blob: 9356fdc740985ed539ae191d8d33037a0c8374d5 [file] [log] [blame]
/*
* Copyright (c) 2012, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FractionalLayoutUnit_h
#define FractionalLayoutUnit_h
#include <limits.h>
#include <limits>
#include <math.h>
#include <stdlib.h>
#include <wtf/MathExtras.h>
#if PLATFORM(QT)
#include <QDataStream>
#endif
namespace WebCore {
#ifdef NDEBUG
#define REPORT_OVERFLOW(doesOverflow) ((void)0)
#else
#define REPORT_OVERFLOW(doesOverflow) do \
if (!(doesOverflow)) { \
WTFReportError(__FILE__, __LINE__, WTF_PRETTY_FUNCTION, "!(%s)", #doesOverflow); \
} \
while (0)
#endif
#if ENABLE(SUBPIXEL_LAYOUT)
static const int kFixedPointDenominator = 60;
#else
static const int kFixedPointDenominator = 1;
#endif
const int intMaxForLayoutUnit = INT_MAX / kFixedPointDenominator;
const int intMinForLayoutUnit = -intMaxForLayoutUnit;
class FractionalLayoutUnit {
public:
// FIXME: Ideally we would have size_t versions of the constructor and operators.
// However due to compiler and platform differences adding those are non-trivial.
// See https://bugs.webkit.org/show_bug.cgi?id=83848 for details.
FractionalLayoutUnit() : m_value(0) { }
#if ENABLE(SUBPIXEL_LAYOUT)
FractionalLayoutUnit(int value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value * kFixedPointDenominator; }
FractionalLayoutUnit(unsigned short value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value * kFixedPointDenominator; }
FractionalLayoutUnit(unsigned int value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value * kFixedPointDenominator; }
FractionalLayoutUnit(float value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value * kFixedPointDenominator; }
FractionalLayoutUnit(double value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value * kFixedPointDenominator; }
#else
FractionalLayoutUnit(int value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value; }
FractionalLayoutUnit(unsigned short value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value; }
FractionalLayoutUnit(unsigned int value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value; }
FractionalLayoutUnit(float value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value; }
FractionalLayoutUnit(double value) { REPORT_OVERFLOW(isInBounds(value)); m_value = value; }
#endif
FractionalLayoutUnit(const FractionalLayoutUnit& value) { m_value = value.rawValue(); }
static FractionalLayoutUnit fromFloatCeil(float value)
{
REPORT_OVERFLOW(isInBounds(value));
FractionalLayoutUnit v;
v.m_value = ceilf(value * kFixedPointDenominator);
return v;
}
static FractionalLayoutUnit fromFloatRound(float value)
{
if (value >= 0)
return FractionalLayoutUnit(value + epsilon() / 2.0f);
return FractionalLayoutUnit(value - epsilon() / 2.0f);
}
#if ENABLE(SUBPIXEL_LAYOUT)
int toInt() const { return m_value / kFixedPointDenominator; }
float toFloat() const { return static_cast<float>(m_value) / kFixedPointDenominator; }
double toDouble() const { return static_cast<double>(m_value) / kFixedPointDenominator; }
#else
int toInt() const { return m_value; }
float toFloat() const { return static_cast<float>(m_value); }
double toDouble() const { return static_cast<double>(m_value); }
#endif
unsigned toUnsigned() const { REPORT_OVERFLOW(m_value >= 0); return toInt(); }
operator int() const { return toInt(); }
operator unsigned() const { return toUnsigned(); }
operator float() const { return toFloat(); }
operator double() const { return toDouble(); }
operator bool() const { return m_value; }
FractionalLayoutUnit operator++(int)
{
m_value += kFixedPointDenominator;
return *this;
}
int rawValue() const { return m_value; }
void setRawValue(int value) { m_value = value; }
void setRawValue(long long value)
{
REPORT_OVERFLOW(value > std::numeric_limits<int>::min() && value < std::numeric_limits<int>::max());
m_value = static_cast<int>(value);
}
FractionalLayoutUnit abs() const
{
FractionalLayoutUnit returnValue;
returnValue.setRawValue(::abs(m_value));
return returnValue;
}
#if OS(DARWIN)
int wtf_ceil() const
#else
int ceil() const
#endif
{
#if ENABLE(SUBPIXEL_LAYOUT)
if (m_value > 0)
return (m_value + kFixedPointDenominator - 1) / kFixedPointDenominator;
return (m_value - kFixedPointDenominator + 1) / kFixedPointDenominator;
#else
return m_value;
#endif
}
int round() const
{
#if ENABLE(SUBPIXEL_LAYOUT)
if (m_value > 0)
return (m_value + (kFixedPointDenominator / 2)) / kFixedPointDenominator;
return (m_value - (kFixedPointDenominator / 2)) / kFixedPointDenominator;
#else
return m_value;
#endif
}
int floor() const
{
return toInt();
}
static float epsilon() { return 1.0f / kFixedPointDenominator; }
static const FractionalLayoutUnit max()
{
FractionalLayoutUnit m;
m.m_value = std::numeric_limits<int>::max();
return m;
}
static const FractionalLayoutUnit min()
{
FractionalLayoutUnit m;
m.m_value = std::numeric_limits<int>::min();
return m;
}
static FractionalLayoutUnit clamp(double value)
{
return clampTo<FractionalLayoutUnit>(value, FractionalLayoutUnit::min(), FractionalLayoutUnit::max());
}
private:
static bool isInBounds(int value)
{
return ::abs(value) <= std::numeric_limits<int>::max() / kFixedPointDenominator;
}
static bool isInBounds(unsigned value)
{
return value <= static_cast<unsigned>(std::numeric_limits<int>::max()) / kFixedPointDenominator;
}
static bool isInBounds(double value)
{
return ::fabs(value) <= std::numeric_limits<int>::max() / kFixedPointDenominator;
}
int m_value;
};
inline bool operator<=(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
return a.rawValue() <= b.rawValue();
}
inline bool operator<=(const FractionalLayoutUnit& a, float b)
{
return a.toFloat() <= b;
}
inline bool operator<=(const FractionalLayoutUnit& a, int b)
{
return a <= FractionalLayoutUnit(b);
}
inline bool operator<=(const float a, const FractionalLayoutUnit& b)
{
return a <= b.toFloat();
}
inline bool operator<=(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) <= b;
}
inline bool operator>=(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
return a.rawValue() >= b.rawValue();
}
inline bool operator>=(const FractionalLayoutUnit& a, int b)
{
return a >= FractionalLayoutUnit(b);
}
inline bool operator>=(const float a, const FractionalLayoutUnit& b)
{
return a >= b.toFloat();
}
inline bool operator>=(const FractionalLayoutUnit& a, float b)
{
return a.toFloat() >= b;
}
inline bool operator>=(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) >= b;
}
inline bool operator<(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
return a.rawValue() < b.rawValue();
}
inline bool operator<(const FractionalLayoutUnit& a, int b)
{
return a < FractionalLayoutUnit(b);
}
inline bool operator<(const FractionalLayoutUnit& a, float b)
{
return a.toFloat() < b;
}
inline bool operator<(const FractionalLayoutUnit& a, double b)
{
return a.toDouble() < b;
}
inline bool operator<(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) < b;
}
inline bool operator<(const float a, const FractionalLayoutUnit& b)
{
return a < b.toFloat();
}
inline bool operator>(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
return a.rawValue() > b.rawValue();
}
inline bool operator>(const FractionalLayoutUnit& a, double b)
{
return a.toDouble() > b;
}
inline bool operator>(const FractionalLayoutUnit& a, float b)
{
return a.toFloat() > b;
}
inline bool operator>(const FractionalLayoutUnit& a, int b)
{
return a > FractionalLayoutUnit(b);
}
inline bool operator>(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) > b;
}
inline bool operator>(const float a, const FractionalLayoutUnit& b)
{
return a > b.toFloat();
}
inline bool operator>(const double a, const FractionalLayoutUnit& b)
{
return a > b.toDouble();
}
inline bool operator!=(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
return a.rawValue() != b.rawValue();
}
inline bool operator!=(const FractionalLayoutUnit& a, float b)
{
return a != FractionalLayoutUnit(b);
}
inline bool operator!=(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) != b;
}
inline bool operator!=(const FractionalLayoutUnit& a, int b)
{
return a != FractionalLayoutUnit(b);
}
inline bool operator==(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
return a.rawValue() == b.rawValue();
}
inline bool operator==(const FractionalLayoutUnit& a, int b)
{
return a == FractionalLayoutUnit(b);
}
inline bool operator==(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) == b;
}
inline bool operator==(const FractionalLayoutUnit& a, float b)
{
return a.toFloat() == b;
}
inline bool operator==(const float a, const FractionalLayoutUnit& b)
{
return a == b.toFloat();
}
// For multiplication that's prone to overflow, this bounds it to FractionalLayoutUnit::max() and ::min()
inline FractionalLayoutUnit boundedMultiply(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
#if ENABLE(SUBPIXEL_LAYOUT)
FractionalLayoutUnit returnVal;
long long rawVal = static_cast<long long>(a.rawValue()) * b.rawValue() / kFixedPointDenominator;
if (rawVal > std::numeric_limits<int>::max())
return FractionalLayoutUnit::max();
if (rawVal < std::numeric_limits<int>::min())
return FractionalLayoutUnit::min();
returnVal.setRawValue(rawVal);
return returnVal;
#else
return a.rawValue() * b.rawValue();
#endif
}
inline FractionalLayoutUnit operator*(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
#if ENABLE(SUBPIXEL_LAYOUT)
FractionalLayoutUnit returnVal;
long long rawVal = static_cast<long long>(a.rawValue()) * b.rawValue() / kFixedPointDenominator;
returnVal.setRawValue(rawVal);
return returnVal;
#else
return a.rawValue() * b.rawValue();
#endif
}
inline double operator*(const FractionalLayoutUnit& a, double b)
{
return a.toDouble() * b;
}
inline float operator*(const FractionalLayoutUnit& a, float b)
{
return a.toFloat() * b;
}
inline FractionalLayoutUnit operator*(const FractionalLayoutUnit& a, int b)
{
return a * FractionalLayoutUnit(b);
}
inline FractionalLayoutUnit operator*(const FractionalLayoutUnit& a, unsigned b)
{
return a * FractionalLayoutUnit(b);
}
inline FractionalLayoutUnit operator*(unsigned a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) * b;
}
inline FractionalLayoutUnit operator*(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) * b;
}
inline float operator*(const float a, const FractionalLayoutUnit& b)
{
return a * b.toFloat();
}
inline double operator*(const double a, const FractionalLayoutUnit& b)
{
return a * b.toDouble();
}
inline FractionalLayoutUnit operator/(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
#if ENABLE(SUBPIXEL_LAYOUT)
FractionalLayoutUnit returnVal;
long long rawVal = static_cast<long long>(kFixedPointDenominator) * a.rawValue() / b.rawValue();
returnVal.setRawValue(rawVal);
return returnVal;
#else
return a.rawValue() / b.rawValue();
#endif
}
inline float operator/(const FractionalLayoutUnit& a, float b)
{
return a.toFloat() / b;
}
inline double operator/(const FractionalLayoutUnit& a, double b)
{
return a.toDouble() / b;
}
inline FractionalLayoutUnit operator/(const FractionalLayoutUnit& a, int b)
{
return a / FractionalLayoutUnit(b);
}
inline FractionalLayoutUnit operator/(const FractionalLayoutUnit& a, unsigned int b)
{
return a / FractionalLayoutUnit(b);
}
inline float operator/(const float a, const FractionalLayoutUnit& b)
{
return a / b.toFloat();
}
inline double operator/(const double a, const FractionalLayoutUnit& b)
{
return a / b.toDouble();
}
inline FractionalLayoutUnit operator/(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) / b;
}
inline FractionalLayoutUnit operator/(unsigned int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) / b;
}
inline FractionalLayoutUnit operator+(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
FractionalLayoutUnit returnVal;
returnVal.setRawValue(a.rawValue() + b.rawValue());
return returnVal;
}
inline FractionalLayoutUnit operator+(const FractionalLayoutUnit& a, int b)
{
return a + FractionalLayoutUnit(b);
}
inline float operator+(const FractionalLayoutUnit& a, float b)
{
return a.toFloat() + b;
}
inline double operator+(const FractionalLayoutUnit& a, double b)
{
return a.toDouble() + b;
}
inline FractionalLayoutUnit operator+(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) + b;
}
inline float operator+(const float a, const FractionalLayoutUnit& b)
{
return a + b.toFloat();
}
inline double operator+(const double a, const FractionalLayoutUnit& b)
{
return a + b.toDouble();
}
inline FractionalLayoutUnit operator-(const FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
FractionalLayoutUnit returnVal;
returnVal.setRawValue(a.rawValue() - b.rawValue());
return returnVal;
}
inline FractionalLayoutUnit operator-(const FractionalLayoutUnit& a, int b)
{
return a - FractionalLayoutUnit(b);
}
inline FractionalLayoutUnit operator-(const FractionalLayoutUnit& a, unsigned b)
{
return a - FractionalLayoutUnit(b);
}
inline float operator-(const FractionalLayoutUnit& a, float b)
{
return a.toFloat() - b;
}
inline FractionalLayoutUnit operator-(const int a, const FractionalLayoutUnit& b)
{
return FractionalLayoutUnit(a) - b;
}
inline float operator-(const float a, const FractionalLayoutUnit& b)
{
return a - b.toFloat();
}
inline FractionalLayoutUnit operator-(const FractionalLayoutUnit& a)
{
FractionalLayoutUnit returnVal;
returnVal.setRawValue(-a.rawValue());
return returnVal;
}
inline FractionalLayoutUnit& operator+=(FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
a = a + b;
return a;
}
inline FractionalLayoutUnit& operator+=(FractionalLayoutUnit& a, int b)
{
a = a + b;
return a;
}
inline FractionalLayoutUnit& operator+=(FractionalLayoutUnit& a, float b)
{
a = a + b;
return a;
}
inline float& operator+=(float& a, const FractionalLayoutUnit& b)
{
a = a + b;
return a;
}
inline FractionalLayoutUnit& operator-=(FractionalLayoutUnit& a, int b)
{
a = a - b;
return a;
}
inline FractionalLayoutUnit& operator-=(FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
a = a - b;
return a;
}
inline FractionalLayoutUnit& operator-=(FractionalLayoutUnit& a, float b)
{
a = a - b;
return a;
}
inline float& operator-=(float& a, const FractionalLayoutUnit& b)
{
a = a - b;
return a;
}
inline FractionalLayoutUnit& operator*=(FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
a = a * b;
return a;
}
// operator*=(FractionalLayoutUnit& a, int b) is supported by the operator above plus FractionalLayoutUnit(int).
inline FractionalLayoutUnit& operator*=(FractionalLayoutUnit& a, float b)
{
a = a * b;
return a;
}
inline float& operator*=(float& a, const FractionalLayoutUnit& b)
{
a = a * b;
return a;
}
inline FractionalLayoutUnit& operator/=(FractionalLayoutUnit& a, const FractionalLayoutUnit& b)
{
a = a / b;
return a;
}
// operator/=(FractionalLayoutUnit& a, int b) is supported by the operator above plus FractionalLayoutUnit(int).
inline FractionalLayoutUnit& operator/=(FractionalLayoutUnit& a, float b)
{
a = a / b;
return a;
}
inline float& operator/=(float& a, const FractionalLayoutUnit& b)
{
a = a / b;
return a;
}
inline int snapSizeToPixel(FractionalLayoutUnit size, FractionalLayoutUnit location)
{
return (location + size).round() - location.round();
}
#if PLATFORM(QT)
inline QDataStream& operator<<(QDataStream& stream, const FractionalLayoutUnit& value)
{
if (kFixedPointDenominator == 1)
stream << value.rawValue();
else
stream << QString::fromLatin1("%1").arg(value.toFloat(), 0, 'f', 2);
return stream;
}
inline QDataStream& operator>>(QDataStream& stream, FractionalLayoutUnit& value)
{
float v;
stream >> v;
value = v;
return stream;
}
#endif
} // namespace WebCore
#endif // FractionalLayoutUnit_h