 1) & CK_EPOCH_SENSE_MASK];
if (other->count > 0 &&
((int)(current->epoch - other->epoch) < 0)) {
/*
* The other epoch value is actually the newest,
* transition to it.
*/
ck_pr_store_uint(&record->epoch, other->epoch);
}
return true;
}
void
_ck_epoch_addref(struct ck_epoch_record *record,
struct ck_epoch_section *section)
{
struct ck_epoch *global = record->global;
struct ck_epoch_ref *ref;
unsigned int epoch, i;
epoch = ck_pr_load_uint(&global->epoch);
i = epoch & CK_EPOCH_SENSE_MASK;
ref = &record->local.bucket[i];
if (ref->count++ == 0) {
#ifndef CK_MD_TSO
struct ck_epoch_ref *previous;
/*
* The system has already ticked. If another non-zero bucket
* exists, make sure to order our observations with respect
* to it. Otherwise, it is possible to acquire a reference
* from the previous epoch generation.
*
* On TSO architectures, the monoticity of the global counter
* and load-{store, load} ordering are sufficient to guarantee
* this ordering.
*/
previous = &record->local.bucket[(i + 1) &
CK_EPOCH_SENSE_MASK];
if (previous->count > 0)
ck_pr_fence_acqrel();
#endif /* !CK_MD_TSO */
/*
* If this is this is a new reference into the current
* bucket then cache the associated epoch value.
*/
ref->epoch = epoch;
}
section->bucket = i;
return;
}
void
ck_epoch_init(struct ck_epoch *global)
{
ck_stack_init(&global->records);
global->epoch = 1;
global->n_free = 0;
ck_pr_fence_store();
return;
}
struct ck_epoch_record *
ck_epoch_recycle(struct ck_epoch *global, void *ct)
{
struct ck_epoch_record *record;
ck_stack_entry_t *cursor;
unsigned int state;
if (ck_pr_load_uint(&global->n_free) == 0)
return NULL;
CK_STACK_FOREACH(&global->records, cursor) {
record = ck_epoch_record_container(cursor);
if (ck_pr_load_uint(&record->state) == CK_EPOCH_STATE_FREE) {
/* Serialize with respect to deferral list clean-up. */
ck_pr_fence_load();
state = ck_pr_fas_uint(&record->state,
CK_EPOCH_STATE_USED);
if (state == CK_EPOCH_STATE_FREE) {
ck_pr_dec_uint(&global->n_free);
ck_pr_store_ptr(&record->ct, ct);
/*
* The context pointer is ordered by a
* subsequent protected section.
*/
return record;
}
}
}
return NULL;
}
void
ck_epoch_register(struct ck_epoch *global, struct ck_epoch_record *record,
void *ct)
{
size_t i;
record->global = global;
record->state = CK_EPOCH_STATE_USED;
record->active = 0;
record->epoch = 0;
record->n_dispatch = 0;
record->n_peak = 0;
record->n_pending = 0;
record->ct = ct;
memset(&record->local, 0, sizeof record->local);
for (i = 0; i < CK_EPOCH_LENGTH; i++)
ck_stack_init(&record->pending[i]);
ck_pr_fence_store();
ck_stack_push_upmc(&global->records, &record->record_next);
return;
}
void
ck_epoch_unregister(struct ck_epoch_record *record)
{
struct ck_epoch *global = record->global;
size_t i;
record->active = 0;
record->epoch = 0;
record->n_dispatch = 0;
record->n_peak = 0;
record->n_pending = 0;
memset(&record->local, 0, sizeof record->local);
for (i = 0; i < CK_EPOCH_LENGTH; i++)
ck_stack_init(&record->pending[i]);
ck_pr_store_ptr(&record->ct, NULL);
ck_pr_fence_store();
ck_pr_store_uint(&record->state, CK_EPOCH_STATE_FREE);
ck_pr_inc_uint(&global->n_free);
return;
}
static struct ck_epoch_record *
ck_epoch_scan(struct ck_epoch *global,
struct ck_epoch_record *cr,
unsigned int epoch,
bool *af)
{
ck_stack_entry_t *cursor;
if (cr == NULL) {
cursor = CK_STACK_FIRST(&global->records);
*af = false;
} else {
cursor = &cr->record_next;
*af = true;
}
while (cursor != NULL) {
unsigned int state, active;
cr = ck_epoch_record_container(cursor);
state = ck_pr_load_uint(&cr->state);
if (state & CK_EPOCH_STATE_FREE) {
cursor = CK_STACK_NEXT(cursor);
continue;
}
active = ck_pr_load_uint(&cr->active);
*af |= active;
if (active != 0 && ck_pr_load_uint(&cr->epoch) != epoch)
return cr;
cursor = CK_STACK_NEXT(cursor);
}
return NULL;
}
static void
ck_epoch_dispatch(struct ck_epoch_record *record, unsigned int e)
{
unsigned int epoch = e & (CK_EPOCH_LENGTH - 1);
ck_stack_entry_t *head, *next, *cursor;
unsigned int n_pending, n_peak;
unsigned int i = 0;
head = ck_stack_batch_pop_upmc(&record->pending[epoch]);
for (cursor = head; cursor != NULL; cursor = next) {
struct ck_epoch_entry *entry =
ck_epoch_entry_container(cursor);
next = CK_STACK_NEXT(cursor);
entry->function(entry);
i++;
}
n_peak = ck_pr_load_uint(&record->n_peak);
n_pending = ck_pr_load_uint(&record->n_pending);
/* We don't require accuracy around peak calculation. */
if (n_pending > n_peak)
ck_pr_store_uint(&record->n_peak, n_peak);
if (i > 0) {
ck_pr_add_uint(&record->n_dispatch, i);
ck_pr_sub_uint(&record->n_pending, i);
}
return;
}
/*
* Reclaim all objects associated with a record.
*/
void
ck_epoch_reclaim(struct ck_epoch_record *record)
{
unsigned int epoch;
for (epoch = 0; epoch < CK_EPOCH_LENGTH; epoch++)
ck_epoch_dispatch(record, epoch);
return;
}
CK_CC_FORCE_INLINE static void
epoch_block(struct ck_epoch *global, struct ck_epoch_record *cr,
ck_epoch_wait_cb_t *cb, void *ct)
{
if (cb != NULL)
cb(global, cr, ct);
return;
}
/*
* This function must not be called with-in read section.
*/
void
ck_epoch_synchronize_wait(struct ck_epoch *global,
ck_epoch_wait_cb_t *cb, void *ct)
{
struct ck_epoch_record *cr;
unsigned int delta, epoch, goal, i;
bool active;
ck_pr_fence_memory();
/*
* The observation of the global epoch must be ordered with respect to
* all prior operations. The re-ordering of loads is permitted given
* monoticity of global epoch counter.
*
* If UINT_MAX concurrent mutations were to occur then it is possible
* to encounter an ABA-issue. If this is a concern, consider tuning
* write-side concurrency.
*/
delta = epoch = ck_pr_load_uint(&global->epoch);
goal = epoch + CK_EPOCH_GRACE;
for (i = 0, cr = NULL; i < CK_EPOCH_GRACE - 1; cr = NULL, i++) {
bool r;
/*
* Determine whether all threads have observed the current
* epoch with respect to the updates on invocation.
*/
while (cr = ck_epoch_scan(global, cr, delta, &active),
cr != NULL) {
unsigned int e_d;
ck_pr_stall();
/*
* Another writer may have already observed a grace
* period.
*/
e_d = ck_pr_load_uint(&global->epoch);
if (e_d == delta) {
epoch_block(global, cr, cb, ct);
continue;
}
/*
* If the epoch has been updated, we may have already
* met our goal.
*/
delta = e_d;
if ((goal > epoch) & (delta >= goal))
goto leave;
epoch_block(global, cr, cb, ct);
/*
* If the epoch has been updated, then a grace period
* requires that all threads are observed idle at the
* same epoch.
*/
cr = NULL;
}
/*
* If we have observed all threads as inactive, then we assume
* we are at a grace period.
*/
if (active == false)
break;
/*
* Increment current epoch. CAS semantics are used to eliminate
* increment operations for synchronization that occurs for the
* same global epoch value snapshot.
*
* If we can guarantee there will only be one active barrier or
* epoch tick at a given time, then it is sufficient to use an
* increment operation. In a multi-barrier workload, however,
* it is possible to overflow the epoch value if we apply
* modulo-3 arithmetic.
*/
r = ck_pr_cas_uint_value(&global->epoch, delta, delta + 1,
&delta);
/* Order subsequent thread active checks. */
ck_pr_fence_atomic_load();
/*
* If CAS has succeeded, then set delta to latest snapshot.
* Otherwise, we have just acquired latest snapshot.
*/
delta = delta + r;
}
/*
* A majority of use-cases will not require full barrier semantics.
* However, if non-temporal instructions are used, full barrier
* semantics are necessary.
*/
leave:
ck_pr_fence_memory();
return;
}
void
ck_epoch_synchronize(struct ck_epoch_record *record)
{
ck_epoch_synchronize_wait(record->global, NULL, NULL);
return;
}
void
ck_epoch_barrier(struct ck_epoch_record *record)
{
ck_epoch_synchronize(record);
ck_epoch_reclaim(record);
return;
}
void
ck_epoch_barrier_wait(struct ck_epoch_record *record, ck_epoch_wait_cb_t *cb,
void *ct)
{
ck_epoch_synchronize_wait(record->global, cb, ct);
ck_epoch_reclaim(record);
return;
}
/*
* It may be worth it to actually apply these deferral semantics to an epoch
* that was observed at ck_epoch_call time. The problem is that the latter
* would require a full fence.
*
* ck_epoch_call will dispatch to the latest epoch snapshot that was observed.
* There are cases where it will fail to reclaim as early as it could. If this
* becomes a problem, we could actually use a heap for epoch buckets but that
* is far from ideal too.
*/
bool
ck_epoch_poll(struct ck_epoch_record *record)
{
bool active;
unsigned int epoch;
struct ck_epoch_record *cr = NULL;
struct ck_epoch *global = record->global;
epoch = ck_pr_load_uint(&global->epoch);
/* Serialize epoch snapshots with respect to global epoch. */
ck_pr_fence_memory();
cr = ck_epoch_scan(global, cr, epoch, &active);
if (cr != NULL) {
record->epoch = epoch;
return false;
}
/* We are at a grace period if all threads are inactive. */
if (active == false) {
record->epoch = epoch;
for (epoch = 0; epoch < CK_EPOCH_LENGTH; epoch++)
ck_epoch_dispatch(record, epoch);
return true;
}
/* If an active thread exists, rely on epoch observation. */
(void)ck_pr_cas_uint(&global->epoch, epoch, epoch + 1);
ck_epoch_dispatch(record, epoch + 1);
return true;
}